GENERAL METHODS GUIDELINES

The course paper in the subject Theory of Mechanisms and Machines
is one of the basic kinds of the student’s individual work. The purpose of
the course paper is to enhance the knowledge acquired by the student in
the lectures, practical classes and laboratory sessions, and develop the
skills of making research and design of present-day aircraft mechanisms
and machines.

The course paper is to include the following parts:

1. Kinematic and force analyses of a leverage.

2. A planetary gear design.

3. A gearing design.

Each part of the course paper should consist of a calculation and a
graphical sections.

All calculation sections are to be presented as an explanatory note
that is either typed or hand written in blue or black ink on one side of size
A4 paper. Every sheet is to be paginated and have the following margins:
top — 5 mm, bottom — 5 mm, right — 5 mm, and left — 20 mm.

An explanatory note should have the following four parts: a
kinematic analysis of a leverage, a force analysis of a leverage, a
planetary gearing design and a gearing design, as well as the contents
table, the assignment, the list of literature used in working on the course
paper. Each new part is to begin with a new page.

Each part must be subdivided into items marked with numerals
separated by a point. The first numeral represents the number of the part,
the second — shows the number of the item.

Calculations should be made in an order that corresponds to the
graphical plots. All magnitudes that are part of formulas are to be
explained. In addition, it is necessary to denote units of measurement of
parameters calculated.

The graphical section is to be executed on size A1 whatman paper
(partl) and A2 (part 2 and part 3) in pencil. Above every drawing there
should be an inscription indicating the scale. The title block should be
drawn in the bottom right hand corner.



1. KINEMATIC ANALYSIS OF LEVERAGES
1.1. Theoretical information

The kinematic analysis of a mechanism is carried out taking into
account the time factor only. In this case all forces acting on mechanism
links are ignored.

As we know from theoretical mechanics, the motion of any body is
characterized by its translation in space, velocity and acceleration. That is
why the main tasks of kinematic analysis are to plot mechanism diagrams
and paths of motion of separate points, to determine mechanism extreme
positions, linear velocities and accelerations of a mechanism points,
angular velocities and accelerations of mechanism links, the radius of
curvature at any path point and so on.

As a result of this analysis we can determine the correspondence of
kinematic parameters (translations, velocities and accelerations) to
predetermined conditions of mechanism functioning as well as receive
initial data for making further calculations. The knowledge of kinematic
parameters is necessary to determine dynamic loads (inertia forces,
moments of a couple of inertia forces), mechanism kinetic energy and
power. Paths of motion of some points and mechanism extreme positions
help to determine the links relative positions during their motion, to
eliminate their possible collisions, to determine the working stroke of
links, etc.

There exist graphical, analytical and experimental methods of
kinematic analysis.

Graphical research methods are most common in engineering.
They are quite simple, clear and accurate for engineering calculations.

While using graphical methods it is necessary to plot either
velocity and acceleration diagrams or kinematic diagrams.

Velocity and acceleration diagrams are drawn on the basis of
vector equations that connect velocities and accelerations of separate
points of mechanism links. These diagrams allow finding momentary
velocities and accelerations of different mechanism points as well as
angular velocities and accelerations of mechanism links.

Kinematic diagrams are graphs of mechanism point or link
translation, velocity and acceleration depending upon the time or turning
angle of an initial link. By means of these diagrams we may analyze the
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changes in the above mentioned kinematic parameters during a complete
cycle of mechanism motion.

Analytical research methods are more complicated, but owing to
the emergence of computers, they are widely practiced. These methods
help to get multivariant solutions and to choose mechanism diagrams and
sizes of their links providing optimum working conditions.

Experimental methods are used in experimental research work.

In graphical methods plotting mechanism diagrams, velocity and
acceleration diagrams is made to a certain scale. For this purpose, the
scale factor is employed. The scale factor is a ratio of a physical
magnitude (length, velocity, acceleration, etc.) to a segment length that
represents this magnitude in the figure. The scale factor is marked by
letter K with the magnitude index that is in the figure. For example, the
scale factor of length is marked by K, , the scale factor of velocities is Ky,
the scale factor of accelerations is K,. A scale factor has a dimension,
where the dimension of a real physical magnitude is the numerator and
the dimension of length in millimeters is the denominator. Thus, the scale
m/sec

mm
example, the velocity of point A VA = 5 m/sec is shown by segment

and so on. If, for

factor y, has the dimension of i, uy has
mm

pa = 100 mm in the figure, then the scale factor of the velocity diagram
is

_ V. _5m/sec _ m/sec
pa 100mm  mm

My

In the figure, where this velocity is shown, the following
inscription should be made: 1 mm ~ 0.05 m/sec. It means that in the
figure 1mm corresponds to 0.05 m/sec.

It is necessary to note that the dimensions in all figures given in
the guide were diminished. That is why the length of any segment in a
figure is less than the corresponding length given in the guide text.

The order of kinematic analysis is determined by mechanism
structure and depends upon the order of attachment of Assur’s group to a
group of initial links. That is why mechanism structural analysis always
precedes kinematic analysis. It allows reducing kinematic analysis of any



mechanism to studying separate Assur’s groups, for which special
expedients of kinematic and force analyses have been developed.

Kinematic analysis should be carried out in the order opposite to
mechanism structure.

After determining a mechanism structure we should plot a
mechanism kinematic diagram.

The kinematic diagram of a mechanism is graphic representation
of links relative position corresponding to a certain point of time and
taking into account the scale. By means of a mechanism kinematic
diagram we may analyze motion of both the whole mechanism and its
separate links, plot path of motion of any mechanism point, find extreme
positions of the mechanism.

Plotting a kinematic diagram of a mechanism is usually begun with
drawing a link whose position is given for a predetermined instant of
time. As a rule, it is the mechanism’s initial link. Kinematic diagrams are
drawn with the use of diagrammatic representations of links and
kinematic pairs.

Basic equations of velocities and accelerations

According to the graphical method of kinematic analysis after
drawing a mechanism kinematic diagram it is necessary to plot the
velocity and the acceleration diagram. For that, we should set up vector
equations of velocities and accelerations. We will consider two cases:
when two points are parts of one link and when two points are parts of
different links.

Two points being parts of one link. Let points A and B, which are
removed relative to each other at distance lag, be parts of one link (Fig. 1).

According to theoretical mechanics the velocity of any point of a
perfectly rigid body can be determined as the geometric sum of velocities
of transportation and relative motions. In our case, the transportation
motion is the motion of point A and the relative one is the rotatory
motion of the link about point A. Taking into account this fact, we may
set up a vector equation for finding the velocity of point B:

\_/B =\_/A +\_/BA,

where Vg, is the velocity of point B with respect to point A.
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In general, the vector of relative velocity is directed along the
tangent to the path of motion of the corresponding point. In our case,

Vea is perpendicular to AB.

The magnitude of relative velocity Vga is determined by the
following formula:

VBA :(D"gAB’

where ® is the link angular
velocity.
When the direction of

relative velocity Vsa is known

we may find the direction of
angular  velocity ® and
vice versa. For this purpose it
is necessary to show the direction Fig.1.Relative motions of two points
of Vga at point B. The direction that are a part of one link
of @ is determined according to
the direction of Vga.

In the same way, we can write a vector equation for finding the
acceleration of point B.

5.3 = EA +5.BA;
where ag, is the acceleration of point B relative to point A.
During relative rotatory motion acceleration ag, is resolved into
normal acceleration ag, directed to the centre of rotation, i.e. from point

B to point A and tangential acceleration ag, directed along the tangent to

the path of motion of point B (in our case perpendicular to AB). Then we
obtain the following vector equation for point B

- — —n -z
ag =aat+ass +asa.
The magnitudes of accelerations ag,and a;, may be found

according to the following formulas:

V2

n _ 2 __ VBA
gy =l pg O =y
AB




Apr =€l 55,

where ¢ is the link angular acceleration.
According to the direction of a;, we may determine the direction

of € and vice versa (Fig.1).

Two points belong to different links that form a sliding kinematic
pair and coincide with each other at given instant of time. Let point A be
a part of link 1 and point B belong to link 2 (Fig. 2). Links 1 and 2 form
the sliding kinematic pair with the guide of motion Hi,. In the same way
as in the previous case, the velocity of point B consists of transportation
and relative velocities. Transportation motion is the translational motion
of link 1 and transportation velocity is the velocity of the point of link 1
that coincides with point B at a given instant of time (in our case it is
point A). The relative velocity of point B is the velocity of link 2 relative
to link 1. During the motion of link 2 with respect to link 1 point B
moves along a straight line that is parallel to guide H,. That is why
relative velocity Vg, is parallel to Hy,. Thus, the vector equation for the
velocity of point B has the following form:

\_/B =\_/A +\_/BA.

The acceleration of point B
consists of three components such
as transportation acceleration (in
our case it is the acceleration of
point A) a,, relative acceleration
ag, and Coriolis acceleration ag, .

Then the vector equation for the
acceleration of point B is

- —c -
as =aa tapa +asa.

Links 1 and 2, which form the
sliding kinematic pair, do not have

Fig.2. Relative motions of points A relative rotation. That is why their
and B that belong to different links angular velocities and accelerations
and coincide with each other at are identical, i.e.m>,= 1 and &, = &;.

a given instant of time



Coriolis acceleration a;, appears as a result of interaction of

transportation and relative motions. It may be found according to the
following formula:

c _
Agp =2 Vga -0,

where Vg, is the velocity of relative motion; o, is the angular velocity of
transportation motion.

Vector ag,is directed to the side where vector Vga will be

directed if it is turned by 90° in the direction of angular velocity o, (Fig.
2).

