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EXACT ESTIMATES FOR THE RATE OF CONVERGENCE OF THE 
s-STEP METHOD OF STEEPEST DESCENT IN EIGENVALUE PROBLEMS 

P. F. Z h u k  and L . N .  B o n d a r e n k o  

We obtain exact (unimprovable) estimates for the rate of convergence of the s-step method of steepest 
descent for finding the least (greatest) eigenvalue of a linear bounded self-adjoint operator in a Hilbert 
space. 

UDC 519.6 

The investigation of  the rate of  convergence of  an s-step method of  steepest descent in the solution of  linear 
operator equations was began by Kantorovich [1] and, for eigenvalue problems, by Birman [2]. In further works 
(see, e.g., [3-6]) ,  the results obtained in [1, 2] were generalized and improved. In particular, exact (unimprovable) 

estimates were obtained for the rate of  convergence of  the s-step method of  steepest descent in the solution of  linear 
operator equations. The present work is devoted to establishing similar estimates in the problem of  finding the least 
eigenvalue of  a linear operator. 

Let A : H ---> H be a linear bounded self-adjoint operator acting in the real Hilbert space H with the scalar 

product (u, v). For the spectrum of  the operator A, we assume that sp(A)  _C {m} I J [m*, M] ,  m < m* < M. In 

this case, m is an eigenvalue of  the operator A associated with a certain proper subspace H ( I ) 

To find the eigenvalue m and the corresponding eigenvector, we use the s-step method of  steepest descent 
whose successive approximations are constructed according to the rule 

$ 
~ '  ,,,(k)ai. 

U k + l  = , g~ t " ' i  ta " k ,  k = 0 ,  1 . . . . .  (I)  
i=0 

where u 0 is an arbitrary unit vector and the coefficients - (k) i.,t i are such that II Uk+l II = 1 and the Rayleigh ratio 

g(Uk+l)  = (AUk+l'Uk+l) 

II Uk+l II 2 

is minimum. We assume that gk = g (uk ) ,  k = O, 1 . . . . .  

Remark  1. Consider the generalized eigenvalue problem 

Ku = )~Lu, (2) 

where K and L are linear self-adjoint operators, L is a positive-definite operator, and A = L -  1 K is the operator 

bounded in the energy space HL. Problem (2) is reduced to the eigenvalue problem 

A t /  --  ~ , u  (3) 

s-step method of  steepest descent can be used for in the space H L. Since A is a self-adjoint operator in H i ,  the 

the solution of  problem (3) and, hence, problem (2). 
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R e m a r k  2. I f  {(~t k, uk), k = 0, 1 . . . .  } is a sequence of  pairs generated by the s-s tep method of  steepest 

descent applied to the operator A, then {Z  1 + Z2(lx k, Uk), k = 0, 1 . . . .  } is the sequence of pairs of  the s-step 

method of  steepest descent applied to the operator Z 1E + Z2 A (E is the unit operator and Z 1 and Z2 are arbitrary 

real numbers). 

It follows from Remark 2 that it is sufficient to study the s-step method of  steepest descent only for an operator 

of the form Z 1E + ZEA (Z2 #: 0). As this operator (denote it by A), we choose an arbitrary operator of  the indi- 

cated form with the numbers X1 + z 2 M =  1, Z1 + Z2 m > 0, and Z2 > 0, i.e., in what follows, we assume that A 

is a self-adjoint operator with the boundaries m > 0 and M = 1. 

We say that the s-step method of  steepest descent with the initial approximation u 0 becomes stable if, for 

certain k E {0, 1 . . . .  } the equality w k = A u  k -  gtkUk= 0 is valid, i.e., an eigenpair of  the operator A is 

determined by finitely mahy iterations. 

Denote by ~ a subset of  the unit sphere f2 of  the space H consisting of  elements v for which the system of 

vectors v, A v . . . . .  A s + t o is linearly dependent. Assume that 11 = ~2 \ 5E. 

