National Aviation University

MACHINE ELEMENTS
 COURSE PROJECT DESIGN

Manual

KYIV 2014

УДК 621.8 (075.8)
ББК К 420 я 7 M 13

Reviewed by: senior researcher, prof. L.S.Novogrudskyi, prof. O.O.Boronko, associated prof. V.O.Koltsov

The English language adviser: L.V.Budko
Approved by the Methodical and Editorial Board of the National Aviation University ().

M 13 MACHINE ELEMENTS. COURSE PROJECT DESIGN: manual / Authors: A.S.Kryzhanovskyi, A.O.Kornienko, O.V.Bashta. - K.: NAU, 2014. - 128 p.

The manual includes recommendations for carrying out the course project on the subject "Machine Elements" and examples of analysis and design of double stage speed reducers.

The manual is intended for students of direction 6.070103 "Aircraft Maintenance".

INTRODUCTION

The course project on the subject "Machines Elements" is one of the basic kinds of the students individual work. The purpose of the course project is to enhance the knowledge acquired by the student at the lectures, practical classes and laboratory sessions as well as to develop the skills of making research and design of present-day speed reducers.

The course project is to include the following parts:

1. Determination of speed reducer elements geometrical parameters and carrying out their strength analysis.
2. Designing a speed reducer.
3. Designing a mechanical drive.

All calculations are to be presented at the explanatory note that should be carried out according to requirements of State Standard «ДСТУ 3008-95. Державний стандарт України. Документація. Звіти в сфері науки і техніки. Структура і правила оформлення». The explanatory note should be either typed or hand written in blue or black ink on one side of size A4 paper. Every sheet is to be paginated and have the following margins: top -5 mm , bottom -5 mm , right -5 mm , and left - 20 mm .

Besides calculations the explanatory note should have the contents table, the assignment, the reference literature used for making the course project, specifications. Each new part should be begun with a new page.

Each part must be subdivided into items marked with numerals separated by a point. The first numeral represents the number of the part, the second one shows the number of the item.

All magnitudes that are the part of formulas should be explained. Besides, it is necessary to denote measurement units of parameters being calculated.

The graphical part consists of 4 drawings: the first drawing is a speed reducer (two projections); the second drawing is a mechanical drive (two projections); the third drawing is shop drawing of a speed reducer shaft; the forth drawing is shop drawing of a speed reducer gear. The first and the second drawings are made on A1 whatman paper; the third and the forth drawings are made on A 3 whatman paper. The title block should be drawn in the bottom right hand corner.

1. KINEMATIC AND FORCE ANALYSIS OF A MECHANICAL DRIVE

Let us determine the basic parameters of the mechanical drive (Fig. 1.1) if pull of the belt $F_{i}=3 \mathrm{kN}$; belt speed $V=1.4 \mathrm{~m} / \mathrm{sec}$; drum diameter $D=350 \mathrm{~mm}$.

Fig. 1.1. Diagram of single stage speed reducer with chain drive
1.1. Determine the output power of the drive

$$
P_{\text {out }}=F_{t} \cdot V=3 \cdot 1.4=4.2 \mathrm{~kW}
$$

1.2. Determine the total efficiency of the drive In general

$$
\eta=\eta_{1} \cdot \eta_{2} \cdot \ldots \cdot \eta_{n},
$$

where $\eta_{1}, \eta_{2, \ldots}, \eta_{\mathrm{n}}$ are efficiencies of all kinematic pairs and links where the input power is lost.

For our case

$$
\eta=\eta_{c} \cdot \eta_{\text {hsg }} \cdot \eta_{c d} \cdot \eta_{b}^{3},
$$

where η_{c} is the efficiency of the coupling;
$\eta_{\text {hsg }}$ is the efficiency of helical spur gears;
$\eta_{c d}$ is the efficiency of the chain drive;
η_{b} takes into account losses in one pair of bearings.
The magnitudes of all efficiencies are given in table 1.1.
The following components are recommended to use for mechanical drives being analyzed:

- belt drive with flat belt;
- chain drive with roller chain;
- rolling bearings;
- coupling with rubber bushed studs;

Table 1.1
The magnitudes of efficiencies of the drives

Name	Efficiency	
	Closed drive	Opened drive
Gearings:		
- straight spur gears	$0.98-0.99$	$0.94-0.96$
- helical spur gears	$0.97-0.98$	$0.94-0.95$
- bevel gears	$0.96-0.98$	$0.92-0.94$
Worm gearing:	$0.7-0.75$	
-one thread worm	$0.75-0.82$	
-two thread worm	$0.82-0.92$	
-four thread worm		$0.96-0.98$
Belt drives:		$0.95-0.97$
- flat belt drive		$0.94-0.96$
- V-belt drive		$0.96-0.97$
- Chain drives:		
- roller chain	0.996	
- toothed chain	$0.985-0.995$	
Couplings:	1	
- with rubber bushed studs	$0.99-0.995$	
- flexible coupling	$0.98-0.985$	
- rigid coupling		
Bearings:		
- rolling bearings	- sliding bearings	

Let us assume that $\eta_{c}=0.996, \quad \eta_{h s g}=0.97$, $\eta_{c d}=0.94, \eta_{b}=0.99$. Then

$$
\eta=0.996 \cdot 0.97 \cdot 0.94 \cdot 0.99^{3}=0.881 .
$$

Pay attention that the magnitude of the total efficiency must be rounded off to thousandth or ten thousandth.
1.3. Determine the input power.

In general the efficiency is determined as ratio of the output power to the input one

$$
\eta=\frac{P_{o u t}}{P_{i n p}}
$$

That is why we can find needed power of the electrical motor

$$
P_{\text {inp }}=\frac{P_{\text {out }}}{\eta}=\frac{4.2}{0.881}=4.767 \mathrm{~kW} .
$$

1.4. Select the electrical motor.

For given mechanical drives we will use asynchronous electrical motor. It is explained by the fact that in comparison with the other types of motors asynchronous electrical motors are simpler in design and maintenance, more reliable and less expensive. The most widely spread asynchronous motors are series 4A squirrel cage induction motors.

Asynchronous motors are chosen by means of table 1.2 depending on the input power $P_{i n p}$ of a mechanical drive and the synchronous rotational speed n_{s} (rotational speed of a magnetic field which characterizes operation of the motor without load). For given mechanical drives asynchronous motors are used either synchronous rotational speed $n_{s}=1500 \mathrm{rpm}$ or $n_{s}=1000 \mathrm{rpm}$.

Table 1.2.
Parameters of asynchronous motors

$\begin{aligned} & \text { Rated } \\ & \text { power } \\ & P_{r}, \mathrm{~kW} \end{aligned}$	Synchronous rotational speed n_{s}, rpm					
	1500		1000		750	
	Type designation	S,\%	Type designation	S,\%	Type designation	S,\%
0.55	71A4	7.3	71B6	10	80B8	9
0.75	71B4	7.5	80A6	8.4	90LA8	8.4
1.1	80A4	5.4	80B6	8.0	90LB8	7.0
1.5	80B4	5.8	90L6	6.4	100L8	7.0
2.2	90L4	5.1	100L6	5.1	112MA8	6.0
3.0	100S4	4.4	112MA6	4.7	112MB8	5.8
4.0	100L4	4.7	112MB6	5.1	132 S 8	4.1
5.5	112M4	3.7	132S6	3.3	132M8	4.1
7.5	132S4	3.0	132M6	3.2	160S8	2.5
11.0	132M4	2.8	160S6	2.7	160M8	2.5
15	160S4	2.3	160M6	2.6	180M8	2.5
18.5	160M4	2.2	180M6	2.7	200M8	2.3

For our mechanical drive we select 4A132S6 Induction Motor ($P_{r}=5.5 \mathrm{~kW}, n_{s}=1000 \mathrm{rpm}$).
1.5. Determine the motor rated rotational speed n_{r}

$$
n_{r}=n_{s}\left(1-\frac{S}{100}\right),
$$

where S is relative speed loss that is determined according to table 1.2. In our case $S=3.3 \%$. After substituting corresponding magnitudes we obtain

$$
n_{r}=1000 \cdot\left(1-\frac{3.3}{100}\right)=967 \mathrm{rpm} .
$$

1.6. Determine the output rotational speed

$$
n_{\text {out }}=\frac{60 \cdot V}{\pi \cdot D}=\frac{60 \cdot 1.4}{3.14 \cdot 0.35}=76.43 \mathrm{rpm} .
$$

1.7. Determine the total velocity ratio of the mechanical drive

$$
u=\frac{n_{\text {inp }}}{n_{\text {out }}}=\frac{967}{76.43}=12.65 .
$$

1.8. Distribute the total velocity ratio between mechanical drive steps. The total velocity ratio can be found by the formula

$$
u=u_{r e d} \cdot u_{c d},
$$

where $u_{\text {red }}$ is the speed reducer velocity ratio; $u_{c d}$ is the chain drive velocity ratio.

First, determine the velocity ratio of the speed reducer.
For straight spur gears, helical spur gears and bevel gears speed reducers the velocity ratio should be chosen from the following standard series $u_{\text {red }}=1.25 ; 1.4 ; 1.6 ; 1.8 ; 2 ; 2.24 ; 2.5 ; 2.8 ; 3.15 ; 3.55 ; 4 ; 4.5 ; 5 ; 5.6$.

For worm gear speed reducers $u_{\text {red }}$ is taken from the following standard series $u_{\text {red }}=8 ; 10 ; 12.5 ; 16 ; 20 ; 25 ; 31.5 ; 40 ; 50 ; 63 ; 80$.

In our case we have helical spur gears speed reducer. Let us take $u_{\text {red }}=u_{\text {hsg }}=4$.

Determine the velocity ratio of the open drive. In our case it is chain drive

$$
u_{c d}=\frac{u}{u_{\text {red }}}=\frac{12.65}{4}=3.16 .
$$

Obtained value of the velocity ratio of the open drive should satisfy to the following condition. For chain drives $u_{c d}$ is to be ranged from 1.5 to 4 , for belt drives $u_{b d}$ is to be ranged from 2 to 4 , for straight spur gears $u_{\text {ssg }}$ is to be ranged from 2 to 5 . If this condition is not satisfied we take the other value of $u_{\text {red }}$ from the standard series.
1.9. Determine the rotational speed of all shafts

$$
\begin{aligned}
& n_{1}=n_{r}=967 \mathrm{rpm} \\
& n_{2}=\frac{n_{1}}{u_{\text {hsg }}}=\frac{967}{4}=241.75 \mathrm{rpm}
\end{aligned}
$$

$$
n_{3}=\frac{n_{2}}{u_{c d}}=\frac{241.75}{3.16}=76.5 \mathrm{rpm} .
$$

Obtained magnitude of n_{3} must be equal to $n_{\text {out }}$ calculated according to p. 1.6. Error ε must be not more than 1%. In our case $\varepsilon=0.09 \%$.
1.10. Determine the angular velocity of all mechanical drive shafts

$$
\begin{aligned}
& \omega_{1}=\frac{\pi n_{1}}{30}=\frac{3.14 \cdot 967}{30}=101.21 \mathrm{sec}^{-1} ; \\
& \omega_{2}=\frac{\omega_{1}}{u_{h s g}}=\frac{101.21}{4}=25.3 \mathrm{sec}^{-1} ; \\
& \omega_{3}=\frac{\omega_{2}}{u_{c d}}=\frac{25.3}{3.16}=8.007 \mathrm{sec}^{-1} .
\end{aligned}
$$

1.11. Determine the power at mechanical drive shafts.

Calculation is carried out for $P_{\text {inp }}$, determined in p.1.3.
$P_{1}=P_{\text {inp }} \cdot \eta_{c} \cdot \eta_{b}=4.767 \cdot 0.996 \cdot 0.99=4.7 \mathrm{~kW}$;
$P_{2}=P_{1} \cdot \eta_{\text {hsg }} \cdot \eta_{b}=4.7 \cdot 0.97 \cdot 0.99=4.514 \mathrm{~kW}$;
$P_{3}=P_{2} \cdot \eta_{c d} \cdot \eta_{b}=4.514 \cdot 0.94 \cdot 0.99=4.201 \mathrm{~kW}$;
Obtained magnitude of P_{3} must be equal to $P_{\text {out }}$ calculated according to the p.1.1. Error should not be greater than 1%. In our case $\varepsilon=0.02 \%$.
1.12. Determine the torques at all shafts.

$$
\begin{aligned}
& T_{1}=\frac{P_{1}}{\omega_{1}}=\frac{4.7 \cdot 10^{3}}{101.21}=46.438 \mathrm{~N} \cdot \mathrm{~m} ; \\
& T_{2}=\frac{P_{2}}{\omega_{2}}=\frac{4.514 \cdot 10^{3}}{25.3}=178.419 \mathrm{~N} \cdot \mathrm{~m} ; \\
& T_{3}=\frac{P_{3}}{\omega_{3}}=\frac{4.201 \cdot 10^{3}}{8.007}=524.666 \mathrm{~N} \cdot \mathrm{~m} .
\end{aligned}
$$

Checking.

The output torque $T_{\text {out }}$ can also be found as

$$
T_{\text {out }}=F_{t} \frac{D}{2}=\frac{3 \cdot 10^{3} \cdot 0.35}{2}=525 \mathrm{~N} \cdot \mathrm{~m} .
$$

Determine the error. It should be less than 1%.

$$
\varepsilon=\left|\frac{524.666-525}{525}\right| \cdot 100 \%=0.063 \% .
$$

2. ANALYSIS OF ALLOWABLE STRESSES

Let us analyse the speed reducer of the mechanical drive when: $n^{p}=$ $967 \mathrm{rpm} ; n^{g}=241.75 \mathrm{rpm}$.

We will begin from the selection of the material of gears and determination of their allowable contact and bending stresses.
2.1. Select the material of toothed wheels.

The main material of toothed wheels is carbon or alloy steels. Depending on material's hardness toothed wheels are subdivided into two groups:

- toothed wheels with surface hardness $\mathrm{H} \leq 350 \mathrm{BHN}$;
- toothed wheels with surface hardness $\mathrm{H}>350 \mathrm{BHN}$.

For general purpose speed reducers the following alternatives are possible:

1. A pinion and a gear are produced from identical carbon or alloy steel, such as Steel 45 (0.45 C), Steel 40X ($0.40 \mathrm{C}-\mathrm{Cr}$), Steel 40XH ($0.40 \mathrm{C}-\mathrm{Cr}-\mathrm{Ni})$. Heat treatment of both the gear and the pinion is martempering. The pinion hardness is ranged from 269 to 302 BHN and the gear hardness is ranged from 235 to 262 BHN.
2. A pinion and a gear are produced from identical alloy steel, such as Steel 40X ($0.40 \mathrm{C}-\mathrm{Cr}$), Steel 40XH ($0.40 \mathrm{C}-\mathrm{Cr}-\mathrm{Ni}$), Steel 35XM ($0.35 \mathrm{C}-\mathrm{Cr}-\mathrm{Mo}$). Heat treatment of the gear is martempering to hardness ranged from 269 to 302 BHN . Heat treatment of the pinion is martempering and surface (induction) hardening to hardness ranged from 45 to 50 HRC .

Toothed wheels of the straight spur gears and helical spur gears are recommended to produce according to the 1st alternative. If we deal with bevel gears we can use either the 1 st or the 2 nd alternative.
2.2. Determine the mean magnitude of the hardness of the gear and the pinion:

- for the pinion $\quad H_{m}^{p}=\frac{H_{\text {min }}^{p}+H_{\text {max }}^{p}}{2}$;
- for the gear

$$
\mathrm{H}_{\mathrm{m}}^{\mathrm{g}}=\frac{\mathrm{H}_{\min }^{\mathrm{g}}+\mathrm{H}_{\max }^{\mathrm{g}}}{2} .
$$

In our case a pinion and a gear are produced from identical alloy steel of grade Steel 40XH and we use the 1st alternative (heat treatment of the gear is martempering to hardness ranged from 235 to 262 BHN ; heat treatment of the pinion is martempering to hardness ranged from

269 to 302 BHN):

$$
\mathrm{H}_{\mathrm{m}}^{\mathrm{p}}=\frac{269+302}{2}=285,5 \mathrm{BHN} ; \quad \mathrm{H}_{\mathrm{m}}^{\mathrm{g}}=\frac{235+262}{2}=248.5 \mathrm{BHN} .
$$

2.3. Determine the allowable contact stress for the pinion and for the gear.
2.3.1.Determine the limit of contact endurance for the pinion $\sigma_{\mathrm{Hlim}}^{\mathrm{p}}$ and for the gear $\sigma_{\mathrm{H} \text { lim }}^{\mathrm{g}}$ according to the table 2.2.

$$
\begin{gathered}
\sigma_{H \lim }^{p}=2 \cdot H_{m}^{p}+70=2 \cdot 285.5+70=641 \mathrm{MPa} \\
\sigma_{H \lim }^{g}=2 \cdot H_{m}^{g}+70=2 \cdot 248.5+70=567 \mathrm{MPa}
\end{gathered}
$$

2.3.2.Determine the base number of stress cycles for the pinion $\mathrm{N}_{\mathrm{H} 0}^{\mathrm{p}}$ and for the gear $\mathrm{N}_{\mathrm{H} 0}^{\mathrm{g}}$. For this purpose we use table 2.1.

Table 2.1

Base number of stress cycles

$\mathrm{BHN}_{\mathrm{m}}$	up to 200	250	300	350	400	450	500	550	600
$\mathrm{HRC}_{\mathrm{m}}$	-	25	32	38	43	47	52	56	60
$\mathrm{~N}_{\mathrm{H} 0} \cdot 10^{6}$	10	16.5	25	36.4	50	68	87	114	143

$\mathrm{N}_{\mathrm{H} 0}^{\mathrm{p}}=22.5 \cdot 10^{6}$ stress cycles;
$\mathrm{N}_{\mathrm{H} 0}^{\mathrm{g}}=16.3 \cdot 10^{6}$ stress cycles.
2.3.3. Determine the service life in hours for the gearing:

$$
\mathrm{t}=\mathrm{L} \cdot 365 \cdot \mathrm{~K}_{\mathrm{a}} \cdot 24 \cdot \mathrm{~K}_{\mathrm{d}},
$$

where L is the service life in years; K_{a} is the annual utilization factor which is used to take into account use of the gearing during a year; K_{d} is the daily utilization factor which is used to take into account use of the gearing for 24 hours. These parameters should be given in the specification for the term paper.

In our case the service life of the gearing is 7 years, $\mathrm{K}_{\mathrm{a}}=0.5, \mathrm{~K}_{\mathrm{d}}=0.3$

$$
t=7 \cdot 365 \cdot 0.5 \cdot 24 \cdot 0.3=9198 \text { hours } .
$$

2.3.4. Determine the design number of stress cycles for the pinion and the gear.

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{Hi}}^{\mathrm{p}}=60 \cdot \mathrm{n}^{\mathrm{p}} \cdot \mathrm{c} \cdot \mathrm{t} ; \\
& \mathrm{N}_{\mathrm{Hi}}^{\mathrm{g}}=60 \cdot \mathrm{n}^{\mathrm{g}} \cdot \mathrm{c} \cdot \mathrm{t}
\end{aligned}
$$

where n^{p} and n^{g} are correspondingly rotational speeds of the pinion and the gear; c is the number of gears meshing with the gear being analysed.

In our case $\mathrm{c}=1, \mathrm{n}^{\mathrm{p}}=967 \mathrm{rpm} ; \mathrm{n}^{\mathrm{g}}=241.75 \mathrm{rpm}$.

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{Hi}}^{\mathrm{p}}=60 \cdot 967 \cdot 1 \cdot 9198=533,668 \cdot 10^{6} ; \\
& \mathrm{N}_{\mathrm{Hi}}^{\mathrm{g}}=60 \cdot 241,75 \cdot 1 \cdot 9198=133,417 \cdot 10^{6} .
\end{aligned}
$$

Table 2.2

Contact and bending limits of endurance

Heat treatment	Tooth hardness		Gear material	$\sigma_{H \text { lim }}, \mathrm{MPa}$	$\sigma_{\text {blim }}, \mathrm{MPa}$
	case	core and root			
Normalizing, martempering	Brinell 18	to 350	Carbon and alloy steels, such as 45 $(0.45 \mathrm{C}), 40 \mathrm{X}(0.40 \mathrm{C}-$ $\mathrm{Cr}), 40 \mathrm{XH}(0.40 \mathrm{C}-$ $\mathrm{Cr}-\mathrm{Ni}), 50 \mathrm{XH}$ $(0.50 \mathrm{C}-\mathrm{Cr}-\mathrm{Ni})$, and $35 \mathrm{XM}(0.35 \mathrm{C}-\mathrm{Cr}-$ $\mathrm{Mo})$	$2 H_{m}+70$	$1.8 H_{m}$
Full hardening	Rockwell C	40 to 55	Carbon and alloy steels, such as 45 $(0.45 \mathrm{C}), 40 \mathrm{X}(0.40 \mathrm{C}-$ $\mathrm{Cr}), 40 \mathrm{XH}(0.40 \mathrm{C}-$ $\mathrm{Cr}-\mathrm{Ni})$, and 35 XM $(0.35 \mathrm{C}-\mathrm{Cr}-\mathrm{Mo})$	$18 H_{m}+150$	500
Surface hardening	$\begin{gathered} \text { Rockwell C, } \\ 40 \text { to } 58 \end{gathered}$	$\begin{gathered} \text { Rockwell C, } \\ 25 \text { to } 35 \end{gathered}$	Alloy steels, such as 40X ($0.40 \mathrm{C}-\mathrm{Cr}$), 40XH ($0.40 \mathrm{C}-\mathrm{Cr}-\mathrm{Ni}$), $50 \mathrm{XH}(0.50 \mathrm{C}-\mathrm{Cr}-\mathrm{Ni})$, and $35 \mathrm{XM}(0.35 \mathrm{C}-$ Cr-Mo)	$17 H_{m}+200$	650
Case hardening	$\begin{gathered} \text { Rockwell C, } \\ 54 \text { to } 64 \end{gathered}$	$\begin{gathered} \text { Rockwell C, } \\ 30 \text { to } 45 \end{gathered}$	Alloy steels, such as 20XH2M (0.20C-Cr$2 \mathrm{Ni}-\mathrm{Mo})$	$23 H_{m}$	950
Nitriding	$\begin{aligned} & \text { Rockwell C, } \\ & 50 \text { to } 60 \end{aligned}$	$\begin{array}{\|c} \text { Rockwell C, } \\ 24 \text { to } 40 \end{array}$	Alloy steels, such as 40XH2MA (0.40C-$\mathrm{Cr}-2 \mathrm{Ni}-\mathrm{Mo}$, quality)	1050	$\begin{gathered} 300+1.2 H_{m}\left(\begin{array}{c} \text { of tooth } \\ \text { core }) \end{array}\right. \end{gathered}$

2.3.5. Determine the durability factor for the pinion and for the gear.
if $\mathrm{N}_{\mathrm{Hi}} \geq \mathrm{N}_{\mathrm{HO}}$ then $\mathrm{K}_{\mathrm{HL}}=1$,
if $\mathrm{N}_{\mathrm{Hi}}<\mathrm{N}_{\mathrm{HO}}$ then $\mathrm{K}_{\mathrm{HL}}=\sqrt[6]{\frac{\mathrm{N}_{\mathrm{H} 0}}{\mathrm{~N}_{\mathrm{Hi}}}}$.
In our case

$$
\mathrm{N}_{\mathrm{H} 0}^{\mathrm{p}}=22.5 \cdot 10^{6}, \mathrm{~N}_{\mathrm{Hi}}^{\mathrm{p}}=533,668 \cdot 10^{6}, \mathrm{~N}_{\mathrm{Hi}}^{\mathrm{p}}>\mathrm{N}_{\mathrm{H} 0}^{\mathrm{p}},
$$

consequently $\mathrm{K}_{\mathrm{HL}}^{\mathrm{p}}=1$;
$\mathrm{N}_{\mathrm{H} 0}^{\mathrm{g}}=16.3 \cdot 10^{6}, \mathrm{~N}_{\mathrm{Hi}}^{9}=133,417 \cdot 10^{6}, \mathrm{~N}_{\mathrm{Hi}}^{\mathrm{p}}>\mathrm{N}_{\mathrm{H} 0}^{\mathrm{p}}$, consequently $\mathrm{K}_{\mathrm{HL}}^{\mathrm{g}}=1$.
2.3.6. Determine the safety factor S_{H} for the pinion and for the gear.

- for homogeneous structure of the material (heat treatment is normalizing, martempering and full hardening)

$$
\mathrm{S}_{\mathrm{H}}=1.1
$$

- for heterogeneous structure of the material (heat treatment is surface hardening, case hardening, nitriding)

$$
\mathrm{S}_{\mathrm{H}}=1.2 .
$$

2.3.7. Determine the contact allowable stresses for the gear and for the pinion

$$
\left[\sigma_{\mathrm{H}}^{\mathrm{p}}\right]=\frac{\sigma_{\mathrm{Hlim}}^{\mathrm{p}} \cdot \mathrm{~K}_{\mathrm{HL}}}{S_{\mathrm{H}}^{\mathrm{p}}}, \quad\left[\sigma_{\mathrm{H}}^{\mathrm{g}}\right]=\frac{\sigma_{\mathrm{Hlim}}^{\mathrm{g}} \cdot \mathrm{~K}_{\mathrm{HL}}}{S_{\mathrm{H}}^{\mathrm{g}}} .
$$

In our case: $S_{H}^{p}=S_{H}^{g}=1.1$;

$$
\left[\sigma_{\mathrm{H}}^{\mathrm{p}}\right]=\frac{641 \cdot 1}{1.1}=582.73 \mathrm{MPa} ; \quad\left[\sigma_{\mathrm{H}}^{\mathrm{g}}\right]=\frac{567 \cdot 1}{1.1}=515.455 \mathrm{MPa} .
$$

If $\mathrm{H}^{\mathrm{p}}-\mathrm{H}^{\mathrm{g}} \leq 70 \mathrm{BHN}$, we assume as the design allowable contact stress the less magnitude of above calculated stresses, where H^{p} and H^{g} are correspondingly hardness of the pinion and gear materials.

Otherwise, the design allowable contact stress is determined by the following formula

$$
\left[\sigma_{\mathrm{H}}\right]=0.45 \cdot\left(\left[\sigma_{\mathrm{H}}^{\mathrm{p}}\right]+\left[\sigma_{\mathrm{H}}^{\mathrm{g}}\right]\right) \leq 1.23 \cdot\left[\sigma_{\mathrm{H}}^{\mathrm{g}}\right] .
$$

In our case $\mathrm{H}^{\mathrm{p}}-\mathrm{H}^{\mathrm{g}}<70 \mathrm{BHN}$. That is why for further calculations we take as the design allowable contact stress $\left[\sigma_{\mathrm{H}}\right]=515.455 \mathrm{MPa}$.
2.4. Determine the allowable bending stresses of the pinion and the gear.
2.4.1 . Determine the limits of the bending endurance for the pinion $\sigma_{\mathrm{blim}}^{\mathrm{p}}$ and for the gear $\sigma_{\mathrm{b} \text { lim }}^{\mathrm{g}}$. For this purpose we use table 2.1.

$$
\sigma_{\mathrm{blim}}^{\mathrm{p}}=1.8 \cdot 285.5=513.9 \mathrm{MPa} \cdot \sigma_{\mathrm{b} \text { lim }}^{\mathrm{g}}=1.8 \cdot 248.5=447,3 \mathrm{MPa}
$$

2.4.2. Determine the base number of stress cycles $\mathrm{N}_{\mathrm{b} 0}$.

For steels $\mathrm{N}_{\mathrm{b} 0}=4 \cdot 10^{6}$.
2.4.3. Determine the design number of stress cycles for the pinion and the gear.
$\mathrm{N}_{\mathrm{bi}}^{\mathrm{p}}=60 \cdot \mathrm{n}_{\mathrm{p}} \cdot \mathrm{c} \cdot \mathrm{t}$;
$\mathrm{N}_{\mathrm{bi}}^{\mathrm{g}}=60 \cdot \mathrm{n}_{\mathrm{g}} \cdot \mathrm{c} \cdot \mathrm{t}$;
$\mathrm{N}_{\mathrm{bi}}^{\mathrm{p}}=\mathrm{N}_{\mathrm{Hi}}^{\mathrm{p}}=533,668 \cdot 10^{6}$;
$\mathrm{N}_{\mathrm{bi}}^{\mathrm{g}}=\mathrm{N}_{\mathrm{Hi}}^{\mathrm{g}}=133,417 \cdot 10^{6}$.
2.4.4. Determine the durability factor for the pinion and for the gear.
if $\mathrm{N}_{\mathrm{b} i} \geq \mathrm{N}_{\mathrm{b} 0}$ then $\mathrm{K}_{\mathrm{bL}}=1$,
if $\mathrm{N}_{\mathrm{bi}}<\mathrm{N}_{\mathrm{b} 0}$ then $\mathrm{K}_{\mathrm{bL}}=\sqrt[m]{\frac{\mathrm{N}_{\mathrm{b}}}{\mathrm{N}_{\mathrm{bE}}}}$,
where $\mathrm{m}=3$ for toothed wheels with hardness $\mathrm{H} \leq 350 \mathrm{BHN}$ and $\mathrm{m}=9$ if $\mathrm{H}>350 \mathrm{BHN}$.

In our case: $\mathrm{N}_{\mathrm{bi}}^{\mathrm{p}}>\mathrm{N}_{\mathrm{b} 0}^{\mathrm{p}}$, consequently $\mathrm{K}_{\mathrm{bL}}^{\mathrm{p}}=1$;
$\mathrm{N}_{\mathrm{bi}}^{\mathrm{g}}>\mathrm{N}_{\mathrm{b} 0}^{\mathrm{g}}$, consequently $\mathrm{K}_{\mathrm{bL}}^{\mathrm{g}}=1$.
2.4.5. Determine the safety factor S_{b} for the pinion and for the gear.

