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Abstract—The problem of optimal state feedback controller design in terms of quadratic performance
index is considered. The problem is formulated in the form of linear matrix inequalities (LMlIs). The
obtained solution guarantees stabilization of the aircraft during flight mission. During flight envelope the
aircraft is subjected to the external stochastic disturbances. The efficiency of the proposed approach is
illustrated by a case study of airplane longitudinal motion.
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I. INTRODUCTION

The problem of optimal control design has been
considered in a number of publications [1]-[3].
Especially, it is very crucial question in the area of
aircraft control, where it is necessary to satisfy the
manifold requirements imposed on the aircraft
during flight envelope. A great number of control
approaches have been proposed to solve the problem
autopilot design. Among them, it is possible to
enumerate some works related to the combination of
observer and linear quadratic regulator [3], [4].
Furthermore, to preserve the required level of
performance without losing the robustness of the
flight control system, the mixed H,/H, — robust

optimization procedure is used. The main idea
behind this technique is to seek a trade-off between
the performance and the robustness of the overall
closed loop system [3], [4]. The autopilot design is
also may be performed basing on the available
information about the output variables. This
circumstance leads to the problem of static output
feedback (SOF) controller design. The main
advantage of SOF design is that it requires only
available signals from the plant to be controlled. The
SOF problem concerns finding a static or feedback
gain to achieve certain desired closed-loop
characteristics. It is necessary to admit that the
output feedback problem is much more difficult to
solve in comparison to state feedback control
problem. A survey devoted to this problem is
presented in [5].

This paper deals with static state feedback
controller design in terms of LMIs [6], [7] for
aircraft control during flight envelope. The main
feature of this paper is that the obtained state
feedback controller stabilizes the set of autonomous
systems, simultaneously. Moreover, the designed
controller possesses with robustness properties. To
prove the efficiency of the proposed technique, the
longitudinal motion of the aircraft is considered as a
case study.

II. PROBLEM STATEMENT

Let us consider procedure of state feedback
design for an aircraft control whose dynamics is
described by the following differential equation

x(t)=A;x(1)+Bju(t), x(0)=x,, (1)

where xe R" is the state space vector, ue R™is the

control vector. The uncertainties of the model are
represented by the set of matrices (A;, B;) that

satisfy the following requirement:

[A BleCo{[A; Bl...[Ay Byl},i=1L..,N,
where Co is a convex set; N is the set of models
associated with certain operating conditions within

the flight envelope. The main problem is to find the
state feedback of the following form

u(t)=Kx(1), (2)

where K is a constant state feedback gain matrix
that assures that the system is asymptotically stable.
Thus, the closed-loop system taking into account (1)
and (2) takes the well known description in form of
differential equation as:

x(1)=(A; +B;K)x(¢) , x(0)=x,.

The obtained solution minimizes performances
index given by

JzT(x(t)TQx(t)+u(t)TRu(t))dt
’ ) (3)
= [x()' (@+ K" RK)x(r) dr,

where Q and Rare diagonal matrices, weighting
cach state and control variables, respectively.
This cost depends on the trajectory, of x(¢),

taken, such that the worst trajectory will correspond
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to the worst cost. The control problem is to find the
state feedback gain Kand a quadratic Lyapunov

function P that minimizes the bound x; Px, on the

worst cost of J . The problem can be translated into
an optimization problem as follows:

minimize x, Px,;
subjectto P >0,
(A, +BK) P+P(A, +BK)+Q+K'RK <0. (4)

The goal is to find state feedback controller (2)
that simultaneously stabilizes the set of autonomous
systems. The obtained solution is optimal and brings
to the minimum performance index given by (3).
The linear matrix inequality (LMI) technique
permits to solve this problem [6], [7]. Thus, it is
possible to transform the non-linear inequality (4)
into the LMI form. This procedure reduces to the
defining new matrices X and M such that

X=P', M=KP'!and P=X",
K=MP=MX"".

