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From where it is obtained a solution in the view of an extremal distribution 
of the probabilities [65, chapter 3, § 3.3, p. 67, (3.3.5, 3.3.6)]: 
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The expression of (17) is an analogous one to the obtained in work [4, p. 623, 
(2-4)]. 

A generalization of the Jaynes’ principle is optimization problems with a 
functional of the following view [XLVIII, chapter 2, § 2.1, p. 16, (2.1.10)]: 
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where  – function relating with a certain alternative. iF
Designating the under-integral function of (A) as *R , we get the necessary 

conditions of an extremum 
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which is a modification of the known equations by Euler-Lagrange for a case of the 
simplest (main) variational problem. 

Generalizations for cases of movable boundaries, broken trajectories, and 
trajectories with corners, analogues to the Neter theorem, equation by Hamilton-
Jacoby and others, as that was supposed and envisaged [XXXII], are already 
published in a separate work [XXX] dedicated, as a whole, to the modified Euler-
Lagrange variational principle. 

Let us notice that the integral of the first sum member of the under-integral 
function of (A) can be interpreted as an index of an average (mean) uncertainty at 
the fragment of the integration [XXX, chapter 2, § 2.1, p. 14, 15, (2.1.2)]. 
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