- for wheels made of forged blanks (our case) $\quad \mathrm{S}_{\mathrm{b}}=1.75$;
- for wheels made of cast blanks

$$
S_{b}=2.3
$$

2.4.6. Determine the bending allowable stresses for the gear and for the pinion

$$
\left[\sigma_{\mathrm{b}}^{\mathrm{p}}\right]=\frac{\sigma_{\mathrm{blim}}^{\mathrm{p}} \cdot \mathrm{~K}_{\mathrm{bL}}}{S_{\mathrm{b}}^{\mathrm{p}}}, \quad\left[\sigma_{\mathrm{b}}^{\mathrm{g}}\right]=\frac{\sigma_{\mathrm{blim}}^{\mathrm{g}} \cdot \mathrm{~K}_{\mathrm{bL}}}{S_{\mathrm{b}}^{\mathrm{g}}} .
$$

In our case: $\quad S_{b}^{p}=S_{b}^{g}=1.75$;

$$
\left[\sigma_{\mathrm{b}}^{\mathrm{p}}\right]=\frac{513,9 \cdot 1}{1.75}=293.66 \mathrm{MPa} ;\left[\sigma_{\mathrm{b}}^{\mathrm{g}}\right]=\frac{447,3 \cdot 1}{1.75}=255.6 \mathrm{MPa}
$$

For further calculations, we assume as the design allowable bending stress the less magnitude of above calculated stresses $\left[\sigma_{\mathrm{b}}\right]=255.6 \mathrm{MPa}$.

3. ANALYSIS OF THE STRAIGHT SPUR GEARS FOR STRENGTH

Let us carry out the analysis of the straight spur gears for strength if torque at the pinion shaft $T^{p}=74 \mathrm{~N} \cdot \mathrm{~m}$; torque at the gear shaft $T^{g}=370$ $\mathrm{N} \cdot \mathrm{m}$; velocity ratio of the gearing $u=5$; allowable contact stress $\left[\sigma_{H}\right]=515,455 \mathrm{MPa}$; allowable bending stress $\left[\sigma_{b}\right]=255,6 \mathrm{MPa}$; hardness of the gear material $H^{g}=285 \mathrm{BHN}$, angular velocity of the gear shaft $\omega^{g}=40 \mathrm{rad} / \mathrm{sec}$.
3.1. Determine the centre distance of the straight spur gears

$$
a_{w}=0.85 \cdot(u \pm 1) \cdot \sqrt[3]{\frac{T^{g} \cdot K_{H \beta} \cdot E_{t r}}{\left[\sigma_{H}\right]^{2} \cdot u^{2} \cdot \psi_{b a}}},
$$

where upper sign ("+") is right for gears with external toothing and down sign ("-") is right for gears with internal toothing; u is the velocity ratio of the gearing; T^{g} is the torque at the gear shaft in $\mathrm{N} \cdot \mathrm{mm}$; $\left[\sigma_{H}\right]$ is the allowable contact stress in $\mathrm{MPa} ; E_{t r}$ is the transformed modulus of elasticity in MPa; $K_{H \beta}$ is the load concentration factor; $\psi_{b a}=b^{g} / a_{w}$ is the gear face width factor.

Transformed modulus of elasticity $E_{t r}$ is determined as

$$
E_{t r}=\frac{2 \cdot E^{p} \cdot E^{g}}{E^{p}+E^{g}},
$$

where E^{p} and E^{g} are correspondingly moduli of elasticity of pinion and gear materials. Since the pinion and the gear are made of steel we can make the conclusion that $E_{t r}=E^{p}=E^{g}=2.1 \cdot 10^{5} \mathrm{MPa}$.

Load concentration factor $K_{H \beta}$ is determined by means of table 3.2 depending upon disposition of toothed wheels with respect to bearings and factor $\psi_{b d}=b^{g} / d^{p}$. Since b^{g} and d^{p} were not determined we find this factor by the following formula

$$
\psi_{b d}=\frac{b^{g}}{d^{p}}=\frac{0.5 \cdot b^{g}}{a_{w}} \cdot(u \pm 1)=0.5 \cdot \psi_{b a} \cdot(u \pm 1),
$$

where the gear face width factor $\psi_{b a}$ is determined from table 3.1 depending upon the disposition of the gear relative to bearings and taking into account that the value of $\psi_{b a}$ should correspond to standard. The greater $\psi_{b a}$ corresponds to the less overall dimensions of the gearing.

In our case the gear is located symmetrically with respect to supports. That is why $\psi_{b a}=0,5, \psi_{b d}=0.5 \cdot 0.5 \cdot(5+1)=1.5$ and $K_{H \beta}=1.11$.

$$
a_{w}=0.85 \cdot(5+1) \cdot \sqrt[3]{\frac{370 \cdot 10^{3} \cdot 1.11 \cdot 2.1 \cdot 10^{5}}{515,455^{2} \cdot 5^{2} \cdot 0.5}}=151 \mathrm{~mm}
$$

We round off obtained magnitude of a_{w} to the nearest greater side according to the series given in table 3.3. We assume $a_{w}=160 \mathrm{~mm}$.

Table 3.1
Recommended values of the gear face width factor $\psi_{b a}$

Gear arrangement with respect to bearings	Tooth hardness	$\psi_{b a}$
Symmetrical	Any	$0.315 ; 0.4 ; 0.5$
Non-symmetrical	Brinell BHN, up to 350	$0.315 ; 0.4$
	Rockwell C, 40 upwards	$0.25 ; 0.315$
On shaft cantilevers	Brinell BHN, up to 350	0.25
	Rockwell C, 40 upwards	0.2
For herringbone gears	Any	$0.4 ; 0.5 ; 0.63$
For internal gears	Any	0.2

Table 3.2
Approximate values of $\boldsymbol{K}_{\boldsymbol{H} \boldsymbol{\beta}}$

Gear arrangement with respect to bearings	Tooth surface hardness, BHN	$\psi_{b d}=\frac{b^{\mathrm{g}}}{\mathrm{d}^{\mathrm{p}}}$							
		0.4	0.6	0.8	1.2	1.6			
On cantilevers,	up to 350	1.08	1.17	1.28	-	-	-		
ball bearings	over 350	1.22	1.44	-	-	-	-		
On cantilevers,	up to 350	1.06	1.12	1.19	1.27	-	-		
roller bearings	over 350	1.11	1.25	1.45	-	-	-		
	up to 350	1.01	1.02	1.03	1.04	1.07	1.11		
Symmetrical	over 350	1.01	1.02	1.04	1.07	1.16	1.26		
Nonsymmetrical	up to 350	1.03	1.05	1.07	1.12	1.19	1.28		
	over 350	1.06	1.12	1.20	1.29	1.48	-		

Table 3.3

Standard values of the centre distance a_{w}

Series 1	63	80	100	125	160	200	250	315	400	500
Series 2	71	90	112	140	180	224	280	355	450	560

3.2. Determine the nominal pitch circle diameter of the gear

$$
d^{g}=\frac{2 \cdot a_{w} \cdot u}{u \pm 1}=\frac{2 \cdot 160 \cdot 5}{5+1}=266,67 \mathrm{~mm}
$$

3.3. Determine the face width of the gear

$$
b^{g}=\psi_{b a} \cdot a_{w}=0.5 \cdot 160=80 \mathrm{~mm}
$$

3.4. Determine the module according to the strength condition for bending

$$
m \geq \frac{2 \cdot K_{m} \cdot T^{g}}{d^{g} \cdot b^{g} \cdot\left[\sigma_{b}\right]}=\frac{2 \cdot 6.8 \cdot 370 \cdot 10^{3}}{266,67 \cdot 80 \cdot 255,6}=0.93 \mathrm{~mm},
$$

where K_{m} is taken as 6.8 for straight spur gears.
Obtained magnitude of the module should be rounded off to the greater side according to the standard series given in table 3.4. It is necessary to note that for general-purpose speed reducers the minimum value of the module is $m_{\text {min }}=2 \mathrm{~mm}$. In our case we assume that $m=2 \mathrm{~mm}$.

Table 3.4
Standard values of $\boldsymbol{m}_{\boldsymbol{n}}$

Series 1	1.0	1.25	1.5	2.0	2.5	3.0	4.0	5.0	6.0	8.0	10.0	12.0
Series 2	1.125	1.375	1.75	2.25	2.75	3.5	4.5	5.5	7.0	9.0	11.0	14.0

Note. Series 1 should be preferred to Series 2
3.5. Determine the total number of teeth

$$
z_{\Sigma}=\frac{2 \cdot a_{w}}{m}=\frac{2 \cdot 160}{2}=160 .
$$

Obtained value of z_{Σ} should be rounded off to the nearest integer numeral.
3.6. Determine the number of teeth of the pinion

$$
z^{p}=\frac{z_{\Sigma}}{u \pm 1} \geq z_{\text {min }},
$$

where $z_{\text {min }}=17$ for straight spur gears.
Obtained value of z^{p} should be rounded off to the nearest integer numeral. If $z^{p}<17$ it is necessary to decrease the module or to use nonstandard toothed wheels. For our case

$$
z^{p}=\frac{z \Sigma}{u \pm 1}=\frac{160}{6}=26,67 \geq z_{\text {min }}=17 .
$$

Round off z^{p} to the nearest integer numeral. Assume $z^{p}=27$.
3.7. Determine the number of teeth of the gear

$$
z^{g}=z_{\Sigma} \mp z^{p}=160-27=133 .
$$

Upper sign is right for gears with external toothing and down sign is used for gears with internal toothing.
3.8. Specify the velocity ratio of the gearing

$$
u_{\text {act }}=\frac{z^{g}}{z^{p}}=\frac{133}{27}=4,93 .
$$

The error $\varepsilon=\left|\frac{u_{a c t}-u}{u}\right| \cdot 100 \%$ should be less or equal to 4%. Otherwise the number of teeth z^{p}, z^{g} and z_{Σ} must be rounded off to the other side.

In our case condition is satisfied, because

$$
\varepsilon=\left|\frac{4.93-5}{5}\right| \cdot 100 \%=1.4<4 \%
$$

3.9. Determine the nominal pitch circles diameters for the pinion and the gear

$$
\begin{gathered}
d^{p}=m \cdot z^{p}=2 \cdot 27=54 \mathrm{~mm}, \\
d^{g}=2 \cdot a_{w} \mp d^{p}=2 \cdot 160-54=266 \mathrm{~mm} .
\end{gathered}
$$

3.10. Determine the addendum circles diameters for the pinion and the gear

$$
\begin{gathered}
d_{a}^{p}=d^{p}+2 \cdot m=54+2 \cdot 2=58 \mathrm{~mm} \\
d_{a}^{g}=d^{g} \pm 2 \cdot m=266+2 \cdot 2=270 \mathrm{~mm}
\end{gathered}
$$

3.11. Determine the dedendum circles diameters for the pinion and the gear

$$
\begin{gathered}
d_{f}^{p}=d^{p}-2.5 \cdot m=54-2.5 \cdot 2=49 \mathrm{~mm} \\
d_{f}^{g}=d^{g} \mp 2.5 \cdot m=266-2.5 \cdot 2=261 \mathrm{~mm} .
\end{gathered}
$$

3.12. Determine forces that act in the engagement of straight spur gears:

- turning force $F_{t}=\frac{2 \cdot T^{g}}{d^{g}}=\frac{2 \cdot 370}{0.266}=2781,96 \mathrm{~N} ;$
- radial force $F_{r}=F_{t} \cdot \operatorname{tg} \alpha_{w}=2781,96 \cdot \operatorname{tg} 20^{\circ}=1012,55 \mathrm{~N}$, where $\alpha_{w}=20^{\circ}$ is the pressure angle for the pitch circle.
3.13. Determine the maximum contact stress that develops in the contact zone of teeth

$$
\begin{aligned}
& \sigma_{H}=1.18 \cdot \sqrt{\frac{T^{p} \cdot K_{H} \cdot E_{t r}}{\left(d^{p}\right)^{2} \cdot b^{g} \cdot \sin 2 \alpha_{w}} \cdot\left(\frac{u_{\text {act }} \pm 1}{u_{\text {act }}}\right)}= \\
& =1.18 \cdot \sqrt{\frac{74 \cdot 10^{3} \cdot 1.11 \cdot 1.24 \cdot 2.1 \cdot 10^{5}}{54^{2} \cdot 80 \cdot \sin 40^{\circ}} \cdot\left(\frac{4,93+1}{4,93}\right)}=488,78 \mathrm{MPa},
\end{aligned}
$$

where T^{p} is the torque at the pinion shaft in $\mathrm{N} \cdot \mathrm{mm} ; K_{H}$ is the design load factor that is determined as $K_{H}=K_{H \beta} \cdot K_{H V}$, where $K_{H \beta}$ is the load concentration factor; $K_{H V}$ is the dynamic load factor.

The load concentration factor $K_{H \beta}$ is specified by table 3.2 depending upon $\psi_{b d}=\frac{b^{g}}{d^{p}}=\frac{80}{54}=1.48$. That is why $K_{H \beta}=1.11$.

In order to determine $K_{H V}$ it is necessary to find the peripheral speed V^{g} of the gear

$$
V^{g}=\frac{\omega^{g} \cdot d^{g}}{2}=\frac{40 \cdot 0.266}{2}=5,32 \mathrm{~m} / \mathrm{sec}
$$

where ω^{g} is the angular velocity of the gear and the gearing accuracy of manufacturing (table 3.5).

The dynamic load factor $K_{H V}$ is determined by table 3.6. In our case $K_{H V}=1,24$

Table 3.5
Gearing accuracy of manufacturing

Types of gear drives	Peripheral speed $V, \mathrm{~m} / \mathrm{sec}$			
	under 5	$5-8$	$8-12.5$	over 12.5
Straight spur gears	9	8	7	6
Helical spur gears	9	9	8	7
Straight bevel gears	8	7	-	-
Spiral bevel gears	9	9	8	7

Table 3.6
Dynamic load factor $\boldsymbol{K}_{\boldsymbol{H V}}$

Gearing accuracy of manufacturing	Tooth surface hardness, BHN	Peripheral speed $V, \mathrm{~m} / \mathrm{sec}$						
	BHN	2	4	6	8	10		
7	up to 350 over 350	$1.04 / 1.02$	$1.07 / 1.03$	$1.14 / 1.05$	$1.21 / 1.06$	$1.29 / 1.07$	$1.36 / 1.08$	
8	up to 350	$1.03 / 1.01$	$1.05 / 1.01$	$1.09 / 1.02$	$1.14 / 1.03$	$1.19 / 1.03$	$1.24 / 1.04$	
over 350	$1.03 / 1.01$	$1.06 / 1.01$	$1.16 / 1.04$	$1.10 / 1.02$	$1.16 / 1.06$	$1.32 / 1.07$	$1.40 / 1.08$	
9	up to 350 over 350	$1.05 / 1.01$	$1.10 / 1.03$	$1.20 / 1.05$	$1.30 / 1.07$	$1.40 / 1.04$	$1.26 / 1.05$	

Note: The figures in the numerators refer to straight spur gears and those in the denominators, to helical spur gears.

Obtained value of σ_{H} should correspond to the condition:

$$
\sigma_{H}=(0.8 \ldots 1.1) \cdot\left[\sigma_{H}\right] .
$$

Otherwise it is necessary to change the center distance a_{w} and recalculate the gearing.

In our case $412,4 \leq 488,78 \leq 567$. Condition is satisfied.

3.14. Determine the maximum bending stress

$$
\sigma_{b}=\frac{F_{t} \cdot K_{b \beta} \cdot K_{b V} \cdot Y_{b}}{m \cdot b^{g}}=\frac{2781,96 \cdot 1.26 \cdot 1.58 \cdot 3.6}{2 \cdot 80}=124.61 \mathrm{MPa} \leq\left[\sigma_{b}\right]=255,6 \mathrm{MPa}
$$

where $K_{b \beta}$ is the load concentration factor that is determined by table 3.7; $K_{b v}$ is the dynamic load factor determined from table 3.8; Y_{b} is the tooth form factor that is determined by means of table 3.9 depending upon the number of teeth of the gear for the case when the offset factor $x=0$.

If obtained magnitude of $\sigma_{b}>\left[\sigma_{b}\right]$ it is necessary to increase the module.
Table 3.7
Approximate values of $\boldsymbol{K}_{b \beta}$

Gear arrangement with respect to bearings	Tooth surface hardness, BHN	$\psi_{b d}=\frac{b^{g}}{d^{p}}$					
		0.2	0.4	0.6	0.8	1.2	1.6
On cantilevers, ball bearings	$\begin{aligned} & \text { up to } 350 \\ & \text { over } 350 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.16 \\ & 1.33 \end{aligned}$	$\begin{array}{r} 1.37 \\ 1.70 \\ \hline \end{array}$	1.64		-	-
On cantilevers, roller bearings	up to 350 over 350	$\begin{aligned} & 1.10 \\ & 1.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.44 \end{aligned}$	$\begin{aligned} & 1.38 \\ & 1.71 \end{aligned}$	1.57	-	-
Symmetrical	$\begin{aligned} & \text { up to } 350 \\ & \text { over } 350 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 1.07 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 1.30 \end{aligned}$	1.26
Nonsymmetrical	$\begin{aligned} & \text { up to } 350 \\ & \text { over } 350 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.05 \\ & 1.09 \end{aligned}$	$\begin{aligned} & 1.10 \\ & 1.18 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.43 \end{aligned}$	$\begin{aligned} & 1.42 \\ & 1.73 \end{aligned}$	1.61

Table 3.8
Dynamic load factor $\boldsymbol{K}_{\boldsymbol{b} V}$

Gearing accuracy of manufacturing	Tooth surface hardness, BHN	Peripheral speed $V, \mathrm{~m} / \mathrm{sec}$						
	1	2	4	6	8	10		
7	up to 350 over 350	$1.08 / 1.03$	$1.16 / 1.03 / 1.01$	$1.05 / 1.02$	$1.33 / 1.09 / 1.03$	$1.50 / 1.16$	$1.62 / 1.22$	
$1.80 / 1.05$	$1.17 / 1.07$	$1.22 / 1.08$						
8	up to 350 over 350	$1.10 / 1.03$	$1.20 / 1.06$	$1.38 / 1.11$	$1.58 / 1.17$	$1.78 / 1.23$	$1.96 / 1.29$	
	$1.04 / 1.01$	$1.06 / 1.02$	$1.12 / 1.03$	$1.16 / 1.05$	$1.21 / 1.05$	$1.26 / 1.08$		
9	up to 350 over 350	$1.13 / 1.04$	$1.28 / 1.07$	$1.50 / 1.14$	$1.72 / 1.21$	$1.98 / 1.28$	$1.25 / 1.35$	
	$1.04 / 1.01$	$1.07 / 1.02$	$1.14 / 1.04$	$1.21 / 1.06$	$1.27 / 1.08$	$1.34 / 1.09$		

Note: The figures in the numerators refer to straight spur gears and those in the denominators, to helical spur gears.

Table 3.9
Tooth form factor $\boldsymbol{Y}_{\boldsymbol{b}}$

z or z_{v}	17	20	22	24	26	28	30	35	40	45	50	65	80	100
Y_{b}	4.27	4.07	3.98	3.92	3.88	3.81	3.8	3.75	3.7	3.66	3.65	3.62	3.61	3.6

4. ANALYSIS OF THE HELICAL SPUR GEARS FOR STRENGTH

4.1. Determine the center distance of the helical spur gears

$$
a_{\mathrm{w}}=0.75 \cdot(\mathrm{u}+1) \cdot \sqrt[3]{\frac{\mathrm{T}^{\mathrm{g}} \cdot \mathrm{~K}_{\mathrm{H} P} \cdot \mathrm{E}_{\mathrm{tr}}}{\left[\sigma_{\mathrm{H}}\right]^{2} \cdot \mathrm{u}^{2} \cdot \psi_{\mathrm{ba}}}},
$$

where u is the velocity ratio of the gearing; T^{g} is the torque at the gear shaft in $N \cdot m m ;\left[\sigma_{H}\right]$ is the allowable contact stress in $M P a ; \mathrm{E}_{\mathrm{tr}}$ is the transformed modulus of elasticity in MPa; $K_{H \beta}$ is the load concentration factor; $\psi_{\mathrm{ba}}=\mathrm{b}^{\mathrm{g}} / \mathrm{a}_{\mathrm{w}}$ is the gear face width factor.

Transformed modulus of elasticity $E_{t r}$ is determined as

$$
E_{t r}=\frac{2 \cdot E^{p} \cdot E^{g}}{E^{p}+E^{g}},
$$

where E^{p} and E^{g} are correspondingly modules of elasticity of pinion and gear materials. Since the pinion and the gear are made of steel we can make the conclusion that $\mathrm{E}_{\mathrm{tr}}=\mathrm{E}^{\mathrm{p}}=\mathrm{E}^{\mathrm{g}}=2.1 \cdot 10^{5} \mathrm{MPa}$.

Load concentration factor $K_{H \beta}$ is determined by means of table 3.2 depending on disposition of toothed wheels with respect to bearings and factor $\psi_{b d}=b_{g} / d^{p}$. Since b_{g} and d^{p} were not determined we find this factor by the following formula

$$
\psi_{\mathrm{bd}}=\frac{\mathrm{b}^{\mathrm{g}}}{\mathrm{~d}^{\mathrm{p}}}=\frac{0.5 \cdot \mathrm{~b}^{\mathrm{g}}}{a_{\mathrm{w}}} \cdot(\mathrm{u} \pm 1)=0.5 \cdot \psi_{\mathrm{ba}} \cdot(\mathrm{u} \pm 1),
$$

where gear face width factor ψ_{ba} is determined from table 3.1 depending on the disposition of the gear relative to bearings taking into account that the value of this factor should correspond to standard. The greater $\psi_{\text {ba }}$ corresponds to the less overall dimensions of the gearing. That is why we select the greater magnitude of $\psi_{\text {ba }}$.

Obtained magnitude of a_{w} should be rounded off to the nearest greater side according to the series given in table 3.3.

In our case: $\mathrm{T}^{\mathrm{g}}=464.3 \mathrm{~N} \cdot \mathrm{~m} ; \mathrm{T}^{\mathrm{p}}=119.67 \mathrm{~N} \cdot \mathrm{~m} ; \mathrm{u}=4$; $\left[\sigma_{\mathrm{H}}\right]=515,5 \mathrm{MPa} ; \mathrm{E}_{\mathrm{tr}}=2.1 \cdot 10^{5} \mathrm{MPa} ;\left[\sigma_{\mathrm{b}}\right]=255.6 \mathrm{MPa}$, symmetrical disposition of gears with respect to supports.

From table 3.1 we take $\psi_{\text {ba }}=0.5$; then $\psi_{\text {bd }}=0.5 \cdot 0.5 \cdot(4+1)=1.25$,
From table 3.2 we take $K_{H \beta}=1.07$ (for symmetrical gear arrangement and tooth surface hardness up to 350).

Then

$$
a_{\mathrm{w}}=0.75 \cdot(4+1) \cdot \sqrt[3]{\frac{464300 \cdot 1.07 \cdot 2.1 \cdot 10^{5}}{515.5^{2} \cdot 4^{2} \cdot 0.5}}=137.29 \mathrm{~mm}
$$

Round off obtained magnitude to the nearest greater side according to table 3.3. That is why we take $a_{w}=140 \mathrm{~mm}$ for further calculations.
4.2. Determine the nominal pitch circle diameter of the gear

$$
\mathrm{d}^{\mathrm{g}}=\frac{2 \cdot a_{\mathrm{w}} \cdot \mathrm{u}}{\mathrm{u}+1}=\frac{2 \cdot 140 \cdot 4}{4+1}=224 \mathrm{~mm} .
$$

4.3. Determine the face width of the gear

$$
\mathrm{b}^{\mathrm{g}}=\psi_{\text {ba }} \cdot a_{\mathrm{w}}=0.5 \cdot 140=70 \mathrm{~mm} .
$$

4.4. Determine the normal module according to the strength condition for bending

$$
\mathrm{m}_{\mathrm{n}} \geq \frac{2 \cdot \mathrm{~K}_{\mathrm{m}} \cdot \mathrm{~T}^{\mathrm{g}}}{\mathrm{~d}^{\mathrm{g}} \cdot \mathrm{~b}^{\mathrm{g}} \cdot\left[\sigma_{\mathrm{b}}\right]}
$$

where K_{m} is taken as 5.8 for helical spur gears.
Obtained magnitude of the module should be rounded off to the greater side according to the standard series given in table 3.4. It is necessary to note that for general-purpose speed reducers the minimum value of the module is $\mathrm{m}_{\text {min }}=2 \mathrm{~mm}$. In our case

$$
\mathrm{m}_{\mathrm{n}}=\frac{2 \cdot 5.8 \cdot 464300}{224 \cdot 70 \cdot 255.6}=1.344 \mathrm{~mm}
$$

we take $m_{n}=2 \mathrm{~mm}$ for further calculations.
4.5. Determine the helix angle

$$
\beta=\arcsin \left(\frac{3,5 \cdot \mathrm{~m}_{\mathrm{n}}}{\mathrm{~b}^{\mathrm{g}}}\right)=\arcsin \left(\frac{3,5 \cdot 2}{70}\right)=5.73^{\circ} .
$$

For helical spur gears this angle should be ranged from 8 to 18°. Otherwise, it is necessary to change the normal module m_{n}. As in our case $\beta=5.73^{\circ}$ that is less than 8°, we take $m_{n}=3 \mathrm{~mm}$. Then

$$
\beta=\arcsin \left(\frac{3.5 \cdot 3}{70}\right)=8.62^{\circ} .
$$

4.6. Determine the total number of teeth

$$
\mathrm{z}_{\Sigma}=\frac{2 \cdot a_{\mathrm{w}} \cdot \cos \beta}{\mathrm{~m}_{\mathrm{n}}}=\frac{2 \cdot 140 \cdot \cos 8.62^{\circ}}{3}=92.28
$$

Obtained value of z_{Σ} should be rounded off to the nearest integer numeral, assume $\mathrm{z}_{\Sigma}=92$.
4.7. Specify the helix angle according to the integer number of z_{Σ}

$$
\beta=\arccos \left(\frac{\mathrm{m}_{\mathrm{n}} \cdot \mathrm{z}_{\Sigma}}{2 \cdot a_{\mathrm{w}}}\right)=\arccos \left(\frac{3 \cdot 92}{2 \cdot 140}\right)=9.69^{\circ}
$$

Obtained value of this angle is ranged from 8 to 18°. Condition is satisfied.
4.8. Determine the number of teeth of the pinion

$$
\mathrm{z}^{\mathrm{p}}=\frac{\mathrm{z}}{\mathrm{u} \pm 1} \geq \mathrm{z}_{\min }
$$

where for helical spur gears $z_{\min }=17 \cdot \cos ^{3} \beta$.
Obtained value of z^{p} should be rounded off to the nearest integer numeral. If $z^{p}<17 \cdot \cos ^{3} \beta$ it is necessary to decrease the module or to use nonstandard toothed wheels.

In our case

$$
z^{p}=\frac{92}{4 \pm 1}=18.4 \Rightarrow z^{p}=18>z_{\min }=17 \cdot \cos ^{3} 9.69^{\circ}=16.28
$$

4.9. Determine the number of teeth of the gear

$$
z^{g}=z_{\Sigma}-z^{p}=92-18=74 .
$$

4.10. Specify the velocity ratio of the gearing

$$
\mathrm{u}_{\mathrm{act}}=\frac{\mathrm{z}^{\mathrm{g}}}{\mathrm{z}^{\mathrm{p}}} .
$$

The error $\varepsilon=\left|\frac{\mathrm{u}_{\text {act }}-\mathrm{u}}{\mathrm{u}}\right| \cdot 100 \%$ should be less or equal to 4%. Otherwise the number of teeth z^{p}, z^{g} and z_{Σ} must be rounded off to the other side.

In our case condition is satisfied, since

$$
\mathrm{u}_{\mathrm{act}}=\frac{74}{18}=4.11 ; \quad \varepsilon=\left|\frac{4.11-4}{4}\right| \cdot 100 \%=2.75<4 \%
$$

4.11. Determine the nominal pitch circle diameters for the pinion and the gear

$$
\begin{gathered}
d^{p}=\frac{m_{n}}{\cos \beta} \cdot \mathrm{z}^{\mathrm{p}}=\frac{3}{\cos 9,69^{\circ}} \cdot 18=54.78 \mathrm{~mm}, \\
d^{\mathrm{g}}=2 \cdot a_{\mathrm{w}}-\mathrm{d}^{\mathrm{p}}=2 \cdot 140-54.78=225.22 \mathrm{~mm} .
\end{gathered}
$$

4.12. Determine the addendum circle diameters for the pinion and the gear

$$
\begin{gathered}
d_{a}^{p}=d^{p}+2 \mathrm{~m}_{\mathrm{n}}=54.78+2 \cdot 3=60.78 \mathrm{~mm} \\
\mathrm{~d}_{\mathrm{a}}^{\mathrm{g}}=\mathrm{d}^{\mathrm{g}}+2 \mathrm{~m}_{\mathrm{n}}=225.22+2 \cdot 3=231.22 \mathrm{~mm} .
\end{gathered}
$$

4.13. Determine the dedendum circle diameters for the pinion and the gear

$$
\begin{gathered}
d_{f}^{p}=d^{p}-2.5 \cdot m_{n}=54.78-2.5 \cdot 3=47.28 \mathrm{~mm} \\
d_{f}^{\mathrm{g}}=\mathrm{d}^{\mathrm{g}}-2.5 \cdot \mathrm{~m}_{\mathrm{n}}=225.22-2.5 \cdot 3=217.72 \mathrm{~mm} .
\end{gathered}
$$

4.14. Determine forces that act in the engagement of the helical spur gears:

- turning force $\mathrm{F}_{\mathrm{t}}=\frac{2 \cdot \mathrm{~T}^{\mathrm{g}}}{\mathrm{d}^{\mathrm{g}}}=\frac{2 \cdot 464300}{225.22}=4123.08 \mathrm{~N}$;
- radial force $\mathrm{F}_{\mathrm{r}}=\frac{\mathrm{F}_{\mathrm{t}}}{\cos \beta} \cdot \operatorname{tg} \alpha_{\mathrm{w}}=\frac{4123.08}{\cos 9.69^{\circ}} \cdot \operatorname{tg} 20^{\circ}=1522.4 \mathrm{~N}$;
- axial force $F_{a}=F_{t} \cdot \operatorname{tg} \beta=4123.08 \cdot \operatorname{tg} 9.69^{\circ}=704.03 \mathrm{~N}$, where $\alpha_{w}=20^{\circ}$ is the pressure angle for the pitch circle.
4.15. Determine the maximum contact stress that develops in the contact zone of teeth

$$
\sigma_{\mathrm{H}}=1.18 \cdot \mathrm{Z}_{\mathrm{H} \beta} \cdot \sqrt{\frac{\mathrm{~T}^{\mathrm{p}} \cdot \mathrm{~K}_{\mathrm{H}} \cdot \mathrm{E}_{\mathrm{tr}}}{\left(\mathrm{~d}^{\mathrm{p}}\right)^{2} \cdot b^{\mathrm{g}} \cdot \sin 2 \alpha_{\mathrm{w}}} \cdot\left(\frac{\mathrm{u}_{\mathrm{act}} \pm 1}{\mathrm{u}_{\mathrm{act}}}\right)},
$$

where $\mathrm{Z}_{\mathrm{H} \beta}$ is a factor which is used to take into account rising the contact strength of the helical spur gears in comparison with the straight spur gears; T^{p} is the torque at the pinion shaft in $N \cdot m m ; K_{H}$ is the design load factor that is determined as

$$
K_{H}=K_{H \beta} \cdot K_{H V}
$$

where $K_{H \beta}$ is the load concentration factor; $K_{H V}$ is the dynamic load factor.

