ІНФОРМАЦІЙНЕ ЗАБЕЗПЕЧЕННЯ СИСТЕМ ДІАГНОСТУВАННЯ ОБ’ЄКТІВ ЕНЕРГЕТИКИ

За редакцією
чл.-кор. НАН України
В.П. Бабака

ПРОЕКТ
"УКРАЇНСЬКА НАУКОВА КНИГА ІНОЗЕМНОЮ МОВОЮ"

КИЇВ
АКАДЕМПЕРІОДИКА
2018
INFORMATION PROVISION OF DIAGNOSTIC SYSTEMS FOR ENERGY FACILITIES

Edited by Member of the National Academy of Sciences of Ukraine V. Babak

PROJECT «UKRAINIAN SCIENTIFIC BOOK IN A FOREIGN LANGUAGE»

KYIV
AKADEMPERIODYKA
2018
Authors: V.P. BABAK

Reviewers:

V.P. MALAYCHUK, Dr. Tech. Sci., PhD. Prof., Head of the Department
Oles Gonchar Dniprovsky National University
L.M. SCHERBAK, Dr. Tech. Sci., prof., National Aviation University

Approved for publication by the Scientific Council of the Institute of Electrodynamics and the Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine (September 14, 2017, Protocols № 8, 10)

Publication was funded in the frame of the Targeted Complex Program "Creation and Development of Scientific Publishing Complex of the National Academy of Sciences of Ukraine"

V.P. Babak

ISBN 978-966

The monograph examines the issues of ensuring the operational reliability of energy facilities through the use of modern information provision. Mathematical models of diagnostic signals that arise during the operation of power equipment are analyzed, main results of their characteristics research of are outlined, methods and means of diagnostics of certain types of electric power and heat engineering equipment are considered.

For researchers, engineers, as well as lecturers and postgraduates of higher education institutions dealing with diagnostics of technical facilities.

© Babak V.P., Babak S.V., Myslovych M.V., Zaporozhets A.O., Zvarych V.M., 2018

ISBN 978-966

© Akademperiodyka, design, 2018
INTRODUCTION

To date, from 70 to 90%, according to various estimates, of main and auxiliary equipment of the energy complex of Ukraine has developed its own resource. In these conditions, further operation of energy-intensive, and in some cases extremely dangerous (for example, nuclear power plants) equipment requires the creation of special, scientific-based methods and means that allow such operation, ensuring the necessary level of reliability and safety. Recently, due to new information technologies and Internet, a sufficient number of such methods and tools appeared. Among them, the most effective methods are non-destructive control, monitoring and diagnostics of energy equipment (EE) units. In all these methods, the carrier of information about technical condition of studied object is a diagnostic signal. Through comprehensive study of diagnostic signal (taking into account its measurement, conversion, processing and analysis), the researcher obtains necessary information about studied object.

For a confident solution of these problems, the researcher firstly needs a mathematical model of diagnostic signal that, based on the physical features of its formation in diagnosed object, allows to obtain objective diagnostic information about this object. Secondly, he should use methods and corresponding algorithms for diagnostic signals processing that could be implemented on a basis of modern electronic devices and information technologies. Herewith, chronologically, the model is primary and the choice of methods and technical means for diagnostic signals measuring and processing is secondary.

The construction of diagnostic signal mathematical model is specified by particular physical process selected by researcher as diagnostic information carrier, and also by EE unit as an object of diagnosis. In addition, the nature of diagnostic signal model depends on chosen type of diagnosis — test or functional.

It is known that each unit of diagnosed EE has its own peculiarities in diagnostic signals formation. That is why the monograph pays considerable attention to the development and analysis of
mathematical models of these signals that are based on corresponding physical processes occurring at EE units.

While constructing these models, two basic approaches could be used: deterministic and statistical. With the first approach, deterministic function of time is chosen as initial mathematical model of signal coming from primary sensors. In this case, as the most informative, amplitude-frequency and phase-frequency parameters of diagnostic signal that characterize the operation of studied EE unit are commonly used. Diagnosis by deterministic methods is basically reduced to a theoretical definition of possible diagnostic attributes and their comparison with the results of experimental data analysis. If the latter substantially differ from theoretically obtained results, then a conclusion is made about the presence of defect in studied unit. In its essence, these methods are applicable in a case when the results of all observations with the same initial conditions are identical, and also if the same parameter (characteristic) is measured under the same conditions. This situation is either highly idealized or is observed with very low accuracy of measuring instruments used, when random effects on measurements are not perceived by these instruments. Consequently, with a deterministic approach, there is no need for multiple measurements, since they are all the same and conclusion about unit technical state could be made basing on one measurement. However, there is always a possibility, by increasing the accuracy of each individual measurement, to detect the unrepeatability of measurement results in the situation described above. Then the question arises, which of the resulting series of numbers should be considered as a measurement result. Therefore, the use of deterministic methods could not be considered as satisfactory and reasoned, since many physical processes (diagnostic signals) arising in different EE units are random by their nature, i.e., their realizations varies from observation to observation. Thus, it is impossible to obtain from one observation a practically reliable answer about the technical state of diagnosed units.