By substituting new variables X and M instead
of P and K into Lyapunov inequality (4), and then
pre-multiplying and post-multiplying the left and the
right hand sides by X, the inequality (4) becomes

XA +A,X+M/B] +B,M, + XQX+M/RM, <0. (5)
Basing on Schur’s complement the matrix inequality
(5) can be expressed as the LMI

XAT +AX+BM, +M'B” XQ"> MR"?

Q"2x -1 0 |<0.(6)
R"?M, 0 -1
By applying Schur’s complement, the cost
ngxo = ngflxo <v,
— nominal model
[-0.674e-2  0.498e-1  —0.250e +2
—0.122¢-1  -0.738 0.788e+3
A, =| 0.245¢-2 —0.625¢-2 —0.846
0 0 1
| 0.317e-1  —0.le+1 0

— perturbed model

is expressed as the LMI

T
T %o,
x, X

The following optimization problem can be
represented in terms of LMI (6) and (7) minimizes y
subject to

(7

XA +AX+B,M, +M/B," XQ"> Mm]R"?
Q'2x | 0
R"’M. 0 -1

T
%o s,
x, X

III. CASE STUDY

<0,

To demonstrate the efficiency of the proposed
approach the longitudinal channel of regional jet is
used as a case study. The longitudinal dynamics of
regional jet in the state space is represented by the
phase and control vectors, respectively. The phase
and control vector have the following form:

x=[u, w, ¢, 9, h]T and uz[ESe]T, where u 1s

a longitudinal component of true airspeed; w is a
vertical component of true airspeed; ¢ is the aircraft
pitch rate; 3 is a pitch angle; % is the aircraft

. T .
altitude. The control vector u = [86] is represented

by the elevator defection [8]. It is considered two
operating modes of the Boeing 737-100 aircraft with
true airspeed at V', = 240.88 m/sec and V, - 237.26
m/sec. Thus, we have two mathematical models that
correspond to these airspeeds. These linear models
in the state space are represented by the

matrices [A, B] . The that

correspond to nominal and parametrically perturbed
models are given below:

set of matrices

-0.322¢+2 0 [ 0.191e—1 |
—0.102¢+1 0 -0.601
0.104e-13  0|; B,=|-0.802e—1|;
0 0 0
0.790e+3 0| 0|
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[-0.595¢-2  0.525¢-1 —0.290e+2 —0.321e+2 0] [ 0.206e-1 |
—0.156e-2  —0.688  0.776e+3 —0.120e+1 0 -0.553
A,=| 02312 -0.602¢2  —0.771 0 0; B,=|-0.736e1].
0 0 1 0 0 0
| 0.373e-1  —0.999 0 0.799¢+3 0| 0|

where the subscript “n” corresponds to the nominal
model and perturbed model is designated by the
subscript “p”.

Disturbance, v affecting the longitudinal motion
of the aircraft involves the following components:

horizontal and vertical components of true airspeed,

In order to simulate the atmospheric turbulence a
Dryden filter is used [8]. The aircraft is considered
to fly in a moderate turbulence. The transfer
functions of forming filter according to standard
MIL-F-8785C [13], [14] used in simulation to

u, and w,, and pitch rate, g, such that that account external disturbances have the following
i & T & structure:
U=|:ug, Wg’ L]g:l .
3L, 8
2L, 1 L, ”\/;w s %
H,(s)=0c ©“—— 5 H,(5)=0,,|—~——; H()=—F+—H (5)..
u u Tch Lu w w oV ) Lw 5 q 4b w
5 (1+579) 1+ |s)
nV

To solve the problem of state feedback design
with the control law (2) via LMIs as given by (6) it
is necessary to define weighting matrices Q and R.
In our case these matrices are defined as follows

Q=14-10"diag([1 1 1 1 1]); R=[0.011].