The load concentration factor $\mathrm{K}_{\mathrm{H} \beta}$ is specified by table 3.2 depending upon $\psi_{b d}=\frac{b^{g}}{d^{\mathrm{p}}}$.

In order to determine K_{HV} it is necessary to find the peripheral speed V^{g} of the gear

$$
\mathrm{V}^{\mathrm{g}}=\frac{\omega^{\mathrm{g}} \cdot \mathrm{~d}^{\mathrm{g}}}{2}
$$

where ω^{g} is the angular velocity of the gear and the gearing accuracy of manufacturing (table 3.5),.

The dynamic load factor $K_{H V}$ is determined by table 3.6.
Factor $Z_{H \beta}$ is determined in the following way

$$
\mathrm{Z}_{\mathrm{H} \beta}=\sqrt{\frac{\mathrm{K}_{\mathrm{H} \alpha} \cdot \cos ^{2} \beta}{\varepsilon_{\alpha}}},
$$

where $\mathrm{K}_{\mathrm{H} \alpha}$ takes into account non-uniform load distribution between several pairs of teeth; ε_{α} is the contact ratio.

Table 4.1
Factors $K_{H \alpha}, K_{b \alpha}$ which are used to take into account non-uniform load distribution between some pairs

Peripheral speed $\mathrm{V}, \mathrm{m} / \mathrm{sec}$	Accuracy of manufacturing	$\mathrm{K}_{\mathrm{H} \alpha}$	$\mathrm{K}_{\mathrm{b} \alpha}$
To 5	7	1.03	1.07
	8	1.07	1.22
	9	1.13	1.35
From 5 to 10	7	1.05	1.2
	8	1.10	1.3
From 10 to 15	7	1.08	1.25
	8	1.15	1.40

$\mathrm{K}_{\mathrm{H} \alpha}$ depends upon the accuracy of manufacturing and the peripheral speed and is determined according to table 4.1.

Contact ratio ε_{a} is found by the following formula

$$
\varepsilon_{\alpha}=\left[1.88-3.2 \cdot\left(\frac{1}{\mathrm{z}^{\mathrm{p}}}+\frac{1}{\mathrm{z}^{\mathrm{g}}}\right)\right] \cdot \cos \beta .
$$

Let us determine the contact stress σ_{H} for our case:

$$
\begin{aligned}
\Psi_{\mathrm{bd}} & =\frac{70}{54.78}=1.27 ; \mathrm{K}_{\mathrm{H} \beta}=1.07 ; \\
& \mathrm{V}^{\mathrm{g}}=\frac{19.19 \cdot 0.22522}{2}=2.16 \mathrm{~m} / \mathrm{sec} \Rightarrow \mathrm{~K}_{\mathrm{HV}}=1.01 ;
\end{aligned}
$$

Accuracy of manufacturing of the gearing is $9 ; K_{H}=1.07 \cdot 1.01=$ 1.0807;

$$
\begin{aligned}
\varepsilon_{\alpha} & =\left[1.88-3.2 \cdot\left(\frac{1}{18}+\frac{1}{74}\right)\right] \cdot \cos 9.69^{\circ}=1.635 ; K_{H \alpha}=1.13 ; \\
\mathrm{Z}_{\mathrm{H} \beta} & =\sqrt{\frac{1.13 \cdot \cos ^{2} 9.69^{\circ}}{1.635}}=0.819 ; \\
\sigma_{\mathrm{H}} & =1.18 \cdot 0.819 \cdot \sqrt{\frac{119670 \cdot 1.0807 \cdot 210000}{54.78^{2} \cdot 70 \cdot \sin \left(2 \cdot 20^{\circ}\right)} \cdot\left(\frac{4.11+1}{4.11}\right)}=483.287 \mathrm{MPa} ;
\end{aligned}
$$

Obtained value of σ_{H} should correspond to the following condition:

$$
\sigma_{H}=(0.8 \ldots 1.1) \cdot\left[\sigma_{H}\right] .
$$

Otherwise it is necessary to change the center distance a_{w} and recalculate the gearing.

In our case $412,4 \leq 483,287 \leq 567$. Condition is satisfied.
4.16. Determine the maximum bending stress

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{F}_{\mathrm{t}} \cdot \mathrm{~K}_{\mathrm{b} \beta} \cdot \mathrm{~K}_{\mathrm{bv}} \cdot \mathrm{Z}_{\mathrm{b} \beta} \cdot \mathrm{Y}_{\mathrm{b}}}{\mathrm{~m}_{\mathrm{n}} \cdot \mathrm{~b}^{\mathrm{g}}} \leq\left[\sigma_{\mathrm{b}}\right],
$$

where $\mathrm{K}_{\mathrm{b} \beta}$ is the load concentration factor that is determined by table 3.7; K_{bv} is the dynamic load factor determined from table 3.8; Y_{b} is the tooth form factor that is determined by means of table 3.9 depending on the number of teeth of the equivalent straight spur gear $z_{v}^{g}=\frac{z^{g}}{\cos ^{3} \beta}$ for the case when the shift factor $\mathrm{x}=0$.

Factor $Z_{\mathrm{b} \beta}$ is the analogy of $\mathrm{Z}_{\mathrm{H} \beta}$ and is determined as

$$
\mathrm{Z}_{\mathrm{b} \beta}=\frac{\mathrm{K}_{\mathrm{b} \alpha} \cdot \mathrm{Y}_{\beta}}{\varepsilon_{\alpha}},
$$

where $K_{b a}$ is chosen from table 4.1; $Y_{\beta}=1-\frac{\beta^{\circ}}{140}$ is the correction factor.
If obtained magnitude of $\sigma_{\mathrm{b}}>\left[\sigma_{\mathrm{b}}\right]$ it is necessary to increase the module.

$$
\begin{aligned}
& \text { In our case: } \mathrm{K}_{\mathrm{b} \beta}=1.14 ; \mathrm{K}_{\mathrm{bv}}=1.07 ; \mathrm{z}_{\mathrm{v}}^{\mathrm{g}}=\frac{74}{\cos ^{3} 9.69^{\circ}}=77.26 ; \\
& \mathrm{Y}_{\mathrm{b}}=3.61 ; \mathrm{K}_{\mathrm{b} \alpha}=1.35 ; \mathrm{Y}_{\beta}=1-\frac{9.69^{\circ}}{140}=0.93 ; \mathrm{Z}_{\mathrm{b} \beta}=\frac{1.35 \cdot 0.93}{1.635}=0.768 ; \\
& \sigma_{\mathrm{b}}=\frac{4123.08 \cdot 1.14 \cdot 1.07 \cdot 0.768 \cdot 3.61}{3 \cdot 70}=66.4 \mathrm{MPa}<\left[\sigma_{\mathrm{b}}\right]=255.6 \mathrm{MPa}
\end{aligned}
$$

Strength condition is satisfied.

5. ANALYSIS OF THE BEVEL GEARS FOR STRENGTH

Let us analyse the bevel gears for strength if torque at the pinion shaft $T^{p}=460 \mathrm{~N} \cdot \mathrm{~m}$; torque at the gear shaft $T^{g}=153 \mathrm{~N} \cdot \mathrm{~m}$ velocity ratio of the gearing $u=3.15$; allowable contact stress $\left[\sigma_{H}\right]=640 \mathrm{MPa}$; allowable bending stress $\left[\sigma_{b}\right]=293 \mathrm{MPa}$, hardness of the gear material $H^{g}=285 \mathrm{BHN}$.
5.1. Determine the external pitch diameter of the gear

$$
d_{e}^{g}=1.7 \cdot \sqrt[3]{\frac{T^{g} \cdot K_{H \beta} \cdot E_{t r} \cdot u}{v_{H} \cdot\left[\sigma_{H}\right]^{2} \cdot \psi_{b R} \cdot\left(1-\psi_{b R}\right)}}
$$

where T^{g} is the torque at the gear shaft in $\mathrm{N} \cdot \mathrm{mm} ; E_{t r}$ is the transformed modulus of elasticity; $K_{H \beta}$ is the load concentration factor; u is the velocity ratio; $v_{H}=0.85$ is the correction factor that takes into account reducing bevel gears strength in comparison with spur gears; $\left[\sigma_{H}\right]$ is the allowable contact stress; $\psi_{b R}=b^{g} / R_{e}$ is the gear face width factor that determines proportions of the face width of the gear with respect to the external cone distance. Factor $\psi_{b R}$ must be less than 0.3 . Recommended value of $\psi_{b R}=0.285$.

Since both pinion and gear are made of steel, the transformed modulus of elasticity $E_{t r}=2.1 \cdot 10^{5} \mathrm{MPa}$.

Load concentration factor $K_{H \beta}$ depends upon the hardness of the gear material. If $H^{g} \leq 350 \mathrm{BHN} K_{H \beta}$ is ranged from1.23 to 1.35 . Otherwise ($H^{g}>350 \mathrm{BHN}$) $K_{H \beta}$ is ranged from 1.25 to 1.45 . It is necessary to note that greater values of $K_{H \beta}$ are assumed for the case when one of toothed wheels is on the cantilever shaft.

$$
d_{e}^{g}=1.7 \cdot \sqrt[3]{\frac{T^{g} \cdot K_{H \beta} \cdot E_{t r} \cdot u}{v_{H} \cdot\left[\sigma_{H}\right]^{2} \cdot \psi_{b R} \cdot\left(1-\psi_{b R}\right)}}=1,7 \cdot \sqrt[3]{\frac{460 \cdot 10^{3} \cdot 1.3 \cdot 2.1 \cdot 10^{5} \cdot 3.15}{0.85 \cdot 640^{2} \cdot 0.285 \cdot(1-0.285)}}=301.45 \mathrm{~mm} .
$$

After calculation the obtained magnitude of d_{e}^{g} should be rounded off to the greater side according to standard series given in table 5.1. In our case we assume $d_{e}^{g}=315 \mathrm{~mm}$.

Table 5.1
Standard values of the external pitch diameter \boldsymbol{d}_{e}^{g}

Series 1	40	50	63	80	100	125	160	200	250	315	400	500
Series 2	-	-	71	90	112	140	180	224	280	355	450	560

5.2. Determine pitch angles for the pinion and for the gear.

$$
\delta_{2}=\operatorname{arctg} u=\operatorname{arctg} 3.15=72.38^{\circ}, \quad \delta_{1}=90^{\circ}-\delta_{2}=90-72.38=17.62^{\circ} .
$$

5.3. Determine the external cone distance

$$
R_{e}=\frac{d_{e}^{g}}{2 \cdot \sin \delta_{2}}=\frac{315}{2 \cdot \sin 72.38^{\circ}}=165.25 \mathrm{~mm} .
$$

5.4. Determine the face width of the gear

$$
b^{g}=\psi_{b R} \cdot R_{e}=0.285 \cdot 165.25=47.1 \mathrm{~mm} .
$$

5.5. Determine the external module

$$
m_{e}=\frac{14 \cdot T^{g} \cdot K_{b \beta}}{v_{b} \cdot \mathrm{~d}_{\mathrm{e}}^{\mathrm{g}} \cdot b^{g} \cdot\left[\sigma_{b}\right]}=\frac{14 \cdot 460 \cdot 10^{3} \cdot 1,35}{0.85 \cdot 315 \cdot 47.1 \cdot 293}=2.35 \mathrm{~mm}
$$

where $v_{b}=0.85$ is the correction factor; $K_{b \beta}$ is the load concentration factor that is determined according to table 3.7 depending upon $\psi_{b d}$ factor, where the latter is found as

$$
\Psi_{b d}=\frac{b^{g}}{d_{m}^{p}}=0.166 \cdot \sqrt{u^{2}+1}=0.166 \cdot \sqrt{3.15^{2 \cdot}+1}=0.55 .
$$

5.6. Determine the number of teeth of the gear

$$
\mathrm{z}^{\mathrm{g}}=\frac{d_{e}^{g}}{m_{e}}=\frac{315}{2.35}=134.04
$$

and round off z^{g} to the integer numeral. Assume $z^{g}=134$.
5.7. Determine the number of teeth of the pinion

$$
z^{p}=\frac{z^{g}}{u}=\frac{134}{3.15}=42.54
$$

and round off z^{p} to the integer numeral too. In our case $z^{p}=43$.
5.8. Specify the velocity ratio of the gearing

$$
u_{\text {act }}=\frac{z^{g}}{z^{p}}=\frac{134}{43}=3.12 .
$$

The error $\varepsilon=\left|\frac{u_{a c t}-u}{u}\right| \cdot 100 \%$ should be less or equal to 4%. Otherwise, we should round off values of z^{p} and z^{g} to the other side.

$$
\text { In our case } \varepsilon=\left|\frac{u_{a c t}-u}{u}\right| \cdot 100 \%=\left|\frac{3.12-3.15}{3.15}\right| \cdot 100 \%=0.95<4 \%
$$

5.9. Specify pitch angles for the pinion and the gear

$$
\delta_{2}=\operatorname{arctg} u_{a c l}=\operatorname{arctg} 3.12=72.23^{\circ}, \quad \delta_{1}=90^{\circ}-\delta_{2}=17.77^{\circ}
$$

5.10. Determine external pitch diameters of the pinion and the gear.

$$
\begin{aligned}
& d_{e}^{p}=m_{e} \cdot z^{p}=2.35 \cdot 43=101.05 \mathrm{~mm} \\
& \mathrm{~d}_{\mathrm{e}}^{\mathrm{g}}=m_{e} \cdot z^{g}=2.35 \cdot 134=314.9 \mathrm{~mm} .
\end{aligned}
$$

5.11. Determine diameters of addendum circles at the outer section for the pinion and the gear

$$
\begin{gathered}
d_{a e}^{p}=d_{e}^{p}+2 \cdot m_{e} \cdot \cos \delta_{1}=101.05+2 \cdot 2.35 \cdot \cos 17.77^{\circ}=105.53 \mathrm{~mm}, \\
d_{a e}^{g}=d_{e}^{g}+2 \cdot m_{e} \cdot \cos \delta_{2}=314.91+2 \cdot 2.35 \cdot \cos 72.23^{\circ}=316.33 \mathrm{~mm} .
\end{gathered}
$$

5.12. Determine diameters of dedendum circles at the outer section for the pinion and the gear.

$$
\begin{aligned}
& d_{f e}^{p}=d_{e}^{p}-2.4 \cdot m_{e} \cdot \cos \delta_{1}=101.05-2.4 \cdot 2.35 \cdot \cos 17.77^{\circ}=95.68 \mathrm{~mm}, \\
& d_{f e}^{g}=d_{e}^{g}-2.4 \cdot m_{e} \cdot \cos \delta_{2}=314.9-2.4 \cdot 2.35 \cdot \cos 72.23^{\circ}=313.18 \mathrm{~mm} .
\end{aligned}
$$

5.13. Specify the external cone distance

$$
R_{e}=0.5 \cdot m_{e} \cdot \sqrt{\left(z^{p}\right)^{2}+\left(z^{g}\right)^{2}}=0.5 \cdot 2.35 \cdot \sqrt{43^{2}+134^{2}}=165.36 \mathrm{~mm} .
$$

5.14. Specify the face width of the gear

$$
b^{g}=\psi_{b R} \cdot R_{e}=0.285 \cdot 165.36=47.28 \mathrm{~mm} .
$$

5.15. Determine mean pitch diameters for the pinion and for the gear

$$
\begin{gathered}
d_{m}^{p}=\frac{d_{e}^{p} \cdot\left(R_{e}-0.5 \cdot b^{g}\right)}{R_{e}}=d_{e}^{p} \cdot\left(1-0.5 \cdot \psi_{b R}\right)=101.05 \cdot(1-0.5 \cdot 0.285)=86.65 \mathrm{~mm}, \\
d_{m}^{g}=\frac{d_{e}^{g} \cdot\left(R_{e}-0.5 \cdot b^{g}\right)}{R_{e}}=d_{e}^{g} \cdot\left(1-0.5 \cdot \psi_{b R}\right)=314.9 \cdot(1-0.5 \cdot 0.285)=270.03 \mathrm{~mm} .
\end{gathered}
$$

5.16. Determine forces that act in the engagement of the bevel gears

- turning force

$$
F_{t}=\frac{2 \cdot T^{g}}{d_{m}^{g}}=\frac{2 \cdot 460 \cdot 10^{3}}{270.03}=3407.03 \mathrm{~N} \text {; }
$$

- radial force at the gear

$$
F_{r}^{g}=F_{t} \cdot \operatorname{tg} \alpha_{w} \cdot \cos \delta_{2}=3407.03 \cdot \operatorname{tg} 20^{\circ} \cdot \cos 72.23^{\circ}=378.46 \mathrm{~N} ;
$$

- axial force at the gear

$$
F_{a}^{g}=F_{t} \cdot \operatorname{tg} \alpha_{w} \cdot \sin \delta_{2}=3407.03 \cdot \operatorname{tg} 20^{\circ} \cdot \sin 72.23^{\circ}=1180.89 \mathrm{~N} .
$$

5.17. Determine the maximum contact stress that develops in the contact zone of teeth:

$$
\begin{aligned}
& \sigma_{H}=1.18 \cdot \sqrt{\frac{T^{p} \cdot K_{H} \cdot E_{t r}}{v_{H} \cdot\left(d_{m}^{p}\right)^{2} \cdot b^{g} \cdot \sin 2 \alpha_{w}} \cdot\left(\frac{\sqrt{u_{a c t}^{2}+1}}{u_{\text {act }}}\right)}= \\
& =1.18 \cdot \sqrt{\frac{153 \cdot 10^{3} \cdot 1.29 \cdot 2.1 \cdot 10^{5}}{0.85 \cdot 86.65^{2} \cdot 47.28 \cdot \sin 40^{\circ}} \cdot\left(\frac{\sqrt{3.12^{2}+1}}{3.12}\right)}=558.98 \mathrm{MPa},
\end{aligned}
$$

where T^{p} is in $\mathrm{N} \cdot \mathrm{mm} ; K_{H}$ is the design load factor determine as

$$
K_{H}=K_{H \beta} \cdot K_{H V} .
$$

Load concentration factor $K_{H \beta}$ is specified by means of table 3.2 depending upon factor $\psi_{\mathrm{bd}}=\frac{b^{g}}{d_{m}^{p}}$.

Dynamic load factor $K_{H V}$ is determined according to table 3.6 depending upon the peripheral speed of the gear $\left(V^{g}=\frac{\omega^{g} \cdot d_{m}^{g}}{2}\right)$ and the
accuracy of manufacturing (table 3.5). In order to use table 3.6 for bevel gears we should reduce the degree of accuracy by 1 .

In our case $\psi_{b d}=\frac{b^{g}}{d_{m}^{p}}=\frac{47.28}{86.65}=0.55, V^{g}=\frac{\omega^{g} \cdot d_{m}^{g}}{2}=\frac{25 \cdot 0.27}{2}=3.4 \mathrm{~m} / \mathrm{sec}$. $K_{H}=K_{H \beta} \cdot K_{H V}=1.16 \cdot 1.11=1.29$.

Obtained value of σ_{H} should correspond to the following condition

$$
\sigma_{H}=(0.8 \ldots 1.1) \cdot\left[\sigma_{H}\right]=(0.8 \ldots 1.1) \cdot 640=512 \ldots 704 \mathrm{MPa} .
$$

Otherwise it is necessary to change the external pitch diameter and recalculate the gearing. In our case strength condition is satisfied.
5.18. Determine the maximum bending stress
$\sigma_{b}=\frac{F_{t} \cdot K_{b \beta} \cdot K_{b V} \cdot Y_{b}}{v_{b} \cdot m_{m} \cdot b^{g}}=\frac{3407.03 \cdot 1.32 \cdot 1.27 \cdot 3.6}{0.85 \cdot 2.02 \cdot 47.28}=253.28 \mathrm{MPa} \leq\left[\sigma_{b}\right]=293 \mathrm{MPa}$
where $K_{b \beta}$ is the load concentration factor that is determined by table 3.7; $K_{b V}$ is the dynamic load factor determined from table 3.8 (for bevel gears we should reduce the accuracy of manufacturing by 1); Y_{b} is the tooth form factor that is determined by means of table 3.9 depending upon the number of teeth of the equivalent straight spur gear $z_{v}^{g}=\frac{z^{g}}{\cos \delta_{2}}=\frac{134}{\cos 72.23^{\circ}}=439$ for the case when the offset factor $x=0$; $v_{b}=0.85$ is the correction factor; $m_{m}=\frac{d_{m}^{g}}{z^{g}}=\frac{270.03}{134}=2.02 \mathrm{~mm}$ is the mean module.

6. ANALYSIS OF THE WORM GEARING

Let us carry out the analysis of the worm gearing for strength if torque at the worm shaft $T^{w}=105 \mathrm{~N} \cdot \mathrm{~m}$; torque at the gear shaft $T^{g}=1750$ $\mathrm{N} \cdot \mathrm{m}$; rotational speed of the worm shaft $n^{w}=441.75 \mathrm{rpm}$, rotational speed of the gear shaft $n^{g}=22.1 \mathrm{rpm}$; velocity ratio of the gearing $u=20$.
6.1. Determine approximately the slippage speed in the worm gearing

$$
\mathrm{V}_{\mathrm{sl}}=4.5 \cdot 10^{-4} \cdot \mathrm{n}^{\mathrm{w}} \cdot \sqrt[3]{\mathrm{T}^{\mathrm{g}}}
$$

where n^{w} is the rotational speed of the worm in rpm; T^{g} is the torque at the worm gear shaft in $\mathrm{N} \cdot \mathrm{m}$.

$$
\mathrm{V}_{\mathrm{sl}}=4.5 \cdot 10^{-4} \cdot 441.75 \cdot \sqrt[3]{1750}=2.4 \mathrm{~m} / \mathrm{sec}
$$

6.2. Select the material of the worm and the worm gear.

Worm

The best performance is obtained when worms are made of carbon or alloy steels of grade Steel 45 (0.45 C) and Steel 40XH (0.40-C-CrNi) surface-hardened to hardness ranged from 50 to 55 HRC or of grade Steel 20X ($0.20 \mathrm{C}-\mathrm{Cr}$) and Steel 18ХГТ ($0.18 \mathrm{C}-\mathrm{Cr}-\mathrm{Mn}-\mathrm{Ti}$) casehardened to hardness ranged from 58 to 63 HRC. The immunity to seizure improves with increasing hardness of the working surfaces of threads. Also, the surface roughness of the threads should be kept to a minimum (usually $R a 0.2$). For this purpose the threads are ground and polished.

Worm gear

Material of the worm gear depends on the slippage speed.
If $\mathrm{V}_{\mathrm{sl}}>5 \mathrm{~m} / \mathrm{sec}$, the worm gear is made of tin bronzes such as Bronze10Sn-1Ni-1P, Bronze10Sn-1P.

If V_{sl} is ranged from 2 to $5 \mathrm{~m} / \mathrm{sec}$, the worm gear is made of tinless (aluminum-iron) bronzes such as Bronze9Al-4Fe.

If $\mathrm{V}_{\mathrm{sl}}<2 \mathrm{~m} / \mathrm{sec}$, the worm gear is produced from cast irons such as Grey cast iron 12 or Grey cast iron 18.

Mechanical characteristics of materials of the worm gear are given in table 6.1. It is recommended to choose the material of the worm gear with higher mechanical characteristics.

It is necessary to note that calculation of the worm gearing is carried
out by the material of the worm gear because the latter has less strength in comparison with the material of the worm.

In our case: worm is made of carbon steels of grade Steel 45 (0.45 C) and surface-hardened to hardness ranged from 50 to 55 HRC ; the worm gear is made of tinless (aluminum-iron) bronzes such as Bronze 9Al-4Fe with chill casting to $\sigma_{\mathrm{y}}=195 \mathrm{MPa}$, ultimate strength in tension $\sigma_{\mathrm{ult}}=490$ MPa.

Table 6.1
Mechanical characteristics of materials of the worm gear ring

Material	Slippage speed Vs, $\mathrm{m} / \mathrm{sec}$	Casting method	Mechanical characteristics, MPa		
			Yield point σ_{y}	Ultimate strength	
				$\begin{array}{\|c\|} \hline \text { in tension } \\ \sigma_{\mathrm{ult}} \\ \hline \end{array}$	$\begin{aligned} & \text { bendin } \\ & \sigma_{\mathrm{ulb}} \end{aligned}$
Tin bronzes					
$\begin{gathered} \text { Bronze(10Sn-1Ni- } \\ 1 \mathrm{P}) \\ \hline \end{gathered}$	Over 5	Centrifugal casting	165	285	
Bronze(10Sn-1P)	Over 5	Chill casting	195	245	
Bronze(10Sn-1P)	Over 5	Sand casting	132	215	
Tinless bronzes					
Bronze(9Al-4Fe)	2... 5	Centrifugal casting	200	500	
Bronze(9Al-4Fe)	2... 5	Chill casting	195	490	
Bronze(9Al-4Fe)	2...5	Sand casting	195	392	
Cast-irons					
Grey cast iron 12	Up to 2	Sand casting	-		280
Grey cast iron 18	Up to 2	Sand casting	-		360

6.3. Determine the allowable contact stress.
a) For the worm gear made of tin bronzes the allowable contact stress is determined from the condition to prevent fatigue pitting

$$
\left[\sigma_{\mathrm{H}}\right]=\sigma_{\lim } \cdot \mathrm{C}_{\mathrm{v}} \cdot \mathrm{~K}_{\mathrm{HL}},
$$

where $\sigma_{\text {lim }}$ is the limit of contact endurance that is determined as $\sigma_{\lim }=$ $0.9 \cdot \sigma_{\mathrm{ult}} ; \sigma_{\mathrm{ult}}$ is the ultimate strength in tension (table 6.1); C_{v} is the factor that is used to take into account the wear rate of a worm gear tooth depending upon the slippage speed (table 6.2); K_{HL} is the durability factor.

Values of $\mathbf{C}_{\mathbf{v}}$

Slippage speed $\mathrm{V}_{\mathrm{sl}}, \mathrm{m} / \mathrm{sec}$	5	6	7	8
C_{v}	0.95	0.88	0.83	0.8

Durability factor K_{HL} is found in the following way:

$$
\mathrm{K}_{\mathrm{HL}}=\sqrt[8]{\frac{\mathrm{N}_{\mathrm{H} 0}}{\mathrm{~N}_{\mathrm{Hi}}}},
$$

where $\mathrm{N}_{\mathrm{HO}}=10^{7}$ is the base number of cycles;
$\mathrm{N}_{\mathrm{Hi}}=60 \cdot \mathrm{n}^{\mathrm{g}} \cdot \mathrm{t}$ is the design number of stress cycles;
n^{g} is the rotational speed of the worm gear;
$\mathrm{t}=\mathrm{L} \cdot 365 \cdot \mathrm{~K}_{\mathrm{a}} \cdot 24 \cdot \mathrm{~K}_{\mathrm{d}}$ is the service life in hours;
L is the service life in years; K_{a} is the annual utilization factor; K_{d} is the daily utilization factor;

Obtained magnitude of K_{HL} should satisfy the following condition:

$$
0.67 \leq \mathrm{K}_{\mathrm{HL}} \leq 1.15
$$

Otherwise, for further calculations we take the extreme values of the mentioned above inequality.
b) For the worm gear made of either tinless bronzes or cast irons, the allowable contact stress is determined to avoid seizure:

- for tinless bronzes

$$
\left[\sigma_{\mathrm{H}}\right]=300-25 \cdot \mathrm{~V}_{\mathrm{sl}} ;
$$

- for cast iron

$$
\left[\sigma_{\mathrm{H}}\right]=175-35 \cdot \mathrm{~V}_{\mathrm{sl}} .
$$

In our case: $\left[\sigma_{\mathrm{H}}\right]=300-25 \cdot 2.4=240 \mathrm{MPa}$
6.4. Determine the allowable bending stress.

For this purpose we use table 6.3, where σ_{ult} is the ultimate strength in tension; σ_{ulb} is the ultimate strength in bending; σ_{y} is the yield point; K_{bL} is the durability factor.

