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ABSTRACT 

The functional moments estimation by the sample from the mixture with varying concentrations is studied. The problem of 
efficiency the simple linear estimator with fixed weight against the adaptive or improved estimators with random weight is 
considered. By the Monte-Carlo method it is shown that simple linear estimator is better for small sample sizes, but for 
large samples the adaptive and improved estimators are more efficient. 
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INTRODUCTION 

Often, to describe the statistical data the model of a mixture with varying concentrations is used. A sample 

:( 1 )N j N j … N       in this model [1] consists of jointly independent random variables with distributions  

 
1

Pr{ } ( )
M

m

j N j N m

m

x w H x  



  , 

where M  is the total number of components in the mixture, mH is the distribution function of the m -th component, and 

:

m

j Nw  is the probability to observe an object from the m -th component in the j -th observation. Probability :

m

j Nw  is called 

concentration or mixing probability. We assume that concentrations of components are known, and the distributions mH  

are unknown. 

1. SETTING OF THE PROBLEM 

Let consider some functional moment for the k -th component of the mixture, namely 

 ( ) ( )k

kg g x H dx   

where the real valued function g  is fixed. 

1.1 Linear and adaptive estimators 

The problem of estimation of functional moment studied in [2]. One can consider the linear estimator for 
kg  

becomes of the form 
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is the weighted empirical distribution function with some nonrandom weight a


. 
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The estimator, defined (1), is unbiased, consistent, asymptotically normal however, generally speaking, not 

efficient. It is proposed in [2] to use the adaptive method of estimation. The adaptive estimator ˆˆ ( ( ))k k

N N Ng g a 


  is the 

estimator (1) with adaptive random weights ˆ( )k

Na 


. 

1.2 Improved estimators 

It can be that some coefficients ja  in (2) are negative, then the weighted distribution function is not nondecreasing, and 

therefore it isn’t a probability distribution function. Put 

 ˆ( , ) sup ( , )N N
y x

F x a F y a



 
 . (3) 

The function ( , )NF x a 
 is nondecreasing and assumes only positive values, but it can assumes values greater then 1. 

Thus we consider the function 

 ( , ) min(1, ( , ))N Nx a F x a  
 

. (4) 

Accordingly, the estimators for functional moments becomes of the form 
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where 
k

jb
 are some coefficients that depend on the sample N . To obtain the improved distribution function 

( , )N x a


 (namely, coefficients 
k

jb
) we can use the algorithm from [3]. 

Similarly, we can construct an other estimators for functional moments.For example, Put 

 ˆ( , ) inf ( , )N N
y x

F x a F y a



 
 , (6) 

 ( , ) max(0, ( , ))N Nx a F x a  
 

, (7) 

and the combination of (4), (7), for example 
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And, accordingly 
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where 
k

jb
, 

k

jb
 are some coefficients that depend on the sample N . To obtain the coefficients  

k

jb
, 

k

jb
 we can use 

the algorithms from [4]. 

2. SIMULATION RESULTS 

2.1 Two component mixture model 

The aim of present paper is studying the efficiency of the simple linear ˆ k

Ng  against 
k

Ng , 
k

Ng  , 
k

Ng  , 
k

Ng   adaptive and 

improved estimators by Monte-Carlo method. We used the two-component mixture with simple linear concentrations for 

estimators analysis. Namely, 2M   and  
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1 2

: :, 1 ,   1,...,j N j N

j j
w w j N

N N
    . 

The distributions of the components were normal, uniform and Pareto’s. Let, ( )g x x . The mean square errors 

ˆMSE( )k

Ng  and MSE( )k

Ng  of the estimators were estimated. The relative efficiency 

 k

ˆMSE( )
RE =

MSE( )

k

N

k

N

g

g
, 1, 2k   (11) 

were calculated for adaptive estimators. The formulas to obtain the relative efficiency REk


, REk


, REk


 for improved 

estimators are similar. 

2.2 Additional transformations 

All computations were made in Mathcad v.7. But it can’t to generate a vector of random numbers having the Pareto’s 

distributions. To solve this problem, we use the built-in function rbeta  to generate a vector of random numbers having 

the beta distribution and transformation of the random variable.  

Really, if the random variable   has the beta distribution with parameters 0   and 1, then the random variable 

1



  has Pareto’s distribution with parameter 0  . 
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where  ,m n ‚  n  are the beta and gamma-functions. 

