Remark 2. If $\left\{\left(\mu_{k}, u_{k}\right), k=0,1, \ldots\right\}$ is a sequence of pairs generated by the s-step method of steepest descent applied to the operator A, then $\left\{\chi_{1}+\chi_{2}\left(\mu_{k}, u_{k}\right), k=0,1, \ldots\right\}$ is the sequence of pairs of the s-step method of steepest descent applied to the operator $\chi_{1} E+\chi_{2} A$ (E is the unit operator and χ_{1} and χ_{2} are arbitrary real numbers).

It follows from Remark 2 that it is sufficient to study the s-step method of steepest descent only for an operator of the form $\chi_{1} E+\chi_{2} A\left(\chi_{2} \neq 0\right)$. As this operator (denote it by $\left.A\right)$, we choose an arbitrary operator of the indicated form with the numbers $\chi_{1}+\chi_{2} M=1, \chi_{1}+\chi_{2} m>0$, and $\chi_{2}>0$, i.e., in what follows, we assume that A is a self-adjoint operator with the boundaries $m>0$ and $M=1$.

We say that the s-step method of steepest descent with the initial approximation u_{0} becomes stable if, for certain $k \in\{0,1, \ldots\}$ the equality $w_{k}=A u_{k}-\mu_{k} u_{k}=0$ is valid, i.e., an eigenpair of the operator A is determined by finitely many iterations.

Denote by \mathscr{T} a subset of the unit sphere Ω of the space H consisting of elements v for which the system of vectors $v, A v, \ldots, A^{s+1} v$ is linearly dependent. Assume that $\mathfrak{H}=\Omega \backslash \mathfrak{T}$.

In [7], the following condition of stabilization of the s-step method of steepest descent was proved: if $u_{0} \in \mathfrak{I}$, then $w_{1}=0$; otherwise $u_{k} \in \mathfrak{U}, k=1,2, \ldots$. Thus, the s-step method of steepest descent becomes stable if and only if $u_{0} \in \mathscr{I}$.

Since the case where $u_{0} \in \mathfrak{T}$ is trivial, in what follows, we assume that $u_{0} \in \mathfrak{H}$.
We see from the definition of the s-step method of steepest descent that $m \leq \mu_{k+1} \leq \mu_{k}, k=0,1, \ldots$ and, hence, $\left\{\mu_{k}, k=0,1, \ldots\right\}$ is a bounded sequence. Let $u_{0}^{(1)}$ be the orthogonal projection of the vector u_{0} onto $H^{(1)}$. If $u_{0}^{(1)}=0$, then, evidently, $\lim _{k \rightarrow 0} \mu_{k} \geq m^{*}$ and, consequently, for finding m, it is necessary that $u^{(1)} \neq 0$. Under the condition $u_{0}^{(1)} \neq 0$, we have $\mu_{k} \rightarrow m$ and $k \rightarrow \infty$. Therefore, without loss of generality, we can assume in what follows that $\mu_{0}<m^{*}$.

Denote by E_{t} the spectral function of the operator A and by $\sigma_{k}=\sigma_{k}(t)=\left(E_{t} u_{k}, u_{k}\right)$ the distribution function of the vector u_{k}. By definition, the function σ_{k} is defined and nondecreasing on the entire number axis, continuous from the left on the segment $]-\infty ; 1\left[\right.$, and $\sigma_{k}(t)=0$ for $t \leq m$ and $\sigma_{k}(t)=1$ for $t \geq 1$. In addition, $\sigma_{k}(t)=$ $\sigma_{k}(m+0)$ for $m<t \leq m^{*}$.