Table 6.3
Allowable bending stresses

Material	Non-reversed transmission	Reversed transmission
Bronze	$\left[\sigma_{\mathrm{b}}\right]=\left(0.08 \cdot \sigma_{\mathrm{ult}}+0.25 \cdot \sigma_{\mathrm{y}}\right) \cdot \mathrm{K}_{\mathrm{bL}}$	$\left[\sigma_{\mathrm{b}}\right]=0.16 \cdot \sigma_{\mathrm{ult}} \cdot \mathrm{K}_{\mathrm{bL}}$
Cast- iron	$\left[\sigma_{\mathrm{b}}\right]=0.12 \cdot \sigma_{\mathrm{ulb}} \cdot \mathrm{K}_{\mathrm{bL}}$	$\left[\sigma_{\mathrm{b}}\right]=0.075 \cdot \sigma_{\mathrm{ulb}} \cdot \mathrm{K}_{\mathrm{bL}}$

Mechanical characteristics of the worm gear material are given in
table 6.1.
Durability factor K_{bL} is determined as

$$
\mathrm{K}_{\mathrm{bL}}=\sqrt[9]{\frac{\mathrm{N}_{\mathrm{b} 0}}{\mathrm{~N}_{\mathrm{bi}}}},
$$

where $\mathrm{N}_{\mathrm{b} 0}=1 \cdot 10^{6}$ is the base number of cycles;
$\mathrm{N}_{\mathrm{bi}}=60 \cdot \mathrm{n}^{\mathrm{g}} \cdot \mathrm{t} \cdot \mathrm{K}_{\mathrm{bi}}$ is the design number of stress cycles;
n^{g} is the rotational speed of the worm gear;
$\mathrm{t}=\mathrm{L} \cdot 365 \cdot \mathrm{~K}_{\mathrm{a}} \cdot 24 \cdot \mathrm{~K}_{\mathrm{d}}$ is the service life in hours;
L is the service life in years; K_{a} is the annual utilization factor; K_{d} is the daily utilization factor;

Obtained magnitude of K_{bL} should satisfy the following condition:

$$
0.543 \leq \mathrm{K}_{\mathrm{bL}} \leq 1 .
$$

Otherwise, for further calculations we take the extreme values of the mentioned above inequality.

In our case the service life of the gearing is 8 years, $\mathrm{K}_{\mathrm{a}}=0.7$, $K_{d}=0.3$,

$$
t=8 \cdot 365 \cdot 0.7 \cdot 24 \cdot 0.3=14716.8 \text { hours . }
$$

$\mathrm{N}_{\mathrm{bi}}=60 \cdot 22.1 \cdot 14716.8=19.144 \cdot 10^{6} ; \quad \mathrm{N}_{\mathrm{b} 0}=1 \cdot 10^{6}$;
$K_{b L}=\sqrt[9]{\frac{1 \cdot 10^{6}}{19.144 \cdot 10^{6}}}=0.719$ Condition $0.543 \leq K_{b L} \leq 1$ is satisfied.
For bronze and non-reversed transmission
$\left[\sigma_{b}\right]=(0.08 \cdot 490+0.25 \cdot 195) \cdot 0.719=63.24 \mathrm{MPa}$
6.5.Calculate the worm gear for strength.
6.5.1. Determine the center distance of the worm gearing

$$
a_{\mathrm{w}}=0.625 \cdot\left(\frac{\mathrm{q}^{\mathrm{w}}}{\mathrm{z}^{\mathrm{g}}}+1\right) \cdot \sqrt[3]{\frac{\mathrm{T}^{\mathrm{g}} \cdot \mathrm{E}_{\mathrm{tr}}}{\left[\sigma_{\mathrm{H}}\right]^{2} \cdot\left(\frac{\mathrm{q}^{\mathrm{w}}}{\mathrm{z}^{\mathrm{g}}}\right)}}
$$

where T^{g} is the torque at the worm gear shaft in $N \cdot \mathrm{~mm} ; \mathrm{z}^{\mathrm{g}}=\mathrm{z}^{\mathrm{w}} \cdot \mathrm{u} \geq 28$ is the number of teeth of the worm gear (it should be rounded off to the nearest integer numeral); z^{w} is the number of threads of the worm that is determined according to table $6.4 ; \mathrm{q}^{\mathrm{w}}$ is the worm diameter factor whose minimum value is found as $q_{\min }^{w}=0.212 \cdot \mathrm{z}^{\mathrm{g}}$ (obtained magnitude of q^{w}
must be rounded off to the greater side according to the following standard series $8 ; 10 ; 12.5 ; 14 ; 16 ; 20)$; $\mathrm{E}_{\text {tr }}$ is the transformed modulus of elasticity that is determined by the formula

$$
\mathrm{E}_{\mathrm{tr}}=\frac{2 \cdot \mathrm{E}^{\mathrm{w}} \cdot \mathrm{E}^{\mathrm{g}}}{\mathrm{E}^{\mathrm{w}}+\mathrm{E}^{\mathrm{g}}} .
$$

where E^{w} is the worm material modulus of elasticity (for steels $\mathrm{E}=$ $2.1 \cdot 10^{5} \mathrm{MPa}$); E^{g} is the worm gear material modulus of elasticity (for bronzes and cast irons $\mathrm{E} \approx 0.9 \cdot 10^{5} \mathrm{MPa}$).

Table 6.4
Number of threads of the worm

Velocity ratio u	8 to 14	over 14 to 30	over 30
Number of threads z^{w}	4	2	1

Obtained value of a_{w} should be rounded off to the greater side according to standard series given in table 6.5.

Table 6.5
Standard values of the centre distance a_{w} of the worm gearing

Series 1	40	50	63	80	100	125	160	200	250	315	400	500
Series 2	-	-	-	-	-	140	180	225	280	355	450	-

In our case: $u=20, \mathrm{z}^{\mathrm{w}}=2, \mathrm{z}^{\mathrm{g}}=2 \cdot 20=40 \geq 28$

$$
\mathrm{q}_{\min }^{\mathrm{w}}=0.212 \cdot 40=8.48 \text { round off to the } \mathrm{q}_{\min }^{\mathrm{w}}=10
$$

$$
\begin{gathered}
\mathrm{E}_{\mathrm{tr}}=\frac{2 \cdot 2.1 \cdot 10^{5} \cdot 0.9 \cdot 10^{5}}{2.1 \cdot 10^{5}+0.9 \cdot 10^{5}}=1.26 \cdot 10^{5} . \\
a_{\mathrm{w}}=0.625 \cdot\left(\frac{10}{40}+1\right) \cdot \sqrt[3]{\frac{1750 \cdot 10^{3} \cdot 1.26 \cdot 10^{5}}{240^{2} \cdot\left(\frac{10}{40}\right)}}=194 \mathrm{~mm}
\end{gathered}
$$

Round off the obtained value of a_{w} to the 200 mm .
6.5.2. Determine the axial module

$$
\mathrm{m}=\frac{2 \cdot a_{\mathrm{w}}}{\mathrm{q}^{\mathrm{w}}+\mathrm{z}^{\mathrm{g}}}
$$

and round off obtained value according to standard series given in table 6.6.

Standard values of module m for worm gearing

m, mm	$2.5 ; 3.15 ; 4 ; 5$	$6.3 ; 8 ; 10 ; 12.5$
q^{w}	$8 ; 10 ; 12.5 ; 16 ; 20$	$8 ; 10 ; 12.5 ; 14 ; 16 ; 20$

In our case: $m=\frac{2 \cdot 200}{10+40}=8 \mathrm{~mm}$
6.5.3. In order to ensure standard value of the centre distance we use modified worm gear with offset factor x determined as

$$
x=\frac{a_{\mathrm{w}}}{\mathrm{~m}}-0.5 \cdot\left(\mathrm{q}^{\mathrm{w}}+\mathrm{z}^{\mathrm{g}}\right)
$$

To avoid undercutting the condition $-1 \leq \mathrm{x} \leq 1$ should be carried out. Otherwise, it is necessary to change a_{w}, q^{w} or z^{g}.

In our case: $x=\frac{200}{8}-0.5 \cdot(10+40)=0$
6.5.4. Specify the velocity ratio of the worm gearing

$$
\mathrm{u}_{\mathrm{act}}=\frac{\mathrm{z}^{\mathrm{g}}}{\mathrm{z}^{\mathrm{w}}}
$$

and determine the error $\varepsilon=\left|\frac{\mathrm{u}_{\text {act }}-\mathrm{u}}{\mathrm{u}}\right| \cdot 100 \%$ that must be less or equal to 4%.

$$
\mathrm{u}_{\mathrm{act}}=\frac{40}{2}=20 ; \quad \varepsilon=0 \%
$$

6.5.5. Determine the pitch diameter of the worm

$$
\mathrm{d}^{\mathrm{w}}=\mathrm{m} \cdot \mathrm{q}^{\mathrm{w}}=8 \cdot 10=80 \mathrm{~mm} .
$$

6.5.6. Determine the addendum circle diameter of the worm

$$
\mathrm{d}_{\mathrm{a}}^{\mathrm{w}}=\mathrm{d}_{\mathrm{w}}+2 \cdot \mathrm{~m}=80+2 \cdot 8=96 \mathrm{~mm} .
$$

6.5.7. Determine the dedendum circle diameter of the worm

$$
\mathrm{d}_{\mathrm{f}}^{\mathrm{w}}=\mathrm{d}^{\mathrm{w}}-2.4 \cdot \mathrm{~m}=80-2.4 \cdot 8=60.8 \mathrm{~mm} .
$$

6.5.8. Determine the threaded length of the worm by means of table 6.7.

Table 6.7
Threaded length of the worm $b^{\text {w }}$

Shift factor x	Number of threads of the worm z^{w}	
	$1 ; 2$	4
0	$\mathrm{~b}^{\mathrm{w}} \geq\left(11+0.06 \cdot \mathrm{z}^{\mathrm{g}}\right) \cdot \mathrm{m}$	$\mathrm{b}^{\mathrm{w}} \geq\left(12.5+0.09 \cdot \mathrm{z}^{\mathrm{g}}\right) \cdot \mathrm{m}$
-0.5	$\mathrm{~b}^{\mathrm{w}} \geq\left(8+0.06 \cdot \mathrm{z}^{\mathrm{g}}\right) \cdot \mathrm{m}$	$\mathrm{b}^{\mathrm{w}} \geq\left(9.5+0.09 \cdot \mathrm{z}^{\mathrm{g}}\right) \cdot \mathrm{m}$
-1.0	$\mathrm{~b}^{\mathrm{w}} \geq\left(10.5+\mathrm{z}^{\mathrm{w}}\right) \cdot \mathrm{m}$	$\mathrm{b}^{\mathrm{w}} \geq\left(10.5+\mathrm{z}^{\mathrm{w}}\right) \cdot \mathrm{m}$
+0.5	$\mathrm{~b}^{\mathrm{w}} \geq\left(11+0.1 \cdot \mathrm{z}^{\mathrm{g}}\right) \cdot \mathrm{m}$	$\mathrm{b}^{\mathrm{w}} \geq\left(12.5+0.1 \cdot \mathrm{z}^{\mathrm{g}}\right) \cdot \mathrm{m}$
+1.0	$\mathrm{~b}^{\mathrm{w}} \geq\left(12+0.1 \cdot \mathrm{z}^{\mathrm{g}}\right) \cdot \mathrm{m}$	$\mathrm{b}^{\mathrm{w}} \geq\left(13+0.1 \cdot \mathrm{z}^{\mathrm{g}}\right) \cdot \mathrm{m}$

Note. From manufacturing consideration, the threaded length of hobbed and ground worms is increased by 25 mm at $\mathrm{m}<10 \mathrm{~mm}$, by 35 to 40 mm at $\mathrm{m}=10 \mathrm{~mm}$ to 16 mm and by 50 mm at $\mathrm{m}>16 \mathrm{~mm}$.

$$
\mathrm{b}^{\mathrm{w}} \geq(11+0.06 \cdot 40) \cdot 8=107.2 \mathrm{~mm}
$$

Assume $b^{w}=107.2+25 \approx 132 \mathrm{~mm}$
6.5.9. Determine the lead angle of the worm

$$
\gamma=\operatorname{arctg}\left(\frac{z^{w}}{q^{w}}\right)=\operatorname{arctg}\left(\frac{2}{10}\right)=11.3^{\circ}
$$

6.5.10. Determine the pitch diameter of the worm gear

$$
\mathrm{d}^{\mathrm{g}}=\mathrm{m} \cdot \mathrm{z}^{\mathrm{g}}=8 \cdot 40=320 \mathrm{~mm} .
$$

6.5.11. Determine the addendum circle diameter of the worm gear

$$
\mathrm{d}_{\mathrm{a}}^{\mathrm{g}}=\mathrm{d}^{\mathrm{g}}+2 \cdot \mathrm{~m} \cdot(1+x)=320+2 \cdot 8 \cdot(1+0)=336 \mathrm{~mm}
$$

6.5.12. Determine the dedendum circle diameter of the gear

$$
\mathrm{d}_{\mathrm{f}}^{\mathrm{g}}=\mathrm{d}^{\mathrm{g}}-2 \cdot \mathrm{~m} \cdot(1.2-x)=320-2 \cdot 8 \cdot(1.2-0)=300.8 \mathrm{~mm}
$$

6.5.13. Determine the maximum diameter of the worm gear

$$
d_{a \max }^{\mathrm{g}}=\mathrm{d}_{\mathrm{a}}^{\mathrm{g}}+\frac{6 \cdot \mathrm{~m}}{\mathrm{z}^{\mathrm{w}}+2}=336+\frac{6 \cdot 8}{2+2}=348 \mathrm{~mm}
$$

6.5.14. Determine the face width of the worm gear

$$
\begin{aligned}
& \mathrm{b}^{\mathrm{g}} \leq 0.75 \cdot \mathrm{~d}_{\mathrm{a}}^{\mathrm{w}} \text { for } \mathrm{z}^{\mathrm{w}}=1 ; 2 \\
& \mathrm{~b}^{\mathrm{g}} \leq 0.67 \cdot \mathrm{~d}_{\mathrm{a}}^{\mathrm{w}} \text { for } \mathrm{z}^{\mathrm{w}}=4 . \\
& \mathrm{b}^{\mathrm{g}} \leq 0.75 \cdot 96=72 \mathrm{~mm}
\end{aligned}
$$

6.5.15. Determine the peripheral speed at the worm and the worm gear

$$
\begin{gathered}
\mathrm{V}^{\mathrm{w}}=\frac{\pi \cdot \mathrm{d}^{\mathrm{w}} \cdot \mathrm{n}^{\mathrm{w}}}{60}=\frac{\pi \cdot 80 \cdot 10^{-3} \cdot 441.75}{60}=1.85 \mathrm{~m} / \mathrm{sec} \\
\mathrm{~V}^{\mathrm{g}}=\frac{\pi \cdot \mathrm{d}^{\mathrm{g}} \cdot \mathrm{n}^{\mathrm{g}}}{60}=\frac{\pi \cdot 320 \cdot 10^{-3} \cdot 22.1}{60}=0.37 \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

6.5.16. Specify the slippage speed

$$
\mathrm{V}_{\mathrm{sl}}=\frac{\mathrm{V}^{\mathrm{w}}}{\cos \gamma}=\frac{1.85}{\cos 11.3^{\circ}}=1.89 \mathrm{~m} / \mathrm{sec}
$$

6.5.17. Determine the efficiency of the worm gearing

$$
\eta=\frac{\operatorname{tg} \gamma}{\operatorname{tg}\left(\gamma+\rho^{\prime}\right)}
$$

where ρ^{\prime} is the friction angle determined by means of table 6.8.
Table 6.8
Angle of friction ρ^{\prime}

Slippage speed $\mathrm{V}_{\mathrm{sl}}, \mathrm{m} / \mathrm{s}$	Angle of friction, ρ^{\prime}	Slippage speed $\mathrm{V}_{\mathrm{sl}}, \mathrm{m} / \mathrm{s}$	Angle of friction, ρ^{\prime}
0.1	$4^{\circ} 30^{\prime}-5^{\circ} 10^{\prime}$	2.5	$1^{\circ} 40^{\prime}-2^{\circ} 20^{\prime}$
0.5	$3^{\circ} 10^{\prime}-3^{\circ} 40^{\prime}$	3	$1^{\circ} 30^{\prime}-2^{\circ} 10^{\prime}$
1.0	$2^{\circ} 30^{\prime}-3^{\circ} 10^{\prime}$	4	$1^{\circ} 20^{\prime}-1^{\circ} 40^{\prime}$
1.5	$2^{\circ} 20^{\prime}-2^{\circ} 50^{\prime}$	7	$1^{\circ} 00^{\prime}-1^{\circ} 30^{\prime}$
2.0	$2^{\circ} 00^{\prime}-2^{\circ} 30^{\prime}$	10	$0^{\circ} 55^{\prime}-1^{\circ} 20^{\prime}$

Note. Greater values of ρ^{\prime} correspond to tinless worm gears.
In our case: $\rho^{\prime}=2^{\circ} 10^{\prime} ; \eta=\frac{\operatorname{tg} 11^{\circ} 18^{\prime}}{\operatorname{tg}\left(11^{\circ} 18^{\prime}+2^{\circ} 10^{\prime}\right)}=0.834$
6.5.18. Determine forces in the engagement of the worm gearing

- turning force at the worm F_{t}^{w} and axial force at the worm gear F_{a}^{g} :

$$
\mathrm{F}_{\mathrm{t}}^{\mathrm{w}}=\mathrm{F}_{\mathrm{a}}^{\mathrm{g}}=\frac{2 \cdot \mathrm{~T}^{\mathrm{w}}}{\mathrm{~d}^{\mathrm{w}}}=\frac{2 \cdot 105 \cdot 10^{3}}{80}=2625 \mathrm{~N} ;
$$

- axial force at the worm F_{a}^{w} and turning force at the worm gear F_{t}^{g} :

$$
\mathrm{F}_{\mathrm{a}}^{\mathrm{w}}=\mathrm{F}_{\mathrm{t}}^{\mathrm{g}}=\frac{2 \cdot \mathrm{~T}^{\mathrm{g}}}{\mathrm{~d}^{\mathrm{g}}}=\frac{2 \cdot 1750 \cdot 10^{3}}{320}=10937,5 \mathrm{~N} ;
$$

- radial force Fr :

$$
\mathrm{F}_{\mathrm{r}}=\mathrm{F}_{\mathrm{t}}^{\mathrm{g}} \cdot \operatorname{tg} \alpha_{\mathrm{w}}=10937.5 \cdot \operatorname{tg} 20^{\circ}=3980.9 \mathrm{~N} .
$$

6.5.19. Determine the maximum contact stress

$$
\sigma_{\mathrm{H}}=1.18 \cdot \sqrt{\frac{\mathrm{~T}^{\mathrm{g}} \cdot \mathrm{~K}_{\mathrm{H}} \cdot \mathrm{E}_{\mathrm{t}} \cdot \cos ^{2} \gamma}{\left(\mathrm{~d}^{\mathrm{g}}\right)^{2} \cdot \mathrm{~d}^{\mathrm{w}} \cdot \varepsilon_{\alpha} \cdot \xi \cdot \delta \cdot \sin 2 \alpha_{\mathrm{w}}}},
$$

where T^{g} is in $N \cdot \mathrm{~mm} ; \xi=0.75$ is the factor which is used to take into account the fact that contact of the worm and the worm gear occurs not along the whole arc of contact defined by the gear face angle $2 \delta(2 \delta \approx$ $\left.100^{\circ}=1.75 \mathrm{rad}\right) ; \varepsilon_{\alpha}$ is the contact ratio determined as

$$
\varepsilon_{\alpha}=\left(\sqrt{0.03 \cdot\left(\mathrm{z}^{\mathrm{g}}\right)^{2}+\mathrm{z}^{\mathrm{g}}+1}-0.17 \cdot \mathrm{z}^{\mathrm{g}}+2.9\right) / 2.95 ;
$$

$\mathrm{K}_{\mathrm{H}}=\mathrm{K}_{\mathrm{H} \beta} \cdot \mathrm{K}_{\mathrm{HV}}$ is the design load factor.
Table 6.9
Worm deformation factor Θ

Number of theads of the worm z	Worm deformation factor at q of					
1	8	10	12.5	14	16	20
2	57	108	157	176	225	248
3	51	76	125	152	171	197
4	47	70	110	134	148	170

$K_{\mathrm{H} \beta}=1+\left(\frac{\mathrm{z}^{\mathrm{g}}}{\Theta}\right)^{3} \cdot\left(1-\mathrm{x}_{1}\right)$ is the load concentration factor; Θ is the worm deformation factor (table 6.9); x_{1} is used to take into account load nature (for constant load $\mathrm{x}_{1}=0.6$); K_{HV} is the dynamic load factor determined by means of table 6.10 (for worm gearings we take 7 or 8 accuracy of manufacturing).

Table 6.10
Dynamic load factor $\mathbf{K}_{\mathbf{H V}}$

Degree of accuracy	Dynamic load factor K_{HV} at $\mathrm{V}_{\mathrm{Sl}}(\mathrm{m} / \mathrm{sec})$ of			
	up to 1.5	$1.5-3$	$3-7.5$	$7.5-12$
7	1.0	1.0	1.1	1.2
8	1.15	1.25	1.4	-
9	1.25	-	-	-

Obtained value of σ_{H} should correspond to the following condition

$$
\sigma_{H}=(0.8 \ldots .1 .1) \cdot\left[\sigma_{H}\right] .
$$

Otherwise it is necessary to change the center distance a_{w} and recalculate the gearing.

In our case: $\varepsilon_{\alpha}=\left(\sqrt{0.03 \cdot(40)^{2}+40+1}-0.17 \cdot 40+2.9\right) / 2.95=1,876 ;$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{HP}}=1+\left(\frac{40}{86}\right)^{3} \cdot(1-0,6)=1,04 ; \quad \mathrm{K}_{\mathrm{HV}}=1.25 ; \\
& \mathrm{K}_{\mathrm{H}}=1.04 \cdot 1.25=1.37 ; \quad \xi=0.75 ; \quad 2 \delta \approx 100^{\circ} ; \\
& \sigma_{\mathrm{H}}=1.18 \cdot \sqrt{\frac{1750 \cdot 10^{3} \cdot 1.3 \cdot 1.26 \cdot 10^{5} \cdot \cos ^{2} 11.3^{\circ}}{(320)^{2} \cdot 80 \cdot 1.876 \cdot 0.75 \cdot 1.75 / 2 \cdot \sin 2 \cdot 20^{\circ}}}=243.32 \mathrm{MPa} \\
& \quad \sigma_{H}=(0.8 \ldots 1.1) \cdot\left[\sigma_{H}\right]=(0.8 \ldots 1.1) \cdot 240=192 \ldots 264 \mathrm{MPa} .
\end{aligned}
$$

Strength condition is satisfied.
6.5.20. Determine the maximum bending stress

$$
\sigma_{\mathrm{b}}=0.7 \cdot \frac{\mathrm{~F}_{\mathrm{t}}^{\mathrm{g}} \cdot \mathrm{~K}_{\mathrm{b}} \cdot \mathrm{Y}_{\mathrm{b}}}{\mathrm{~b}^{\mathrm{g}} \cdot \mathrm{~m}_{\mathrm{n}}} \leq\left[\sigma_{\mathrm{b}}\right]
$$

where K_{b} is the design load factor $\left(\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{H}}\right) ; \mathrm{m}_{\mathrm{n}}=\mathrm{m} \cdot \cos \gamma$ is the module at the normal section; Y_{b} is the tooth form factor determined by means of table 6.11 depending on the number of teeth of the equivalent straight spur gear

$$
\mathrm{z}_{\mathrm{v}}^{\mathrm{g}}=\frac{\mathrm{z}^{\mathrm{g}}}{\cos ^{3} \gamma}
$$

Table 6.11

Tooth form factor $\boldsymbol{Y}_{\boldsymbol{b}}$

z_{v}	28	30	32	35	40	45	50	60	80	100	150	300
Y_{b}	1.8	1.76	1.71	1.61	1.55	1.48	1.45	1.4	1.34	1.3	1.27	1.24

In our case: $m_{n}=8 \cdot \cos 11.3^{0}=7.846 ; K_{b}=1.297$;

$$
z_{v}^{g}=\frac{40}{\cos ^{3} 11.3^{\circ}}=42,397 \Rightarrow 42
$$

From table 6.11 tooth form factor $\mathrm{Y}_{\mathrm{b}}=1.52$;

$$
\sigma_{\mathrm{b}}=0.7 \cdot \frac{10937.5 \cdot 1.297 \cdot 1.52}{72 \cdot 7.846}=26.72 \mathrm{MPa}<\left[\sigma_{\mathrm{b}}\right]
$$

Strength condition is satisfied.
6.6. Determine the temperature of the oil containing in the casing

$$
\mathrm{t}_{\text {oil }}=\mathrm{t}_{\text {air }}+\frac{\mathrm{P}^{\mathrm{w}} \cdot(1-\eta)}{\mathrm{K}_{\mathrm{t}} \cdot \mathrm{~A}} \leq\left[\mathrm{t}_{\text {oil }}\right],
$$

where $\mathrm{t}_{\text {air }}=20^{\circ} \mathrm{C}$ is the temperature of the air; P^{w} is the power at the worm in $W ; \eta$ is the efficiency of the worm gearing; K_{t} is the heat transfer factor (for cast iron casings $\mathrm{K}_{\mathrm{t}}=15 \ldots 18 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{C}^{\circ}$); A is the area of the cooling surface determined approximately depending upon the center distance a_{w} by means of table 6.12; [$\mathrm{t}_{\mathrm{oil}}$] is the allowable temperature of the oil (for industrial oils $\left[\mathrm{t}_{\text {oii }}\right]=80 \ldots 95^{\circ} \mathrm{C}$).

Table 6.12

Cooling surface area \mathbf{A} of the worm gear speed reducer

$a_{\mathrm{w}}, \mathrm{mm}$	80	100	125	140	160	180	200	225	250	280
$\mathrm{~A}, \mathrm{~m}^{2}$	0.19	0.24	0.36	0.43	0.54	0.67	0.8	1.0	1.2	1.4

In our case: $P^{w}=\frac{T^{g} \cdot \omega^{g}}{\eta}=\frac{1750 \cdot 1.92}{0.834}=4.03 \cdot 10^{3} \mathrm{~W}$;
Assume that $\mathrm{K}_{\mathrm{t}}=17$; the area of cooling surface $A=0.8 \mathrm{~m}^{2}$ (table 6.12)

Thus $\mathrm{t}_{\text {oil }}=20+\frac{4.03 \cdot 10^{3} \cdot(1-0.834)}{17 \cdot 0.8}=69.19^{\circ} \mathrm{C}<\left[\mathrm{t}_{\text {oil }}\right]$.
Condition is satisfied.

7. ANALYSIS OF THE FLAT BELT DRIVE

Let us carry out the analysis of the flat belt drive if input power $P_{1}=6.6 \mathrm{~kW}$; torque at the driving pulley $T_{1}=42 \mathrm{~N} \cdot \mathrm{~m}$; velocity ratio of the belt drive $u_{b d}=2.15$; rotational speed of the driving pulley $n_{1}=1555 \mathrm{rpm}$.
7.1. Determine the diameter of the smaller(driving) pulley

$$
d_{1} \approx 6 \cdot \sqrt[3]{T_{1}}=6 \cdot \sqrt[3]{42 \cdot 10^{3}}=208.6 \mathrm{~mm},
$$

where T_{1} is in $\mathrm{N} \cdot \mathrm{mm}$.
Round off the diameter to the nearest standard value according to the following series: $63,71,8090,100,112,125,140,160,180,200$, $224,250,280,315,355,400,450,500,560,630,710,800,900,1000$, 1120.

Assume $d_{1}=224 \mathrm{~mm}$.
7.2. Determine the diameter of the larger pulley taking into account a relative speed loss $\varepsilon=0.01 \%$

$$
d_{2}=d_{1} \cdot u_{b d} \cdot(1-\varepsilon)=224 \cdot 2.15 \cdot(1-0.0001)=481.55 \mathrm{~mm} .
$$

and round off obtained magnitude according to the series of standard values.

Assume $d_{2}=500 \mathrm{~mm}$.
7.3. Specify the velocity ratio of the belt drive

$$
u_{b d}=\frac{d_{2}}{d_{1} \cdot(1-\varepsilon)}=\frac{500}{224 \cdot(1-0.0001)}=2.232 .
$$

Error should be $\varepsilon \leq 4 \%$.

$$
\varepsilon=\left|\frac{2.232-2.15}{2.15}\right| \cdot 100 \%=3.6 \%<4 \%
$$

7.4. Determine the center distance

$$
a=2 \cdot\left(d_{1}+d_{2}\right)=2 \cdot(224+500)=1448 \mathrm{~mm} .
$$

7.5. Compute the contact angle

$$
\alpha_{1}=180-60 \cdot \frac{d_{2}-d_{1}}{a}=180-60 \cdot \frac{500-224}{1448}=168.56^{\circ} .
$$

7.6. Determine the belt length

$$
L=2 \cdot a+0.5 \cdot \pi \cdot\left(d_{1}+d_{2}\right)+\frac{\left(d_{2}-d_{1}\right)^{2}}{4 \cdot a}=2 \cdot 1448+0.5 \cdot 3.14 \cdot 724+\frac{276^{2}}{4 \cdot 1448}=4032.7 \mathrm{~mm} .
$$

7.7. Determine the belt speed

$$
V=\frac{\pi \cdot d_{1} \cdot n_{1}}{60}=\frac{3.14 \cdot 0.224 \cdot 1455}{60}=17.056 \mathrm{~m} / \mathrm{sec} .
$$

7.8. Determine the turning (tangential) force

$$
F_{t}>\frac{P_{1}}{V}=\frac{6.6}{17.056}=388.06 \mathrm{~N} .
$$

7.9. Choose the rubberized fabric belt according to table 7.1.

In our case we take the rubberized fabric belt Б 800 with the number of plies $z=3$ and thickness of each $\delta_{0}=1.5 \mathrm{~mm}$ (including the rubber interlayers); the maximum allowable load to the ply $p_{0}=3 \mathrm{~N} / \mathrm{mm}$ of width.

