Aircraft Engines

Lecture Notes
(First Preliminary Edition)

Section A. N omenclature Topics

Part II. Thermal Coefficients, Energy, and Work

Chapter 5. Thermal Coefficients

LECTURE 6. InTERRELATION BETWEEN THERMAL CoEfficients

§ 1.7. Thermal coefficients and connection between them

Thermal coefficients characterize heating and elastic (resilient) properties of bodies [113, pp. 20-22]. There are known the coefficient of volumetric expansion α, the thermal coefficient of pressure β, and isothermal coefficient of compressibility γ.

At heating up some certain mass of a substance at a constant external pressure, the change of the volume per each degree of the temperature rise is expressed through the partial derivative [113, p. 20]

$$
\left(\frac{d V}{d T}\right)_{p}
$$

The relative change of the volume at heating up in one degree is called the coefficient of volumetric expansion [113, p. 20, (2.11)]

$$
\begin{equation*}
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \tag{2.11}
\end{equation*}
$$

For an ideal gas $\alpha=\frac{1}{T}$.
If the temperature is expressed in degrees by Celsius, then

$$
d t=d T
$$

and relative change of volume can be represented with the ratio of the derivative of

$$
\frac{d V}{d t}
$$

to the volume of V_{0} at $0^{\circ} \mathrm{C}$, i.e. (that is)

$$
\alpha_{0}=\frac{1}{V_{0}}\left(\frac{\partial V}{\partial t}\right)_{p} .
$$

If one can assume $\alpha=$ const in a short (narrow) interval of the temperature change, then

$$
\alpha_{0} V_{0}=\left(\frac{\partial V}{\partial t}\right)_{p}=\text { const. }
$$

Integrating, we come to the conclusion

$$
V=V_{0}\left(1+\alpha_{0} t\right)
$$

For the ideal gas at any pressure

$$
\alpha_{0}=\frac{1}{273.15}=0.00366 \frac{1}{{ }^{\circ} C} .
$$

If one is heating a given mass of a substance at a constant volume, then the relative change of the pressure at the change of the temperature is characterized with the thermal coefficient of pressure β [113, p. 20, (2.12)]

$$
\begin{equation*}
\beta=\frac{1}{p}\left(\frac{\partial p}{\partial T}\right)_{v}, \tag{2.12}
\end{equation*}
$$

where p - the pressure at the temperature T.
For an ideal gas $\beta=\alpha=\frac{1}{T}$.

$$
\beta_{0}=\frac{1}{p_{0}}\left(\frac{\partial p}{\partial t}\right)_{v} .
$$

At a small change of the temperature, one can evaluate (recon, judge) $\beta=$ const

$$
\begin{gathered}
\beta_{0} p_{0}=\left(\frac{\partial p}{\partial t}\right)_{V}=\text { const. } \\
p=p_{0}\left(1+\beta_{0} t\right) .
\end{gathered}
$$

For an ideal gas $\beta_{0}=\alpha_{0}$.

At the isothermal compression of a given mass of a substance, the ration of the change of the volume at the change of the pressure in one unit of the pressure to the volume is called the isothermal coefficient of compressibility [113, p. 21, (2.13)]

$$
\begin{equation*}
\gamma=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T} . \tag{2.13}
\end{equation*}
$$

The sign minus means a decrease of volume with an increase of pressure.
For ideal gases by the Boyle's-Mariotte’s law [113, p. 21, (see § 4.4)]

$$
V=\frac{\text { const }}{p} .
$$

Differentiating with respect to pressure, we get

$$
\begin{gathered}
\left(\frac{\partial V}{\partial p}\right)_{T}=-\frac{\text { const }}{p^{2}}=-\frac{1}{p} V . \\
\gamma=\frac{1}{p} .
\end{gathered}
$$

The interrelation between the thermal coefficients of α, β, and γ in the general case [113, p. 21, (for more details see § 2.10)]

$$
\begin{align*}
& d p=\left(\frac{\partial p}{\partial T}\right)_{V} d T+\left(\frac{\partial p}{\partial V}\right)_{T} d V \tag{a}\\
& d V=\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T} d p \tag{b}\\
& d T=\left(\frac{\partial T}{\partial p}\right)_{V} d p+\left(\frac{\partial T}{\partial V}\right)_{p} d V \tag{c}
\end{align*}
$$

Substituting $d p$ from the first equation of (a) into the second equation of (b)

$$
\begin{aligned}
d V=\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T} & {\left[\left(\frac{\partial p}{\partial T}\right)_{V} d T+\left(\frac{\partial p}{\partial V}\right)_{T} d V\right]=} \\
& =\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{V} d T+\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial V}\right)_{T} d V
\end{aligned}
$$

taking into consideration that

$$
\left(\frac{\partial V}{\partial p}\right)_{T}=\left(\frac{\partial p}{\partial V}\right)_{T}^{-1}
$$

we will get

$$
\begin{gathered}
d V=\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{V} d T+d V \\
0=\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{V} d T+d V-d V= \\
=\left(\frac{\partial V}{\partial T}\right)_{p} d T+\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{V} d T, \\
d T\left[\left(\frac{\partial V}{\partial T}\right)_{p}+\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{V}\right]=0, \\
\left(\frac{\partial V}{\partial T}\right)_{p}+\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{V}=0, \\
\left(\frac{\partial V}{\partial T}\right)_{p}=-\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{V},
\end{gathered}
$$

[113, p. 22, (2.14)]

$$
\begin{equation*}
\frac{\left(\frac{\partial V}{\partial T}\right)_{p}}{\left(\frac{\partial V}{\partial p}\right)_{T}\left(\frac{\partial p}{\partial T}\right)_{V}}=-1 \tag{2.14}
\end{equation*}
$$

From (2.11), (2.12), (2.13)

$$
\begin{gather*}
\alpha V=\left(\frac{\partial V}{\partial T}\right)_{p} \tag{2.11a}\\
\beta p=\left(\frac{\partial p}{\partial T}\right)_{V} \tag{2.12a}\\
-\gamma V=\left(\frac{\partial V}{\partial p}\right)_{T} \tag{2.13a}
\end{gather*}
$$

Substituting (2.11a), (2.12a), (2.13a) into (2.14) [113, p. 22, (2.15)]

$$
\begin{equation*}
\frac{\alpha V}{-\gamma V \cdot \beta p}=-1, \quad \quad \frac{\alpha}{\gamma \cdot \beta p}=1, \quad \alpha=\beta \cdot \gamma \cdot p \tag{2.15}
\end{equation*}
$$

