НОВАЯ ЗАКОНОМЕРНОСТЬ ПРОЯВЛЕНИЯ ДОПЛЕРОВСЬКОГО ЭФФЕКТА ПРИ СОГЛАСОВАННОЙ ГЕОМЕТРИИ МНОГОВОЛНОВОГО ЗОНДИРОВАНИЯ И ПРИЕМА ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Установлена неизвестная ранее закономерность независимость частоты доплеровского сигнала при многоволновом ЭМ согласованном зондировании и приёме рассеянного от двигающего объекта излучения для следующих геометрий зондирования и приёма, заключающаяся в том, что:

- при облучении движущегося объекта парами когерентных ЭМ пучков на длинах волн $\lambda_1,\ \lambda_2,\ \dots\ \lambda_n$, пересекающимися соответственно под согласованными углами $\gamma_1,\ \gamma_2,\ \dots,\ \gamma_n$, значение которых находится:

$$\gamma_i = 2\arcsin\left(\frac{\lambda_i}{\lambda_1} \cdot \sin\frac{\lambda_1}{2}\right),$$

где i=2,3,...,n, возникает равенство разностных волновых векторов двух зондирующих ЭМ пучков на каждой i-той длине волны, а также их пространственное совмещение при одинаковой направленности;

- при облучении движущегося объекта одним зондирующим пучком на длинах $\lambda_1, \, \lambda_2, \, \ldots \, \lambda_n$ и приёме рассеянного ЭМ излучения в двух направлениях под углами $\alpha_1, \, \alpha_2, \, \ldots, \, \alpha_n$, соответственно для каждой из длин волны, значения которых согласованы между собой и находятся из соотношения:

$$\alpha_i = 2\arcsin\left(\frac{\lambda_i}{\lambda_1} \cdot \sin\frac{\alpha_{i1}}{2}\right),$$

где i=2,3,...,n, возникает равенство разностных волновых векторов двух рассеянных пучков на каждой i-той длине волны, а также их пространственное совмещение при одинаковой направленности;

- при облучении движущегося объекта парами когерентных пучков на длинах волн $\lambda_1,\ \lambda_2,\ \dots\ \lambda_n$, пересекающихся под согласованными углами $\gamma_1,\ \gamma_2,\ \dots,\ \gamma_n$, а также приёме рассеянного излучения на длинах волн $\lambda_1,\ \lambda_2,\ \dots\ \lambda_n$, в двух направлениях под углом β при согласованном значении углов зондирования γ_i и приёма β , определяемых из соотношения:

$$\gamma_i = 2\arcsin\left[\left(\frac{\lambda_i}{\lambda_1}\right) \cdot \sin\frac{\gamma_1}{2} + \left(\frac{\lambda_1 - \lambda_i}{\lambda_1}\right) \cdot \sin\frac{\beta}{2}\right],$$

где $i=2,3,\ldots,n$, возникает равенство разности двух пространственно совмещенных векторов $\overline{K_{1\iota}}$ - $\overline{K_{S\iota}}$ для каждой из длин волн ЭМ излучения, где $\overline{K_{1\iota}}$ - разностный волновой вектор двух зондирующих пучков на длине волны λ_j пространственно совмещенный и совпадающий по направлению с вектором $\overline{K_{1\jmath}}$ на длине волны λ_j ; вектор $\overline{K_{S\iota}}$ - разностный волновой вектор двух рассеянных пучков на лине волны λ_i , пространственно совмещенный и совпадающий по направлению с вектором $\overline{K_{S\jmath}}$ на длине волны λ_j ;

- при облучении движущегося объекта парами когерентных пучков на длинах волн $\lambda_1, \lambda_2, \ldots \lambda_n$, пересекающихся под согласованными углами $\gamma_1, \gamma_2, \ldots, \gamma_n$, а также приеме рассеянного излучения на длинах волн $\lambda_1, \lambda_2, \ldots \lambda_n$, в двух направлениях под углом β при согласованном значении углов зондирования γ_i и приёма β , определяемых:

$$\gamma_i = 2\arcsin\left[\left(\frac{\lambda_i}{\lambda_1}\right) \cdot \sin\frac{\gamma_1}{2} + \left(\frac{\lambda_i - \lambda_1}{\lambda_1}\right) \cdot \sin\frac{\beta}{2}\right],$$

Возникает равенство суммы, упомянутых выше двух пространственно совмещенных векторов $\overline{K_{1l}} + \overline{K_{Sl}}$ для каждой из длин волн ЭМ излучения;

- при облучении движущегося объекта двумя зондирующими пучками на длинах волн $\lambda_1,\ \lambda_2,\ \dots\ \lambda_n$, пересекающимися под углом γ , а также приёме рассеянного ЭМ излучения в двух направлениях под углами $\beta_1,\ \beta_2,\dots,\ \beta_1,\ \beta_n$, соответственно для каждой из длин волн, при согласованном значении угла зондирования γ и углов приёма β_i , определяемых:

$$\beta_i = 2\arcsin\left[\left(\frac{\lambda_i}{\lambda_1}\right) \cdot \sin\frac{\beta_1}{2} + \left(\frac{\lambda_1 - \lambda_i}{\lambda_1}\right) \cdot \sin\frac{\gamma}{2}\right],$$

где $i=2,3,\ldots,n$, возникает равенство разности двух пространственно совмещенных векторов $\overline{K_{1\iota}}$ - $\overline{K_{S\iota}}$ для каждой из длин волн ЭМ излучения, где $\overline{K_{1\iota}}$ - разностный волновой вектор двух зондирующих пучков на длине волны λ_i , которые пересекаются под углом γ для каждой из длин волн, пространственно совмещенный и совпадающий по направлению с вектором $\overline{K_{1\jmath}}$ на длине волны λ_i , пространственно совмещенный и совпадающий по направлению с вектором $\overline{K_{SJ}}$ на длине волны λ_i , пространственно совмещенный и совпадающий по направлению с вектором $\overline{K_{SJ}}$ на длине волны λ_i ;

- при облучении движущегося объекта двумя зондирующими пучками на длинах $\lambda_1,\ \lambda_2,\ \dots\ \lambda_n$, пересекающимися под углом γ , а также приёме рассеянного ЭМ излучения в двух направлениях под углами $\beta_1,\ \beta_2,\dots,\ \beta_1,\ \beta_n$, соответственно для каждой из длин волн, при согласованном значении угла зондирования γ и углов приёма β_i , определяемых:

$$\beta_i = 2\arcsin\left[\left(\frac{\lambda_i}{\lambda_1}\right) \cdot \sin\frac{\beta_1}{2} + \left(\frac{\lambda_i - \lambda_1}{\lambda_1}\right) \cdot \sin\frac{\gamma}{2}\right].$$