In [7], the following condition of  stabilization of  the s-step method of  steepest descent was proved: if u 0 E ~ ,  

then w 1 = 0; otherwise u k E 1I, k = 1, 2 . . . . .  Thus, the s-step method of  steepest descent becomes stable if and 

only if u 0 E ~E. 

Since the case where u 0 E ~ is trivial, in what follows, we assume that u o E 1I. 

We see from the definition of  the s-step method of  steepest descent that m < I.tk+! < gt k, k = 0, 1 . . . .  and, 

hence, {~t k, k = 0, 1 . . . .  } is a bounded sequence. Let U(o l) be the orthogonal projection of  the vector u 0 onto 

H (l). I f  U(o 1) = 0, then, evidently, lim ~t k > m* and, consequently, for finding m, it is necessary that u (t) ;~ 0. 
k---> 0 

Under the condition U(o D m 0, we have gk ~ m and k ~ oo. Therefore, without loss of  generality, we can assume 

in what follows that I.t0 < m*. 

Denote by E t the spectral function of  the operator A and by (sk= Ok(t) = (Etu  k, u k) the distribution function 

of the vector u k. By definition, the function (s k is defined and nondecreasing on the entire number axis, continuous 

from the left on the segment ] - o o ;  1 [, and Ok(t ) = 0 for t < m and ok( t )  = 1 for t > 1. In addition, ok( t )  = 

O k ( m + O )  for m < t < m * .  

Denote by E k the set o f  points of  growth of  the function (s k belonging to the segment [ m *, I ]. It follows 

from [7] that Ek+ ! C E k, k = 0, 1 . . . .  and any set E k contains at least s + 1 points (because u o E tI ). Assume 

that 

, = min E 0, k* = max s 

It follows from [7] that ~,. = min Z k and X* = max Z k, k = 0, 1 . . . . .  Denote by ~ s (t, u 0) the polynomial of  

degree s in t with the smallest deviation from zero on the set Z 0" normalized by the condition Xs(m, Uo) = I. 

Assume that 

ps(u0) = maxlxs(t,  u0) I. 
t ~ s  o 

We decompose the vector u o into orthogonal components 

u 0 = u 0) +u(0 2), u~ ) ~ H (1), u(0 2) _LH (I) (4) 

and construct the vector fi0 by the rule 

ao = U(o I> + P,(Uo)U(o 2>. (5) 
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Theorem 1. The following estimates hold: 

P-O -m~tl-m < [Ps(UO)] 2 1 _  ilUoll ,,,_-7z'~, < p2(u0) --gl.  (6) 
, - I.to 

Proof Assume that 
equality (5) that 

(t o = gt(~tO)~ ~t = ns(A, Uo)U 0, and ~ = p(fi). It follows from decomposition (4) and 

= U(01) .+.~(2), ~(2) = rc(A)u(02), fi(2) _I_H(1), 

~0 = mh + p2(Au(~ u(2)) 

h+p21lu~0Z) l[2 ' 

= mh + (Aft (2), fi(2)) 

where, for brevity, n(t)= ns(t, Uo), h = [lug01) IlL and p = Ps(Uo). In the integral form, we have 

(tO = 

mh + p2 f~. tdoo(t ) 

h + 9 2 ~" dcso(t ) ' L. 

t = 
mh + I~?~ t~2(t)doo(t) 

h + f~" n2(t)d~~ ' 

(7) 

(8)  

where the integrals are understood in the Riemann-Stieltjes sense. 
Let us prove that 

~t I _~ 13. _< ~ o  ~ P-o. (9) 

Indeed, by using Eqs. (4) and (7), we have 

rto-  (to = O-PZ)h((au~oZ), u~oZ))- mllu~oZ' ll )l[~'o ll -z > 0, 

because 

0 < _ p < l ,  
(Au(~176 >- X, > m. 

