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§ 1.7. Thermal coefficients and connection between them 

Thermal coefficients characterize heating and elastic (resilient) properties of 

bodies [113, pp. 20-22]. There are known the coefficient of volumetric expansion 

, the thermal coefficient of pressure α β , and isothermal coefficient of 

compressibility γ . 

At heating up some certain mass of a substance at a constant external pressure, 

the change of the volume per each degree of the temperature rise is expressed through 

the partial derivative [113, p. 20] 
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The relative change of the volume at heating up in one degree is called the 

coefficient of volumetric expansion [113, p. 20, (2.11)] 
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For an ideal gas 
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If the temperature is expressed in degrees by Celsius, then 
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dTdt =  

and relative change of volume can be represented with the ratio of the derivative of 

dt
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to the volume of  at 0 °C, i.e. (that is) 0V
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If one can assume  in a short (narrow) interval of the temperature 

change, then 
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Integrating, we come to the conclusion 

 

*                         *                         *                         *                         * 
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For the ideal gas at any pressure 
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If one is heating a given mass of a substance at a constant volume, then the 

relative change of the pressure at the change of the temperature is characterized with 

the thermal coefficient of pressure β  [113, p. 20, (2.12)] 
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where  – the pressure at the temperature p T . 

For an ideal gas 
T
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*                         *                         *                         *                         * 
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At a small change of the temperature, one can evaluate (recon, judge) 
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For an ideal gas . 00 α=β

 

*                         *                         *                         *                         * 

 

At the isothermal compression of a given mass of a substance, the ration of the 

change of the volume at the change of the pressure in one unit of the pressure to the 

volume is called the isothermal coefficient of compressibility [113, p. 21, (2.13)] 
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The sign minus means a decrease of volume with an increase of pressure. 

For ideal gases by the Boyle’s-Mariotte’s law [113, p. 21, (see § 4.4)] 

p
V const
= . 

Differentiating with respect to pressure, we get 
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*                         *                         *                         *                         * 

 

The interrelation between the thermal coefficients of , , and α β γ  in the 

general case [113, p. 21, (for more details see § 2.10)] 
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[113, p. 22, (2.14)] 
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From (2.11), (2.12), (2.13) 
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Substituting (2.11a), (2.12a), (2.13a) into (2.14) [113, p. 22, (2.15)] 
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