Denote by Σ_{k} the set of points of growth of the function σ_{k} belonging to the segment $\left[m^{*}, 1\right]$. It follows from [7] that $\Sigma_{k+1} \subseteq \Sigma_{k}, k=0,1, \ldots$ and any set Σ_{k} contains at least $s+1$ points (because $u_{0} \in \mathbb{U}$). Assume that

$$
\lambda_{*}=\min \Sigma_{0}, \quad \lambda^{*}=\max \Sigma_{0} .
$$

It follows from [7] that $\lambda_{*}=\min \Sigma_{k}$ and $\lambda^{*}=\max \Sigma_{k}, k=0,1, \ldots$. Denote by $\pi_{s}\left(t, u_{0}\right)$ the polynomial of degree s in t with the smallest deviation from zero on the set Σ_{0} normalized by the condition $\pi_{s}\left(m, u_{0}\right)=1$. Assume that

$$
\rho_{s}\left(u_{0}\right)=\max _{t \in \Sigma_{0}}\left|\pi_{s}\left(t, u_{0}\right)\right|
$$

We decompose the vector u_{0} into orthogonal components

$$
\begin{equation*}
u_{0}=u_{0}^{(1)}+u_{0}^{(2)}, \quad u_{0}^{(1)} \in H^{(1)}, \quad u_{0}^{(2)} \perp H^{(1)} \tag{4}
\end{equation*}
$$

and construct the vector \tilde{u}_{0} by the rule

$$
\begin{equation*}
\tilde{u}_{0}=u_{0}^{(1)}+\rho_{s}\left(u_{0}\right) u_{0}^{(2)} . \tag{5}
\end{equation*}
$$

Theorem 1. The following estimates hold:

$$
\begin{equation*}
\frac{\mu_{1}-m}{\mu_{0}-m} \leq\left[\frac{\rho_{s}\left(u_{0}\right)}{\left\|\bar{u}_{0}\right\|}\right]^{2} \leq \rho_{s}^{2}\left(u_{0}\right) \frac{\lambda_{*}-\mu_{1}}{\lambda_{*}-\mu_{0}} \tag{6}
\end{equation*}
$$

Proof. Assume that $\tilde{\mu}_{0}=\mu\left(\tilde{u}_{0}\right), \tilde{u}=\pi_{s}\left(A, u_{0}\right) u_{0}$, and $\tilde{\mu}=\mu(\tilde{u})$. It follows from decomposition (4) and equality (5) that

$$
\begin{gather*}
\tilde{u}=u_{0}^{(1)}+\tilde{u}^{(2)}, \quad \tilde{u}^{(2)}=\pi(A) u_{0}^{(2)}, \quad \tilde{u}^{(2)} \perp H^{(1)} \\
\tilde{\mu}_{0}=\frac{m h+\rho^{2}\left(A u_{0}^{(2)}, u_{0}^{(2)}\right)}{h+\rho^{2}\left\|u_{0}^{(2)}\right\|^{2}}, \tag{7}\\
\tilde{\mu}=\frac{m h+\left(A \tilde{u}^{(2)}, \tilde{u}^{(2)}\right)}{h+\left\|\tilde{u}^{(2)}\right\|^{2}}
\end{gather*}
$$

where, for brevity, $\pi(t)=\pi_{s}\left(t_{s} u_{0}\right), h=\left\|u_{0}^{(1)}\right\|^{2}$, and $\rho=\rho_{s}\left(u_{0}\right)$. In the integral form, we have

$$
\begin{align*}
& \tilde{\mu}_{0}=\frac{m h+\rho^{2} \int_{\lambda_{*}}^{\lambda^{*}} t d \sigma_{0}(t)}{h+\rho^{2} \int_{\lambda_{*}}^{\lambda^{*}} d \sigma_{0}(t)}, \tag{8}\\
& \tilde{\mu}=\frac{m h+\int_{\lambda_{*}}^{\lambda^{*}} t \pi^{2}(t) d \sigma_{0}(t)}{h+\int_{\lambda_{*}}^{\lambda^{*}} \pi^{2}(t) d \sigma_{0}(t)},
\end{align*}
$$

where the integrals are understood in the Riemann-Stieltjes sense.
Let us prove that

$$
\begin{equation*}
\mu_{1} \leq \tilde{\mu} \leq \tilde{\mu}_{0} \leq \mu_{0} \tag{9}
\end{equation*}
$$