1.2. Kinematic analysis of
the aircraft air compressor mechanism

Initial data

Geometrical dimensions of the mechanism: Ipa = 20 mm; lag = 60
mm; lac = 50 mm; las; = 20 mm; lass = 25 mm; angle between the guides
® = 90°. Link 1 rotates clockwise with constant rotational speed
n, = 2000 rpm. Make a kinematic analysis of the mechanism at
position #10 (Fig. 3,a).

1.2.1 Determination of the mechanism structure

In order to determine the mechanism structure it is necessary to
find its degree of freedom.

Taking into account that the number of the movabel mechanism
links n = 5, the number of the 1% kind kinematic pairs p, = 7, the number
of the 2" kind kinematic pairs p,= 0 the mechanism’s degree of freedom
W is calculated according to Chebyshev’s formula

W=3an - 22p,- pp =325 - 2a7 = 1.

The mechanism structure has the following form:

1. Links 4 and 5 make up dyad # 2.

2. Links 2 and 3 make up dyad #2.

3. Links 1 and 6 make up the group of initial links.



1.2.2. Plotting the mechanism’s kinematic diagram

First, we should set the length of the segment that represents the
greatest mechanism link. In our case it is link 2, connecting rod AB
(Fig.3,a).

Let segment AB be equal to 240 mm (the length of this segment is
chosen arbitrarily but it must be greater than 200 mm). Then the scale
factor of the mechanism diagram is determined as

0.06 m

1
n, === =—"—-0.00025 —.
AB 240 mm

Notes. The length of segment AB should be taken thus in order to obtain
a finite magnitude of the scale factor.

If the scale factor is known, we can find the length of segments
that represent links 1 and 4.

AO=lro_ 002 gy oy
u, 0.00025 ’

AC=tac = 005 550 mm
u, 0.00025

— /! 0.02

AS, =32 = =80 mm,
u, 0.00025

AS, = Lo - 0025 105 mm,
u, 0.00025

It is necessary to note that in the figure £oa, £ag, Lasy are the real

sizes of the links in meters and distances AO, AB, AC, AS; and AS,
are the lengths of the segments in millimeters.

Now let us switch over to plotting a kinematic diagram of the
mechanism. First, we show the initial link (crank 1) in the given position
and draw guides Hss and Hsy through point O taking into account that
angle between them is 8 = 90°. In order to determine the positions of
points B and C we will use the intersection method. According to this
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Mechanism diagram o E”?/O
1 mm~0.00025 m /

]
Velocity diagram Acceleration diagram
1 mm ~ 0.02 m/sec 1 mm ~ 4 m/sec?

1 H,
_LAB\\E’
Vaa
VS 2 VA
Vg
Vs
Ve
14
b

Fig.3.Kinematic analysis of the aircraft air compressor mechanism:
a — mechanism diagram; b — velocity diagram; ¢ — acceleration diagram
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method we should strike arcs of radii AB and AC on the guides Hzs and
Hso. After joining points B and C with point A and using corresponding
links diagrammatic representations we obtain a diagram of the
mechanism in position #10. The positions of points S, and S, can be
found in the same way as for points B and C.

1.2.3. Plotting the velocity diagram

1. Determine the velocity of the initial link of the mechanism the
motion of which is characterized by the motion of point A. As the initial
link is hinged with the fixed link the velocity of point A is determined
according to the following vector equation

V, =V, +V,,

where VO is the velocity of the hinge centre O relative to which point A

moves; V,, is the relative velocity of point A during its motion with
respect to point O.
Since point O is a fixed one V, = 0 and, consequently, V,, =V, .
Let us analyze the velocity of relative motion V,,. As link 1
rotates with the constant rotational speed, we can determine the
magnitude of V,, according to Euler's formula:
TN ~3.14-2000

— Ll ,=""""""".0.02=4.2 m/sec.
30 30

In general, the relative velocity is directed along the tangent to the
path of motion of the corresponding point. Taking into account the fact
that the path of motion of point A is a circle of radius AO, we can make a

conclusion that V, is perpendicular to AO segment.
Now we will plot a velocity diagram for link 1. For this purpose it
IS necessary to give the length of segment pa that represents the

Vao =0, Lop =

velocity VAO in the figure. Let El =210 mm. Then the scale factor of
the velocity diagram is:
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\Y :
pa 210 mm

Notes. The length of segment Eﬂ should be taken thus in order to obtain

a finite magnitude of the scale factor.
Let us choose arbitrary point p (the pole of the velocity diagram)

and lay off segment pa perpendicular to OA in the direction of crank
rotation (Fig. 3, b).
2. Determine the velocity of internal kinematic pair B of dyad #2

consisting of links 2 and 3. For this purpose we should set up the following
vector equation

Ve =Va+Ver.

where V,is the velocity of point B; Vg, is the velocity of relative

motion during rotation of point B with respect to point A.
Let us analyse all components of the obtained equation. Velocity

VA was found both by magnitude and direction. The velocity of relative
motion VBA is known to us by direction only. It is perpendicular to BA..

As slider 3 moves along fixed guide Hszs velocity VB is parallel to the

latter.
Thus, we have vector equation with two unknowns (the

magnitudes of vectors VBA and VB). It can be solved by the graphical
method. According to this method we should pass a straight line through
point a that shows the direction of relative velocity VBA (LBA) and a
line parallel to guide Hs, from pole p (Fig.3, b). The point of intersection
of these lines indicates the position of point b. Segmentﬁ represents

velocityvB to scale and segment ab shows velocity VBA. The direction
of these velocities is determined according to the rule of vector
compositions. In our case vector Vg, as well as Vg, , tend to point b. In
order to find the magnitudes of velocities Vg and Vg,, we should
multiply corresponding lengths of the segments by scale factor py.
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Vg=py* pb=0.02 - 230 = 4.6 m/sec,

Vea= py-ab=0.02 - 120= 2.4 m/sec.

3. Determine the velocity of point S, located on link 2. For this
purpose we should use the similarity theorem. According to this theorem,
point S, is to be located in the velocity diagram in the same way as in the
mechanism diagram, i.e. between points a and b. In order to determine
the position of point S; it is necessary to set up the following proportion

= @
AS; AB’

whence
— AS;-ab 80-120
a'SZ = — =
AB 240
Let us lay off segment as, along segment ab . After connecting

=40 mm.

point s, with pole p we obtain segment p_32 (Fig.3, b) that represents the

velocity of point S, to scale. The magnitude of this velocity is determined
as

V2= 1, PS, = 0.02 - 170 = 3.4 m/sec.

4. Determine the velocity of point C that characterizes Assur’s
group consisting of links 4 and 5. The velocity of this point is determined
according to the following vector equation

Z:

<l

A+VCA’

where V. is the velocity of point C; V., is the velocity of relative
motion during rotation of point C relative to point A.

The velocity of point A VA was found both by magnitude and
direction. The velocity of relative motion V., is perpendicular to AC.
The magnitude of this velocity should be found as well as the magnitude
of velocity VC . The direction of the latter is parallel to Hsy.
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Let us plot the velocity diagram for considered Assur’s group.
According to the vector equation we pass a straight line through point a

that is perpendicular to AC and a line parallel to guide Hso through pole
p. Point c is the intersection of these lines. Segment pc represents

velocity V.. to scale and segment ac characterizes relative velocity Ve -
According to the rule of vector compositions velocities V., and V., are

directed to point ¢. In order to find the magnitudes of velocities VC and

V., it is necessary to multiply corresponding lengths of segments by
scale factor K.

Ve=py' pc=0.02 - 150=3 m/sec,

Vea= py - ac= 0.02 - 205= 4.1 m/sec.

5. Determine the velocity of point S4. Since point S, is located
on segment AC in the mechanism diagram, it should be located on the

identical segment ac of the velocity diagram. The disposition of this
point is determined from the following proportion

as, ac

AS: AC

whence
— AS;-ac  100-205
as4: — =

AC 200

=102.5 mm.

After laying off segment a along segment ac and connecting
point s, with pole p, we obtain segment p_s4 that represents velocity
V,,. The magnitude of this velocity is determined as

Vss=pyv ps, =0.02 - 160 = 3.2 m/sec.
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6. Determine the angular velocities of links 2 and 4. The
magnitudes of these angular velocities are determined according to the
following formulas

_Vea

®, = _ 24 —40@

(e 006  sec

1

_&_ 4.1 —82@

(o 005  sec’

4

In order to determine the directions of angular velocities of links 2
and 4, it is necessary to transfer the vectors of relative velocities Vg,

and VCAin the velocity diagram to corresponding points B and C in the

mechanism diagram and to consider the motion of points B and C
relative to point A. In our case, angular velocities w, and ®, are anti-
clockwise (Fig.3, a).

1.2.4. Plotting the acceleration diagram

1. Determine the acceleration of the mechanism initial link the
motion of which is characterized by the motion of point A. The
acceleration of point A that performs a rotatory motion along the circle of
radius Loa is determined according to the following vector equation

- - -n -
aa=ao +aao +ano,
where ao is the acceleration of hinge centre O relative to which point A
—-n . . . . .
moves; ano is the normal acceleration of point A relative to point O;

ano is the tangential acceleration of point A relative to point O.

Since point O is a fixed one ap = 0. Normal acceleration ano is
directed to the centre of rotation of point A, i.e. to point O. The
magnitude of this acceleration is determined as

2 2
a,’loszwOA:(n-mJ 'EOA:(%j . 0.02=876

m
30 2

Sec
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Tangential acceleration aso is directed along the tangent to the
path of motion of point A and is determined by the following formula

3 —
3o =& Lons

where g is the angular acceleration of the initial link. Since crankshaft 1
rotates with the constant angular velocity we can make a conclusion that
£1= 0 and consequently as =anxo.