Uu g, ll 2 

To prove the inequality ~ < (to, we approximate the integrals in formulas (8) by integral sums. More exactly, 
we show that, for any sufficiently fine partition of the segment [~.,, ~.*], the following inequality holds: 
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/l mh + Zi=lt}n)~z(t}n))h} n) 

h + Z7=1 ~2(t~n))h}n) 

mh + p2 ~z~:, t!")h!"), --, 
<- (lO) 

h +p2~7=~h}~) ' 

where 

i th half  interval of  the partition (if h~ ~) ~ 0, then t} ~) ~ Zo). We define the function 

h[ n) is the Stieltjes measure of  the i th half interval of the partition and t} n) is an intermediate point of  the 

n 
mh + Z i  =, t}n) ~i 

n 
h + Z i : l  ~i 

Assume that the considered partition of the segment [~.., X*] is so fine that f(p2h~l) . . . . .  pZh~)) < ~., (this is pos- 

sible because 120 < go < X.)- An elementary analysis shows that the function f (~ l , - . ; , ~n )  monotonically in- 
creases on the set 

[ o, O~h~"'] • • [ o, p~h,'">] 

with respect to each variable. This yields 

. . . .  ,~ ( , . ) h . '  ) _<  ~'t~, , . . . .  d h T ) ,  

which was to be proved (note that if hi n) s 0 ,  then t} n) ~ Z o and, hence, rt2(t~ n)) < p2). 

By passing to the limit in inequality (10), we obtain g < ~t o. 

To prove the estimate Ix I < 1 ~, it is sufficient to note that fi a span (u 0, A u o . . . . .  A s u o) and, hence, I.t (u 1 ) < 
~t(fi). 

Thus, we have proved inequalities (9). Further, it follows from the estimate p. 1 < ~t0 and the relation for ~t o 
in (7) that  

2 
I.t l - m  _< ~ o - m  _< 

gO - m PO - m 

The  left-hand side of inequality (6) is proved. To prove the right-hand side of this inequality, we set 3, = 

I.t(U(o2)). Since II Uo II = 1, it follows from equalities (7) that 

h + l l u ? ' l l  2 -- 1, mh+NluT>ll = -- ~o, 

mh + p2~.ll u(02)It 2 

= 120" 
h+0211u~g) ll 2 

By solving Eqs. (11) for h, II u'g> II 2, and p~, we obtain 

11~o112 _._ h+PZllU~o2>ll2 = ~ - ~ 0  
~-120 

(11) 

f (~ l  . . . . .  ~n) = 
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Since )~ > ~.., it follows from estimates (9) that 

Theorem 1 is proved. 

It follows from Theorem 1 that 

llaoll 2 _> X,-go 
X., - g l  

Since 

~t I - r n  < p 2 ( u 0 ) ~ t o - m "  

m i n x  k ~ . ,  maxX k k * ,  = = E k +  1 C E k ,  

by successive use of  estimates (12) for the vectors u 0, u 1 . . . .  , we obtain 

gk - m  < c,2r, ,~[- tk- l -m 
_ IJs k~O 1~'--  - -  ~ - -  , 

~ , ,  - -  lkl.k A., --  g k - 1  

k = 0 , 1  . . . . .  

gk - m  < 2k( .g_o - r n  k = l , 2  . . . . .  
~'*-gk  - Ps Uo))~._~t o, 

(12) 

i.e., the s-step method of  steepest descent converges at least with the rate of  a geometr ic  progression with ratio 

where 

Note that 

I luk -e l )  <_ 2FVtk_m]0 '5  , " 1  k = 0 ,  1, 
L k .  - m  d .... 

U(o l) H ( l ). 
e = ~ E 

Estimate (12) is exact (unimprovable) in the following sense: if p < sup Ps(Uo), then 
u0 

g l  - m > p2 __go -__m 

k .  - l-q k .  -- go 

for a certain initial approximation u 0 with P0 < m*. To prove this assertion, it is sufficient to consider  initial ap- 

proximations in a neighborhood of the proper subspace H ( 1 ). 