The Pareto’s density function is 

  1

1
,1  ,

0,  1,

x
p x x

x







   

 
 

, 0  . 

Also, remind that  E  if 1  , and 
2 E  if 2  . 

2.3 Adaptive estimators simulation 

The relative efficiency (11) for two-component mixture is displayed for sample size N  for L  simulated samples at the 

Fig.1-3. 
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Fig 1:  1 ~ 0,1H N ,  2 ~ 1,4H N , 200L   
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Fig 2:  1 ~ 0,1H N , 2 2,4~H U , 1000L   

0

1

2

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

N

R
E H1

H2

 

Fig 3: 1 1,3~H U , 2 2,4~H U , 1000L   
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In case one or both components have Pareto’s distributions we can’t take an results as above. For example, it 

is no sense to construct the adaptive estimator if 2  . The simulation results are established in Table 1 when the first 

component has the normal distribution and the second component has Pareto’s distribution with parameter 3   for 

100L   simulated samples. 

 
Table 1. The component distributions are normal and Pareto. 

N 

MSE 

RE1
 

MSE 

RE2
 

ˆ 1

N
g  

1

N
g  ˆ 2

N
g  

2

N
g  

1E+3 5.133E-3 0.032 0.159 4.64E-3 0.023 0.2 

2E+3 2.104E-3 2.003E-3 1.051 2.054E-3 1.858E-3 1.106 

3E+3 1.493E-3 0.018 0.083 1.196E-3 0.014 0.085 

4E+3 1.063E-3 7.726E-3 0.138 1.262E-3 8.5E-3 0.149 

5E+3 8.772E-4 9.203E-4 0.953 7.699E-4 7.157E-4 1.076 

6E+3 9.668E-4 44.554 2.17E-5 8.264E-4 29.86 2.768E-5 

7E+3 7.107E-4 6.699E-4 1.061 5.769E-4 5.027E-4 1.148 

8E+3 5.784E-4 5.384E-4 1.074 5.748E-4 5.009E-4 1.148 

9E+3 7.288E-4 0.021 0.035 5.461E-4 0.014 0.038 

1E+4 4.271E-4 4.158E-4 1.027 5.289E-4 4.949E-4 1.069 

1.1E+4 3.595E-4 1.515E-3 0.237 3.399E-4 1.006E-3 0.338 

1.2E+4 4.26E-4 4.194E-4 1.016 3.528E-4 3.587E-4 0.984 

1.3E+4 3.416E-4 0.059 5.829E-3 4.276E-4 0.048 8.89E-3 

1.4E+4 4.012E-4 3.946E-4 1.017 2.87E-4 2.81E-4 1.021 

1.5E+4 4.485E-4 0.042 0.011 3.071E-4 0.029 0.011 

1.6E+4 2.861E-4 2.869E-4 0.997 2.676E-4 2.594E-4 1.032 

1.7E+4 2.992E-4 0.034 8.732E-3 2.783E-4 0.024 0.012 

1.8E+4 3.27E-4 3.26E-4 1.003 3.123E-4 3.049E-4 1.024 

1.9E+4 2.518E-4 2.458E-4 1.024 2.373E-4 2.314E-4 1.026 

2E+4 1.925E-4 1.893E-4 1.017 1.905E-4 1.848E-4 1.031 

 

As shown from Table. 1, the estimators ˆ k

Ng  and 
k

Ng ‚ 1,2k   have a good statistical property, but we can’t fix the 

sample size N  when the estimator 
k

Ng  is better then ˆ k

Ng . Perhaps, the sample size may be too large.  

2.4 Simulation of imroved estimators 

The relative efficiency REk , REk


, REk


, REk


 for two-component mixture is displayed for sample size N  for 

100L   simulated samples at the Fig.4-5. Namely, the relative efficiency of the first component is shown at the Fig. 4, 

second component is shown at the Fig. 5. 
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CONCLUSIONS 

The simulation results demonstrates that the mean square error of the simple linear estimator is less for small sample 

sizes, however for large samples the adaptive and improved estimators are more efficient. It is no sense to use the 

adaptive estimator, when one of distributions are Pareto’s. 
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Fig 4:  1 ~ 0,1H N ,  2 ~ 1,4H N , 100L  , 1k   

 

Fig 5:  1 ~ 0,1H N ,  2 ~ 1,4H N , 100L  , 2k   