Let segment ﬁ represent the acceleration of point A. The
length of this segment is chosen arbitrarily. In our case, we assume

p'a' =219 mm. Then the scale factor in the acceleration diagram is
found as

a, _876_, m/sec?
° pa 219 mm

Notes. The length of segment p'a’ should be taken in such a way to

obtain a finite magnitude of the scale factor.
Let us choose arbitrary point p’ (the pole in the acceleration

diagram) and lay off segment p'a’' parallel to OA in the direction from
point A to point O (Fig.3, c).

2. Determine the acceleration of point B that characterizes dyad #3
consisting of links 2 and 3. For this purpose we should set up the
following vector equation

where as is the absolute acceleration of point B that is parallel to guide
Hzo; aea is the normal acceleration of point B relative to point A that is

directed parallel to AB from point B to point A; asa is the tangential
acceleration of point B relative to point A that is perpendicular to AB.

. —n . .
Normal acceleration asa is determined as
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ap Ve 24 _gg M
* lgn 0.06 sec’

Let us solve the vector equation mentioned above by the graphical

method. For that, through point a” we draw straight line parallel to AB
and in the direction from point B to point A in the mechanism diagram

we lay off segment a'b'" that represents normal acceleration asa t0
scale (Fig.3, ¢). The magnitude of this segment is determined by the
following formula

ag, 96

ab" =28 — 22 _24 mm.
u, 4

Through the obtained point 5’ we pass straight line perpendicular
to AB and through pole p’ it necessary to draw a line parallel to Hio. At
the point of intersection of these lines we obtain point 5°. Segment p_b
represents the absolute acceleration of point B to scale and segment

b'b" shows tangential acceleration asa. The magnitudes of these
accelerations can be found in the following way

as=pa- p'b' =4 100= 400 m/sec’,
a;, =M b'b'" = 4 200 = 800 m/sec?.

3. Determine the acceleration of point S, located on link 2. For
this purpose we should use the similarity theorem. According to this
theorem point S is to be located in the acceleration diagram in the same
way as in the mechanism diagram, i.e. between points ¢’ and »°. In order
to determine the position of point S, it is necessary to set up the
following proportion

aS2 _
AS, AB

<]

whence

— AS;-a'b’  80-190

's, =63.3 mm.
AB 240

a's,
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Let us draw segment a's," along segment a'b' . After connecting

point s,” with pole p’ we obtain segment p's," that represents the

acceleration of point S, to scale. The magnitude of this acceleration is
determined as

5= Wa” P'S,' =4 - 140 = 560 m/sec’.

4. Determine the acceleration of internal kinematic pair C of
dyad #3 consisting of links 4 and 5. In this case we should set up the
following vector equation

—n -

At aca taca,

Q|

ac=

where ac is the absolute acceleration of point C (ac || Hso); aca is the
normal acceleration of point C relative to point A that is directed parallel

to AC from point C to point A; aca is the tangential acceleration of
point C relative to point A (acs L AC).
We can find the normal acceleration aca as

2 2
an, =Y _ 41 36, M
lcn 0.05 sec

Let us represent this acceleration in the acceleration diagram by
segmenta’c'' the length of which is
ac =3 3362 g 05 mm.
Ha o 4

Now, through point a’ we draw a straight line parallel to AC in
the direction from point C to point A in the mechanism diagram and lay
off the length of segment a'c'’ . After that through the obtained point ¢’

we pass a straight line perpendicular to AC and through pole p’ we draw
a line parallel to Hso. The point of intersection of these lines is point ¢’

(Fig.3, c). Segment p'c' represents the absolute acceleration of point C

18



to scale and segment c'c" denotes tangential acceleration aca. The
magnitudes of these accelerations are determined as

ac= 1, P'C =4 - 195=780 m/sec?,
ag,= ta"C' C" =4 80 = 320 m/sec’.

5. Determine the acceleration of point S, located on link 4.
According to the similarity theorem point S, is to be located in the
acceleration diagram between points a” and ¢’. In order to determine the
position of point S, we set up the following proportion

AS; AC’
whence
—— AS;-a’c’ 100-103

's, — =515 mm.
AC 200

a’'s,

Let us lay off segment a's,” along segment a'c. After
connecting point s,” with pole p’ we obtain segment p's," that

represents ass to scale. The magnitude of this acceleration is determined
as

ass=la" P'S,' =4 - 160 = 640 m/sec’.

6. Determine the angular accelerations of mechanism links 2 and 4.
The magnitudes of these angular accelerations are determined according
to the following formulas

g, =3 800 1353333 120
l,, 0.06 sec
g, =200 2320 g0 18
lae  0.05 sec
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In order to determine the direction of the angular accelerations of
links 2 and 4 it is necessary to transfer the vectors of tangential

accelerations asa and aca in the acceleration diagram to corresponding
points B and C in the mechanism diagram and to consider motion of
points B and C relative to point A. In our case, angular acceleration g, is
anti-clockwise and g, is clockwise (Fig.3, a) .
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2. FORCE ANALYSIS OF LEVERAGES
2.1.Theoretical information

The main task of mechanism force analysis is to determine the
forces of links interaction, i.e. pressures in kinematic pairs as well as
unknown external forces acting on the mechanism links. Knowledge of
these forces is necessary for mechanism strength analysis, rigidity
analysis, vibration-resistance analysis, wear-resistance analysis, for the
calculation of durability, for determining friction losses of power, etc.

All forces that act on mechanism links are divided into the
following groups:

1. Driving forces that make a mechanism move. They act on the
side of links motion. That is why the work of driving forces is always
positive. Examples of driving forces are electromagnetic forces, pressure
of steam or gas, pressure of water or air, elastic forces of springs, etc.

2. Forces of resistance that act opposite to links motion. Work of
these forces is always negative. They are subdivided into forces of useful
resistance and forces of parasitic resistance. Forces of useful resistance
are the forces of technological resistance to motion for the overcoming of
which work is expended when an engineering process is made. An
example of such forces may be the force of resistance to metal cutting,
forces of aerodynamic resistance that act on airplane propellers and so
on. Forces of parasitic resistance are the forces for the overcoming of
which the additional work is expended. They include frictional forces in
kinematic pairs as well as forces of resistance of working medium. These
forces are quite small in comparison with all other forces acting on a
mechanism links. That is why in our further calculations we will neglect
them.

3. Gravities that develop due to links’ interaction with the Earth.
In separate parts of mechanism motion these forces may perform both
positive and negative work. But the work of gravities per complete
kinematic cycle is equal to zero because the points of their application
move cyclically.

4. Forces of inertia that are the result of nonuniform motion of
mechanism links. The work of these forces is equal to zero per cycle of
mechanism motion.
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5. Reacting forces that develop owing to links’ interaction with
each other in places of their contact, i.e. in kinematic pairs. These are the
forces with which one link acts on the other during motion. According to
Newton’s third law reacting forces are always inverse. In a mechanism,
the number of these forces is equal to the number of kinematic pairs.
Reacting forces are considered as internal ones for the whole mechanism
although for every separate link they are external forces. The work of
reacting forces is never equal to zero because frictional forces in
kinematic pairs are not equal to zero.

The purpose of mechanism force analysis is to determine reacting
forces in all kinematic pairs and unknown external forces or moments
acting on a mechanism links.

An unknown external force (moment) is determined from the state
of equilibrium of a mechanism initial link and is called the balancing
force (balancing moment). This force (moment) balances the action of all
forces applied to the initial link and, consequently, to a mechanism as a
whole. The number of balancing forces (balancing moments) depends
upon the number of initial links.

As initial data for force analysis the law of motion of an initial
link, links’ dimensions, masses, moments of inertia with respect to the
centre of mass and external forces should be given. These data allow
finding forces of inertia needed for further calculations.

As it is known from theoretical mechanics, elementary forces of
inertia of any link can be reduced to resultant force of inertia F;, applied
at the center of mass of the link and to the resultant couple of inertia
forces whose moment is M.

Force of inertia Fin is found as
I_:in =-—M -5.5 ,
where m is the link mass in Kkg; as is the vector of total acceleration of
the centre of mass S of a link in m/sec?.

Sign “-“ shows that force of inertia Finis always directed opposite
to the acceleration of the point of application of this force.

Moment of a couple of inertia forces M is determined by the
formula:

Min =-J €,

S
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where Js is the moment of inertia of a link relative to the axis that passes
through the center of mass; ¢ is the angular acceleration of a link.

According to the formula, moment Mi, is directed opposite to
link angular acceleration .

Force analysis may be carried out by different methods. The
simplest of them is the method in which forces of inertia are not taken
into account. This method takes place when accelerations of links are
quite small and we may neglect them. In this case, reacting forces in
kinematic pairs are determined from equations of statics. That is why it is
called the static method of force analysis that is used for low-speed
machines and mechanisms.

In general, forces of inertia are not small and they should be taken
into account during calculation. For this purpose we will use combined
static and inertia force analysis. This method is based on the use of
d’Alembert’s principle. According to this principle, if, besides the
external forces, we apply to mechanism links forces of inertia, we may
consider the whole mechanism and its separate links as stationary and in
a state of equilibrium. In this case unknown forces are found from
equations of statics that are written on the basis of methods of statics.

As it is known from theoretical mechanics methods of statics may
be used for statically determinate systems. The statically determinate
mechanical system is a system in which the number of unknown
parameters is equal to the number of equations of equilibrium.

In order to determine what kinematic chain of a mechanism is the
statically determinate system, we will consider a plane kinematic chain
that consists of n movable links and p; kinematic pairs of the 1% kind.
For every plane link we may set up three equations of equilibrium (two
equations of forces and one equation of moments). As the kinematic
chain contains n links, the total number of equilibrium equations is 3n.

Now let us determine the number of unknown elements. For this
purpose we should analyze reacting forces that develop in kinematic
pairs.