I f  we impose an additional restriction on the initial approximation assuming, e.g., that the value Ix 1 is fixed, 
then estimate (12) can, generally speaking, be improved. We prove that the estimate 
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_ [ps(u0)l: 
rto - ll, o II _] ' 

which follows from inequality (6), remains unimprovable. 

T h e o r e m  2. Let  H be a finite-dimensional space. I f  d i m H  > s + 2, then, f o r  any number  g (m < g 

< m*), there exists an initial approximation u o (depending on g)  such that g l  = It and 

g , - m  = [Ps(U0)]  2 

gO - m  

Proof. Let 3.1 . . . . .  3.n (3.1 = m, 3.2 = m*, 3.n= 1) be eigenvalues of  the operator A. Denote by rts(t) the 

polynomial of  degree s of  the least deviation from zero on the set {3.2 . . . . .  3.n} normalized by the condition 

rc s (3.1 ) = 1, and denote the value of  deviation by 

p ,  = max  I rts(3.i)  I. 
i = 2 , . . . , n  

It follows from the definition of  the polynomial ~s(t)  that there exist numbers 2 < i t < ... < is_ t <n such that 

(-1)Jgs(3.ij) = 7Zs(3.2) = (-l)s~s(3.n) = P s  j =  1 . . . . .  s -  I. 

We set q ( t )  = ( t -  IX)Ks(t), J = {1, 2, i 1 . . . . .  is_ I, n}. Since m < IX < m*, the sequence 

q(3.i l)  . . . . .  q(3.n) has exactly s + 1 changes in sign. Therefore, the system of equations linear with respect to 

j ~ J ,  

i 2 ;2 = 1, ~ ) ~ j q ( 3 . j ) ; j  = 0, i = 0 ,  1 . . . . .  s, 
jeJ jeJ 

(13) 

q(3.1), q (3.2), 

;2, 

satisfies the condition of  the theorem. 
Consider the polynomial 

q l ( t )  = ( t - g l ) P o ( t ) ,  Po( t )  = 

Since (Au I -[.tlUl,Aiuo) = 0 ,  i = 0 ,  1 . . . . .  s, wehave  

S 

2 ~ 
i =O 

UO = 2 ~ej 
j ~ J  

has a real solution ; j  ;~ 0, j e J. Indeed, otherwise, by virtue of  the Stiernke theorem [8], there exists a poly- 

nomial l ( t )  = "c o + x 1 t + ... + xst  s ~ 0 with real coefficients such that q(3.j)l(3.j) > O, j ~ J. But in this case, the 

polynomial l ( t )  has s + 1 real roots (with regard to their multiplicity) and, hence, l ( t )  - O. Thus, we arrive at a 
contradiction. 

Let ej be an arbitrary unit eigenvector of  the operator A corresponding to the eigenvalue 3.j. Let us show that 

the vector 
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i , 2  
Z ~2Jql(~J)(~J) = O, 

jEJ  

and, hence, for an arbitrary number  cq we obtain 

Let  o~ * 

q l ( t ) =  O~*q(t). This yields 

Z 
j ~ J  

Since 

be such that the degree  of  the po lynomia l  

i = 0 ,  1 . . . . .  s, 

= 0, i = 0 ,  1 . . . . .  s. (14) 

q l ( t)  - ~ * q ( t )  is at most s. It fol lows from Eqs. (14) that 

17 
h ~l~-- 'g '  PO (t)  = Ot*rCs(t)' Ul = II~ll (~  Xs(A)u~  

~ o  = { ~ 2 , ~ i l  . . . . .  ~is_t,~'n} , 

we conclude that Xs(t ,  Uo) = Xs( t )  and, by virtue of  (13), Ps(Uo) = Ps" Thus, we get 

F ]2 
p . l - m  = g ( f i ) - m  = L I " ] ~  ( g ~  

It remains to note that II ~ II = II ~ , ( A ) u  0 II -- II fi0 II. The theorem is proved. 
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