Table 7.1
Rubberized fabric belts (GOST 23831-79)

	Fabric plies			
	Б 800	БКНЛ	TA-150	ТК-20
Nominal strength in N per mm of width	55	55	150	200
Maximum allowable load p_{0} to a ply in N per mm of width	3	3	10	13
Design thickness δ_{0} of fabric plies with rubber interlayers, mm	1.5	1.2	1.2	1.3
Number of plies if belt width b, mm 20-71	3-5	3-5	--	--
80-112	3-6	3-6	--	--
125-560	3-6	3-6	3-4	3-4

Check the requirement

$$
\delta=\delta_{0} \cdot z \leq 0.025 \cdot d_{1} ;
$$

$1.5 \cdot 3 \leq 0.025 \cdot 224 ; \quad 4.5 \leq 5.6 \mathrm{~mm}$. Condition is satisfied.
7.10. Determine contact angle factor C_{α}

$$
C_{\alpha}=1-0.003 \cdot\left(180-\alpha_{1}\right)=1-0.003 \cdot(180-168.56)=0.966 .
$$

7.11. Determine factor C_{v}, which is used to take into account the effect of the belt speed

$$
C_{v}=1.04-0.0004 \cdot V^{2}=1.04-0.0004 \cdot 17.056^{2}=0,9236 .
$$

7.12. Determine service factor C_{s} :

- $C_{s}=1$ for steady operation (belt conveyers, lathes and grinding machines);
- $C_{s}=0.9$ in the case of moderate vibration (chain conveyers and milling machines);
- $C_{s}=0.8$ in the case of considerable vibration (flight conveyers, planing machines).

The value of C_{s} is to be reduced by 0.1 in two-shift operation and by 0.2 in three-shift operation.

Let us assume that we have moderate vibration. That is why $C_{s}=0.9$.
7.13. Determine factor C_{Θ}, which is used to take into account the belt position in the space.

- $C_{\Theta}=1$ for horizontal drives and inclined at up to 60°;
- $C_{\Theta}=0.9$ for drives inclined at over 60° to 80°;
- $C_{\Theta}=0.8$ for drives inclined at over 80° to 90°.

In our case we assume $C_{\Theta}=1$.
7.14. Determine the allowable load to 1 mm of ply width, N / mm

$$
[p]=p_{0} \cdot C_{\alpha} \cdot C_{V} \cdot C_{s} \cdot C_{\Theta}=3 \cdot 0.966 \cdot 0.9236 \cdot 0.9 \cdot 1=2.409 \mathrm{~N} / \mathrm{mm} .
$$

7.15. Find the belt width

$$
b \geq \frac{F_{t}}{z \cdot[p]}=\frac{388.06}{3 \cdot 3}=43.12 \mathrm{~mm}
$$

and round off obtained magnitude according to series of standard values: $20 ; 25 ; 32 ; 40 ; 50 ; 63 ; 71 ; 80 ; 90 ; 100 ; 112 ; 125 ; 140 ; 160 ; 180$; 200 and so on. Assume $b=50 \mathrm{~mm}$.
7.16. Determine the pulley width B according to table 7.2.

Table 7.2

Determining the pulley width \boldsymbol{B}

Belt width $b, \mathrm{~mm}$	20	25	32	40	50	63	71	80	90	100	112	125	140	160
Pulley width $B, \mathrm{~mm}$	25	32	40	50	63	71	80	90	100	112	125	140	160	180

In our case we assume $B=63 \mathrm{~mm}$.
7.17. Determine the pretension in the belt

$$
F_{0}=\sigma_{0} \cdot b \cdot \delta=1.8 \cdot 50 \cdot 4.5=405 \mathrm{~N},
$$

where $\sigma_{0}=1.8 \mathrm{MPa}$ - tensile prestress.
7.18. Determine tension of the belt
on the tight side $F_{1}=F_{0}+0.5 \cdot F_{t}=405+0.5 \cdot 388.06=599.03 \mathrm{~N}$, on the slack side $F_{2}=F_{0}-0.5 \cdot F_{t}=405-0.5 \cdot 388.06=270.97 \mathrm{~N}$
7.19. Calculate the force acting on the shaft and bearings

$$
F_{b}=3 \cdot F_{0} \cdot \sin \frac{\alpha_{1}}{2}=3 \cdot 405 \cdot \sin \frac{168.56}{2}=1208.9 \mathrm{~N} .
$$

7.20. Determine tensile stress

$$
\sigma_{1}=\frac{F_{1}}{b \cdot \delta}=\frac{599.03}{50 \cdot 4.5}=2.662 \mathrm{MPa} .
$$

7.21. Determine bending stress

$$
\sigma_{b}=E \cdot \frac{\delta}{d_{1}}=100 \cdot \frac{4.5}{224}=2.009 \mathrm{MPa},
$$

where E is modulus of elasticity of the belt material. For rubberized fabric belts $E=100 \div 200 \mathrm{MPa}$.
7.22. Determine tensile stress due to action of centrifugal force F_{c}

$$
\sigma_{c}=\rho \cdot V^{2} \cdot 10^{-6}=1100 \cdot 17.056^{2} \cdot 10^{-6}=0.32 \mathrm{MPa},
$$

where ρ is density of belts. For rubber-impregnated flat belts $\rho=1100 \div$ $1200 \mathrm{~kg} / \mathrm{m}^{3}$.
7.23. Determine the maximum stress

$$
\sigma_{\max }=\sigma_{1}+\sigma_{b}+\sigma_{c} \leq[\sigma] .
$$

For rubberized fabric belts [σ] $=7 \mathrm{MPa}$.

$$
\sigma_{\max }=\sigma_{1}+\sigma_{b}+\sigma_{c}=2.662+2.009+0.32=4.991 \mathrm{MPa}<[\sigma]=7 \mathrm{MPa} .
$$

Condition is satisfied.
7.24. Determine the service life of the belt

$$
H_{0}=\frac{\sigma_{-1}^{6} \cdot 10^{7} \cdot C_{i} \cdot C_{l}}{\sigma_{\max }^{6} \cdot 2 \cdot 3600 \cdot \lambda} \geq 2000 \text { hours },
$$

where σ_{-1} is limit of endurance (for rubberized belts $\sigma_{-1}=7 \mathrm{MPa}$); $\lambda=\frac{V}{L}=\frac{17.056}{4032.7}=4.229$ is the number of belt runs per second; $C_{i} \approx 1.5 \cdot \sqrt[3]{u_{b d}}-0.5=1.5 \cdot \sqrt[3]{2.232}-0.5=1.44$ takes into account the velocity ratio; C_{1} is used to take into account the nature of the load (for constant load $C_{1}=1$; for variable load $C_{1}=2$). We assume that load is variable.

$$
H_{0}=\frac{\sigma_{-1}^{6} \cdot 10^{7} \cdot C_{i} \cdot C_{l}}{\sigma_{\max }^{6} \cdot 2 \cdot 3600 \cdot \lambda}=\frac{7^{6} \cdot 10^{7} \cdot 1.44 \cdot 2}{4.991^{6} \cdot 2 \cdot 3600 \cdot 4.229}=5568.2>2000 \text { hours . }
$$

Condition is satisfied.

8. ANALYSIS OF THE CHAIN DRIVE

Let us carry out the analysis of the chain drive for strength if torque at the driving sprocket $T_{1}=464.5 \mathrm{~N} \cdot \mathrm{~m}$; torque at the driven sprocket $T_{2}=1105 \mathrm{~N} \cdot \mathrm{~m}$; rotational speed of the driving sprocket $n_{1}=$ 122.25 rpm , rotational speed of the driven sprocket $n_{2}=48.9 \mathrm{rpm}$; velocity ratio of the chain drive $u_{c d}=2.5$; input power of the chain drive $P_{1}=5.947 \mathrm{~kW}$.
8.1. Determine the number of teeth of the driving sprocket

$$
\mathrm{z}_{1}=31-2 \cdot \mathrm{u}_{\mathrm{cd}} \geq 17
$$

and round off obtained magnitude to the nearest integer numeral.
In our case $\mathrm{z}_{1}=31-2 \cdot 2.5=26$
Assume $\mathrm{z}_{1}=26>17$.
8.2. Determine the number of teeth of the driven sprocket

$$
\mathrm{z}_{2}=\mathrm{z}_{1} \cdot \mathrm{u}_{\mathrm{cd}} \leq 120
$$

and round off to the nearest integer numeral

$$
\mathrm{z}_{2}=26 \cdot 2.5=65
$$

Assume $\mathrm{Z}_{2}=65<120$.
8.3. Specify the velocity ratio and determine the error

$$
\mathrm{u}_{\mathrm{cd}}=\frac{\mathrm{z}_{2}}{\mathrm{z}_{1}}=\frac{65}{26}=2.5 .
$$

The error should be $\varepsilon \leq 4 \%$.
In our case $\varepsilon=0 \%$.
8.4. Determine the service factor K_{s}

$$
\mathrm{K}_{\mathrm{s}}=\mathrm{K} \cdot \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{~K}_{\mathrm{lub}} \cdot \mathrm{~K}_{\gamma} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{~K}_{\mathrm{ten}},
$$

where K is used to take into account the load nature and taken as 1 in quiet operation and as 1.2 to 1.5 in the case of shocks and impacts; K_{a} is the center distance factor assumed as $K_{a}=1$ for a $=30 \cdot \mathrm{t}$ to $50 \cdot \mathrm{t}$ and $K_{a}=0.8$ for $\mathrm{a}=60 \cdot \mathrm{t}$ to $80 \cdot \mathrm{t}$; $K_{\text {lub }}$ is lubrication factor ($K_{l u b}=0.8$ for immersion lubrication, $K_{l u b}=1$ for drop-feed lubrication and $K_{l u b}=1.5$ for periodic greasing); K_{γ} accounts for the angle that the shaft centre line makes with the horizontal ($\mathrm{K}_{\gamma}=1$ for $\gamma \leq 60^{\circ}$ and $\mathrm{K}_{\gamma}=1.25$ for $\gamma>60^{\circ}$); K_{d} is a duty factor ($\mathrm{K}_{\mathrm{d}}=1$ for one-shift operation, $\mathrm{K}_{\mathrm{d}}=1.25$ for two-shift operation and $\mathrm{K}_{\mathrm{d}}=1.5$ for three-shift operation); $\mathrm{K}_{\text {ten }}$ accounts for the
manner of tension control $\left(\mathrm{K}_{\text {ten }}=1\right.$ for drives with chain tighteners, $\mathrm{K}_{\text {ten }}=1.15$ for drives with adjustable bases, and $\mathrm{K}_{\text {ten }}=1.25$ for fixed-base drives).

In our case we have small shocks and impacts ($K=1.2$); the center distance is $\mathrm{a}=40 \cdot \mathrm{t}\left(K_{a}=1\right)$; periodic greasing ($K_{\text {lub }}=1.5$); $\gamma \leq 60^{\circ}$ and ($K_{\gamma}=1$); one-shift operation ($K_{d}=1$); fixed base drive ($K_{\text {ten }}=1.25$).

$$
\mathrm{K}_{\mathrm{s}}=1.2 \cdot 1 \cdot 1.5 \cdot 1 \cdot 1 \cdot 1.25=2.25
$$

8.5. Approximately determine the allowable mean pressure on the hinges by means of table 8.1 depending on the rotational speed of the smaller sprocket.

In our case for rotational speed $n_{1}=122.25 \mathrm{rpm},[p] \approx 29 \mathrm{MPa}$.
Table 8.1
Allowable mean pressure [p], in MPa

$\mathrm{n}_{1}, \mathrm{rpm}$	Chain pitch, mm							
	12.7	15.875	19.0 5	25.4	31.7 5	38.1	44.4 5	50.8
	46	43	39	36	34	31	29	27
100	37	34	31	29	27	25	23	22
200	29	27	25	23	22	19	18	17
300	26	24	22	20	19	17	16	15
500	22	20	18	17	16	14	13	12
750	19	17	16	15	14	13	-	-
1000	17	16	14	13	13	-	-	-
1250	16	15	13	12	-	-	-	-

8.6. Determine the chain pitch

$$
\mathrm{t} \geq 2.8 \cdot \sqrt[3]{\frac{\mathrm{T}_{1} \cdot \mathrm{~K}_{\mathrm{s}}}{\mathrm{z}_{1} \cdot[\mathrm{p}]}}=2.8 \cdot \sqrt[3]{\frac{464.5 \cdot 10^{3} \cdot 2.25}{26 \cdot 29}}=31.22 \mathrm{~mm}
$$

where T_{1} is in $N \cdot m m$.
Round off the pitch to the nearest standard value according to the table 8.1. In our case assume $t=31.75 \mathrm{~mm}$.
8.7. Specify the allowable mean pressure according to table 8.1 by interpolation $[\mathrm{p}]$. On multiplying it by
$\mathrm{K}_{\mathrm{p}}=1+0.01 \cdot\left(\mathrm{z}_{1}-17\right)=1+0.01 \cdot(26-17)=1.09$ we get finite magnitude of $[\mathrm{p}]=29 \cdot 1.09=31.61 \mathrm{MPa}$
8.8. Determine the effective mean pressure.

For that we

- find chain speed

$$
\mathrm{V}=\frac{\mathrm{z}_{1} \cdot \mathrm{t} \cdot \mathrm{n}_{1}}{60 \cdot 10^{3}}=\frac{26 \cdot 31.75 \cdot 122.25}{60 \cdot 10^{3}}=1.68 \mathrm{~m} / \mathrm{sec} ;
$$

- find turning (tangential) force

$$
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{P}_{1}}{\mathrm{~V}}=\frac{5.947 \cdot 10^{3}}{1.68}=3539.9 \mathrm{~N} ;
$$

- look up the projected hinge area S_{h} using table 8.2. In our case $\mathrm{S}_{\mathrm{h}}=262 \mathrm{~mm}^{2}$

Then the effective mean pressure

$$
\mathrm{p}=\frac{\mathrm{F}_{\mathrm{t}} \cdot \mathrm{~K}_{\mathrm{s}}}{\mathrm{~S}_{\mathrm{h}}} \leq[\mathrm{p}] .
$$

If this inequality is not right it is necessary to increase the pitch t .

$$
\mathrm{p}=\frac{3539.9 \cdot 2.25}{262}=30.4 \mathrm{MPa}<[\mathrm{p}] .
$$

In our case the inequality is right.
8.9. Determine the number of links in the chain

$$
\mathrm{L}_{\mathrm{t}}=2 \cdot \mathrm{a}_{\mathrm{t}}+0.5 \cdot \mathrm{z}_{\Sigma}+\frac{\Delta^{2}}{\mathrm{a}_{\mathrm{t}}}
$$

where $L_{t}=\frac{L}{t}$ is the chain length in pitches; $a_{t}=\frac{a}{t} ; a \approx(30 \ldots 50) \cdot t ; z_{\Sigma}$ $=\mathrm{z}_{1}+\mathrm{z}_{2} ; \Delta=\frac{\mathrm{Z}_{2}-\mathrm{Z}_{1}}{2 \cdot \pi}$. Round off obtained magnitude to even integer numeral.

In our case: $a_{\mathrm{t}}=45 ; \mathrm{z}_{\Sigma}=26+65=91 ; \Delta=\frac{62-26}{2 \cdot \pi}=6.21$;

$$
\mathrm{L}_{\mathrm{t}}=2 \cdot 45+0.5 \cdot 91+\frac{6.21^{2}}{45}=136.36 \Rightarrow 136
$$

8.10. Specify the centre distance

$$
\begin{aligned}
& a=0.25 \cdot t \cdot\left(L_{t}-0.5 \cdot z_{\Sigma}+\sqrt{\left(L_{t}-0.5 \cdot z_{\Sigma}\right)^{2}-8 \cdot \Delta^{2}}\right)= \\
& =0.25 \cdot 31.75 \cdot\left(136-0.5 \cdot 91+\sqrt{(136-0.5 \cdot 91)^{2}-8 \cdot 6.21^{2}}\right)=1423.03 \mathrm{~mm}
\end{aligned}
$$

The slack side of the chain should have a slight sag $\mathrm{f} \approx 0.01 \cdot \mathrm{a}$, for which purpose the design centre distance is reduced by 0.2 to 0.4%.

Assume that $\mathrm{a}=1418.76 \mathrm{~mm}$.
8.11. Determine the pitch diameters

- of the driving sprocket $\quad d_{p 1}=\frac{\mathrm{t}}{\sin \left(\frac{180^{\circ}}{\mathrm{Z}_{1}}\right)}=\frac{31.75}{\sin \left(\frac{180}{26}\right)}=263.41 \mathrm{~mm}$;
- of the driven sprocket $\quad \mathrm{d}_{\mathrm{p} 2}=\frac{\mathrm{t}}{\sin \left(\frac{180^{\circ}}{\mathrm{z}_{2}}\right)}=\frac{31.75}{\sin \left(\frac{180}{65}\right)}=657.17 \mathrm{~mm}$.
8.12. Determine the addendum diameters

$$
\begin{aligned}
& D_{e_{1}}=t \cdot\left(\operatorname{ctg}\left(\frac{180}{z_{1}}\right)+0.7\right)-0.31 \cdot d_{1}= \\
& =31.75 \cdot\left(\operatorname{ctg}\left(\frac{180}{26}\right)+0.7\right)-0.31 \cdot 19.05=277.81 \mathrm{~mm} \\
& D_{e_{2}}=t \cdot\left(\operatorname{ctg}\left(\frac{180}{z_{2}}\right)+0.7\right)-0.31 \cdot d_{1}= \\
& =31.75 \cdot\left(\operatorname{ctg}\left(\frac{180}{65}\right)+0.7\right)-0.31 \cdot 19.05=672.77 \mathrm{~mm}
\end{aligned}
$$

where d_{1} is the roller diameter (table 8.2).

8.13. Determine the dedendum diameter

$\mathrm{D}_{\mathrm{it}_{1}}=\mathrm{d}_{\mathrm{p}_{1}}-\left(\mathrm{d}_{1}+0.175 \cdot \sqrt{\mathrm{~d}_{\mathrm{p}_{1}}}\right)=263.41-(19.05+0.175 \cdot \sqrt{263.41})=241.52 \mathrm{~mm}$,
$D_{i_{2}}=d_{p_{2}}-\left(d_{1}+0.175 \cdot \sqrt{d_{p_{2}}}\right)=657.17-(19.05+0.175 \cdot \sqrt{657.17})=633.63 \mathrm{~mm}$.
8.14. Determine the web thickness of sprocket

$$
\mathrm{C}=0.93 \cdot \mathrm{~B}_{\mathrm{bush}}=0.93 \cdot 19.05=17.72 \mathrm{~mm}
$$

where $B_{\text {bush }}$ is determined according to table 8.2.

Leading particulars of Soviet-made roller chains PR (GOST 13568-75)

Pitch t	$B_{\text {bush }}$, mm	Pin diameter d	Roller d_{1}	h, max	b, max Breaking	Mass per load $\mathrm{F}_{\text {b }}$, kN	Projected meter run q, kg	hinge area S_{h}, mm^{2}
9.525	5.72	3.28	6.35	8.5	17	9.1	0.45	28.1
12.7	7.75	4.45	8.51	11.8	21	18.2	0.75	39.6
15.875	9.65	5.08	10.16	14.8	24	22.7	1.0	54.8
19.05	12.7	5.96	11.91	18.2	33	31.8	1.9	105.8
25.4	15.88	7.95	15.88	24.2	39	60.0	2.6	179.7
31.75	19.05	9.55	19.05	30.2	46	88.5	3.8	262
38.1	25.4	11.12	22.23	36.2	58	127.0	5.5	394
44.45	25.4	12.72	25.4	42.4	62	172.4	7.5	473
50.8	31.75	14.29	28.58	48.3	72	226.8	9.7	646

8.15. Determine forces acting to the links

- turning force $\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{P}_{1}}{\mathrm{~V}}=\frac{5.947 \cdot 10^{3}}{1.68}=3539.88 \mathrm{~N}$;
- centrifugal force $\mathrm{F}_{\mathrm{c}}=\mathrm{q} \cdot \mathrm{V}^{2}=3.8 \cdot 1.68^{2}=10.73 \mathrm{~N}$, where q is the mass per meter run of the chain in kg (table 8.2);
- load due to chain deflection $\mathrm{F}_{\mathrm{f}}=9.81 \cdot \mathrm{~K}_{\mathrm{f}} \cdot \mathrm{q} \cdot \mathrm{a}$, where $\mathrm{K}_{\mathrm{f}}=1$ for vertical centre line arrangements, $\mathrm{K}_{\mathrm{f}}=6$ for horizontal centre line arrangements and $\mathrm{K}_{\mathrm{f}}=1.5$ for the centre line arrangement on the angle 45°.

In our case centre line is arranged on the angle 45°, thus $\mathrm{K}_{\mathrm{f}}=1.5$

$$
\mathrm{F}_{\mathrm{f}}=9.81 \cdot 1.5 \cdot 3.8 \cdot 1.423=79.57 \mathrm{~N} .
$$

8.16. Determine the design load on the shaft

$$
\mathrm{F}_{\text {shaft }}=\mathrm{F}_{\mathrm{t}}+2 \cdot \mathrm{~F}_{\mathrm{f}}=3539.88+2 \cdot 79.57=3699.02 \mathrm{~N} .
$$

8.17. Determine the safety factor

$$
S=\frac{F_{b r}}{F_{t} \cdot K+F_{c}+F_{f}} \geq[S],
$$

where F_{br} is the breaking load in $\mathrm{N}($ table 8.2); K is the dynamic factor taking into account the load nature (p.8.4); [S] is standard safety factor (table 8.3).

Table 8.3
Standard factors of safety [S] for PR Roller chains

$\mathrm{n} 1, \mathrm{rpm}$	Chain pitch t, mm								
	12.7	15.875	19.05	25.4	31.75	38.1	44.45	50.8	
50	7.1	7.2	7.2	7.3	7.4	7.5	7.6	7.6	
100	7.3	7.4	7.5	7.6	7.8	8.0	8.1	8.3	
300	7.9	8.2	8.4	8.9	9.4	9.8	10.3	10.8	
500	8.5	8.9	9.4	10.2	11.0	11.8	12.5	-	
750	9.3	10.0	10.7	12.0	13.0	14.0	-	-	
1000	10.0	10.8	11.7	13.3	15.0	-	-	-	
1250	10.6	11.6	12.7	14.5	-	-	-	-	

In our case:
$\mathrm{F}_{\mathrm{br}}=88.5 \mathrm{kN}, \mathrm{K}=1.2,[\mathrm{~S}]=7.9$

$$
\mathrm{S}=\frac{88.5 \cdot 10^{3}}{3539.88 \cdot 1.2+10.73+79.57}=20.4>[\mathrm{S}] .
$$

Condition is satisfied.

9. ANALYSIS OF SHAFTS

Let us design the shafts construction and carry out strength analysis of the output shaft if torque at the output shaft T is equal to $400 \mathrm{~N} \cdot \mathrm{~m}$.
9.1 Determine the minimum diameter of speed reducer shafts

$$
d_{\min }=\sqrt[3]{\frac{T}{0.2 \cdot[\tau]}},
$$

where T is the torque at the shaft in $\mathrm{N} \cdot \mathrm{mm} ;[\tau]$ is the allowable tangential stress due to torsion in MPa.

In order to compensate action of bending stresses the allowable tangential stress due to torsion is assumed as down rated. For steels $[\tau]=15 \ldots 20 \mathrm{MPa}$.

Obtained magnitude of $d_{\text {min }}$ is rounded off to the greater side according to the following standard series: $20,21,22,23,24,25,26$, $28,30,32,34,36,38,40,42,45,48,50,52,55,58,60,65,70,75,80$, $85,90,95,100,105,110,115,120,130,140,150$.

If the speed reducer shaft is joined with the electrical motor shaft the following condition should be carried out

$$
d_{\text {motor }}-d_{\min } \leq 10 \mathrm{~mm},
$$

where $d_{\text {motor }}$ is the diameter of the electrical motor shaft (table 9.1).
9.2. Design the construction of speed reducer shafts.

In general purpose speed reducers stepped shafts with solid crosssection are used as a rule.

For the input shaft $d_{\text {min }}$ is the diameter of the shaft cantilever portion where such elements as a half coupling, a pulley, a sprocket or a pinion may be mounted (Fig.9.1). In order to fix above mentioned elements in the axial direction we use a shoulder which height t_{1} may be ranged from 2 to 5 mm depending on the shaft diameter. Recommended values of t_{1} are given in table 9.2.

The next shaft portion of diameter $d_{2}=d_{1}+2 \cdot t_{1}$ (the value of d_{2} must correspond to standard series) is for installing a seal. Seals are used to prevent bearing assemblies from finding dust and dirt and to remain lubrication of bearings. For general purpose speed reducer lip seals are used more frequently.

In order to reduce friction at the point of contact of the seal with the shaft corresponding portion should be polished. For this purpose this portion is additionally surface hardened to hardness $45-50 \mathrm{HRC}$.

Table 9.1
Overall and mounting dimensions of series 4A three-phase induction motors (GOST 19523-81)

Type designa tion	Number of poles	Overall dimensions			Mounting dimensions						
		L	H	D	d	h_{1}	l_{1}	l_{2}	l_{3}	b	d_{1}
4A90L	2;4;6;8	350	243	208	24	90	50	56	125	140	10
4A100S		365	265	235	28	100	60	63	132	160	12
4A100L		395	280						140		
4A112M		452	310	260	32	112	80	70	140	190	12
4A132S		480	350	302	38	132	80	89	178	216	12
4A132M		530									
4A160S	2	624	430	358	42	160	110	121	178	254	15
	4;6;8				48						
4A160M	2	667			42				210		
	4;6;8				48				210		

Fig.9.1. Input shaft

Recommended values of t_{1} and t_{2}

$d, \mathrm{~mm}$	$20-50$	$55-120$
$t_{1}, \mathrm{~mm}$	$2 ; 2.5$	5
$t_{2}, \mathrm{~mm}$	$1 ; 1.5$	2.5

The next portion of the shaft is for mounting a bearing. The diameter of this portion is determined as

$$
d_{3}=d_{2}+2 \cdot t_{2}
$$

where t_{2} is the height of the shoulder that is used for differentiation of shaft surfaces by hardness and roughness. Recommended values of t_{2} are given in table 9.2. It is necessary to note that t_{2} should be chosen to obtain shaft diameter d_{3} ended by 0 or 5 . It is explained by the fact that bearings are standard elements with the inner ring diameter ended by 0 or 5 .

Bearings must be fixed in the axial direction. That is why the diameter of the next portion of the shaft, where a pinion or gear is installed, is determined as

$$
d_{4}=d_{3}+2 \cdot t_{1} .
$$

Obtained value of d_{4} should correspond to standard series.
A pinion may be made either as solid with the shaft or as an individual part. In order to increase shaft strength and rigidity it is recommended to use pinion shafts.

The last portion of the shaft is for installing the second bearing. The diameter of this portion should be the same as for the first bearing. In our case it is d_{3}.

The output shaft has the same design as the input one. But in contrast to the latter a gear is mounted on the shaft portion of diameter d_{4} (Fig.9.2). In order to fix the gear in the axial direction we should provide for the shoulder of height t_{1}. That is why the diameter of the next portion of the shaft is $d_{5}=d_{4}+2 \cdot t_{1}$.

For our case we should design the output shaft where a helical spur gear is mounted. We will have the following diameters:

$$
d_{\min }=\sqrt[3]{\frac{400 \cdot 10^{3}}{0.2 \cdot[20]}}=46.4 \mathrm{~mm} .
$$

Fig.9.2. Output shaft
Let us assume $d_{\text {min }}=d_{1}=50 \mathrm{~mm}$ (according to the standard series);
$d_{2}=d_{1}+2 \cdot t_{1}=50+2 \cdot 2.5=55 \mathrm{~mm}$;
$d_{3}=d_{2}+2 \cdot t_{2}=55+2 \cdot 1.5=58 \mathrm{~mm}$ (should be chosen to obtain
shaft diameter d_{3} ended by 0 or 5);

$$
\begin{aligned}
& d_{4}=d_{3}+2 \cdot t_{1}=60+2 \cdot 5=70 \mathrm{~mm} \\
& d_{5}=\mathrm{d}_{4}+2 \cdot t_{1}=70+2 \cdot 5=80 \mathrm{~mm} .
\end{aligned}
$$

For bevel pinion shafts (Fig.9.3) and worm shafts (Fig.9.4) we should introduce the additional portion of diameter $d_{2}{ }^{\prime}$ between portions of diameters d_{2} and d_{3}. This portion is necessary to install a slotted nut for adjusting clearances in the bearing. Diameter $d_{2}{ }^{\prime}$ should be chosen according to table 12.1.

Fig.9.3. Bevel pinion shaft

Fig.9.4. Worm shaft
9.3. Determine sizes of elements that are mounted on the shaft.

9.3.1. Pinion.

Face width of the pinion $b^{p}=b^{g}+5$.
9.3.2. Spur and bevel gears (Fig.9.5, a, b)

- thickness of the rim $\delta=(3 \ldots 4) \cdot \mathrm{m}$;
- thickness of the web $C=(0.2 \ldots 0.3) \cdot b^{g}$;
- diameter of the hub $d_{\text {hub }}=(1.5 \ldots 1.7) \cdot d_{\text {shaft }}$;
- length of the hub $l_{\text {hub }}=(1.2 \ldots 1.5) \cdot d_{\text {shaff }}$;
- diameter of the hole $d_{\text {hole }}=\frac{D_{0}-d_{\text {hub }}}{4}$;
- diameter of the hole centre line $D_{c}=\frac{D_{0}+d_{\text {hub }}}{2}$;
- fillet radii $R \geq 6 \mathrm{~mm}$ and angle $\gamma \geq 7^{\circ}$.

Fig.9.5. Spur gear (a), bevel gear (b), worm gear (c)
9.3.3. Worm gear (Fig 9.5, c).