Indeed, by using Eqs. (4) and (7), we have

$$
\mu_{0}-\tilde{\mu}_{0}=\left(1-\rho^{2}\right) h\left(\left(A u_{0}^{(2)}, u_{0}^{(2)}\right)-m\left\|u_{0}^{(2)}\right\|\right)\left\|\tilde{u}_{0}\right\|^{-2} \geq 0
$$

because

$$
0 \leq \rho<1, \quad \frac{\left(A u_{0}^{(2)}, u_{0}^{(2)}\right)}{\left\|u_{0}^{(2)}\right\|^{2}} \geq \lambda_{*}>m
$$

To prove the inequality $\tilde{\mu} \leq \tilde{\mu}_{0}$, we approximate the integrals in formulas (8) by integral sums. More exactly, we show that, for any sufficiently fine partition of the segment $\left[\lambda_{*}, \lambda^{*}\right]$, the following inequality holds:

$$
\begin{equation*}
\frac{m h+\sum_{i=1}^{n} t_{i}^{(n)} \pi^{2}\left(t_{i}^{(n)}\right) h_{i}^{(n)}}{h+\sum_{i=1}^{n} \pi^{2}\left(t_{i}^{(n)}\right) h_{i}^{(n)}} \leq \frac{m h+\rho^{2} \sum_{i=1}^{n} t_{i}^{(n)} h_{i}^{(n)}}{h+\rho^{2} \sum_{i=1}^{n} h_{i}^{(n)}} \tag{10}
\end{equation*}
$$

where $h_{i}^{(n)}$ is the Stieltjes measure of the i th half interval of the partition and $t_{i}^{(n)}$ is an intermediate point of the i th half interval of the partition (if $h_{i}^{(n)} \neq 0$, then $t_{i}^{(n)} \in \Sigma_{0}$). We define the function

$$
f\left(\zeta_{1}, \ldots, \zeta_{n}\right)=\frac{m h+\sum_{i=1}^{n} t_{i}^{(n)} \zeta_{i}}{h+\sum_{i=1}^{n} \zeta_{i}} .
$$

Assume that the considered partition of the segment $\left[\lambda_{*}, \lambda^{*}\right]$ is so fine that $f\left(\rho^{2} h_{1}^{(1)}, \ldots, \rho^{2} h_{n}^{(n)}\right)<\lambda_{*}$ (this is possible because $\left.\tilde{\mu}_{0} \leq \mu_{0}<\lambda_{*}\right)$. An elementary analysis shows that the function $f\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ monotonically increases on the set

$$
\left[0, \mathrm{p}^{2} h_{1}^{(n)}\right] \times \ldots \times\left[0, \mathrm{\rho}^{2} h_{n}^{(n)}\right]
$$

with respect to each variable. This yields

$$
f\left(\pi^{2}\left(t_{1}^{(n)}\right) h_{1}^{(n)}, \ldots, \pi^{2}\left(t_{n}^{(n)}\right) h_{n}^{(n)}\right) \leq f\left(\rho^{2} h_{1}^{(n)}, \ldots, \rho^{2} h_{n}^{(n)}\right),
$$

which was to be proved (note that if $h_{i}^{(n)} \neq 0$, then $t_{i}^{(n)} \in \Sigma_{0}$ and, hence, $\pi^{2}\left(t_{i}^{(n)}\right) \leq \rho^{2}$).
By passing to the limit in inequality (10), we obtain $\tilde{\mu} \leq \tilde{\mu}_{0}$.
To prove the estimate $\mu_{1} \leq \tilde{\mu}$, it is sufficient to note that $\tilde{u} \in \operatorname{span}\left(u_{0}, A u_{0}, \ldots, A^{s} u_{0}\right)$ and, hence, $\mu\left(u_{1}\right) \leq$ $\mu(\tilde{u})$.