In general, any force is a vector that is characterized by its
magnitude, direction and the point of application. If we neglect the forces
of friction in kinematic pairs reacting forces will be directed along the
general normal to contact surfaces. For a turning kinematic pair this
normal passes through the hinge center. Then the point of application of
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the reacting force is known and the unknowns are the magnitude and the
direction of this force. For a sliding kinematic pair the general normal is
perpendicular to the guide of motion. Consequently, we know the
direction of the reacting force and it is necessary to find the magnitude
and the point of application.

Thus, one known and two unknown parameters characterize a
reacting force that develops in the 1* kind kinematic pair. As a kinematic
chain has p; the 1* kind kinematic pairs the number of unknown elements is 2p;.

A kinematic chain will be statically determinate when the number
of unknown parameters is equal to the number of equilibrium equations

2'p1=3n

or
3n-2p;=0.

But this formula determines the number of degrees of freedom of
Assur’s group. Therefore, Assur’s group is a statically determinate
kinematic chain.

Thus, for carrying out a force analysis, a mechanism should be
divided into structural groups (Assur’s groups and a group of initial
links), i.e. we have to determine the mechanism structure. The order of
the force analysis is the same as the representation of the mechanism
structure. In other words, we should begin our force analysis with the
determination of reacting forces in the kinematic pairs of the most remote
Assur’s group relative to the group of initial links and to finish it by the
analysis of the group of initial links.

The force analysis of a mechanism may be made by graphical or
analytical methods. The graphical method is the most convenient because
it is quite simple and clear.

Using the graphical method we should plot force diagrams for
every Assur’s group and for separate links. Force diagrams are graphical
solution of vector equations of equilibrium and are drawn as a closed
polygon of forces. One vector equation is equivalent to two scalar
(algebraic) equations and consequently allows finding two unknown
parameters.

In the analytical method of force analysis every vector equation is
replaced by two scalar equations of force projections to the coordinate
axes.
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Sometimes there is no necessity to carry out the total force analysis
of a mechanism as a result of which reacting forces in kinematic pairs are
found. In this case the task is reduced to the determination of a balancing
force, or a balancing moment, that is necessary, for example, when
calculating engine power. For that, we will use the method of
Zhukovsky’s rigid lever. N. Zhukovsky showed that the equilibrium of
any mechanism with one degree of freedom corresponds to the
equilibrium of any lever and proposed the following theorem.

If vectors of all forces applied at different link points of a
mechanism are transferred parallel to themselves to the corresponding
points of the velocity diagram that is turned through 90°, we can consider
this velocity diagram as a rigid lever rotated around the pole and loaded
by the same forces as a prime mechanism. The sum of moments of all
forces acting on the rigid lever with respect to the pole will be equal to
zero, i.e. 2 My= 0. By solving this equation we may find a balancing
force.

Thus, to determine a balancing force (moment) by Zhykovsky’s
method, we have to plot a velocity diagram to an arbitrary scale that is
turned through 90°, and to apply all forces that act on mechanism links at
corresponding points. This method is used for checking the correctness
of the combined static and inertia force analysis of a mechanism. The
difference between the balancing forces (balancing moments) obtained
using the above mentioned methods should be less than 5 %.

2.2. Force analysis of
the aircraft air compressor mechanism

Initial data

Geometrical dimensions of the mechanism: lpa = 20 mm;
lag =60 mm; Iac=50 mm; las, = 20 mm; lass = 25 mm; the angle between the
guides ®=90°. Masses of the mechanism links: m, = 0.5 kg; m3= 0.4 kg;
m, = 0.45 kg; ms = 0.35 kg. Centres of mass of links 1, 2, 3, 4 and 5 are,
correspondingly, at points O, S,, B, S,;, C. Moments of inertia of con-
rods: Js, = 0.005 kg'm?; Jg; = 0.004 kg-m®. Compressed air pressures: Py
= 2 kN; Ps = 1 kN. Link 1 rotates clockwise with constant rotational
speed n;=2000 rpm. Make force analysis for the mechanism at position #10.
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2.2.1. Determination of the mechanism structure

The structure of the aircraft air compressor mechanism (Fig 4, a)
has the following form:

1. Links 4 and 5 form dyad # 2.

2. Links 2 and 3 form dyad # 2.

3. Links 1 and 6 form the group of initial links.

The mechanism force analysis is carried out in the following order:
first, we should determine the forces in kinematic pairs of the most
remote Assur’s group with respect to the group of initial links. In our
case this group is formed by links 5 and 4. Then, the forces in kinematic
pairs of Assur’s group formed by links 3 and 2 are found. Finally, we
determine the forces in kinematic pairs of the group of initial links and
the balancing moment applied to initial link 1.

2.2.2. Plotting the velocity diagram and the acceleration diagram

For the mechanism given position we plot the velocity diagram,
the acceleration diagram (Fig.4, b, c¢) and determine accelerations of
centre of mass of all mechanism links as well as angular accelerations of
links that perform rotatory motion.

The accelerations of points B, C, S,, S4 were found:

as= - P'b =4 100= 400 m/sec’,
ac = pa- P'C =4 195= 780 m/sec?,
a2 = M- P'S, =4 - 140 = 560 m/sec?,
ass = M- P'S, =4 - 160 = 640 m/sec?.

The angular accelerations of links 2 and 4 are determined as

82:aBA _ b, b _4-200 1 a0004a radz’
l g s 0.06 sec
84:%\ _ M, -C7C :4'80=64OO radz.
lnc [ 0.05 sec
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1 mm ~ 0.00025 m
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F; 0
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Velocity diagram Acceleration diagram
1 mm ~ 0.02 m/sec 1 mm ~ 4 m/sec?
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Q
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Fig.4. Determination of forces of inertia of the mechanism links:
a — mechanism diagram; b — velocity diagram; ¢ — acceleration diagram
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2.2.3. Determination of resultant forces of inertia
and resultant moments of a couple of inertia forces

Magnitudes of links forces of inertia applied to corresponding
centres of mass are determined by the following formulas:

Finz=M, " as;= 0.5- 560 =280 N,
Fins= Mg ag=0.4- 400 = 160 N,
Fina = M, " ag = 0.45° 640 = 288 N,
Fins=Ms " ac = 0.35- 780 =273 N.

Forces of inertia are oppositely directed to accelerations of
corresponding centres of mass of links (Fig. 4, a).

Magnitudes of moments of a couple of inertia forces that act on
links 2 and 4 may be determined in the following way:

Minz = Jsz " €,=0.005" 13333.33 = 66.67 N'm,
Mina = Jsa* €4=0.004- 6400 = 25.6 N'm.

The direction of these moments of a couple of inertia forces is
opposite to the angular acceleration of the corresponding link.

In the combined static and inertia force analysis the obtained
forces of inertia and the moments of a couple of inertia forces are
considered as external forces that load the mechanism links. Let us show
these forces in the mechanism diagram (Fig. 4, a).

2.2.4. Determination of reacting forces in kinematic pairs
of Assur’s group formed by links 4 and 5

We are going to determine the reacting forces in kinematic pairs of
the mechanism ignoring the forces of friction that develop in these pairs
and links’ weight. It is explained by the fact that the forces mentioned
above (the forces of friction and the weight of the links) have quite small
magnitudes in comparison with the external forces acting on the
mechanism links.
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1. Plot Assur’s group formed by links 4 and 5 at needed position

taking into account the scale factor of length pt = 0.00025 m (it was
mm

found when making the kinematic analysis of the mechanism) and apply
all forces acting on the mechanism links. Besides, we will replace the
action of separated links (in our case links 1 and 6) by reacting forces
that develop in the corresponding kinematic pairs. The reacting force will
be marked by letter R with double subscript of links that make up a
kinematic pair. Dyad #2 contains three kinematic pairs. One of them
formed by links 5 and 6 is a sliding pair. The two others formed by links
4 and 5, 4 and 1 are turning ones. That is why there are three reacting
forces in the kinematic pairs such as Rgs, Rss, Ry4. It is necessary to take
into consideration that Ros = - Rsp rss = - Rus,, r1a = - Rag. FOr this, Assur’s
group forces Rgs and Ry, are external ones and Rs, is an internal force.

Let us analyze the reacting forces mentioned above. As links 5
and 6 make up a sliding kinematic pair, force Rqs of interaction of these
links is perpendicular to guide of motion Hsy, but the magnitude and the
point of application are unknown. We mark the line of action of this
force with a dotted line perpendicular to Hs, that passes at certain
distance hgs relative to point C (Fig.5, a). Arm hgs determines the point of
application of Rys and we are to find it.

Force Ry, is a force that develops in turning kinematic pair A. That
is why the point of application of this force is known (the center of the
turning pair) and we should determine the magnitude and the direction of
this force. As the direction of R4 is unknown, we will resolve it into two

components: normal force R}, that is parallel to AC and tangential force
R, that is perpendicular to AC (Fig.5, a). The direction of R, is chosen

arbitrarily. If we obtain a negative magnitude of R, , the direction of this

force was chosen incorrectly.

Thus, link 5 is loaded by four forces such as pressure Fs, inertia
force Fiys, force Rgs that acts from the side of the fixed link 6 and force
R4s that acts from the side of link 4. Link 4 is under the action of one
moment M;,, and three forces: inertia force F;,4, force Ry, from the side
of link 1 and force Rs, from the side of link 5.
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2. Determine tangential component R, of the reacting force, that

develops in the turning pair. For this purpose we should consider the
state of equilibrium of link 4. As this link is in a state of equilibrium the
sum of moments of all acting forces relative to any point must be equal to
zero. Let us set up an equation of moments with respect to point C

(ZMC =0). We assume that the clockwise moment is positive and the
anticlockwise moment is negative.

Rli 'IAc _Fin4 'h4 - Min4 =0

Forces R;, and Rs; do not form moments because their arms

relative to point C are equal to zero. Arm h, is determined from the
Assur’s group diagram (Fig.5, a). As h, is the shortest distance it is
perpendicular to the line of action of force Fi. In order to determine the
real magnitude of this arm, it is necessary to multiply the corresponding
segment length in mm by scale factor pf.