- thickness of the bronze ring $\delta_{1}=2 \cdot \mathrm{~m}$;
- thickness of the steel rim $\quad \delta_{2}=2 \cdot m$;
- thickness of the web $C=(0.2 \ldots 0.3) \cdot b^{g}$;
- diameter of the hub $d_{h u b}=(1.5 \ldots 1.7) \cdot d_{\text {shaft }}$;
- length of the hub $l_{\text {hub }}=(1.2 \ldots 1.5) \cdot d_{\text {shaft }}$;
- diameter of the screw $d_{s}=(1.2 \ldots 1.4) \cdot m$;
- length of the screw $l_{s}=(0.3 \ldots 0.4) \cdot b^{g}$;
- diameter of the hole $d_{\text {hole }}=\frac{D_{0}-d_{\text {hub }}}{4}$;
- diameter of the hole centre line $D_{c}=\frac{D_{0}+d_{h u b}}{2}$;
- width and height of the collar $h=0.15 \cdot b^{g} ; t=0.8 \cdot h$
- fillet radii $R \geq 6 \mathrm{~mm}$ and angle $\gamma \geq 7^{\circ}$.
9.3.4. Bearings.

The type of a bearing depends on the load it can withstand.
Shafts where straight spur gears are located should be installed in bearings that withstand radial load only. For this purpose we use radial ball bearings of lightweight series (table 9.3).

Shafts of helical spur gears should be mounted on angular contact ball bearings of lightweight series (table 9.4) because they can perceive both radial and axial loads. Shafts of bevel gears and a worm gear are mounted on tapered roller bearings of lightweight series (table 9.5). It is explained by the fact that they can withstand heavy axial loads.

Worm shafts are installed in two tapered roller bearings (table 9.5) and one radial ball bearing of lightweight series (table 9.3).

Table 9.3
Single - Row Radial Ball Bearings (GOST 8338-75). Lightweight series

	$\begin{gathered} \text { Type } \\ \text { designation } \end{gathered}$	d	D	B	r	$\begin{gathered} \text { Basic load } \\ \text { rating } C_{r}, \mathrm{kN} \end{gathered}$	$\begin{gathered} \text { Static load } \\ \text { rating } C_{0}, \mathrm{kN} \end{gathered}$
	204	20	47	14	1.5	12.7	6.2
	205	25	52	15	1.5	14.0	6.95
	206	30	62	16	1.5	19.5	10.0
	207	35	72	17	2	25.5	13.7
	208	40	80	18	2	32.0	17.8
	209	45	85	19	2	33.2	18.6
	210	50	90	20	2	35.1	19.8
	211	55	100	21	2.5	43.6	25.0
	212	60	110	22	2.5	52.0	31.0
	213	65	120	23	2.5	56.0	34.0
$\begin{gathered} d_{c}=0.5 \cdot(D+d) \\ D_{w}=0.32 \cdot(D-d) \\ S=0.15 \cdot(D-d) \end{gathered}$	214	70	125	24	2.5	61.8	37.5
	215	75	130	25	2.5	66.3	41.0
	216	80	140	26	3	70.2	45.0
	217	85	150	28	3	83.2	53.0
	218	90	160	30	3	95.6	62.0
	219	95	170	32	3.5	108.0	69.5
	220	100	180	34	3.5	124.0	79.0

Table 9.4
Single-row angular-contact ball bearing (GOST 831-75). Lightweight narrow series ($\alpha=12^{\circ}$ for 36000 and $\alpha=26^{\circ}$ for 46000)

Table 9.5
Single-row tapered-roller bearings (GOST 333-79). Lightweight series,

$\div 18{ }^{\circ}$												
$\begin{aligned} d_{c} & =0.5 \cdot(D+d) \\ d_{p} & =0.25 \cdot(D-d) \\ l_{p} & =0.68 \cdot B \end{aligned}$	Type									oad rating, kT		e
	desig nation	d	D	T	B	C	d_{1}	d_{2}	D_{1}	C_{r}	C_{0}	
	7202	15	35	11.75	11	9	25	20	27	105	6.1	0.45
	7203	17	40	13.25	12	11	27	22	32	14.0	9.0	0.31
	7204	20	47	15.25	14	12	32	26	38	21.0	13.0	0.36
	7205	25	52	16.25	15	13	37	31	43	24.0	17.5	0.36
	7206	30	62	17.25	16	14	45	38	52	31.5	22.0	0.36
	7207	35	72	18.25	17	15	52	44	60	38.5	26.0	0.37
	7208	40	80	19.25	19	16	58	50	67	46.5	32.5	0.38
	7209	45	85	20.75	20	16	63	55	72	50.0	33.0	0.41
	7210	50	90	21.75	21	17	67	58	78	56.0	40.0	0.37
	7211	55	100	22.75	21	18	75	65	85	65.0	46.0	0.41
	7212	60	110	23.75	23	19	82	72	95	78.0	58.0	0.35
	7214	70	125	25.25	26	21	95	83	108	96.0	82.0	0.37
	7215	75	130	27.25	26	22	100	88	113	107.0	84.0	0.39
	7216	80	140	28.25	26	22	110	97	121	112.0	95.2	0.42
	7217	85	150	30.50	28	24	113	100	129	130.0	109.0	0.43
	7218	90	160	32.50	31	26	121	107	138	158.0	125.0	0.38
	7219	95	170	34.50	32	27	129	114	145	168.0	131.0	0.41
	7220	100	180	37.00	34	29	137	122	154	185.0	146.0	0.41

9.3.5. Lip seal.

Dimensions of lip seals are given in table 9.6.
Table 9.6
Standard lip seals (GOST 8752-79)

\%	d	D	h_{1}	d	D	h_{1}
	20;21;22	40	10	55;56;5	80	12
				8		
	24	41		60	85	
	25	42		63;65	90	
	26	45		70;71	95	
	30;32	52		75	100	
	35;36;38	58		80	105	
	40	60		85	110	
	42	62		90;95	120	
	45	65		100	125	
	48;50	70		105	130	
	52	75		110	135	

9.3.6. Sprocket (Fig 9.6)

- diameter of the hub $d_{\text {hub }}=(1.5 \ldots 1.7) \cdot d_{\text {shaft }}$;
- length of the hub $\quad l_{\text {hub }}=(1.2 \ldots 1.5) \cdot d_{\text {shaft }}$;
- thickness of the web $C=0.93 \cdot B_{\text {bush }}$, where $\mathrm{B}_{\text {bush }}$ is the bush width (table 8.2).

9.3.7. Pulley (Fig. 9.7)

- diameter of the hub $d_{\text {hub }}=(1.8 \ldots 2.2) \cdot d_{\text {shaft }}$;
- length of the hub $l_{\text {hub }}=(1.5 \ldots 2.2) \cdot d_{\text {shaft }} \leq B$, where B is the pulley width;
- thickness of the rim $\delta=0.005 \cdot d+3 \mathrm{~mm}$;
- thickness of the web $C=(1.0 \ldots 1.2) \cdot \delta$ (for pulleys of $\mathrm{d} \leq 300 \mathrm{~mm}$);
- number of arms z (for pulleys of $d \geq 300 \mathrm{~mm}$)
if $300<d \leq 500 \mathrm{~mm}$ than $z=4$
if $d>500 \mathrm{~mm}$ than $z=6$
- design thickness of the arm

$$
h=\sqrt[3]{\frac{38 F_{\mathrm{t}} d}{z\left[\sigma_{b}\right]}},
$$

where F_{t} is turning force obtained in p.7.8; d is diameter of the pulley; z is number of arms; $\left[\sigma_{b}\right]$ is allowable bending stress (for cast irons $\left[\sigma_{b}\right]=30$ MPa)

Fig.9.6.Sprocket

Fig.9.7.Pulley
9.3.8. Coupling.

In mechanical drives with single stage speed reducers we use a coupling with rubber-bushed studs. Dimensions of this coupling are given in table 9.7.

Table 9.7
Standard couplings with rubber bushed studs (GOST 21424-93)

SKETCH LAYOUT

After designing a shaft construction and determination of sizes of all elements mounted on a shaft it is necessary to find distances between elements which are located on a shaft. For this purpose a sketch layout of a speed reducer should be made. In this case a speed reducer is drawn in one projection (top or front view) to scale 1:1 on profile paper.

Let us consider as an example of plotting a sketch layout of single stage spur gear speed reducer.

1. Plot a spur gears taking into account dimensions which were determined during strength analysis and in p.9.3.1 and 9.3.2. We will begin from plotting the centre distance, pitch circle diameters, addendum and dedendum circle diameters of a pinion and a gear. The engagement of gears has to be represented as in Fig. 9.8.
2. Determine disposition of inner walls of a speed reducer. In order to eliminate contact of gears with a wall it is recommended to locate the inner wall by distance 10 mm with respect to a gear hub and by distance 20 mm with respect to gear face end.
3. Determine disposition of bearings. In this case we should take into account that inner surface of a bearing assembly has to be protected from grease washing out. For this purpose grease retaining rings are used (Fig.12.12). The width of these rings is ranged from 10 to 12 mm . That is why bearings are located by distance 10 mm with respect to speed reducer inner wall.
4. Plot bearings for input and output shafts using dimensions from tables 9.3-9.5.
5. Determine disposition of outer walls of a speed reducer. Outer wall is located by distance $0.5 \cdot \mathrm{~B}_{\text {max }}$, where $\mathrm{B}_{\text {max }}$ is the width of the largest bearing.
6. In a speed reducer bearing assemblies have to be protected by bearing caps from the side of speed reducer outer walls. The width of these caps is ranged from 8 to 12 mm . Let us draw straight lines by distance 10 mm with respect to speed reducer outer walls to determine approximate disposition of bearing caps.
7. Plot lip seals for input and output shafts using dimensions from table 9.6. A seal is located in a bearing cap by distance $3-4 \mathrm{~mm}$ with respect to bearing cap face end.
8. Make an arc along input and output shaft axes by distance 20 mm with respect to bearing caps to determine disposition of the first shoulder of a shaft.
9. Lay out length of an element mounted on the cantilever portion of the shaft along input and output shaft axes. In this case we obtain extreme points of the input and output shafts.
10.Draw speed reducer shafts taking into account their construction and diameters of corresponding portions

Examples of sketch layout of single stage speed reducers are shown in Fig. 9.8-9.10.

Fig. 9.8. Sketch layout of single stage spur gear speed reducer

Fig. 9.9. Sketch layout of bevel gears

Fig. 9.10. Sketch layout of single stage worm gear speed reducer

10. SHAFT ANALYSIS FOR STRENGTH

Let us carry out the analysis of the shaft for strength if torque at the gear shaft T_{g} is equal to $370 \mathrm{~N} \cdot \mathrm{~m}$ and from the previous analysis we have that turning (tangential) force $F_{t}=2467 \mathrm{~N} ; F_{r}=898 \mathrm{~N} ; F_{a}=346.7$ $\mathrm{N} ; d_{g}=300 \mathrm{~mm} ; d=70 \mathrm{~mm}$ (the shaft portion diameter where the gear is mounted), and from the sketch layout $a=63 \mathrm{~mm} ; b=63 \mathrm{~mm} ; c=164$ mm .

10.1. Select the material of the shaft.

The main material of shafts is medium-carbon or alloy steels of grade Steel 40 (0.4 C), Steel 45 (0.45 C), Steel 40X ($0.4 \mathrm{C}-\mathrm{Cr}$) and others with hardness $\mathrm{H} \geq 200 \mathrm{BHN}$.

Mechanical characteristics of steels are given in table 10.1.
Table 10.1

Mechanical Characteristics of Basic Shaft Materials

| Steel grade | Blank
 diameter,
 $\mathrm{mm}(\mathrm{max})$ | Brinell hardness, | $\sigma_{u l}$ | σ_{y} | Heat treatment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| Steel 45 (0.45C) | 160 | 170 to 217 BHN | 600 | 340 | Normalizing |
| Steel 45 (0.45C) | 200 | 192 to 240 BHN | 750 | 450 | Martempering |
| Steel 40X
 $(0.40 \mathrm{C}-\mathrm{Cr})$ | 200 | 230 to 260 BHN | 850 | 550 | Martempering |
| Steel 40X
 $(0.40 \mathrm{C}-\mathrm{Cr})$ | 120 | 260 to 280 BHN | 950 | 700 | Martempering |
| Steel 40XH
 $(0.40 \mathrm{C}-\mathrm{Cr}-\mathrm{Ni})$ | 200 | 230 to 300 BHN | 850 | 600 | Martempering |
| Steel 35XM
 $(0.35 \mathrm{C}-\mathrm{Cr}-\mathrm{Mo})$ | 200 | $>240 \mathrm{BHN}$ | 900 | 800 | Martempering |
| Steel 40XHM
 $(0.40 \mathrm{C}-\mathrm{Cr}-\mathrm{Ni}-\mathrm{Mo})$ | 160 | $>302 \mathrm{BHN}$ | 110
 0 | 900 | Martempering |

For example, let us choose Steel 40X (0.4C-Cr) heat treated by martempering to hardness ranged from 230 to $260 \mathrm{BHN}, \sigma_{u l}=850 \mathrm{MPa}$, $\sigma_{y}=550 \mathrm{MPa}$.
10.2. Analyse a shaft for static strength.
10.2.1. Plot the analytical model of a shaft and apply all acting
forces (Fig. 10.1). In this case a shaft is considered as a beam mounted on two supports, in particular on one immovable hinge support and one movable hinge support.

Let us analyse forces which act on a shaft.
It is necessary to remember that in the engagement of straight spur gears turning force F_{t} and radial force F_{r} develop (radial force is always directed to the centre of rotation of the gear). In the engagement of helical spur gears, bevel gears and worm gearing besides turning and radial forces axial force F_{a} develops. This force is parallel to the shaft axis. Values of mentioned above forces were found during of analysis corresponding gear drives for strength.

Fig. 10.1. Analytical model of the output shaft

On the cantilever portion of the shaft either a pulley, or a sprocket, or a pinion, or a half coupling may be mounted.

If a pulley or sprocket is installed on the shaft a force acting on the
shaft from the side of the element is directed to side of the mating pulley (sprocket) along the centre line. The value of this force was determined during analysis of the corresponding mechanical drive.

If a half coupling is installed on the shaft, the first loads the shaft by the torque. Additionally, because of misalignment of shafts joined by the coupling the latter exerts upon the shaft an additional force F_{c}. This force may be directed to any side (with respect to turning force F_{t}). But for analytical models we will consider the worst case when this force is directed opposite to F_{t}. In this case the shaft deformations are maximum.

For single stage speed reducers the value of this force F_{c} is determined in the following way:

$$
-\quad F_{c}=125 \cdot \sqrt{T} ;
$$

where T is the torque at the shaft in $\mathrm{N} \cdot \mathrm{m}$.
10.2.2. Plot the analytical model of the shaft in the vertical plane and transfer all forces to the shaft (Fig. 10.2). It is necessary to note that according to the theoretical mechanics as a result of transferring parallel forces to any point the additional moment develops. In our case it is axial force F_{a} that is parallel to the shaft axis. That is why the additional moment is determined as

$$
M_{a}=F_{a} \cdot \frac{d^{g}}{2}
$$

where d^{g} is the pitch circle diameter of the gear.
So $\quad M_{a}=346.7 \cdot \frac{300}{2}=52.005 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm}$

$$
F_{c}=125 \cdot \sqrt{T}=125 \cdot \sqrt{370}=2404.4 \mathrm{~N}
$$

10.2.3. Determine vertical support reacting $R_{y A}$ and $R_{y c}$. For this purpose we should consider the equilibrium of the beam and set up equations of moments with respect to points A and C :

$$
\begin{gathered}
\sum M_{A}^{v}=0, \quad \sum M_{C}^{v}=0 . \\
\sum M_{A}=0: \quad-F_{r} \cdot a-M_{a}+R_{y C} \cdot(a+b)=0 ; \\
R_{y C}=\frac{F_{r} \cdot a+M_{a}}{a+b}=\frac{898 \cdot 63+52.005 \cdot 10^{3}}{63+63}=861.74 \mathrm{~N} ;
\end{gathered}
$$

$$
\begin{aligned}
& \sum M_{c}=0: \quad-R_{y A} \cdot(a+b)+F_{r} \cdot b-M_{a}=0 \\
& \quad R_{y A}=\frac{F_{r} \cdot b-M_{a}}{a+b}=\frac{898 \cdot 63-52.005 \cdot 10^{3}}{63+63}=36.26 \mathrm{~N}
\end{aligned}
$$

For checking we set up equation of forces that act in the vertical plane of the shaft. The sum of these forces should give zero $\left(\sum F_{i}^{v}=0\right)$.

$$
\begin{array}{ll}
\sum F_{y i}=0: \quad & R_{y A}-F_{r}+R_{y C}=0 \\
& 36.26-898+861.74=0
\end{array}
$$

10.2.4. Plot the diagram of bending moments in the vertical plane (M_{b}^{v}) (Fig. 10.2).

$$
\begin{aligned}
& 0 \leq x \leq a ; \quad M_{y}=R_{y A} \cdot x \\
& \quad M_{y}(0)=0 ; \quad M_{y}(a)=R_{y A} \cdot a=36.26 \cdot 63=2.28 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} \\
& a \leq x \leq a+b ; \quad M_{y}=R_{y A} \cdot x+M_{a}-F_{r} \cdot(x-a) \\
& M_{y}(a)=R_{y A} \cdot a+M_{a}=36.26 \cdot 63+52.005 \cdot 10^{3}=54.29 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} \\
& M_{y}(a+b)=R_{y A} \cdot(a+b)+M_{a}-F_{r} \cdot b= \\
& =36.26 \cdot(63+63)+52.005 \cdot 10^{3}-898 \cdot 63=0
\end{aligned}
$$

10.2.5. Plot the analytical model of the shaft in the horizontal plane and transfer all forces to the shaft (Fig. 10.2). In this case as a result of parallel transferring force F_{t} the torque T develops

$$
\mathrm{T}=\mathrm{F}_{\mathrm{t}} \cdot \frac{\mathrm{~d}^{\mathrm{g}}}{2}=2467 \cdot \frac{300}{2}=370 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm}
$$

10.2.6. Determine horizontal support reacting forces $R_{X A}$ and $R_{X C}$. For this purpose we should set up equations of moments with respect to points A and C :

$$
\begin{gathered}
\sum M_{A}^{h}=0, \quad \sum M_{C}^{h}=0 \\
\sum M_{A}=0: \quad F_{t} \cdot a+R_{x C} \cdot(a+b)-F_{c} \cdot(a+b+c)=0 \\
R_{x C}=\frac{-F_{t} \cdot a+F_{c} \cdot(a+b+c)}{a+b}= \\
=\frac{-2467 \cdot 63+2404.4 \cdot(63+63+164)}{63+63}=4300.44 \mathrm{~N}
\end{gathered}
$$

$$
\begin{aligned}
& \sum M_{c}=0: \quad-R_{x A} \cdot(a+b)-F_{t} \cdot b-F_{c} \cdot c=0 \\
& R_{x A}=\frac{-F_{t} \cdot b-F_{c} \cdot c}{a+b}=\frac{-2467 \cdot 63-2404.4 \cdot 164}{63+63}=-4363.04 \mathrm{~N}
\end{aligned}
$$

For checking we find the sum of all forces that acts in the horizontal plane of the shaft. This sum should be equal to zero $\left(\sum F_{i}^{h}=0\right)$.

$$
\begin{array}{ll}
\sum F_{x i}=0: & R_{x A}+F_{t}+R_{x C}-F_{c}= \\
& -4363.04+2467+4300.44-2404.4=0 .
\end{array}
$$

10.2.7. Plot the diagram of bending moments in the horizontal plane ($\mathrm{M}_{\mathrm{b}}^{\mathrm{b}}$) (Fig. 10.2).

$$
\begin{aligned}
& 0 \leq x \leq a ; \quad M_{x}=R_{x A} \cdot x ; \quad M_{x}(0)=0 ; \\
& \quad M_{x}(a)=R_{x A} \cdot a=-4363.04 \cdot 63=-274.87 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} ; \\
& a \leq x \leq a+b ; \quad M_{x}=R_{x A} \cdot x+F_{t} \cdot(x-a) ; \\
& M_{x}(a)=R_{x A} \cdot a=-4363.04 \cdot 63=-274.87 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} ; \\
& M_{x}(a+b)=R_{x A} \cdot(a+b)+F_{t} \cdot b= \\
& =-4363.04 \cdot(63+63)+2467 \cdot 63=-394.32 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} ; \\
& 0 \leq x \leq c ; \quad M_{x}=F_{c} \cdot x ; \quad M_{x}(0)=0 ; \\
& M_{x}(c)=-F_{c} \cdot c=-2404.4 \cdot 164=-394.32 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} .
\end{aligned}
$$

10.2.8. Plot the diagram of total bending moments (Fig. 10.2) taking into account that

$$
\begin{gathered}
M_{\Sigma}=\sqrt{\left(M_{x}\right)^{2}+\left(M_{y}\right)^{2}} . \\
M_{\Sigma}(A)=0 ; \\
M_{\Sigma}(B)=\sqrt{\left(2.28 \cdot 10^{3}\right)^{2}+\left(274.87 \cdot 10^{3}\right)^{2}}=274.88 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} ; \\
M_{\Sigma}(B)=\sqrt{\left(54.29 \cdot 10^{3}\right)^{2}+\left(274.87 \cdot 10^{3}\right)^{2}}=280.18 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} ; \\
M_{\Sigma}(C)=\sqrt{0+\left(394.32 \cdot 10^{3}\right)^{2}}=394.32 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} ; \\
M_{\Sigma}(D)=0
\end{gathered}
$$

10.2.9. Plot the twisting moment diagram (Fig. 10.2).

Fig. 10.2. Diagrams of moments for the shaft analytical model
10.2.10. Plot the reduced moments (Fig. 10.2) diagram taking into account that $M_{\text {red }}$

$$
\begin{gathered}
M_{r e d}=\sqrt{M_{\Sigma}^{2}+0.75 \cdot T^{2}} \\
M_{r e d}(A)=0 ; \\
M_{r e d}(B)=\sqrt{\left(274.88 \cdot 10^{3}\right)^{2}+0.75 \cdot\left(370 \cdot 10^{3}\right)^{2}}=422.17 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} ; \\
M_{\text {red }}(B)=\sqrt{\left(280.18 \cdot 10^{3}\right)^{2}+0.75 \cdot\left(370 \cdot 10^{3}\right)^{2}}=425.64 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} ; \\
M_{\text {red }}(C)=\sqrt{\left(394.32 \cdot 10^{3}\right)^{2}+0.75 \cdot\left(370 \cdot 10^{3}\right)^{2}}=508.09 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm} \\
M_{r e d}(D)=\sqrt{0+0.75 \cdot\left(370 \cdot 10^{3}\right)^{2}}=320.43 \cdot 10^{3} \mathrm{~N} \cdot \mathrm{~mm}
\end{gathered}
$$

10.2.11. For the critical section of the shaft (where the reduced moment is maximum) we check the shaft for static strength

$$
\sigma_{b}=\frac{M_{r \max }}{0.1 \cdot d^{3}} \leq\left[\sigma_{b}\right], \sigma_{b}=\frac{508.09 \cdot 10^{3}}{0.1 \cdot 60^{3}}=23.52 \mathrm{MPa},
$$

$$
23.52 \leq 120 \mathrm{MPa}
$$

where d is the diameter of the shaft at the critical section; $\left[\sigma_{b}\right]$ is the allowable bending stress. For steels $\left[\sigma_{b}\right]=120 \mathrm{MPa}$.

Condition is satisfied.
If $\sigma_{b}>\left[\sigma_{b}\right]$ we must increase the diameter of the shaft at the critical section.
10.3. Analyze the shaft for fatigue strength.
10.3.1. Determine the limit of endurance in bending and in torsion for the shaft material:
for carbon steels: $\sigma_{-1}=0.43 \cdot \sigma_{u l}$,
for alloy steels: $\quad \sigma_{-1}=0.35 \cdot \sigma_{u l}+120$,

$$
\tau_{-1}=(0.2 \ldots 0.3) \cdot \sigma_{u l},
$$

where $\sigma_{u l}$ is the ultimate strength of the material (table 10.1).
In our case for Steel 40 X ($0.4 \mathrm{C}-\mathrm{Cr}$)

$$
\begin{aligned}
& \sigma_{-1}=0.35 \cdot 850+120=417.5 \mathrm{MPa} \\
& \tau_{-1}=0.25 \cdot 850=212.5 \mathrm{MPa}
\end{aligned}
$$

10.3.2. Determine peak magnitudes of bending and torsion stresses $\left(\sigma_{p}, \tau_{p}\right)$ at the critical sections of the shaft.

Critical section is a section where the total moment M_{Σ} is maximum. It may be a section where a gear or a bearing is located.

$$
\begin{gathered}
\sigma_{p}=\frac{\mathrm{M}_{\Sigma}}{0.1 \cdot d^{3}}=\frac{394.32 \cdot 10^{3}}{0.1 \cdot 60^{3}}=18.25 \mathrm{MPa}, \\
\tau_{p}=0.5 \cdot \frac{\mathrm{~T}}{0.2 \cdot d^{3}}=0.5 \cdot \frac{370 \cdot 10^{3}}{0.2 \cdot 60^{3}}=4.28 \mathrm{MPa},
\end{gathered}
$$

where d is the diameter of the shaft at the critical section.
10.3.3. Determine mean components of the bending and torsion stresses $\left(\sigma_{m}, \tau_{m}\right)$.

If axial force $F_{a}<1000 \mathrm{~N}$ we assume $\sigma_{m}=0$ and $\tau_{m}=\tau_{p}$.
Otherwise

$$
\sigma_{m}=\frac{F_{a}}{\frac{\pi \cdot d^{2}}{4}}, \quad \tau_{m}=\tau_{p .} .
$$

In our case $F_{a}=346.7 \mathrm{~N}<1000 \mathrm{~N}$, so $\sigma_{m}=0$ and $\tau_{m}=\tau_{p}=4.28 \mathrm{MPa}$.
10.3.4. Determine factors ψ_{σ} and ψ_{τ} of mean stress components

- for carbon steels $\psi_{\sigma}=0.1$ and $\psi_{\tau}=0.05$;
- for alloy steels $\psi_{\sigma}=0.15$ and $\psi_{\tau}=0.1$.

In our case $\psi_{\sigma}=0.15$ and $\psi_{\tau}=0.1$.
10.3.5. Determine effective stress concentration factors K_{σ} and K_{τ}. For this purpose we use table 10.2.

If the critical section of the shaft is a section where a bearing is mounted we will use as stress concentrator interference fit. If a gear is installed at the critical section a keyed portion is considered as the stress concentrator.

Table 10.2
Stress Concentration Factors for Shafts

A. Filleted Transition Regions

Values of fillet radius r

d	$r_{\max }$
Over 18 to 30	1.6
Over 30 to 50	2.0
Over 50 to 80	2.5
Over 80 to 120	3.0

Values of \boldsymbol{K}_{σ} and \boldsymbol{K}_{τ}

t / r	r / d	K_{σ} at $\sigma_{u l}(\mathrm{MPa})$ of				K_{τ} at $\sigma_{u l}(\mathrm{MPa})$ of			
		500	700	900	1200	500	700	900	1200
2	0.01	1.55	1.6	1.65	1.7	1.4	1.4	1.45	1.45
	0.02	1.8	1.9	2.0	2.15	1.55	1.6	1.65	1.7
	0.03	1.8	1.95	2.05	2.25	1.55	1.6	1.65	1.7
3	0.01	1.9	2.0	2.1	2.2	1.55	1.6	1.65	1.75
	0.02	1.95	2.1	2.2	2.4	1.6	1.7	1.75	1.85
	0.03	1.95	2.1	2.25	2.45	1.65	1.7	1.75	1.9

B. Values of \boldsymbol{K}_{σ} and \boldsymbol{K}_{τ} for Keyed portions of Shafts

$\sigma_{\text {end }}, \mathrm{MPa}$	K_{σ} for keyseats cut with		K_{τ}
	End mills	Side mills	
500	1.60	1.40	1.40
700	1.90	1.55	1.70
900	2.15	1.70	2.05
1200	2.50	1.90	2.40

C. Values of K_{σ} and K_{τ} for Splined and Threaded Portions of Shafts

$\sigma_{\text {end }}, \mathrm{MPa}$	$K_{\mathrm{\sigma}}$ for		K_{τ} for		
	Splined portions	Threaded portions	Parallel-sides splines	Involute splines	Threaded portions
500	1.45	1.80	2.25	1.45	1.50
700	1.60	2.20	2.45	1.50	1.65
900	1.70	2.45	2.65	1.55	2.10
1200	1.75	2.90	2.80	1.60	2.39

D. Values of $\boldsymbol{K}_{\sigma} / \boldsymbol{K}_{\boldsymbol{d}}$ and $\boldsymbol{K}_{\tau} / \boldsymbol{K}_{\boldsymbol{d}}$ at Interference-Fit Joints

Shaft diameter	K_{σ} / K_{d} at $\sigma_{u l},(\mathrm{MPa})$ of				K_{τ} / K_{d} at $\sigma_{u l},(\mathrm{MPa})$ of			
$d, \mathrm{~mm}$	500	700	900	1200	500	700	900	1200
30	2.5	3.0	3.5	4.25	1.9	2.2	2.5	3.0
50	3.05	3.65	4.3	5.2	2.25	2.6	3.1	3.6
100 up	3.3	3.95	4.6	5.6	2.4	2.8	3.2	3.8

In our case the critical section of the shaft is a section where a bearing is mounted. So we will use as stress concentrator interference fit. Then $\frac{K_{\sigma}}{K_{d}}=4.35 ; \frac{K_{\tau}}{K_{d}}=2.97$ from the table 10.2 D .
10.3.6. Determine the surface roughness factor K_{F}. For that we use Fig.10.3.

Fig. 10.3. Values of $K_{F}: 1$ - polished portions; 2 - ground portions;
3 - portions made with finish turning; 4 - portions made with rough turning
It is necessary to note that the portion of the shaft where a bearing is installed should be ground while the shaft portion for a toothed wheel is made with finish turning.