Thus, we have proved inequalities (9). Further, it follows from the estimate $\mu_{1} \leq \tilde{\mu}_{0}$ and the relation for $\tilde{\mu}_{0}$ in (7) that

$$
\frac{\mu_{1}-m}{\mu_{0}-m} \leq \frac{\tilde{\mu}_{0}-m}{\mu_{0}-m} \leq\left[\frac{\rho}{\left\|\tilde{u}_{0}\right\|}\right]^{2} .
$$

The left-hand side of inequality (6) is proved. To prove the right-hand side of this inequality, we set $\lambda=$ $\mu\left(u_{0}^{(2)}\right)$. Since $\left\|u_{0}\right\|=1$, it follows from equalities (7) that

$$
\begin{gather*}
h+\left\|u_{0}^{(2)}\right\|^{2}=1, \quad m h+\lambda\left\|u_{0}^{(2)}\right\|^{2}=\mu_{0} \\
\frac{m h+\rho^{2} \lambda\left\|u_{0}^{(2)}\right\|^{2}}{h+\rho^{2}\left\|u_{0}^{(2)}\right\|^{2}}=\tilde{\mu}_{0} . \tag{11}
\end{gather*}
$$

By solving Eqs. (11) for $h,\left\|u_{0}^{(2)}\right\|^{2}$, and ρ^{2}, we obtain

$$
\left\|\tilde{u}_{0}\right\|^{2}=h+\rho^{2}\left\|u_{0}^{(2)}\right\|^{2}=\frac{\lambda-\mu_{0}}{\lambda-\tilde{\mu}_{0}} .
$$

Since $\lambda \geq \lambda_{*}$, it follows from estimates (9) that

$$
\left\|\tilde{u}_{0}\right\|^{2} \geq \frac{\lambda_{*}-\mu_{0}}{\lambda_{*}-\mu_{1}}
$$

Theorem 1 is proved.

It follows from Theorem 1 that

$$
\begin{equation*}
\frac{\mu_{1}-m}{\lambda_{*}-\mu_{1}} \leq \rho_{s}^{2}\left(u_{0}\right) \frac{\mu_{0}-m}{\lambda_{*}-\mu_{0}} \tag{12}
\end{equation*}
$$

Since

$$
\min \Sigma_{k}=\lambda_{*}, \quad \max \Sigma_{k}=\lambda^{*}, \quad \Sigma_{k+1} \subseteq \Sigma_{k}, \quad k=0,1, \ldots,
$$

by successive use of estimates (12) for the vectors u_{0}, u_{1}, \ldots, we obtain

$$
\begin{gathered}
\frac{\mu_{k}-m}{\lambda_{*}-\mu_{k}} \leq \rho_{s}^{2}\left(u_{0}\right) \frac{\mu_{k-1}-m}{\lambda_{*}-\mu_{k-1}} \\
\frac{\mu_{k}-m}{\lambda_{*}-\mu_{k}} \leq \rho_{s}^{2 k}\left(\mu_{0}\right) \frac{\mu_{0}-m}{\lambda_{*}-\mu_{0}}, \quad k=1,2, \ldots,
\end{gathered}
$$

i.e., the s-step method of steepest descent converges at least with the rate of a geometric progression with ratio $\rho_{s}^{2}\left(u_{0}\right)$.

Note that

$$
\left\|u_{k}-e\right\| \leq 2\left[\frac{\mu_{k}-m}{\lambda_{*}-m}\right]^{0,5}, \quad k=0,1, \ldots,
$$

where

$$
e=\frac{u_{0}^{(1)}}{\left\|u_{0}^{(1)}\right\|} \in H^{(1)}
$$

Estimate (12) is exact (unimprovable) in the following sense: if $\rho<\sup _{u_{0}} \rho_{s}\left(u_{0}\right)$, then

$$
\frac{\mu_{1}-m}{\lambda_{*}-\mu_{1}}>\rho^{2} \frac{\mu_{0}-m}{\lambda_{*}-\mu_{0}}
$$

for a certain initial approximation u_{0} with $\mu_{0}<m^{*}$. To prove this assertion, it is sufficient to consider initial approximations in a neighborhood of the proper subspace $H^{(1)}$.