By solving the LMIs given by (6) and (7) the
gain matrix K for the state feedback has the
following structure

K:[—0.0090 -0.1683 27.7311 195.6772 0.0374].

The static state feedback gain matrix obtained with
the help of the proposed approach assures
simultaneous stabilization the set of autonomous
systems that testifies the robust properties of the
controller.

Performance indices of closed loop nominal and
parametrically perturbed systems with the state
feedback are given in Table 1.

Standard deviations of the Boeing 737-100
regional jet with state feedback control for nominal
and parametrically perturbed models are given in
Table 2.

TABLE 1

STANDARD DEVIATIONS OF THE BOEING 737-100 OUTPUTS IN A STOCHASTIC CASE

Standard deviation

Plant G, , m/sec o, Isec o, " G,,m c, "

V\=240.88 m/s 0.3439 0.0094 0.0341 4.5747 0.3439

Vy=237.26 m/s 0.3087 0.0076 0.0315 4.3585 0.3087

TABLE2 . .
The simulation results of the closed loop systems
PERFORMANCE INDICES OF CLOSED-LOOP SYSTEMS operation taking into account the influence of the
Performance Index random wind, simulated according to the standard
Plant H;-norm H.-norm Dryden model of turbulence confirm the efficiency
V1= 240.88 m/s 0.1090 0.3037 of proposed approach. Results of the simulation are
Vy=237.26 m/s 0.0739 0.2096 shown in Figure.
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Simulation results of Boeing 737-100 aircraft longitudinal motion in the presence of external disturbances: a is the pitch
rate of nominal and perturbed models, deg/s; b is the pitch angle of nominal and perturbed models, deg;
c is the altitude of nominal and perturbed models, m

CONCLUSIONS

Simulation results prove the efficiency of the
proposed approach. It can be seen that the handling
quality of the nominal and the perturbed models are
satisfied.

REFERENCES

[1] Kwakernaak, H. and Sivan, R. (1972). Linear
Optimal Control Systems, Wiey Interscience: New York,
650 p.

2] Klipa, A. and Sydorenko, A. (2014).
“Performance and Robustness Estimation of UAV Flight
Control Systems using Different Methods of Flight
Parameters  Measurements”,  Polit -2014: XIV
International scientific-technical conference, 152 p., 2-
3 April. 2014 (in Ukrainian).

3] Tunik, A. A. and Galaguz, T. A. (2004). “Robust
Stabilization and Nominal Performance of the Flight

Control System for Small UAV”, Applied and
Computation Mathematics, vol. 3, no. 1, pp. 3445, 2004.

[4] Tunik, A.; Galaguz, T. and Dong Xu Guo
(2005). “Design of suboptimal robust flight control
system for small UAV”, Aviation in the XXI-st Century.
Safety in Aviation and Space Technologies: The Second
World Congress, pp. 1.70-1.79, 22-24 September, 2005.

[5] Syrmos, V. L.; Abdallah, C.; Dorato, P. and
Grigoriadis, K. (1997). “Static Output Feedback -
A Survey”, Automatica, vol. 33, pp. 125-137.

(6] Boyd, S.; Ghaoui, L. E.; Feron, E. and
Balakrishnan, V. (1994). Linear Matrix Inequalities in

System and Control Theory, SIAM Studies in Applied
Mathematics, Philadelphia, 416 p.

[71 Nesterov, Yu. and Nemirovskii, A. (1994).
Interior-point  polynomial algorithms in convex
programming. Philadelphia: SIAM, 407 p.

[8] McLean D. (1990). Automatic Flight Control
Systems, Prentice Hall, NY, 593 p.

Received 27 April 2015.



50 ISSN 1990-5548 Electronics and Control Systems 2015. N 2(44): 46-50

Komnatska Marta. Ph. D. Associate Professor.

Aircraft control systems Department, National Aviation University, Kyiv, Ukraine.
Education: National Aviation University, Kyiv, Ukraine (2007).