In our case the critical section is for the portion of the shaft where a bearing is installed. That is why we use curve 2 and $K_{F}=0.9$.
10.3.7. Determine factor K_{d}, which is used to take into account absolute dimensions of the shaft cross-section. For this purpose we use

Fig.10.4.
Fig. 10.4. Values of K_{d} : 1- carbon steels without stress concentrators; 2 alloy steels without stress concentrators or carbon steels with stress concentrators ($K_{\sigma}>2$); 3 - alloy steels with stress concentrators ($K_{\sigma}>2$).

If the critical section is in the place where bearing is mounted it is not necessary to determine K_{d} because the ratio K_{σ} / K_{d} was found before (p.10.3.5).

21 3
10.3.8. Determine safety factors in terms of bending and torsion

$$
\begin{gathered}
S_{\sigma}=\frac{\sigma_{-1}}{\frac{K_{\sigma}}{K_{d} \cdot K_{F}} \cdot \sigma_{p}+\psi_{\sigma} \cdot \sigma_{m}}=\frac{417.5}{\frac{4.35}{0.9} \cdot 18.25+0}=4.73 ; \\
S_{\tau}=\frac{\tau_{-1}}{\frac{K_{\tau}}{K_{d} \cdot K_{F}} \cdot \tau_{p}+\psi_{\tau} \cdot \tau_{m}}=\frac{212.5}{\frac{2.97}{0.9} \cdot 4.28+0.1 \cdot 4.28}=14.6 .
\end{gathered}
$$

10.3.9. Determine the safety factor of the shaft at the critical section

$$
S=\frac{S_{\sigma} \cdot S_{\tau}}{\sqrt{S_{\sigma}^{2}+S_{\tau}^{2}}} \geq[S]
$$

$$
S=\frac{S_{\sigma} \cdot S_{\tau}}{\sqrt{S_{\sigma}^{2}+S_{\tau}^{2}}}=\frac{4.73 \cdot 14.6}{\sqrt{4.73^{2}+14.6^{2}}}=4.5
$$

Allowable values of the safety factor $[S]$ are given in table 10.3.
Table 10.3
Values of [S]
$\left.\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Degree of accuracy of design loads, analytical } \\ \text { models, and mechanical characteristics }\end{array} & {[S]} \\ \hline \text { High } & 1.2-1.5 \\ \hline \text { Approximate (shafts of most general-purpose } \\ \text { mechanisms) }\end{array}\right] 1.5-1.8\right\}$

Condition is satisfied.

11. ANALYSIS OF THE ROLLING CONTACT BEARINGS

Let us analyse the rolling contact bearings for strength. Initial dates are:

- type designation of the bearing and its sizes (\# and $d \times D \times B$);
- rotational speed n of the bearing inner ring;
- components of reacting forces in supports $R_{x A}, R_{y A}, R_{x C}, R_{y C}$ and $R_{z A}$;
- basic load rating C_{r} and static load rating C_{0} for radial ball bearings and angular-contact bearings with pressure angle $\alpha \leq 18^{\circ}$ (tables 9.3 and 9.4);
- basic load rating C_{r} and axial load parameter e for angularcontact bearings with pressure angle $\alpha>18^{\circ}$ (tables 9.4 and 11.1);
- basic load rating C_{r}, axial load parameter e and axial load factor Y for tapered roller bearings (table 9.5).

In our case for the output shaft we will use angular-contact ball bearings $36212(60 \times 110 \times 22) ; n=93.6 \mathrm{rpm} ; R_{x A}=4363.04 \mathrm{~N}$, $R_{y A}=36.26 \mathrm{~N}, R_{x C}=4385.93 \mathrm{~N}, R_{y C}=861.74 \mathrm{~N}$ and $R_{z A}=F_{a}=346.7 \mathrm{~N}$; $C_{r}=61.5 \mathrm{kN}, C_{0}=39.3 \mathrm{kN}$.
11.1. Determine the total radial reacting forces which act on the bearings

$$
\begin{gathered}
F_{r 1}=\sqrt{R_{x A}^{2}+R_{y A}^{2}}=\sqrt{4363.04^{2}+36.26^{2}}=4363.19 \mathrm{~N} \\
F_{r 2}=\sqrt{R_{x C}^{2}+R_{y C}^{2}}=\sqrt{4300.44^{2}+861.74^{2}}=4385.93 \mathrm{~N} .
\end{gathered}
$$

11.2. Determine the total axial forces acting on the bearings
11.2.1. Calculate additional axial forces S_{1} and S_{2} that develop as a result of action of radial forces $F_{r 1}$ and $F_{r 2}$

$$
S_{1}=F_{r 1} \cdot e^{\prime} ; \quad S_{2}=F_{r 2} \cdot e^{\prime},
$$

where $-e=e$ for radial ball bearings and angular contact ball bearings; $e^{\prime}=0.83 \cdot e$ for tapered roller bearings.

It is necessary to note that for radial ball bearings and angular contact ball bearings with pressure angle $\alpha \leq 18^{\circ}$ axial load parameter e is determined by table 11.1 depending upon ratio F_{d} / C_{0}.

In our case $F_{d} / C_{0}=346.7 / 39300=0.0088 ; e^{\prime}=e=0.3$ (table 11.1); $S_{1}=F_{r 1} \cdot e^{\prime}=4363.19 \cdot 0.3=1308.57 \mathrm{~N} ; \quad S_{2}=F_{r 2} \cdot e^{\prime}=4385.93 \cdot 0.3=$ 1315.78 N .
11.2.2. Plot the analytical model of the shaft and show all forces acting on the shaft in the axial direction (Fig. 11.1).

Fig. 11.1. Forces acting on the shaft in the axial direction.
Table 11.1
Values of X, Y and e for some types of bearings

Type of bearing	α°	$F_{d} / C_{\text {o }}$	$F_{d} /\left(V F_{r}\right) \leq e$		$F_{a} /\left(V F_{r}\right)>e$		e
			X	Y	X	Y	
Single Row radial Ball Bearing	0	0.014	1	0	0.56	2.30	0.19
		0.028				1.99	0.22
		0.056				1.71	0.26
		0.084				1.55	0.28
		0.11				1.45	1.30
		0.17				1.31	0.34
		0.28				1.15	0.38
		0.42				1.04	0.42
		0.56				1.00	0.44
Single Row Angular Contact Ball Bearing	12	0.014	1	0	0.45	1.81	0.30
		0.029				1.62	0.34
		0.057				1.46	0.37
		0.086				1.34	0.41
		0.11				1.22	0.45
		0.17				1.13	0.48
		0.29				1.14	0.52
		0.43				1.01	0.54
		0.57				1.00	0.54
	26	-	1	0	0.41	0.87	0.68
	36	-	1	0	0.37	0.66	0.95
Single row Tapered Roller Bearing		-	1	0	0.4	$0.4 \operatorname{ctg} \alpha$	$1.5 \operatorname{ctg} \alpha$

11.2.3. Determine total axial forces $F_{a 1}$ and $F_{a 2}$. For that we should find the sum $F_{a}+S_{1}$ and compare with force S_{2}. There are 3 possible cases:

- if $F_{a}+S_{1}>S_{2} \quad F_{a 1}=S_{1}$ and $F_{a 2}=F_{a}+S_{1} ;$
- if $F_{a}+S_{1}=S_{2} \quad F_{a 1}=S_{1}$ and $F_{a 2}=S_{2}$;
- if $F_{a}+S_{1}<S_{2} \quad F_{a 1}=S_{2}-F_{a}$ and $F_{a 2}=S_{2}$.

In our case $F_{a}+S_{1}=346.7+1308.57=1655.27 \mathrm{~N}>S_{2}=1315.78$ N , therefore $F_{a 1}=1308.57 \mathrm{~N}$ and $F_{a 2}=346.7+1308.57=1655.27 \mathrm{~N}$.
11.3. Determine factor V which is used to take into account what ring of the bearing is movable.

- for bearings with movable inner ring $V=1$;
- for bearings with movable outer ring $V=1.2$.

In general purpose speed reducers bearings with movable inner ring are used only.
11.4. Determine safety factor K_{s} which allows for the load nature. It may be ranged from 1 to 2.5 depending upon the type of designing machine. For general purpose speed reducers the safety factor is assumed as 1.3.
11.5. Determine temperature factor K_{t} according to table 11.2.

Table 11.2
Values of temperature factor $\boldsymbol{K}_{\boldsymbol{t}}$

Temperature of the bearing $t,{ }^{\circ} \mathrm{C}$	100	125	150	175	200	225	250
K_{t}	1.0	1.05	1.1	1.15	1.25	1.35	1.4

As a rule in general purpose speed reducers the working temperature of bearings is less than $100^{\circ} \mathrm{C}$.
11.6. Determine the radial force factor X and axial force factor Y for both supports. For this purpose it is necessary to find ratio $\frac{F_{\mathrm{a} i}}{V \cdot F_{\mathrm{ri}}}$ for every support and compare with axial load parameter e.

If $\frac{F_{\mathrm{a} i}}{V \cdot F_{\mathrm{r} i}} \leq e$ then $X_{i}=1$ and $Y_{i}=0$. Otherwise X_{i} and Y_{i} are determined according to table 11.1.

In our case: $V=1 ; K_{s}=1.3 ; K_{t}=1 ; \frac{F_{a l}}{V \cdot F_{r l}}=\frac{1308.57}{1 \cdot 4363.19}=0.3=e$, then $X_{l}=1$ and $Y_{l}=0 ; \frac{F_{a 2}}{V \cdot F_{r 2}}=\frac{1655.27}{1 \cdot 4385.93}=0.377>e$, then $X_{2}=0.45$ and $Y_{2}=$ 1.81.
11.7. Determine the equivalent radial loads for both supports

$$
\begin{gathered}
P_{r 1}=\left(X_{1} \cdot V \cdot F_{r 1}+Y_{1} \cdot F_{a 1}\right) \cdot K_{s} \cdot K_{l}=(1 \cdot 1 \cdot 4363.19+0 \cdot 1308.57) \cdot 1.3 \cdot 1=5672.15 \mathrm{~N}, \\
P_{r 2}=\left(X_{2} \cdot V \cdot F_{r 2}+Y_{2} \cdot F_{a 2}\right) \cdot K_{S} \cdot K_{t}= \\
=(0.45 \cdot 1 \cdot 4385.93+1.81 \cdot 1655.27) \cdot 1.3 \cdot 1=6460.62 \mathrm{~N} .
\end{gathered}
$$

11.8. Determine the rated life in million revolutions for the most loaded support

$$
L=\left(\frac{C_{r}}{P_{\text {rmax }}}\right)^{m}=\left(\frac{61500}{6460.62}\right)^{3}=862.59,
$$

where $m=3$ for ball bearings and $m=\frac{10}{3}$ for roller bearings.
11.9. Determine the rated life in hours

$$
L_{h}=\frac{L \Psi 10^{6}}{60 \varphi_{h}}>L_{h_{\min }} .
$$

For general purpose speed reducers $L_{h \text { min }}=12000$ hours.
If the last inequality is not carried out it is necessary to reselect the bearing of more heavy series and make all calculations once more.

In our case $L_{h}=\frac{862.59 Ч 10^{6}}{60 Ч 93.6}=153595.1$ hours $>L_{h_{\text {min }}}$. Condition is satisfied and we can use this type of bearings.

12. DESIGNING THE GEAR SPEED REDUCER

12.1. Design supports of the speed reducer shafts.

Normal operation of bearings depends upon the arrangement of bearings on the shaft as well as the method of fixation of the shaft in the axial direction.

According to fixation of the shaft in the axial direction there are fixed support and floating support.

Depending upon arrangement of bearings we will distinguish between inward (face to face) arrangement and arrangement with the fixed and the floating supports. Sometimes outward (back to back) arrangement of bearings is used too (for example, for bevel pinion shafts).

Let us consider features of all arrangements.
Inward arrangement of bearings.
This is the most popular arrangement according to which a shaft is fixed in the axial direction in both supports. Every support withstands one-sided axial load. The inner ring of both bearings rests against the shoulder made on the shaft or against the end face of other component installed on the shaft. In its turn, the outer ring of bearings rests against the end face of a cap or other part secured in the casing (Fig. 12.1).

The inward arrangement is simple in construction and permits easy adjustment of bearings. But there exists a risk that the shaft can be seized at supports. It is explained by the fact that during operation of bearings, shafts and casings heat up. As a result, radial clearances in bearings decrease. Also, the shaft length increases on heating, which reduces the axial clearance in bearings.

For safeguard against seizure we should provide small clearance \boldsymbol{a} at one end of the shaft between the outer ring of the bearing and the end face of the cap (Fig. 12.1, a). This clearance is very small ($0.2 \ldots 0.5$ mm). That is why it is not shown in the drawing. In order to adjust this clearance we use either thin metal shims 1 placed between the casing and the flanged cap at one end of the shaft or a spacer ring installed between the end face of the embedded cap and the outer ring of the bearing.

In radial-thrust bearings (angular contact ball bearings and tapered roller bearings) there exist radial clearances between rolling elements and both rings that may be adjusted in assembly. We can achieve
adjustment of these clearances by means of thin metal shims 1 mounted between the casing and flanges of caps at both ends of the shaft (Fig. $12.1, b)$. If we have embedded caps needed adjustment is achieved by screw 1 and intermediate washer 2 (Fig. 12.2).

Fig 12.1 Inward arrangement of bearings: a - radial bearings; b-radial thrust bearings

Fig.12.2. Adjustment of bearings by screw 1 and intermediate washer 2

In this case the threaded element simplifies adjustment because caps need not be removed to replace the shims but the bearing assembly becomes more elaborate.

Inward arrangement of bearings is used for shafts of straight spur gears, helical spur gears, bevel gear and worm gear.

Bearings of the worm shaft are arranged as fixed and floating supports (Fig. 12.3).

The fixed support consists of two inward facing radial thrust bearings (as a rule tapered roller bearings) mounted in the bearing housing. Outer and inner rings of the fixed support should be fixed in both axial directions. That is why the fixed support can withstand double-sided axial load. In order to adjust radial clearances in tapered roller bearings we use slotted nut (table 12.1.) and lock-washer (table 12.2).

Fig.12.3. Arrangement with the fixed and floating supports of the worm shaft
Floating support is used to compensate thermal deformations of the shaft and manufacturing errors. We use as floating support a radial ball bearing which inner ring is fixed in both axial directions and outer ring is left free. For fixation of the inner ring we employ either end plates (table 13.3, 13.4), or slotted nuts with lock washers, or spring ring.

The rightness of the worm engagement is adjusted by means of metal shims 1 (Fig. 12.3) mounted between the casing and the flange of the housing.
Supports of the bevel pinion shaft are installed in the housing according to outward arrangement (Fig. 12.4). In this case we obtain the minimum bending moment developing on the shaft. In order to adjust radial clearances in bearings we should use a slotted nut with a lock-washer. Rightness of the bevel gear engagement is adjusted by metal shims $\mathbf{1}$ (Fig. 12.4) mounted between the casing and the housing flange.

Table 12.1
Standard slotted nuts (GOST 11871-88)

Table 12.2
Standard lock washers (GOST 11872-80)

Thread diameter	d_{1}	d_{2}	d_{3}	b	S	1	h	
							$\begin{array}{\|l\|} \hline \text { Not } \\ \text { less } \end{array}$	$\begin{array}{\|c\|} \hline \text { Not } \\ \text { more } \\ \hline \end{array}$
20	20.5	37	27	4.8	1.0	17	3.5	6.0
22	22.5	40	30			19		
24	24.5	44	33			21		
27	27.5	47	36			24	4.5	8.0
30	30.5	50	39			27		
33	33.5	54	42	5.8	1.6	30		
36	36.5	58	45			33		
39	39.5	62	48			36		
42	42.5	67	52			39		
45	45.5	72	56			42		
48	48.5	77	60	7.8		45		
52	52.5	82	65			49	5.5	10.0
56	57	87	70			53		
60	61	92	75			57		
64	65	97	80			61		
68	69	102	85	9.5		65	6.5	13.0
72	73	107	90			69		
76	77	112	95			73		
80	81	117	100			76		

Table 12.3

Dimensions of Slots Receiving Lock Washer Tabs, mm

Fig 12.4. Outward arrangement of bearings of the bevel pinion shaft
12.2. Determine dimensions of elements that are a part of the support assemblies.
12.2.1. Bearing caps.

Bearing caps may be made with screws or embedded in the casing. Construction of the screw cap and its dimensions are given in Fig. 12.5 a, where d_{k} is determined according to table 12.4. If bearings are held in place with nuts or spring washers, convex caps are used (Fig. 12.5, c).

If the length of the cap sleeve permits, a groove is made in the sleeve, in which a round-section packing ring of gasoline- or oilresistant rubber is fitted (Fig. 12.5, b). The groove profile is shown in Fig. 12.5, b and the dimensions of its basic elements are taken as follows: $b=5.6 \mathrm{~mm}$ and $d_{1}=D-7.4 \mathrm{~mm}$. The cross-section diameter is assumed as $d=4.6 \mathrm{~mm}$.

Fig.12.5. Bearing screw caps
Table 12.4
Screws for fastening bearing caps

$D, \mathrm{~mm}$	d_{k}	Number of screws
To 75	M8	4
$80 \ldots 95$	M10	4
$100 \ldots 140$	M10	6
$150 \ldots 215$	M12	6
$225 \ldots 360$	M16	6

Fig.12.6. Embedded caps
Constructions of embedded caps are given in Fig. 12.6 where δ is determined according to table $12.5, b \approx \delta, c \approx 0.5 \cdot \delta$. These caps require no special attachment to the casing, so no holes in the caps, threaded holes in the casing, or screws are needed. However, caps of this construction may only be used where the joint between the casing and
the cover lies in the plane of the shaft axis. Besides, bearing assemblies with embedded caps become more elaborate in shape. It is explained by necessity to adjust radial clearances in the bearing.

Table12.5
Thickness of the embedded cap

$D, \mathrm{~mm}$	$50 \ldots 62$	$63 \ldots 95$	$100 \ldots 145$	$150 \ldots 220$
$\delta, \mathrm{~mm}$	5	6	7	8

12.2.2.Bearing housing

Constructions of bearing housings and their dimensions are given in table 12.6.

Table 12.6
Bearing housings

(a)

(b)

(c)

(d)

$$
\begin{gathered}
\begin{array}{|c|c|c|c|c|}
\hline D, \mathrm{~mm} & <50 & 50 \ldots 80 & 80 \ldots 120 & 120 \ldots 170 \\
\hline \delta, \mathrm{~mm} & 4 \ldots 5 & 6 \ldots 8 & 8 \ldots 10 & 10 \ldots 12.5 \\
\hline b, \mathrm{~mm} & 3 & 5 & 5 & 8 \\
\hline
\end{array} D_{1}=D_{\mathrm{a}}+5 d_{h} ; \quad c \approx d_{h} ; \quad h=(1.0 \ldots 1.2) d_{h} ; \quad \delta_{1} \approx \delta ; \delta_{2} \approx 1.2 \delta,
\end{gathered}
$$

where d_{h} is diameter of the hole for a screw from table 12.7
Table 12.7
Diameters of holes for bolts, $\mathbf{m m}$

Bolt diameter	M10	M12	M16	M20	M24	M30	M36
Hole diameters for anchor bolts	-	15	19	24	28	35	42
Hole diameter for tie bolts	11	14	18	22	26	33	-

12.3. Designing casings.

Casings are used to support torque-transmitted elements in design position and take up loads developed in speed reducers during operation. The main material of casings is cast-iron.

A casing must be rigid to prevent shaft misalignment under internal and external loads. This can be achieved by using stiffening ribs that also carry out the function of cooling fins.

Casing may have split or single-peace construction. For split constructions the joint between a casing and a cover is usually provided in the plane parallel to the base and that passes through the axis of rotation of corresponding gears.

The main dimensions of the casing (Fig. 12.7):
12.3.1. Casing and cover wall thickness:

- for single stage spur gear speed reducer $\delta=0.025 \cdot a_{w}+1 \geq 8 \mathrm{~mm}$;
- for single stage bevel gear speed reducer $\delta=0.05 \cdot R_{e}+1 \geq 8 \mathrm{~mm}$;
- for single stage worm gear speed reducer $\delta=0.04 \cdot a_{w}+4 \geq 8 \mathrm{~mm}$,
where a_{w} is the centre distance, R_{e} is outer cone distance.
12.3.2. Flange thickness at the joint plane

$$
b=1.5 \cdot \delta
$$

12.3.3. Thickness of the flange for connection to a frame

$$
p=2.35 \cdot \delta
$$

12.3.4. Thickness of the rib

$$
m=(0.8 \ldots 1.0) \cdot \delta
$$

12.3.5. Diameter of the anchor bolt

$$
\begin{aligned}
d_{1}= & (0.03 \ldots 0.036) \cdot a_{w}+12, \\
& d_{1}=0.072 \cdot R_{e}+12 .
\end{aligned}
$$

Obtained magnitude of d_{1} should be rounded off to the nearest greater side according to standard series given in table 12.9.
12.3.6. Number of anchor bolts

$$
z=0.005 \cdot\left(L_{0}+B_{0}\right) \geq 4,
$$

where B_{0} is the width of the speed reducer base; L_{0} is the length of the speed reducer base. It is necessary to note that the number of anchor bolts should be always even.
12.3.7. Diameter of the tie-bolt near bearings

$$
d_{2}=(0.7 \ldots 0.75) \cdot d_{1} .
$$

Obtained value of d_{2} should correspond to standard value (table 12.9).
12.3.8. Diameter of tie bolts that connect the casing and the cover flanges

$$
d_{3}=(0.5 \ldots 0.6) \cdot d_{1} .
$$

Round off obtained value of d_{3} to the greater side according to standard series (table 12.9).
12.3.9. Distance between tie-bolts of diameter d_{3}

$$
l=(10 \ldots 12) \cdot d_{3} .
$$

12.3.10. Disposition of bolts on the flange (Fig)

$$
\begin{gathered}
x=(1 \ldots 1.2) \cdot d_{\mathrm{hole}}, \\
y=\delta+e,
\end{gathered}
$$

where $d_{\text {hole }}$ is the diameter of the hole for fitting the bolt (table 12.7); e is the distance that allows to grip the bolt head by a spanner (table12.8).

Table 12.8

Value of e

Diameter of the bolt	M10	M12	M16	M20	M24
$e, \mathrm{~mm}$	13	14	16	20	24

12.3.11. Height of the boss is determined from structural consideration taking into account the following requirement

$$
q \geq 0.5 \cdot d_{2}+d_{k}
$$

where d_{k} is the diameter of the bolt, that connects the bearing cap with the casing (table12.4).

12.3.12. Dimensions of bolts, nuts and washers are given in tables 12.9-12.11. The length and threaded length of the bolt are given in table 12.12. Engaged length of the bolt, the depth of the hole and threaded length of the hole are determined according to table 12.13.
12.3.13. In order to hold together the casing and the cover and to prevent their relative movement in axial direction two pins are used. They are placed along the flange diagonal. The diameter of the pin is determined as $d_{\text {pin }}=0.5 \cdot d_{1}$.
12.3.14. For transition and installation the cover and the casing should be made with lifting eye-bolts (table 12.14) or eyes and load hooks (Fig. 12.8).

Fig.12.8. Load eyes and hooks
12.3.15. For gear inspection and lubrication an inspection hole is provided in the upper portion of the cover. The cover of the inspection hole is determined according to table 12.15.
12.3.16. During operation, pressure inside a casing increases due to heating of the oil and air. As a result the lubricant is ejected outside through seals and joints. To avoid this fact air-vents are provided in the top portion of the casing for connection between the inner space and the environment. Possible constructions of air-vents are given in tables 12.16 and 12.17.
12.3.17. For draining the oil with grit and other debris a drain hole is made in the casing bottom, which is stopped with a plug with either straight or taper thread (table 12.18).
12.3.18. The level of the oil contained in the speed-reducer casing is checked with oil gauges of various constructions. Among them there are dip sticks (table 12.19) or transparent tube gauges. (table 12.20).

Standard bolts (GOST 7798-70)

Parameter	Thread diameter $d, \mathrm{~mm}$							
	6	8	10	12	16	20	24	30
Thread pitch, mm	1.0	1.25	1.5	1.75	2.0	2.5	3.0	3.5
Radius $r, \mathrm{~mm}$ not more	0.6	1.1	1.1	1.6	1.6	2.2	2.2	2.5
Diameter D, mm	11	14.5	19	21	27	33.5	40.5	50.9
Span $S, \mathrm{~mm}$	10	13	17	19	24	30	36	46
Height $H, \mathrm{~mm}$	4.5	5.5	7	8	10	13	15	18.7

Table 12.10
Standard nuts (GOST 5915-70)

Parameter	Thread diameter $d, \mathrm{~mm}$									
	6	8	10	12	16	20	24	30	36	
Thread pitch, mm	1.0	1.25	1.5	1.75	2.0	2.5	3.0	3.5	4.0	
Diameter $D, \mathrm{~mm}$ near	11	14.5	19	21	27	33.5	40.5	51.5	62	
Span $S, \mathrm{~mm}$	10	13	17	19	24	30	36	46	55	
Height $H, \mathrm{~mm}$	5	6.5	8	10	13	16	19	24	29	

Table 12.11
Standard spring washers (GOST 6402-70)

Parameter	Thread diameter $d, \mathrm{~mm}$								
	6	8	10	12	16	20	25	30	36
Diameter $d_{0}, \mathrm{~mm}$	6.1	8.2	10.2	12.2	16.3	20.5	24.5	30.5	36.5
Thickness $s, \mathrm{~mm}$	1.4	2.0	2.5	3.0	3.5	4.5	5.5	6.5	8.0

Table 12.12
Bolt and screw length, mm

d	L / l_{0}	d	L / l_{0}
8	$\frac{8 \ldots . \ldots 5}{l_{0}} ; \frac{30 \ldots 100}{22}$	16	$\frac{20 \ldots 40}{l_{0}} ; \frac{48 \ldots 150}{38} ; \frac{160 \ldots 300}{44}$
10	$\frac{10 \ldots 30}{l_{0}} ; \frac{35 \ldots 150}{26} ; \frac{160 \ldots 200}{32}$	20	$\frac{25 \ldots 50}{l_{0}} ; \frac{55 \ldots 150}{46} ; \frac{160 \ldots 300}{52}$
12	$\frac{14 \ldots 30}{l_{0}} ; \frac{35 \ldots 150}{30} ; \frac{160 \ldots 260}{36}$	24	$\frac{35 \ldots 60}{l_{0}} ; \frac{65 \ldots 150}{54} ; \frac{160 \ldots 300}{60}$

Bolt length should be chosen from the following standard series, mm: $8,10,12,14,16,20,25,30,35,40,45,50,55,60,65,70,75,80,90$, $100,110,120,130,140,150,160,170,190,200,220,240,260,300$.

Table 12.13
Dimensions of bolt joints

Parameter	Thread diameter d, mm							
	6	8	10	12	16	20	24	
a, not less	$1.25 \cdot \mathrm{~d}$							
a_{1}, not less	3.5	4	4.5	5.5	6	7	8	
a_{2}, not less	2	2.5	3	3.5	4	5	6	
a_{3}, not less	6	8	9	11	12	15	18	
a_{4}	$1.5 \ldots$	1.5	$2 \ldots$	$2 \ldots$	$2.5 \ldots$	$2.5 \ldots$	$3 \ldots$	
c	1	1.6	1.6	1.6	2	2.5	2.5	
D_{1}		15	18	22	30	35	42	
D_{2}		18	22	25	30	38	45	

Table 12.14
Lifting eye-bolts, mm (GOST 4751-73)

d	d_{1}	d_{2}	h	h_{1}	l	f	c	x
M8	36	20	18	6	18	2	1.2	2.5
M10	45	25	22	8	21		1.5	3
M12	54	30	26	10	25		1.8.	3.5
M16	63	35	30	12	32		2	4

Table 12.15
Inspection hole cover

A mm	B mm	A_{l} mm	B_{l} mm	C mm	C_{l} mm	K mm	R mm	Dimensions of screw	Number of screws
100	75	150	100	125	-	100	12	$\mathrm{M} 8 \times 22$	4
150	100	200	150	175	-	125	12	$\mathrm{M} 8 \times 22$	4
200	150	250	200	230	130	182	15	$\mathrm{M} 10 \times 22$	6

Table 12.16
Air vent, mm

d	d_{l}	d_{2}	D	h	l	a	H_{l}	H_{2}	a_{l}
M 12 x 1.75	12	20	32	40	12	5.5	29	24	13
$\mathrm{M} 16 \times 2$	16	25	40	50	16	7	35	30	16

Air vent, mm

d	D	l	l_{l}	d_{l}	a	s
$\mathrm{M} 12 \times 1.25$	16	19	10	4	2	17
$\mathrm{M} 16 \times 1.5$	22	23	12	5	2	22
$\mathrm{M} 20 \times 1.5$	30	28	15	6	4	22

Table 12.18
Plugs for drain holes, mm

d	b	m	a	L	D	s	l
M12x1.25	12	8	3	23	26	1.7	19.6
M16x1.5	15	9		28	30	22	24.4
M20x1.5		10		29	32		

Table 12.19
Dip sticks, mm

d	d_{l}	Thread pitch	d_{2}	D	l_{1}	l_{2}	L
3	10	1.0	16	20	10	12	16
4	12	1.25	20	25	12	15	20
6	16	1.5	25	32	15	15	25

Table 12.20
Transparent tube gauge, mm

d	D	D_{l}	L
30	60	48	12
50	82	70	14.5

12.4. Designing lubrication system of the speed reducer.

Lubrication serves to decrease frictional loses, to offer protection against corrosion and to improve speed reducer operation. The usual lubricants for meshing elements, bearings of the speed reducer are mineral and synthetic oils and greases.

The basic parameter of any oil is its viscosity that characterizes the ability of fluid layers to resist flow. The oil viscosity is chosen depending upon the expected peripheral speed, load and tooth materials. It should be raised with increasing load and decreasing speed. The oil viscosity is determined according to tables 12.21and 12.22. The oil is chosen by table 12.23 .