R :i-(Fm -h, + M‘"“):o_ts'(288'0'014+ 25.6)=516.03N .

IAC

As the magnitude of R is positive we chose its direction correctly.

3. Determine the other unknown external forces that load Assur’s
group links (Res, RY, , Ri4).

Let us consider the equilibrium of the whole of Assur’s group. As
Assur’s group is in a state of equilibrium the vector sum of all forces

acting on the group links must be equal to zero (ZE, =0):

+Fin4+E5+E+R_65+Rln4 =0.

)

P

1

This vector equation does not contain forces R, and R,, because

their sum is equal to zero. Forces underlined by two lines are known both
by direction and by magnitude. If a force is underlined by one line it is
known by direction only.

The vector equation has two unknown parameters. We will solve
this equation by plotting a force diagram. For that, we arbitrarily choose
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a scale factor for the force diagram and find the lengths of segments that
represent the corresponding forces in the figure.

Let ur =10 i Through pole H we lay off forces R,;, Fin, Fs,
mm

Fins in succession marking vector ends by letters a, b, ¢,andd,

Assur’s group diagram
(links 4 and 5)
1 mm ~ 0.00025 m

fos
a
Force diagram Force diagram
(links 4 and 5) (link 4)
Imm~10N Imm~10N
(] . H
R 14
H
R
. Ry % Rsq
R'1 R
24
b d| lins ¢
En( @ E EM a
b c

Fig. 5. Determination of forces in kinematic pairs of
Assur’s group formed by links 4 and 5: a — Assur’s group diagram;
b — force diagram for Assur’s group; ¢ — force diagram for link 4
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correspondingly (Fig.5, b). The lengths of segments Ha ,ab,bc and cd
are determined in the following way:

- Rl4

516.03

Ha=—*= =51.6mm,
He 10
ab= it =@=28.8mm,
ne 10
b_c=i=@=100mm,
ue 10
cd= s =E=27.3mm.
e 10

Through the obtained point d we draw a line parallel to Rgs and
through pole H we pass a line parallel to RY,. The point of intersection of

these lines is point e. Segments de, aH and ea represent corresponding

forces Rgs, RY,, Ris to scale. To determine the magnitudes of these
forces, we should multiply corresponding segments by the scale factor.

R, =H; -de=10-56.5=565N,
R", =p, -eH =10-62=620 N,
R,, =M, -ea=10-80=800 N.

The directions of these forces are determined according to the rule
of vector composition (Fig.5, b). Thus, forces Rgs, R;, and Ris were
found.

4. Determine reacting forces in the internal kinematic pair of

Assur’s group (Rssand Rys).
For that, we should consider the state of equilibrium of either link
5 or link 4 and set up a vector equation of forces, acting on the link

(ZE, =0). For example, let us consider the state of equilibrium of link 4:

32



n4+R54:O'

e

14+

=T

This vector equation has two unknowns (the direction and the
magnitude of force Rs;). We solve this equation by plotting a force
diagram. Taking into account the scale factor, we lay off Ry, Fisin
succession marking corresponding vector ends with letters a and b. After

connecting point b with pole H we obtain segment bH that represents
force Rs4 (Fig.5, ).
R., =p, -bH =10-93=930N.

According to the rule of vector composition we can determine the
direction of force Rs, (Fig.5, C).

5. Determine arm hys, i.e. the point of application of force Rs.

For this purpose we will consider the state of equilibrium of link 5.
The sum of moments of all acting forces with respect to point C must be

equal to zero () M. =0):

R05 . h05: 0.

Moments of forces Rys, Fs and Pis are equal to zero because their arms
relative to point C are equal to zero too.
As force Rgo5 20, we may make a conclusion that hgs = 0.

2.2.5.Determination of reacting forces in kinematic pairs of
Assur’s group formed by links 2 and 3

1. Plot Assur’s group formed by links 2 and 3 at a given
mechanism position taking into account the scale factor of length

pt = 0.00025 m and apply all forces acting on the mechanism links
mm

(Fig.6, a). The action of separated links 1 and 6 is replaced by reacting
forces Ro3, Rizthat develop in the corresponding kinematic pairs.

Link 3 is loaded by four forces such as pressure F3, inertia force
Fi.s, force Ros that acts from the side of the fixed link 6 and force R, that
acts from the side of link 2. Link 2 is under the action of one moment of
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a couple of inertia forces M;,, and three forces: inertia force F;,,, force
Ry, from the side of link 1 and force R3, from the side of link 3. Unknown
forces are: reacting force in the sliding kinematic pair Rgs, forces

R23=-R_32 in internal turning kinematic pair B and force R;, that

develops in external turning pair A.

Force Ros is perpendicular to guide of motion Hg, but the point of
application of this force is unknown. That is why we mark the line of
action of this force with a dotted line perpendicular to Hs, that passes at
certain distance hg; relative to point B (Fig.6, a). Arm hgz should be
found.

Unknown force Ry, is resolved into two components: normal

force Nj, that is parallel to AB and tangential force R, that is
perpendicular to AB (Fig.6, a). The direction of R, is chosen arbitrarily.

2. Determine tangential component R, of the reacting force, that

develops in turning pair A.

For this purpose we will consider the state of equilibrium of link 2.
As this link is in a state of equilibrium, the sum of moments of all acting
forces relative to any point must be equal to zero. Let us set up an

equation of moments with respect to point B (Z M; =0):
Ry 'IAB +Fq, 'hz +M;, =0.

Forces R], and Rz do not form moments because their arms

relative to point B are equal to zero. Arm h, is determined from the
Assur’s group diagram (Fig.6, a). For that, we should multiply the
corresponding segment length in millimeters by scale factor ut.

R, =—Ii-(F.n2 -h, + Minz)=—o—tﬁ-(280-0-04+ 66.67) = —1297.83N.

i
AB

Sign “-“ shows that the direction of R, was chosen incorrectly. In

this case it is necessary to change the direction of the reacting force in the
Assur’s group diagram (Fig.6, a).
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Force diagram

Assur’s group diagram
(links 2 and 3)

(links 2 and 3)

1 mm~0.00025 m 1mm~20N
H T
R 22
b iz
>a
Rn R, Ros
- d
e Ei : ing
c
b
Force diagram (link 2)
Imm~20N
b Fea
a
Rz
a R 7
H
c

Fig. 6. Determination of forces in kinematic pairs of
Assur’s group formed by links 2 and 3: a — Assur’s group diagram;
b — force diagram for Assur’s group; ¢ — force diagram for link 2

3. Determine all unknown external forces that load the Assur’s
group links (Ros, RY, , Ri2).
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Let us consider equilibrium of the whole of Assur’s group. As
Assur’s group is in a state of equilibrium the vector sum of all forces

acting on the group links must be equal to zero (ZE, =0):

5 +Fe +R+F,

X

+Ry; + R}, =0.

w

The vector equation has two unknown parameters. We will solve
this equation by plotting a force diagram. For that, we arbitrarily choose

the scale factor pr= 20 m_l\rln of the force diagram and lay off forces
R, Finz ,F3 Fins in succession marking vector ends with letters a, b, c,
and d correspondingly (Fig.6, b). Through obtained point d we draw a
line parallel to Ro3 and through pole H we pass a line parallel to R}, . The
point of intersection of these lines is marked as e. Segments
de,aH and ea represent corresponding forces Rys, RY,, Ry, to scale. To

determine the magnitudes of these forces, we should multiply
corresponding segments by the scale factor.

Ry =1 -de=20-855=1710 N,
R!, =u. -eH =20-113=2260 N,
R,, =} -ea=20-130=2600 N .
The direction of these forces is determined according to the rule of
vector composition (Fig.6, b).

4. Determine reacting forces in internal kinematic pair B of
Assur’s group (Rspand Rys).

For that, we should consider the state of equilibrium of either link
2 or link 3 and set up a vector equation of forces, acting on the link

(ZE, =0). For example, let us consider the state of equilibrium of link 2:

12+E+R32 =0.

]

This vector equation has two unknowns (the direction and the
magnitude of force Ras,). We solve this equation by plotting a force
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diagram. Taking into account the scale factor we lay off R, Fiy in
succession marking corresponding vectors ends with letters a and b.
After connecting point b with pole H we obtain segment bH that
represents force Rs, (Fig.6, ).

R,, =u. -bH =20.1255=2510 N

According to the rule of vector composition we can determine the
direction of force Rs, (Fig.6, c).

5. Determine arm hos .
For this purpose we will consider the state of equilibrium of link 3.
The sum of moments of all acting forces with respect to point B must be

equal to zero () M, =0):

R03 . h03= 0.

Moments of forces Ry, Fz and Fis are equal to zero because their arms
relative to point B are equal to zero, too.
As force Ryz 20 consequently arm hgz= 0.

2.2.6. Force analysis of the group of initial links
1. Draw the group of initial links at the given position taking into

account the scale factor uf=0.00025 m and apply all forces that act
mm

on crank 1 (Fig.7, a).

The crank is under the action of one balancing moment My, that
balances the action of all forces applied to the mechanism links and three
forces: R4, from the side of link 4, R,; from the side of link 2 and Ry
from the side of the fixed link 6.

Forces R; and R,; are known. Their magnitudes are equal to
corresponding forces Ry; and Ry, but the direction is opposite to the
latter. Thus, in the force analysis of the group of initial links we should
determine balancing moment My, and reacting force Ry;.

2. Determine reacting force Ry, that develops in turning kinematic
pair O.
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Let us consider equilibrium of crank 1. The vector sum of all
forces acting on this link should be equal to zero (Z F =0):

We solve this equation by plotting a force diagram. After choosing
the scale factor pur = 20 i, we lay off forces Ry, and Ry; marking
mm

vector ends with letters a and b (Fig.7, b). The obtained point b is

connected with pole H. Segment b_Hrepresents reacting force Ry; to
scale. Let us determine the magnitude of this force:

Ry, =M -bH =20-88=1760 N .