If we impose an additional restriction on the initial approximation assuming, e.g., that the value μ_{1} is fixed, then estimate (12) can, generally speaking, be improved. We prove that the estimate

$$
\frac{\mu_{1}-m}{\mu_{0}-m} \leq\left[\frac{\rho_{s}\left(u_{0}\right)}{\left\|\tilde{u}_{0}\right\|}\right]^{2},
$$

which follows from inequality (6), remains unimprovable.
Theorem 2. Let H be a finite-dimensional space. If $\operatorname{dim} H \geq s+2$, then, for any number μ ($m<\mu$ $<m^{*}$), there exists an initial approximation u_{0} (depending on μ) such that $\mu_{1}=\mu$ and

$$
\frac{\mu_{1}-m}{\mu_{0}-m}=\left[\frac{\rho_{s}\left(u_{0}\right)}{\left\|\tilde{u}_{0}\right\|}\right]^{2} .
$$

Proof. Let $\lambda_{1}, \ldots, \lambda_{n}\left(\lambda_{1}=m, \lambda_{2}=m^{*}, \lambda_{n}=1\right)$ be eigenvalues of the operator A. Denote by $\pi_{s}(t)$ the polynomial of degree s of the least deviation from zero on the set $\left\{\lambda_{2}, \ldots, \lambda_{n}\right\}$ normalized by the condition $\pi_{s}\left(\lambda_{1}\right)=1$, and denote the value of deviation by

$$
\rho_{s}=\max _{i=2, \ldots, n}\left|\pi_{s}\left(\lambda_{i}\right)\right| .
$$

It follows from the definition of the polynomial $\pi_{s}(t)$ that there exist numbers $2<i_{1}<\ldots<i_{s-1}<n$ such that

$$
\begin{equation*}
(-1)^{j} \pi_{s}\left(\lambda_{i_{j}}\right)=\pi_{s}\left(\lambda_{2}\right)=(-1)^{s} \pi_{s}\left(\lambda_{n}\right)=\rho_{s} \quad j=1, \ldots, s-1 . \tag{13}
\end{equation*}
$$

We set $q(t)=(t-\mu) \pi_{s}(t), J=\left\{1,2, i_{1}, \ldots, i_{s-1}, n\right\}$. Since $m<\mu<m^{*}$, the sequence $q\left(\lambda_{1}\right), q\left(\lambda_{2}\right)$, $q\left(\lambda_{i_{1}}\right), \ldots, q\left(\lambda_{n}\right)$ has exactly $s+1$ changes in sign. Therefore, the system of equations linear with respect to ζ_{j}^{2}, $j \in J$,

$$
\sum_{j \in J} \zeta_{j}^{2}=1, \quad \sum_{j \in J} \lambda_{j}^{i} q\left(\lambda_{j}\right) \zeta_{j}^{2}=0, \quad i=0,1, \ldots, s,
$$

has a real solution $\zeta_{j}^{*} \neq 0, j \in J$. Indeed, otherwise, by virtue of the Stiemke theorem [8], there exists a polynomial $l(t)=\tau_{0}+\tau_{1} t+\ldots+\tau_{s} t^{s} \equiv 0$ with real coefficients such that $q\left(\lambda_{j}\right) l\left(\lambda_{j}\right) \geq 0, j \in J$. But in this case, the polynomial $l(t)$ has $s+1$ real roots (with regard to their multiplicity) and, hence, $l(t) \equiv 0$. Thus, we arrive at a contradiction.