Statistical approach allows us to recommend an algorithm based on a series of results of certain measurement experiment, by which the best approximation of the measured parameter to its true value is calculated in a probabilistic sense. Besides, when using statistical diagnostic methods, the measure of possible incorrect decisions about technical condition of diagnosed EE units is taken into account, and it is also possible to estimate the average number of possible incorrect conclusions, their dispersion, etc.

In most works, appropriate attention is not paid to the construction of mathematical and physical models of reference diagnostic signals, and without this, in our opinion, comparative analysis of various statistical methods of control and diagnostics is impossible. In a discussion of possibilities of statistical approach for monitoring and diagnosis, the very initial moment of diagnosis is often absent - measurements at diagnostic objects. These questions are also reflected in this monograph.

Summing up the results of a brief comparison of deterministic and statistical approaches to the construction of models, methods and diagnostic systems, the authors use the statistical approach in this study, because the vast majority of physical pro-
Processes occurring in studied EE units are random by nature. Application of statistical methods for EE units diagnostic is also required by number of reasons associated with the presence of strong electromagnetic, thermal, acoustic and other fields in operating EE that act as a noise in measurement, converting, processing and analyzing information diagnostic signal.

An important point in constructing of diagnostic signal mathematical model, and then a diagnostic Information-Measurement System (IMS), based on this model, is diagnostic signal type used studying various objects. In this work, when diagnosing EE units, various types of diagnostic signals were used: vibration (vibration acceleration), acoustic emission, etc.

Working on development of IMS for EE units’ diagnostics, authors of this monograph comprehensively considered problems of constructing mathematical probabilistic models of diagnostic signals, development of statistical methods for their analysis with the purpose of making a diagnostic decision and, finally, technical implementation of proposed diagnostic methods. Following the concept of primary nature of diagnostic signal mathematical model, authors found it expedient foremost to consider questions connected with the theory of random processes with infinitely divisible distribution laws, linear and linear periodic random processes. Considerable attention is paid to the problems of imitation modeling of diagnostic signals and their statistical estimation. The modern element base and new information technologies allowed authors to develop, build and practically test a number of experimental samples of information-measuring systems for statistical diagnostics of energy facilities.

A large volume of conducted experimental studies showed the operability and efficiency of constructed IMS samples.

The authors do not pretend to comprehensively consider issues on EE diagnostics using statistical methods and IMS, implemented on their basis. At the same time, the results of the studies described in this monograph are a natural continuation of the subject of statistical methods application in the field of control, monitoring and diagnostics for electric power facilities.

The authors are sincerely grateful to reviewers — Doctor of Technical Sciences, Professor V.P. Malaychuk and Doctor of Technical Sciences, Professor L.M. Shcherbak for comments, recommendations and assistance in manuscript formation.