Diagram of the initial Force diagram
mechanism (link 1)
1 mm ~ 0.00025 m 1mm~20N

Fig. 7. Determination of the balancing moment and reacting
force Ng,; in kinematic pair O: a — diagram of the group of initial links;
b - force diagram for link 1

3. Determine balancing moment My, .

For that, we set up an equation of moments of all forces relative to
point O:
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Mbal - R21 : h21 + R41 : h41 =0.

Moment of force R, is equal to zero due to the fact that its arm
with respect to point O is zero. Arms hy; and h,,; are determined from the
diagram of the group of initial links. For that, we multiply the
corresponding segments in millimeters by (.

M,, =R,, -h, -R,, -h, =2600-0.018 -800-0.019=31.6 N-m.

As the magnitude of My, is positive the direction was chosen
correctly.

2.2.7. Determination of the balancing moment by Zhukovsky’s method

1. For the given mechanism position we plot the velocity diagram
turned through 90° to an arbitrary scale. After that we will transfer all
external forces that act on the mechanism links from the mechanism
diagram to the corresponding points of the velocity diagram (Fig. 8).

The known moment M;,, is represented by a couple of forces F’i,,
and F i, that are applied at points A and B perpendicular to AB (Fig. 4).
The magnitude of these forces is determined by the formula

Fo=F =M 8667 14547y
0.06

n2 in2 I
AB

In the same way we will represent moment M;,, by a couple of
forces F’ins and F 4 that are applied at points A and C perpendicular to
AC. The magnitude of these forces is determined as
M,, 256

=——=512N.

F =F = =
in4 in4 IAC 005

Unknown balancing moment M, is represented by a couple of
forces F'py and F 'y , that are applied at points A and O perpendicular to
AO. The direction of these forces is chosen arbitrarily (Fig. 4).

2. Set up an equation of moments of all forces with respect to the
pole of the velocity diagram and determine Py, and Mpg:
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Fblal 'E—"' sz 'hlz - Fi.n4 'hz'l + Fs 'E' Fin3 'E"’ sz hz +
+F.5 - pc-F - pc- Filr;4 'h; -Fo, 'h2+Fin4 'h4 =0.
Arms of all forces are substituted in the equation in millimeters.

The lengths of these arms are determined from Fig. 8. As a result we
obtain

Fig. 8. Determining the balancing moment by Zhukovsky’s method
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in2

F Zé(_F‘. h, +F-h —F, - pb+Fy - pb—Fp, -hy —Fg - pe+

+F -pc+F, -h, +F,-h—F, -h4)=$-(—1111.17 12+

+512-81-2000-106 +160-106 —1111.17 - 36 — 273 -65+1000 - 65 +

+512-12 + 280 -30-288-40) =-1566.25 N .

Sign “-* shows that the direction of My, Was chosen incorrectly. In
reality the balancing moment is clockwise. The magnitude of this
moment is determined as

M, =Fy *lon =1566.25-0.02=31.325N - m
3. Determine the difference between the balancing moments

obtained by the two methods (combined static and inertia force analysis
and Zhukovsky’s method):

31.6-31.325
bal 31.325

The error must be not more than 5 %.

-100% =0.88%.
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PREFACE

The term paper on the subject Theory of Mechanisms and Machines
is one of the basic kinds of the student’s individual work. The purpose of
the term paper is to enhance the knowledge acquired by the student in
the lectures, practical classes and laboratory sessions, and develop the
skills of making research and design of present-day aircraft mechanisms
and machines.

The term paper is to include the following parts:

1. Kinematic and force analyses of a leverage.

2. Designing a planetary gearing.

3. Designing an involute gearing.

Each part of the term paper should consist of a calculation and
graphical sections.

All calculation sections are to be presented as an explanatory note
that should be carried out according to requirements of «JICTVY 3008-95.
HepxaBuuii crannapt Ykpainu. JJokymenrauis. 3BiTa B cepi HaykH i
texiku. CTpykTypa i npaBuia odopmieHHs». The explanatory note is
either typed or hand written in blue or black ink on one side of size A4
paper. Every sheet is to be paginated and have the following margins:
top — 5 mm, bottom — 5 mm, right — 5 mm, and left — 20 mm.

Besides calculation sections an explanatory note should have the
contents table, the assignment, the list of literature used in working on
the term paper. Each new part is to begin with a new page.

Each part must be subdivided into items marked with numerals
separated by a point. The first numeral represents the number of the part,
the second one shows the number of the item.

Calculations should be made in an order that corresponds to the
graphical plots. All magnitudes that are part of formulas should be
explained. In addition, it is necessary to denote units of measurement of
parameters calculated.

The graphical section is to be executed on size A1 whatman paper
(partl) and A2 (part 2 and part 3) in pencil. Above every drawing there
should be an inscription indicating the scale. The title block should be
drawn in the bottom right hand corner.



1. DESIGNING PLANETARY GEAR TRAINS
1.1 Theoretical information

The planetary gear train is a mechanism in which geometrical axes
of one or several gears can move relative to the frame.

Planetary gear trains are divided into four groups:

- differential gear mechanisms that have two or more degrees of
freedoms;

- planetary gearings having one degree of freedom;

- closed differential gear mechanisms obtained from ordinary
differential gear mechanisms by constraining two main links with a
simple gearing;

- combined gear trains consisting of planetary gearings and simple
gearings joined with each other in succession.

In comparison with the other gear trains planetary gear trains have
the following advantages:

- small size and mass. This follows from the fact that the power is
transmitted through several routes at the same time, the number of routes
being equal to the number of planet pinions. Accordingly, the load
imposed on the teeth in the meshing gears falls to a fraction of its
original value;

- the input and output shafts are arranged coaxially simplifying the
layout of machines;

- planetary gear trains are less noisy in operation than ordinary gear
trains, because toothed wheels of the planetary gear train are smaller and
the forces balance out one another when the planets are arranged
symmetrically.

- lighter loads on the bearings result in minimum loses and simpler
designs;

- they have high velocity ratios with small overall dimensions;

- they allow to compose and decompose motions. For example,
transmission of motion from two independent motors to one driven link or
from one motor to two driven links by means of differential gear mechanisms.

On the other hand, planetary gear trains require high accuracy of
manufacturing and assembling, their efficiency falls with rising the
velocity ratio.

Planetary gear trains may be used as speed reducers with a constant
velocity ratio in power transmissions and various devices, gearboxes



where the velocity ratio can be varied by locking appropriate members,
and differential gear mechanisms of automobiles, tractors, machine tools
and like that.
Design (synthesis) of a planetary gear train consists of two stages:
- selection of the mechanism diagram taking into accounts its
purpose and efficiency; and
- determination of a number of teeth of all toothed wheels to
provide the given velocity ratio.
As a rule, planetary gear trains are formed by means of standard
involute straight spur gears.

Selection of the planetary gear train diagram

Fig.1.1 shows four diagrams of planetary gearings that have found
the most wide application in the mechanical engineering.

Every of planetary gearings has one degree of freedom and consists
of four links. Toothed wheels z; and z; whose geometrical axes coincide
with the main axis of the mechanism are called sun gears. Toothed
wheel z, having a movable axis is named a planet pinion. The shaft of
the planet pinion rotates in the bearing B, which is mounted on link 4,
named a driver or carrier, and together with this link, rotates around the
main axis of the planetary gear train. The planetary gearing may contain
single (Fig.1.1, a) or double planet pinions (Fig.1.1, b, c, d).

R

.7 2 | '
. ? Zz 2’2 222
H= ==} ~ 1 X fr==t{x
2 H
] 1N 7, I s ficq
[ H Frg L L, L
_|_|_‘X T T Zz
= 3 7 3] = H 7
1= Z; % Z, < 1 3N
“ Z3 z Z
/\3 23 [ 1 3 A
i Z3 [ \ \ B
e ik e

Fig.1.1. Typical diagrams of planetary gearing

If in a planetary gear train the immovable sun gear becomes
movable, we deal with a differential gear mechanism that consists of five
links and has two degrees of freedom.

In order to carry out kinematic analysis of the planetary gear train
we should use the method of reversed motion. According to this method



it is necessary to add the rotational speed of the driver with opposite
sign to rotational speeds of all mechanism links. In this case rotational
speeds of links 1, 2, 3 and 4 are correspondingly equal to (ny - ny), (n, -
ny), (N3-ny) and (ns- ny) = 0. Thus, driver H becomes immovable and a
planetary gear train is transformed into ordinary gear train with fixed
axes of toothed wheels. Diagrams of reversed mechanisms for mentioned

above planetary gearings (Fig.1.1) are shown in Fig.1.2.
2

Fig.1.2. Diagrams of reversed mechanisms

The velocity ratio of the reversed mechanism from link 1 to link 3
ul'; may be found as product of velocity ratios of single stage gearings

that are a part of the mechanism:

H H . H
Uz = Uy, Uy

For diagrams shown in Fig.2 u,, is calculated in the following way:

z z z .

U =Ujply = —=2 | +=2 |===2 for Fig 1.2, a,
Zl ZZ Zl
z z 2,2 ,

us =ujull = —=2 £+—f =——22 forFig1.2,b,
Zl Z2 leZ
z 2, 2,2 :

us =ujull = —=2 [——f ==2=2  forFig1.2,c,
Zl 22 2122
z z,) 2,2 :

U =UpUy, =| +-2 | +=2 |==22  forFig 1.2, d,




where z;, z,, z,and z; are number of teeth of corresponding toothed
wheels.
On the other hand, the velocity ratio u,, may be determined as ratio

of rotational speeds of links 1 and 3. Taking into account that in the
reversed mechanism the rotational speed of link 1 is (n;-ny) and the
rotational speed of link 3 is (n3-ny) = -ny we obtain:

N —Nx N —Ny Ny

ul(:’;): = :__+1:—U1H +1,
na_nH _nH nH

where uy, is the velocity ratio of the planetary gearing.
Then

H

Uy, =1-u;.