Let e_{j} be an arbitrary unit eigenvector of the operator A corresponding to the eigenvalue λ_{j}. Let us show that the vector

$$
u_{0}=\sum_{j \in J} \zeta_{j}^{*} e_{j}
$$

satisfies the condition of the theorem.
Consider the polynomial

$$
q_{1}(t)=\left(t-\mu_{1}\right) p_{0}(t), \quad p_{0}(t)=\sum_{i=0}^{s} \alpha_{i}^{(0)} t^{i} .
$$

Since $\left(A u_{1}-\mu_{1} u_{1}, A^{i} u_{0}\right)=0, i=0,1, \ldots, s$, we have

$$
\sum_{j \in J} \lambda_{j}^{i} q_{1}\left(\lambda_{j}\right)\left(\zeta_{j}^{*}\right)^{2}=0, \quad i=0,1, \ldots, s
$$

and, hence, for an arbitrary number α, we obtain

$$
\begin{equation*}
\sum_{j \in J} \lambda_{j}^{i}\left[q_{1}\left(\lambda_{j}\right)-\alpha q\left(\lambda_{j}\right)\right]\left(\zeta_{j}^{*}\right)^{2}=0, \quad i=0,1, \ldots, s \tag{14}
\end{equation*}
$$

Let α^{*} be such that the degree of the polynomial $q_{1}(t)-\alpha^{*} q(t)$ is at most s. It follows from Eqs. (14) that $q_{1}(t)=\alpha^{*} q(t)$. This yields

$$
\mu_{1}=\mu, \quad p_{0}(t)=\alpha^{*} \pi_{s}(t), \quad u_{1}=\frac{\tilde{u}}{\|\tilde{u}\|} \quad\left(\tilde{u}=\pi_{s}(A) u_{0}\right)
$$

Since

$$
\Sigma_{0}=\left\{\lambda_{2}, \lambda_{i_{1}}, \ldots, \lambda_{i_{s-1}}, \lambda_{n}\right\}
$$

we conclude that $\pi_{s}\left(t, u_{0}\right)=\pi_{s}(t)$ and, by virtue of $(13), \rho_{s}\left(u_{0}\right)=\rho_{s}$. Thus, we get

$$
\mu_{1}-m=\mu(\tilde{u})-m=\left[\frac{\rho_{s}\left(u_{0}\right)}{\|\tilde{u}\|}\right]^{2}\left(\mu_{0}-m\right)
$$

It remains to note that $\|\tilde{u}\|=\left\|\pi_{s}(A) u_{0}\right\|=\left\|\tilde{u}_{0}\right\|$. The theorem is proved.

REFERENCES

1. L. V. Kantorovich, "Functional analysis and applied mathematics," Usp. Mat. Nauk, 3, No. 6, 89-184 (1948).
2. M. Sh. Birman, "Calculation of eigenvalues by the method of steepest descent," Zap. Leningrad. Gorn. Inst., 27, No. 1, 209-215 (1952).
3. A. B. Kovrigin, "Estimation of the rate of convergence of the k-step gradient method," Vestn. Leningrad. Univ., Issue $13,34-36$ (1970).
4. V. G. Prikazchikov, "Strict estimates of the rate of convergence of the iteration method for the calculation of eigenvalues," Zh . Vychisl. Mat. Mat. Fiz, 15, No. 5, 1330-1333 (1975).
5. A. V. Knyazev, Calculation of Eigenvalues and Eigenvectors in Network Problems: Algorithms and Estimates of Error [in Russian], Department of Computational Mathematics, Academy of Sciences of the USSR, Moscow (1986).
6. A. F. Zabolotskaya, "On a method of steepest descent," in: Communications on Applied Mathematics [in Russian], Computer Center, Academy of Sciences of the USSR, Moscow (1988), p. 26.
7. P. F. Zhuk, "Asymptotic behavior of the s-step method of steepest descent in eigenvalue problems in a Hilbert space," Mat. Sb., 184, No. 12, 87-122 (1993).
8. V. S. Charin, Linear Transformations and Convex Sets [in Russian], Vyshcha Shkola, Kiev (1978).