Table 12.21
Recommended viscosity of oils for lubricating gearing when $\mathbf{t}=\mathbf{5 0}{ }^{\circ} \mathbf{C}$

Contact stresses , σ_{H}, MPa	Kinematic viscosity, 10^{-6} at peripheral speed $V, \mathrm{~m} / \mathrm{sec}$		
	Up to 2	Over 2 to 5	Over 5
Up to 600	34	28	22
Over 600 to 1000	60	50	40
Over 1000 to 2000	70	60	50

Table 12.22
Recommended viscosity of oils for lubricating worm gears when $t=100^{\circ} \mathrm{C}$

Contact stresses, σ_{H}, MPa	Kinematic viscosity, 10^{-6} at peripheral speed $V, \mathrm{~m} / \mathrm{sec}$		
	Up to 2	Over 2 to 5	Over 5
Up to 200	25	20	15
Over 200 to 250	32	25	18
Over 250 to 300	40	30	23

There are two methods of lubrication:

- immersion lubrication, when toothed wheels are immersed into the oil bath;
- stream lubrication, when oil feeds the contact area of toothed wheels by means of special nozzles.

Table 12.23
Recommended oil grades for general-purpose speed reducer

Oil	Oil grade	Kinematic viscosity, $10^{-6} \mathrm{~m}^{2} / \mathrm{c}$
Industrial	И-12A	$10-14$
	И-20A	$17-23$
	И-25A	$24-27$
	И-30A	$28-33$
	И-40A	$35-45$
	И-50A	$47-55$
	И-70A	$65-75$
	И-100A	$90-118$
Aviation	MC-14	14
	MK-22	22
	MC-20	20.5

Immersion lubrication is effective when peripheral speed is less than $10 \mathrm{~m} / \mathrm{sec}$.

The oil bath lubricates the larger wheel. The recommended depth of immersion of the spur gear ranges from m to $5 \cdot m$ but not less than 10 mm (m is the module of the gearing). Bevel gears are immersed along the entire length of a tooth.

In worm-down speed reducers the oil level should not exceed the thread height of the worm. But in this case the oil level should not rise above the centre of the lower rolling element of the worm shaft bearings. If the worm is not immersed in oil the additional rings with blades are used (Fig. 12.9). In worm-up arrangement the worm gear should be immersed not more than $1 / 3$ of the worm gear radius.

Let us determine the volume of the oil bath.
Needed volume is chosen to ensure removing the heat generated in the engagement of a gearing to casing walls. Recommended volume of the oil bath is chosen as 0.35 to 0.7 liter of the oil per 1 kilowatt of transmitted power. Consequently, the needed volume $V=(0.35 \ldots 0.7) \cdot P_{\text {motor }}$.

Fig. 12.9. Ring with blades
The larger volume corresponds to the longer oil life and better lubrication conditions. That is why the volume of the oil bath is only limited by the maximum permissible oil level in the casing.

The distance between the oil level and the speed reducer bottom is determined as $H=\frac{V}{S}$, where $S=L \cdot B$ is the area of the speed reducer inner space in $\mathrm{dm}^{2} ; L$ and B are correspondingly the length and the width of the speed reducer inner space in dm . It is necessary to note that the minimum distance between tops of teeth of the larger gear and the speed reducer bottom is 20 mm .

Lubrication of bearings.
Bearings may be lubricated with the same oil as used for the mashing parts (when the peripheral speed is greater than $3 \mathrm{~m} / \mathrm{sec}$) or individually with greases.

Splash lubrication is used when the bearings are installed in cases which are not insulated from the general system of lubrication unit. Rotating parts (gears, wheels etc.) come into contact with oil which fills in into the housing then under rotation sprays oil, which falls on the rolling bodies and bearing tracks.

To protect the bearings from the heavy jets of oil (which create high-speed helical pinions or worms) the shields (protective washers) are installed (Fig. 12.10).

Pressure lubrication through

Fig. 12.10. Bearings with shields nozzles is used for reducers, working for a long time without interruption, as well as for the bearings of high-speed transmission, which is necessary to provide intensive heat removal.

Oil fog lubrication is used for high-speed understressed bearings. This method allows to penetrate the oil in the bearings, located in inaccessible places, creates a flow with minimal lubrication oil consumption provides a good cooling of bearings and the pressure protects the assembly from contamination.

Greases offer better protection against corrosion than oils and it's used when environment contains harmful impurities or the temperature sharply changes. In this case grease-retaining rings (Fig 12.11) are used to isolate the bearing cavity from the inner space of the casing. The ring

Fig. 12.11. Grease-retaining ring

Fig. 12.12 Bearing assembly with grease cup
periphery should extend over the end face of the bearing housing for 1 or 2 mm (Fig. 12.12). The gap between the ring periphery and the housing should be about 0.2 mm . The ring rotates together with the shafts and it has from two to four grooves. In order to feed the grease inside the bearing without removing the cap grease cups are used (Fig.12.12). The lubricant is injected under pressure by means of a grease gun.

12.5. Analysis of keyed joints.

Dimensions of keys are chosen according to table 12.24 depending upon the shaft diameter. The length of the key should be less than the hub length by $5 \ldots 10 \mathrm{~mm}$ and corresponds to the standard series.

In general-purpose speed reducer, keyed joints are usually analyzed to prevent bearing stresses.

$$
\sigma_{\text {bear }}=\frac{2 \cdot T}{d \cdot\left(h-t_{1}\right) \cdot l_{d}} \leq\left[\sigma_{\text {bear }}\right],
$$

where T is the torque in $\mathrm{N} \cdot \mathrm{mm} ; d$ is the diameter of the shaft in $\mathrm{mm} ; h$ is the height of the key in mm ; t_{1} is the depth of the slot in the shaft; l_{d} is the design length of the key in mm (for keys with round sides $l_{d}=l-b$; for keys with square sides $l_{d}=l$, where l is the length of the key; b is the width of the key); [$\sigma_{\text {bear }}$] is the allowable bearing stress (for cast-iron hubs $\left[\sigma_{\text {bear }}\right]=60 \ldots 80 \mathrm{MPa}$; for steel hubs $\left.\left[\sigma_{\text {bear }}\right]=100 \ldots 120 \mathrm{MPa}\right)$.

Table 12.24
Standard Sunk Keys

Shaft diameter d, mm	Key cross section, mm		Keyseat depth, mm		Length l
	b	h	shaft, t_{1}	hub, t_{2}	
Over 17 to 22	6	6	3.5	2.8	Over 14 to 70
Over 22 to 30	8	7	4	3.3	Over 18 to 90
Over 30 to 38	10	8	5	3.3	Over 22 to 110
Over 38 to 44	12	8	5	3.3	Over 28 to 140
Over 44 to 50	14	9	5.5	3.8	Over 36 to 160
Over 50 to 58	16	10	6	4.3	Over 45 to 180
Over 58 to 65	18	11	7	4.4	Over 50 to 200
Over 65 to 75	20	12	7.5	4.9	Over 56 to 220
Over 75 to 85	22	14	9	5.4	Over 63 to 250
Over 85 to 95	25	14	9	5.4	Over 70 to 280
Over 95 to 110	28	16	10	6.4	Over 80 to 320
Over 110 to 130	32	18	11	7.4	Over 90 to 360

Note: The length of the key is chosen according to the following series: 6;
8; 10; 12; 14; 16; 18; 20; 25; 28; 32; 35; 40; 45; 50; 56; 63; 70; 80; 90; 100;
110; 125; 140; 160; 180; 200.

13. DESIGNING THE MECHANICAL DRIVE

A mechanical drive is drawn in two projections (as a rule, front view and top view) to scale $1: 4$ or $1: 5$.
13.1. Draw the main structural units of the mechanical drive. Among them there is electrical motor (table 9.1), coupling with rubberbushed studs (tables 9.7), belt drive, speed reducer, open gearing, chain drive. Dimensions of all mentioned above elements and units have been found.

13.2. Design the output shaft of the mechanical drive (Fig.13.1).

Fig.13.1. Output shaft of the mechanical drive
Determine the minimum diameter of the output shaft. For this purpose we use the same formula as for the speed reducer shafts

$$
d_{\min }=\sqrt[3]{\frac{T}{0.2 \cdot[\tau]}} .
$$

If the output shaft of the mechanical drive is joined with the speed reducer shaft by the coupling, the minimum diameter of the mechanical drive output shaft is equal to the minimum diameter of the speed reducer output shaft.

On the cantilever portion of the output shaft half coupling, sprocket or gear may be mounted. They should be fixed in the axial direction. That is why it is necessary to provide the shoulder on the shaft. Then the diameter of the second portion of the shaft is determined as $d_{2}=d_{1}+2 \cdot t_{1}\left(t_{1}\right.$ is chosen from table 9.2).

The second portion of the output shaft is for mounting a bearing. That is why the diameter of this portion should be ended by 0 or 5 .

The next portion of the output shaft is necessary for installation of the drum or conveyer sprockets. Diameter of this portion is $d_{3}=d_{2}+2 \cdot t_{1}$.

The last portion of the output shaft is for mounting the second bearing. The diameter of this portion is d_{2}.
13.3. Design supports of the output shaft.

As a rule, supports of the output shaft are mounted in different housings. In order to compensate inaccuracy and misalignment in assembly self-aligning double-row spherical radial ball bearings of the light-weight series are used (table 13.1). Owing to the race spherical surface of the outer ring, these bearings can handle the shaft misalignment of up to 2 or even 3 .

Table 13.1
Double-row radial ball bearings (GOST 28428-90).
Lightweight series, mm

Bearings of the output shaft are arranged as the fixed and floating supports located in bearing housings (table 13.2). The fixed support can take up double-sided axial load. For that the inner and outer rings of the bearing are fixed in both axial directions. The floating support should compensate deformation of the shaft. In this case the inner ring of the bearing is fixed in both directions. For that we use boundary plates (tables 13.3 and 13.4) or spring rings (table 13.5). The outer ring is left free.

Table 13.2
Standard УM series bearing housings (GOST 13218.3-80), mm

Table13.3
Boundary plate (GOST 14734-69), mm

Designation	D	H	A	d	d_{2}	c	D_{0}	d_{3}	d_{l}	l	l_{1}	$\begin{gathered} \hline \text { Screw } \\ \text { (ГОСТ } \\ 7798-70) \end{gathered}$	$\begin{gathered} \text { Pin } \\ (\Gamma O C T \\ 3128-70) \end{gathered}$
7019-0623	32		9				24... 28						
7019-0625	36		10				28... 32						
7019-0627	40	5	10	6,6	4,5		32...36	M6	4	18	12	M6×16	$4 m 8 \times 12$
7019-0629	45	5	12		4,5	1,	36... 40					M6x	$4 m 8 \times 12$
7019-0631	50		16				40... 45						
7019-0633	56		16				45... 50						
7019-0635	63		20				50...55						
7019-0637	67		20				55... 60						
7019-0639	71	6	25	9,0	5,5	51,6	60...65	M8	5	22	16	M 8×20	$5 m 8 \times 16$
7019-0641	75		25				65... 70						
7019-0643	85		28				70... 75						

Table 13.4
Boundary plate with two screws and retaining plate, $\mathbf{m m}$

D_{0}	D	H	D_{l}	c	l_{1}	l_{2}	Screw $d \times l$
From 35 to 40	50	6	20	0,5	20	24	M 8×20
above 40 to 45	55		20				
from 45 to 50	60		25				
from 50 to 60	70	8	30		30	35	м 12×30
from 60 to 70	80		35				
from 70 to 80	90	10	40				
from 80 to 90	110		45				
from 90 to 100	120	12	50		36	42	m16×36
from 100 to 110	125		55				
from 110 to 120	140		60				
from 120 to 130	150		65				

Table 13.5

Spring snap rings and grooves for them (ГОСТ 13942-86), mm

Shaft diameter d	Grooves		Rings		
	d_{1}	B	s	b	l
35	33.0	1.9	1.7	4.9	6.0
40	37.5			5.5	
45	42.5				
50	47.0	2.2	2.0	6.0	
55	52.0				
60	57.0			6.5	
65	62.0	2.8	2.5		
70	67.0			7.0	
75	72.0			8.0	
80	76.5			8.0	

13.4. Design the drum or sprockets of the conveyer.

Diameter of the drum (sprocket) is given in the specification for the course project.

The drum (sprockets) should be mounted on the output shaft by distance 100 or 200 mm relative to supports.

There exist cast drums and welded drums. Welded drums are used more frequently.

For determination sizes of the conveyer sprocket it is necessary to choose a pull chain (table 13.6).

Dimensions of the pull chain sprocket are determined in the following way:

- addendum circle diameter
$D_{a}=D+0.25 \cdot D_{1}+6 \mathrm{~mm} ;$
- dedendum circle diameter
$D_{f}=D-D_{1}$;
$b=0.9 \cdot B_{\text {bush }}$;
where D is the nominal pitch circle diameter of the sprocket (look through the specification for the course project)); D_{1} is the diameter of the roller; $B_{\text {bush }}$ is the bush width.

Possible constructions of welded drums are given in Fig.13.2. The rim and disks of the drum are made of steel sheet of thickness 8 mm . Ribs of the drum are produced from the strip of width 40 mm and thickness 6 mm .

Fig. 13.2. Welded drums

13.5. Design the welded frame.

Welded frames are used for mounting assembly units. They should correspond to certain requirements of accuracy to provide needed relative disposition of assembly units. Besides, the welded frame should have high rigidity.

Table 13.6
Standard pull chains (GOST 588-81), mm

Welded frames are obtained as a result of welding steel rolling elements such as channel bars, angle (L) bars, strips, sheets and others. Channel bars are used more frequently.

The height of the channel bar is determined as

$$
H \approx 0.1 \cdot L_{\max },
$$

where $L_{\text {max }}$ is the maximum length of the mechanical drive.
Obtained value of H should be rounded off to the greater side according to standard series given in table 13.7.

In order to simplify fixation of assembly units to the frame channel bars are mounted with outside flanges. For aligning the base surface for the bolt head we use skew plates (table13.8).

If assembly units of the mechanical drive are located at different levels we may use constructions of frames given in Fig.13.3, $a-e$.

Table 13.7

Channels (GOST 8240-97), mm

		Number of		men	ns, m	
	\square	channel	h	b	s	t
		14	140	58	4.9	8.0
	H-2	16	160	64	5.0	8.4
		18	180	70	5.1	8.7
\approx	s	20a	200	80	5.2	9.0
		22a	220	87	5.4	9.5
	inclination	24a	240	95	5.6	10.7
	${ }^{0.11}$	27	270	95	6	10.5
	$b^{\text {pog }}$	30	300	100	6.5	11
		33	330	105	7	11.7

Table 13.8
Standard skew plates (GOST 10906-78)
Skew plates parameters, mm

Fig.13.3. Alternatives of frames, when assembly units are located at different levels.

During operation of the belt drive the belt stretches. In order to provide tension of the belt at the required level belt tension adjusters are used. Possible constructions of belt tension adjusters are given in Fig 13.4, a, b and table 13.9.

a

Fig.13.4. Constructions of belt tension adjusters.
Table13.9
Sledges for electric motor

14. SHOP DRAWINGS OF SPEED REDUCER ELEMENTS

According to the specification for the course paper it is necessary to make two shop drawings such as the shop drawing of the speed reducer output shaft and the shop drawing of the toothed wheel.

Shop drawing of the output shaft

The shop drawing is carried out to scale $1: 1$ or $1: 2$. First of all, it is necessary to plot the output shaft according to the dimensions of assembly drawing. The shaft must be drawn in the position of installing on a machine, i.e. the axis of the shaft should be parallel to the main inscription. Transition from one installing diameter to the other is carried out by means of fillets or grooves. Fillets are used when the installing surface is not ground. Shaft portions where bearings are installed should be ground. As a space required for grinding wheel grooves are used. Possible alternatives of grooves are shown in table 14.1. Dimensions of grooves are given in table 14.1. In the shop drawing grooves should be represented to the increased scale separately.

Table 14.1
Grooves for a grinding wheel in shafts and their dimensions, $\mathbf{m m}$

d	b	d_{1}	R	R_{1}
Over 10 to 50	3	$d-0.5$	0.1	0.5
Over 50 to 100	5	$d-0.5$	1.6	0.5
Over 100	8	$d-1.0$	2.0	1.0

The next step is dimensioning the drawing. The number of dimensions should be minimal but enough to produce the shaft. Chamfers and grooves width cannot be included to the total dimensions chain.

There exist three methods of dimensioning drawings:

- chain method that provides the accuracy of disposition of every following element relative to the previous. In this case the accuracy relative to certain base is decreased;
- coordinate method according to which dimensioning of a drawing is carried out with respect to base A;
- combined method that consists of the chain and coordinate methods.

For the shop drawing the recommended method is combined method. Dimensioning in the axial direction is carried out under an element drawing.

As it is known dimension must be held between two limits. The difference of these limits is called tolerance. Tolerance limits of relatively low accuracy dimensions are not marked on a drawing. In this case it is necessary to make the following inscription:
"Dimensional tolerances: holes H14, shafts h14, other elements $\pm \frac{\text { IT14 }}{2}$ (medium accuracy class)".

The nature of elements connections is called a fit. Fits may provide clearance or interference. There exist also transition fits that may have either clearance or interference. Fits are marked by a letter of Roman alphabet. Letters $a-h$ corresponds to clearances, $j s-n-$ transition fits, $p-z$ - interference. A numeral near a letter shows the quality grade. There exist 19 quality grades. For mechanical engineering the most typical are quality grades 5 through 12 . Quality grades 6 through 8 refer to critical parts and units.

Example of the shaft drawing - Fig. 14.1, example of the gears construction - Fig. 14.2-14.4.

Fits of main elements

1. Straight spur gear on the shaft $-\frac{H 7}{p 6}$;
2. Helical spur gear and worm gear on the shaft $-\frac{H 7}{r 6}$;
3. Bevel gear on the shaft $-\frac{H 7}{s 6}$;
4. Coupling and gear located on a cantilever portion of the shaft $\frac{H 7}{k 6}$;
5. Pulleys or sprockets $-\frac{H 7}{h 6}$;
6. Commercial seals - h11;
7. Inner ring of a bearing - $k 6$;
8. Outer ring of a bearing $-H 7$;
9. The width of a keyseat in the shaft $-P 9$;
10.The width of a keyseat in the hole of a hub $-J_{S} 9$.

During treatment of the shaft besides errors of linear dimensions errors of geometrical shapes and errors of surfaces disposition arise.

Possible errors of geometrical shapes are non-cylindrical surfaces, non-rounding, non-flatting.

For shaft portions and gear holes tolerances of cylindrical surface should be taken into account. Sign /o/ marks tolerance of cylindrical surface. The magnitude of this tolerance is determined as $0.3 \cdot t \cdot 10^{-3}$, where t is diametrical tolerance range in micrometers (table 14.2). Obtained value of the tolerance should be rounded off according to the following standard series: $0.004,0.005,0.006,0.008,0.01,0.012,0.016$, 0.02.

Table 14.2
Tolerance ranges in micrometers

Dimensions in	Quality grades											
mm	3	4	5	6	7	8	9	10	11	12	13	14
Over 3 to 5	2.5	4	5	8	12	18	30	48	75	120	180	300
Over 6 to 10	2.5	4	6	9	15	22	36	58	90	150	220	360
Over 10 to 18	3	5	8	11	18	27	43	70	110	180	270	430
Over 18 to 30	4	6	9	13	21	33	52	84	130	210	330	520
Over 30 to 50	4	7	11	16	25	39	62	100	160	250	390	620
Over 50 to 80	5	8	13	19	30	46	74	120	190	300	460	740
Over 80 to 120	6	10	15	22	35	54	87	140	220	350	540	870
Over 120 to 180	8	12	18	25	40	63	100	160	250	400	630	1000
Over 180 to 250	10	14	20	29	46	72	115	185	290	460	720	1150

Possible errors of surface dispositions are non-perpendicularity relative to a base, misalignment, non-symmetry, non-parallelism.

For shafts it is necessary to use total tolerances that take into account tolerance of shape and tolerance of surface disposition: radial run-out that allows for non-rounding and misalignment and end-play that takes into account non-flatting and non-perpendicularity.

The magnitude of radial run-out \nearrow depends upon the peripheral speed and is determined according to table 14.3.

The magnitudes of end play \nearrow may be found according to table 14.4.

Table 14.3
Tolerances of radial run out of shaft portions for fitting toothed wheels, pulleys, couplings

Peripheral speed of elements mounted on a shaft, $\mathrm{m} / \mathrm{sec}$	<2	$2 \ldots 6$	$6 \ldots 10$	>10
Tolerance of radial run out	$2.0 \cdot \mathrm{t} \cdot 10^{-3}$	$1.4 \cdot \mathrm{t} \cdot 10^{-3}$	$1.0 \cdot \mathrm{t} \cdot 10^{-3}$	$0.7 \cdot \mathrm{t} \cdot 10^{-3}$

Table 14.4
Tolerances of end play of gearings, hubs, of toothed wheels and shaft shoulders

Degree of accuracy	For gearing at $d=100 \mathrm{~mm}$, and at face width of		For toothed wheel hub and shaft shoulder at bore diameter (shaft diameter of)		
	<55	$55 \ldots 110$	<55	$55 \ldots 80$	>80
6	0.017	0.009	0.02	0.03	0.04
7	0.021	0.011	0.02	0.03	0.04
8	0.026	0.014	0.03	0.04	0.05
9	0.034	0.018	0.03	0.04	0.05

As a base the shaft axis of rotation is used for surfaces where bearings are installed. In order to eliminate misalignments of elements that are installed on the shaft we will use as a base of all other shaft surfaces, the surfaces where bearings are located.

Possible errors of a keyseat are non-parallelism and non-symmetry. Parallelism tolerance is marked as $/ /$ and is equal to $0.6 \cdot t_{k s} \cdot 10^{-3}$, where $t_{k s}$ is keyseat width tolerance range in micromeres (table 14.2). Symmetry tolerance is marked as \div and is $4 \cdot t_{k s} \cdot 10^{-3}$.

The next step is marking surfaces roughness.
Surface roughness may be evaluated by average deviation of profile R_{a} or height of profile irregularities R_{z} by ten points. Marking surface
roughness by R_{a} is more preferable. The magnitude of surface roughness depends upon the surface treatment and the quality grade.

Main surfaces roughness

- shaft portions for installing bearings -0.8 ;
- shaft portions for installing gears, half-couplings, sprockets, pulleys:
if $d<55 \mathrm{~mm}-0.8$, if $55<d<120-1.6$;
- shoulder face end for bearings fixation -1.6 ;
- shoulder face end for fixation of gears, sprockets, pulleys, halfcouplings - 3.2;
- shaft potion for installing seals -0.2 ;
- working surfaces of a keyseat made in the shaft - 1.6;
- holes of gears that are installed on the shaft if $d<55 \mathrm{~mm}-0.8$; if $55 \mathrm{~mm}<d<120 \mathrm{~mm}-1.6$;
- gear face end that is fixed by the shaft shoulder or the face end of other element - 3.2;
- free gear face end - 6.3;
- tooth profile
for $6^{\text {th }}$ degree of accuracy -0.4 ;
for $7^{\text {th }}$ degree of accuracy -0.8 ;
for $8^{\text {th }}$ degree of accuracy -1.6 ;
for $9^{\text {th }}$ degree of accuracy -3.2 ;
- working surfaces of a keyseat made in the hub-3.2.
$\sqrt[63]{6} /$

Fig. 14.1. Shop drawing of the output shaft

Fig. 14.2. Spur gear construction

$6.3 /(\mathrm{V})$		
Module	m	1,48
Number of teeth	z	121
Offset factor	x	0
Nominal pitchcircle diameter	d	153,56
Degree of accuracy		8

Fig. 14.3. Bevel gear construction

1. Dimensional tolerances holes - H14,
shafts - h14, other elements - \pm IT14 $/ 2$.
2. All unmarked fillet radii are equal to 6 .

Fig. 14.4. Worm gear construction

15. DESIGN OF A PARTS LIST

According to GOST 2.108-96 a Parts List is made in the form of tables on separate A4 papers for every assembly unit.
The Parts List consists of the following subparts:

1. Documentation
2. Assembly Units
3. Elements
4. Standard Elements
5. Materials

The name of every subpart has to be written in the form of the underlined title in the box "Description". It is recommended to remain 1-3 free lines for possible additional records.

The subpart "Documentation" includes the main set of design documentation, for example "Assembly Drawing", "Explanatory Note", etc.

The subpart "Assembly Units" includes assembly units, which are parts of the main item. For example, "Speed reducer", "Welded Frame", "Belt Tension Adjuster", "Drum Shaft", "Worm Gear", "Deep Stick", etc.

The subpart "Elements" includes nonstandard elements. For example, " Gear", "Input Shaft", "Cap", "Bearing Housing", "Driven Pulley", "Driving Sprocket", etc. It is recommended to list them alphabetically.

The subpart "Standard Elements" includes state and industry standard items. Standard elements are divided into groups, e.g. fastening elements, bearings, etc. and are listed alphabetically.

The subpart "Materials" includes materials used in the item, for which the parts list is made. For example, "Industrial Oil", "Wire", etc.

Parts list boxes to be filled in as following:

1. The "Paper Size" box contains the paper size of the item drawing (A1, A2, A3, A4). If there is no drawing for an item this box is filled in by WD (Without Drawing). For subparts "Standard Elements" and "Materials" this box should not be filled in.
2. The "Area" box is not filled in for course projects.
3. The "Item No." box contains consecutive number of the designed item component parts. For subpart "Documentation" this box should not be filled in.
4. The "Part Number" box contains designation of documents, assembly units and elements. For subparts "Standard Elements" and "Materials" this box should not be filled in.
5. The "Description" box contains
a) The name of a document for subpart "Documentation" (for example, Assembly Drawing, Explanatory Note, etc.)
b) The name of an item according to the main inscription on the drawing for subparts "Assembly Units" and "Elements" (for example Bevel Gear, Output Shaft, etc.)
c) The name and designation of an item according to state or industrial standard for subparts "Standard Elements" and "Materials" (for example, Bolt M12x70.58 GOST 7798-70.)
6. The "Quantity" box contains the number of assembly units, elements and standard elements for one item
7. The "Notes" box contains additional information about elements, documents, materials.
At the bottom of the Parts List the main frame is made similar as for drawings.

Designation of design documentation

Designation of design documentation consists of the following parts: NAU 12. 03.04.005 AA,
where
NAU is the institution code
1 is the number of task
2 is the number of variant
03 is the consecutive number of main assembly units which are a part of the designed item. For example, if the speed reducer (assembly unit of the mechanical drive) is marked by number 1 on the mechanical drive drawing the speed reducer should be designated as following

NAU 12.01.00.000 AD.
04 is the consecutive number of assembly units which are a part of the main assembly units. For example, if the worm gear (assembly unit of the speed reducer) is marked by number 4 on the speed reducer drawing the worm gear should be designated as following

NAU 12.01.04.000 AD.

005 is the consecutive number of elements which are a part of the item. For example, if the driven pulley (element of the mechanical drive) is marked by number 7 on the mechanical drive drawing, the driven pulley should be designated as following

NAU 12.00.00.007.
If the output shaft (element of speed reducer) is marked by number 9 on the speed reducer drawing, the output shaft should be designated as following

NAU 12.03.04.009.
AA is the code of a document. For example, assembly drawing is marked by AD, explanatory note - by EN, parts list - by PL. The mechanical drive assembly drawing and the explanatory note to this drawing are designated as following

NAU 12.00.00.000 AD
NAU 12.00.00.000 EN.
It is necessary to note that designation of the element drawing does not contain the document code.

The example of the Parts List for the mechanical drive is given in Fig.15.1.

Fig.15.1. Parts List for the mechanical drive

Fig.15.2. Parts List for the mechanical drive

References

1. Баласанян Р. А. Атлас деталей машин / Баласанян Р. А. - Х.: Основа, 1996. - 256 с.
2. Berezovsky Yu. Machine Design / Berezovsky Yu., Chernilevsky D., Petrov M. - М.: Мир, 1983. - 456 c.
3. Деталі машин: Конспект лекцій / [Павлов В. М., Крижановський А. С., Цимбалюк А. А. та ін.] - К.: НАУ, 2003. - 159 с.
4. Иванов М. П. Детали машин / Иванов М. П. - М.: Высшая школа, 1982. - 351 c.
5. Курсовое проектирование деталей машин / [Чернавский С. А., Боков К. Н., Чернин И. М. и др.] - М.: Машиностроение, 1987. - 416 с.
6. Павлище В. Т. Основи конструювання та розрахунок деталей машин / Павлище В. Т. - К.: Вища школа, 1993. - 556 с.
7. Шейнблит А. Е. Курсовое проектирование деталей машин: Учеб. Пособие / Шейнблит А. Е. - Калининград: Янтар. сказ., 2002. - 454 с.
8. Цехнович Л. Н. Атлас конструкций редукторов / Л. Н. Цехнович, И. П. Петриченко. - К.: Высшая школа, 1979. - 151 с.
9. Machine Elements. Term paper designing: manual/ A.S.Kryzhanovskyi, A.O.Kornienko, O.V.Bashta and others. - K.: NAU, 2011124 p .

CONTENTS

Introduction 3

1. Kinematic and force analysis of a mechanical drive 4
2. Analysis of allowable stresses 9
3. Analysis of the straight spur gears for strength 14
4. Analysis of the helical spur gears for strength 27
5. Analysis of the bevel gear for strength 29
6. Analysis of the worm gearing 32
7. Analysis of the flat belt drive 43
8. Analysis of the chain drive 47
9. Analysis of shafts 53
10. Shaft analysis for strength 67
11. Analysis of the rolling contact bearings 79
12. Designing the gear speed reducer. 83
13. Designing the mechanical drive 106
14. Shop drawings of speed reducer elements 116
15. Design of a parts list 125
16. References 130