Research interests: control systems and data processing.

Publications: 38.

E-mail: martakomnatska@gmail.com

M. M. KomHanbska. OnTHMaJbHe KEPYBAHHS PYXOM JIiTaKa 3 TApaHTOBAHMMH MiHIiMaJIBHIUMHM 3aTPaTaMHu
[IpencraBneno mpoueaypy CHHTE3Y ONTHMAaJIbHOTO DPErylsTopa, L0 MiHIMi3ye OoOpaHMi KBaJApaTUYHHN KpPUTEpIii.
3amaya po3B’sI3yeTbCS B TEPMiHAX JIIHIMHUX MaTpU4YHHMX HepiBHOCTeH. E(deKTHBHICTH 3ampoNOHOBAHOIO MiAXOMY
UTFOCTPYETBCS Ha MPUKIIAAl KePYBaHHS IMOB3IOBXKHIM PYXOM JIiTaKa.

KirouoBi ciioBa: xepyBaHHS pyXoM JiTaka; 30BHIIIHI 30ypeHHS; JiHiIifHa MaTpUYHA HEPIBHICTH; MMOKa3HUK SKOCTI;
PpOOACTHICTH; 3BOPOTHI 3B 30K 33 CTAHOM.

Komuanbka Mapra MukonaiBHa. Kanaunar TexHiuHUX HayK. J[OICHT.

Kagenpa cucrem ynpaiiHHa JiTanbHAX anapatiB, HanionanesHuii aBianiitnuii yaisepcuret, Kuis, Ykpaina.
Ocgita: HamionansHuit aBianidamit yaisepcuret, Kuis, Yipaina (2007).

HanpsMox HayKoBO1 IisSTIBHOCTI: CHCTEMH YIIPABIIIHHA Ta 00poOKa iHpopMarrii.

KinpkicTs myOmikariii: 38.

E-mail: martakomnatska@gmail.com

M. H. Komnankas. OnTumajibHoe yrpaBJjieHHe IBHKeHHEeM caMoJjieTa ¢ TapaHTHUPOBAHHBIMM MHHUMAJIbHBIMHU
3aTparamMu

[IpencraBnena mporeaypa CHHTE3a ONTHMAIBHOIO PETYJIATOPA, KOTOPBIA MHHUMHM3HMPYET BBIOPAHHBIN I10Ka3aTellb
KayecTBa. 3ajada pemiaercss ¢ HCIOJNb30BaHUEM armapaTa JIMHEWHBIX MaTPpUYHBIX HepaBeHCTB. O(QEeKTUBHOCTH
IIPEUI0KEHHOI 0 TIOAX0/Ja UILTIOCTPUPYETC Ha IPUMEpPE yIpaBIeHUs POJOAbHBIM JBI)KEHUEM CaMOJeTa.

KiroueBble ciioBa: ynpaBlieHHE JBHKEHHUEM CaMOJIETa; BHEUIHHE BO3MYLICHHS; JTUHEHHOE MaTPUUYHOE HEPAaBEHCTBO;
IOKa3aTelb Ka4ecTBa; po0aCTHOCTH; 0OpaTHas CBA3b 10 COCTOSHUIO.

Komuankas Mapra HukonaeBHa. KaHauaaT TeXHUUECKUX HAYK, TOLEHT.

Kagenpa cucrem ynpasieHus JieTaTeIbHBIX anmnaparoB, HanyoHaapHeIH aBUallMOHHBIA yHUBepcuTeT, Kues, Ykpauna.
O6pazoBanne: HannoHnansHbIH aBHalMOHHEINH yHUBEpcuTeT, Knes, Yipauna (2007).

Hamnpasnenue Hay4HOH IESTENEHOCTH: CHCTEMBI YIIpaBJIeHHs 1 00paboTKa MHOPMALUH.

KonmuectBo nmy6nmkanmii: 38.

E-mail: martakomnatska@gmail.com