1H

The obtained formula allows to determine the velocity ratio of the
planetary gearing. For this purpose it is necessary to reverse a
mechanism and to find its velocity ratio.

The simplest planetary gearings may be divided into two groups:

- planetary gearings with positive value of the velocity ratio of the

reversed mechanism (Fig.1.1, ¢, d);
- planetary gearings with negative value of the velocity ratio of
the reversed mechanism (Fig.1.1, a, b).

Mechanisms of the first group (u”>0) are formed by gears with
either only external (Fig.1.2, c) or only internal (Fig.1.2, d) toothing. As a
rule, in these mechanisms the driving link is the driver. Planetary gearings
of this group are characterized by the high velocity ratio. For example, if
in the mechanism with two gears of external contact (Fig.1.1, ¢) we

assume z; = z'2 =100, z, = 99, z; = 101 the velocity ratio from driver 4 to

sun gear 1 (us) will be 10 000. But in this case the efficiency is less than 1
%. That is why planetary gearings of this group are used in non-power
short-term transmissions. The most rational values of the velocity ratio Uy,
of mentioned above mechanisms are ranged from 30 to 1700.

Mechanisms of the second group (uf;’<0) consist of gears with
both external and internal contact. They may be with either single
(Fig.1.1, a) or double (Fig.1.1, b) planet pinion. Mechanisms of this
group are used in power and auxiliary drives as multi-planet pinions
speed reducers of medium and high power with the velocity ratio uy,



ranged from 2 to 15 and the efficiency from 96 to 99 %. Planetary
gearings with a single planet pinion (Fig.1.1, a) have the highest
efficiency (97-99 %), small overall dimensions in the axial direction.
Besides, they are the most compact. That is why they find very wide
application in the mechanical engineering. We may meet these
mechanisms in remote control plants, in aircraft drives, Moon research
vehicles and others.

In order to obtain the high velocity ratio multi-stage planetary
gearings are used that are formed as a result of successive connection of
simple planetary gearings. The example of this mechanism is shown in
Fig.1.3. It consists of three planetary gearings with single planet pinion.

e A
Z, 1 Zs Z;

: H= /_41 H— /—Iz H—i H,
. L Lyl b, L1,
Ho X =l =k X =l
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Z, 7, 7,
5 .:./le .:./Z :
i i

Fig. 1.3. Three-stage planetary gear train

The velocity ratio of the mentioned above mechanism is determined
as product of velocity ratios of simple planetary gearings
Uy = Uy Ugpy, Ugp,
where
1y =1, % |’ Z; - i 2!
Uy =1-ug =1+—=5u,, =1-uy =1+-=25 u,, =1-uy =1+ =~
Zl ’ Z4 ? ZG
If the velocity ratio of every stage is 5 (Uit =UaH, =UsHs =5), the
total velocity ratio of the whole mechanism is u,,, = 125 with relatively

high efficiency (88 — 94 %). The overall dimensions of this triple-stage
planetary gear speed reducer are less in comparison with the speed
reducer with fixed axes of gears (when the power and the velocity ratio
are identical).



Determination of a number of teeth
of planetary gearing toothed wheels

After choosing the planetary gear train diagram it is necessary to
determine a number of teeth of mechanism toothed wheels. In this case
the following conditions should be carried out: coaxiality condition,
mating condition, coincidence condition and condition of the right
engagement.

Coaxiality condition

In order to provide the engagement of planet pinions with sun gears
both sun gears and the driver must have the common geometrical axis of
rotation. In this case, the centre distance between the movable sun gear
and the planet pinion should be equal to the centre distance between the
immovable sun gear and the planet pinion. For planetary gear trains
shown in Fig.1.1 the condition of coaxiality has the following form:

ri+r=r3-r, Or Z;+72,=273-2, for Fig. 1.1, a,
A A for Fig.1.1, b,
+0, =0+, for Fig.1.1, c,
L—r=r—r for Fig.1.1, d,

where r; and rz are nominal pitch circle radii of the movable and
immovable sun gears correspondingly; r, and r, are nominal pitch circle
radii of the planet pinions.

Mating condition

This condition takes into account necessity of collocation of several
planet pinions along a circle in one plane. According to this condition

the addendum circles of mating planet pinions should not be intersected
or touch each other. The mating condition is carried out when

0,0, >2-r, , (1.1)

where 0,0, is the centre distance between two adjacent planet pinions

(Fig.1.4); ryp = 0.5m-(z2+2) is the addendum circle diameter of the
planet pinion.



v O
Fig.1.4. For determination of the mating and coincidence conditions
The centre distance OZO'2 between two adjacent planet pinions is

determined as

0,0,=2-0,A=2-0,0, -sin(g) 1.2)

where 3= 2?75 (k is a number of planet pinions).

The centre distance 0,0, between the planet pinion and the movable
sun gear is

0,0,=r+1,=05-m-(z,+2,). (1.3
After substituting (1.3) to (1.2) we obtain

0,0, =m-(z, +2,) -sin(gj .
Then the mating condition (1.1) has the following form:

(z, +22)sin(gj >(z,+2),

() Z,+2
or sin| — |> :
k) z,+z,

Coincidence condition

This condition takes into account necessity of simultaneous
engagement of all planet pinions with both sun gears when angles
between planet pinions f3 is identical.

After installing the first planet pinion the movable sun gear has
certain position. If we do not carry out certain requirements after
installing the other planet pinions tops of their teeth may not coincide



with spaces of one of sun gears. In this case, mechanism assembling is
impossible.

Coincidence condition is carried out when the curve formed by parts
BC and DE of pitch circles of both sun gears (Fig.1.4) consists of the
whole number of pitches, that is (i.e.) when

BC+DE=Y,

where vy is any integer numeral.
Let us assume that arc BC consists of the whole number of pitches y;
and remainder s;;

BC=y,-p+s;.
In the same way, we may write that
DE=y, -p+s,.

Arcs BC and DE can also be determined by sun gears number of
teeth:

Bc=2%4 pp_P%
K K

where z; and z; are number of teeth of movable and immovable sun
gears correspondingly; k is number of planet pinions.
The sum of these arcs is found as

BC+DE=E'(21+23):p'('}’1+Y2)+(Sl+sz)’

whence

K-(s,+s,)

(Z,+2Z5) =Kk (v, +7,) + (1.4)

As (z1+25) is an integer numeral then the right part of (1.4) has to be
an integer numeral too. It is possible when (s;+s;) = p. After substituting
(s1+s2) = p to (1.4) we obtain

(z2,+25)=k-(v; +v, +) =k-v,

(z2,+2;)
—k =Y

or

where vy is an integer numeral.
Thus, coincidence condition is carried out when the sum of sun gears
number of teeth is devisable by the number of planet pinions k.

10



Condition of right engagement

This condition takes into account absence of teeth undercutting and
interference. In order to eliminate these phenomena a number of teeth of
standard involute spur gears with external toothing (when o =
20°,h; =1) should not be less than 17. For gears with internal toothing a

number of teeth of the annual gear has to be greater or equal to 85 and
the pinion must have not less than 20 teeth. In this case, the difference
between number of teeth of the annular gear and the pinion has to be not
less than 8.

In order to determine number of teeth z,, z, and z; of toothed wheels
of the planetary gear train with a single planet pinion (Fig.1.1, a) we
should set up three equations. For planetary gear trains with a double
planet pinion (Fig.1.1, b, c, d) it is necessary to write four equations to
find z,, z,, z, and zs. However, it is possible to set up two equations

only: the first equation is determination of the velocity ratio and the
second one is the equation of coaxiality. Thus, solution of this problem
is multivariant.

1.2. Examples of synthesis of planetary gear trains

/

Example 1

] Determine number of teeth of
gears and carry out Kkinematic

2__
3 x ——= .
2| H analysis of the planetary gear speed
reducer with a single planet pinion
1 |Z | -4  shown in Fig.1.5 if number of
A

planet pinions k = 4; rotational
speed of the input shaft n; = 5600
rpm; rotational speed of the output

— shaft ny = 1400 rpm; module of
Z3 gears m = 3 mm. Number of teeth
of gears must satisfy to the
g following condition 17 < z < 180.
Fig.1.5. Planetary gearing with a Gears have to be_manufactured by
single planet pinion sr:apdalrd cutter with a=20° and
a =L

11



Solution
1. Determination of a number of teeth of the planetary gearing
toothed wheels.

1.1. Determine the velocity ratio of the planetary gearing:

Uss =1—u{3 :1"'2_3::—1:%:4,
Z i

i z, . : : :
where u,, =—=2 is the velocity ratio of the reversed mechanism.
Zl
1.2. Write the main conditions for the planetary gearing:

- coaxiality condition is
21+ 7= 173- 7,

. (m)_ Z,+2
sin| — |> ;
k) z,+z,

- coincidence condition is

- mating condition is

where v is any integer numeral;
- condition of right engagement (when o =20°and h, = 1) is
z,=>217, z,> 20, 232> 85, 23-2p2 8.

1.3. Set up equations for determination of gears number of teeth:
z Z, Uy
Uy =1+=2, 21+ 2, =73~ 2, =y
z, k
Let us find z, and zz taking into account mentioned above equations
z,=2,-(uy —1);
Z3-7 — Zl'(ull’ _2)
2 2
In order to determine gears number of teeth we will set up the
following system of relations
Z (ulH B 2) .