Kiev, autumn 2017

AUTHORS TEAM
REFERENCES

References

References

CONTENT

<table>
<thead>
<tr>
<th>Introduction</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1.</td>
<td></td>
</tr>
<tr>
<td>Generalized Principles of Construction</td>
<td></td>
</tr>
<tr>
<td>of Systems for Diagnosing Energy Objects</td>
<td></td>
</tr>
<tr>
<td>1.1. Objects of energy supply and operational</td>
<td>8</td>
</tr>
<tr>
<td>reliability of their components</td>
<td></td>
</tr>
<tr>
<td>1.1.1. Main types of electric power equipment</td>
<td>9</td>
</tr>
<tr>
<td>1.1.2. Main components of thermal power facilities</td>
<td>10</td>
</tr>
<tr>
<td>1.1.3. Main indicators of operational reliability</td>
<td>13</td>
</tr>
<tr>
<td>of energy facilities</td>
<td></td>
</tr>
<tr>
<td>1.2. Generalized structure of systems for</td>
<td>18</td>
</tr>
<tr>
<td>diagnosing energy objects</td>
<td></td>
</tr>
<tr>
<td>1.2.1. Features of construction of systems for</td>
<td>19</td>
</tr>
<tr>
<td>diagnosing energy objects</td>
<td></td>
</tr>
<tr>
<td>1.2.2. Informational support of systems</td>
<td>28</td>
</tr>
<tr>
<td>1.3. Physical processes characterizing the</td>
<td>24</td>
</tr>
<tr>
<td>technical condition of energy facilities</td>
<td></td>
</tr>
<tr>
<td>Chapter 2.</td>
<td></td>
</tr>
<tr>
<td>Methods and Models for Information Data Analysis</td>
<td></td>
</tr>
<tr>
<td>2.1. Linear Random Processes</td>
<td>28</td>
</tr>
<tr>
<td>2.2. Linear AR and ARMA processes</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1. Kernels of Linear AR and ARMA</td>
<td>33</td>
</tr>
<tr>
<td>processes</td>
<td></td>
</tr>
<tr>
<td>2.2.2. Characteristic functions of linear AR and</td>
<td>35</td>
</tr>
<tr>
<td>ARMA processes</td>
<td></td>
</tr>
<tr>
<td>2.3. Linear random processes with periodic</td>
<td>35</td>
</tr>
<tr>
<td>structures</td>
<td></td>
</tr>
<tr>
<td>2.4. Linear autoregressive processes with</td>
<td>39</td>
</tr>
<tr>
<td>periodic structures</td>
<td></td>
</tr>
<tr>
<td>2.5. Inverse problem of AR processes</td>
<td>43</td>
</tr>
<tr>
<td>2.6. Statistical splines application</td>
<td>49</td>
</tr>
<tr>
<td>2.6.1. Forecasting the time of failure using</td>
<td>49</td>
</tr>
<tr>
<td>statistical spline-functions</td>
<td></td>
</tr>
<tr>
<td>2.6.2. Forecasting laminated magnetic cores</td>
<td>52</td>
</tr>
<tr>
<td>failures</td>
<td></td>
</tr>
<tr>
<td>2.6.3. Biomedical applications</td>
<td>54</td>
</tr>
<tr>
<td>2.7. Estimation of random signals stationarity</td>
<td>55</td>
</tr>
<tr>
<td>2.8. A procedure of decision-making rule</td>
<td>62</td>
</tr>
<tr>
<td>development</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 3.

SIMULATION AND SOFTWARE FOR DIAGNOSTIC SYSTEMS

3.1. Computer simulation of noise and rhythm signal 71
3.2. Diagnostic systems software 78
3.3. Neural networks in diagnostic systems 83

CHAPTER 4.

TECHNICAL PROVISION OF DIAGNOSTIC SYSTEMS

4.1. Acoustic devices and systems for power plant modules diagnostics 87
4.2. Diagnostic system for electric power facilities 94
4.3. Diagnostic system for heat power facilities 100
4.4. Combustion process features 106
4.5. Application of developed methods to a renewable energy expert system 116

REFERENCES 125
В монографії розглянуті питання забезпечення експлуатаційної на-
дійності об’єктів енергетики шляхом застосування сучасного інформаційного забезпечення. Проаналізовано математичні моделі діагностичних сигналів, які виникають при роботі енергетичного обладнання, викладено основні результати досліджень їх характеристик, розглянуто методи та засоби діагностування окремих видів електроенергетичного та теплотехнічного обладнання.

Для наукових співробітників, інженерів, а також викладачів і аспірантів вищих навчальних закладів, що займаються проблемами діагностики технічних об’єктів.

Наукове видання

НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ
ІНСТИТУТ ЕЛЕКТРОДИНАМІКИ
ІНСТИТУТ ТЕХНІЧНОЇ ТЕПЛОФІЗИКИ

БАБАК Віталій Павлович
БАБАК Сергій Віталійович
МИСЛОВИЧ Михайло Володимирович
ЗАПОРОЖЕЦЬ Артур Олександрович
ЗВАРИЧ Валерій Миколайович

Підписано до друку 00.00.2018. Формат 70×100/16.
Гарн. NewtonC. Ум. друк. арк. 15,76.
Обл.-вид. арк. 18,14. Тираж 150 прим. Зам. № 0000

Видавець і виготовлювач
Видавничий дім «Академперіодика» НАН України
01004, Київ, вул. Терещенківська, 4
Свідоцтво про внесення до Державного реєстру суб’єктів видавничої справи серії ДК № 544 від 27.07.2001