2

zZ, =

2,:2,:2,:Y=1:

12



The obtained system is considered as the basic equation for
determination of the gears number of teeth of the planetary gearing. It
provides carrying out the coaxiality condition and the coincidence
condition when the velocity ratio of the planetary gearing is known. That
is why after choosing gears number of teeth it is enough to make
checking for the mating condition and the condition of right engagement.

1.4. Choose number of teeth z; arbitrarily as less as possible.
According to the condition of right engagement and the coincidence
condition it should be greater or equal to 17 and divisible by k. Let z; = 20.

1.5. Determine gears number of teeth of the planetary gearing:

20-(4-2) 20-4

2,:2;:23:y= 20: :20-(4—1):T,

21:2;:23:7y = 20:20:60 : 20.
Consequently
2,=20, z,=20, z3=60.

1.6. Check the mating condition:
(nj z,+2
sin| — > :
k) z,+z,
sin(szsin(@j=sin45°=o.7071,
4 4

z,+2 20+2 _
z,+z, 20+20

0.55.

The mating condition is carried out because sin 45° > (.55.
1.7. Check the condition of right engagement:

2,217, 2,>20, 723> 85, z3-2,> 8.
In our case this condition is not carried out because

;> 17, z,> 20, z3<85, z3-2,> 8.

1.8. Reselect number of teeth z; and recalculate the number of teeth
of all gears.

Let z;=30. Then

13



21222:23:7—30:&;_2) 30-4

:30-(4—1):T,
Z1:2;:23:y = 30:30:90: 30.
Thus
z2,=30, z,=30, z3=90.
1.9. Check the mating condition:

: (nj z,+2
sin| — |> ,
k) z,+z,
gn(szsm(lggj=sm45°=0707L
4 4

z,+2 30+2
z,+z, 30+30

=0.533.

The mating condition is carried out because sin 45° > 0.533.
1.10. Check the condition of right engagement:
2,217, 2,>20, 723> 85, z3-2,> 8.
In our case
2,=30>17, z,=30> 20, z3=90 > 85, z3-2,=60> 8.
Thus, the condition of right engagement is carried out.
1.11. Check the velocity ratio
wi=1—u;=1+§f=1+§g=4.
Thus, gears number of teeth of the planetary gearing (z; = 30,

2, = 30, z; = 90) was determined correctly. They provide given velocity
ratio of the mechanism and fulfilling all necessary conditions.

2. Determination of gears diameters:
dyi=di=m-z=3-30=90 mm,
dyw=do=m-2z,=3-30=90 mm,
dus=ds=m-2z3=3-90=270 mm.

3. Kinematic analysis of the planetary gearing.

14



3.1. Plot the mechanism diagram (Fig.1.6, a). For that we choose
arbitrarily the length of a segment that represents the largest gear diameter.
In our case it is the annular gear diameter dz. The length of this segment has

to be greater or equal to 220 mm. Let d_ = 270 mm. Then the scale factor is

L, =d_—3 0270_0001—
d, 270 mm
3.2. Plot the velocity diagram of the mechanism.
3.2.1. Determine the linear velocity of point P, located on sun
gear 1:

TN, p= 3,14-5600- 0,045 _ 96376
30 30 sec
3.2.2. Choose the length of segment PTa that represents Vp; on the
velocity diagram (Fig.1.6, b). The length of this segment should not be
less than 150 mm. Let %=168 mm. Then the scale factor of the
velocity diagram is

Ve, =

_ Vi 26376 m/sec
Pa 168 mm

3.2.3. Draw straight line MM perpendicular to the mechanism
common axis and transfer points O;, O,, P, and P, to this line. As a
result we will have points O;’, O,’, P;”and P,’.

3.2.4. Plot the velocity diagram for sun gear 1. For this purpose we

lay off segment P, a perpendicular to line MM and connect obtained point

a with point O,. Segment O_l'ashows the distribution law of velocities of

the movable sun gear points.

3.2.5. Plot the velocity diagram for planet pinion 2. Velocities of
two points (P, and P,) of this gear have been known. At point P, the
velocity of the planet pinion is equal to the velocity of the movable sun
gear Vp;. At point P, the planet pinion velocity is zero because point P,
is the pitch point of planet pinion 2 and immovable sun gear 3. After
connecting points P,” and a we obtain the velocity diagram for the planet
pinion. The velocity of the planet pinion center O, will be represented by

segment Ob and is determined as

Vo= lty - Ojb=0.157 - 84 = 13.188 m/sec.

15
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3.2.6. Plot the velocity diagram for driver H. The velocity of point
O, of the planet pinion is simultaneously the velocity of the bearing
center of the driver that rotates around point O;. After connecting point

0, with point b we obtain segment O)b that is the distribution law of
velocities of driver points.

3.3. Plot the rotational speed diagram.

3.3.1. Draw straight line NN parallel to the mechanism axis through
arbitrarily chosen point s located on line MM (Fig.1.6, c). Then we lay
off segment sf of arbitrary length along line MM. The length of

sf should be greater or equal to a segment that represents the radius of
the smaller sun gear pitch circle. Through point f we draw straight lines
parallel to segments O 'a, O/b and Pja of the velocity diagram.
Intersections of these lines with line NN are marked by points n;, ny and
n, correspondingly. Segments sn,, sn, and sn, will represent rotational
speeds of sun gear 1, planet pinion 2 and driver H to certain scale.

Let sf = 50 mm. Then the scale factor of the rotational speed
diagram is

_30-p,  30-0.157 _gpfPMm
= Sf -, 3.14-50-0.001  mm’

3.3.2. Determine rotational speeds of planetary gearing links:

n, =, -sn, = 30-187 = 5610 rpm,
n, =u, -sn, =30-94 = 2820 rpm,

n, =u, -sn, =30-47 =1410 rpm.

3.3.3. Determine the velocity ratio of the planetary gearing:
My _ Ho-S0, _sn, 187
Ny _Hn.ﬁ_ﬁ_ 47
The difference between the planetary gearing velocity ratio obtained by
the analytical and graphical methods has to be less than 4 %. In our case

4-3.98 100%=05%.

1H

=3.98.

AulH =

17



Example 2

Determine the number of
teeth of toothed wheels and carry 2
out kinematic analysis for the
planetary gear speed reducer
shown in Fig.1.7 if number of

L 75

planet pinions k = 3; rotational 4 e zp) 3 _A
speed of the input shaft n; = 8400 SN— x }
rpm; rotational speed of the A _/|
output shaft ny =600 rpm;
module of planetary gearing — "z,

gears m = 3 mm. Number of Z3

teeth of gears must satisfy to the
following condition 17 < z < /
180. Toothed wheels have to be

manufactured by standard cutter
with o =20°and h, = 1.

Fig.1.7. Planetary gearing with double
planet pinions

Solution
1. Determination of the number of teeth of the planetary gearing
toothed wheels.

1.1. Determine the velocity ratio of the planetary gearing

Uy, :1—u1’§=1+zz—zf:ﬁ 8400 ),
z,z, n, 600

i 2,2, . N :
where u;, =——2=2 is the velocity ratio of the reversed mechanism.

122

1.2. Write the main conditions for the planetary gearing:
- coaxiality condition is
Mo (1 + Z2)= My3°(23- Z7°),
where my, is a module of gears z; and z,; m,; is a module of gears z,’
and z. This condition may be written in the following way

q'(z1+ 22) = (23- 22°),
m, . .
where q=—% is ratio of modules.

2'3
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- mating condition is

: (nj Z,+2 : (nj z,+2
sin| = |> , sin| — |>—=2—;
k) z,+z, k) z,-z,

- coincidence condition is

Z3 |'
- (1-u3) =7,
where vy is any integer numeral;

- condition of right engagement (when o =20°and h, = 1) is
2,217, 2,217, z,°> 20, 232 85, Z3-2‘2 8.

1.3. Set up equations for determination of the number of teeth of the
planetary gearing toothed wheels. For that we make the following
designations:

L

Z2 ZS
Parameter y can be also found according to the coaxiality condition:
(ulH _1) X—g

" D(xvg)

Equations for determination of the number of teeth of the planetary
gearing toothed wheels have the following form
2,:2,:2,:1, :y:L:k:kx:ﬁ:M.
y(ulH _1) y Y(U1H _1)
These equations provide carrying out the coaxiality condition and the
coincidence condition when the velocity ratio of the planetary gearing is

known. That is why after choosing gears humber of teeth it is necessary to
check for the mating condition and for the condition of right engagement.

1.4. Assume X =% and g=1 (the magnitude of x is not recommended

to be chosen as 1). Then it is possible to calculate y:

19



1
(ulH —l)x—g (14—1)5—1

5
y:

(u; ~1)(x+g) (14_1)(:13“) =%

1.5. Number of teeth of the planetary gearing toothed wheels may be
calculated in the following way:

u, —2)X
ZlZZZZZQZZ?,Zy:L:k:kX:ﬁ-(1H )

y(ulH _1) y . y(ulH _1) ,
11
I 3 L.1°%3 312
1 2 22'23 Y_ 5 335?5—,
—-(14-1 — —-(14-1
26 ( ) 26 26 ( )
6 26 8
21.25.2 =—:3:1.—:—
1.:22:2:23:7= 5 55

As YZE should be an integer numeral we multiply all right hand
components of the last equality by 20. Then

71:2,:2:23:y= 24:60:20:104:32.
Consequently

Z,= 24 Zy= 60 22 20, Z3= 104.
1.6. Check the mating condition for planet pinions:

: (n) Z,+2 , (n) z,+2
sin| = |> , sin| = |> -,
k) z,+z, k

Z;-1Z,
sin(z)zsin(woj sin60° =0.866,
3 3
Z,+2 _ 60+2 ~0.7381, z,+2 __20+2
z,+z, 24+60

. =0.2619.
z,—-z, 104-20

The mating condition is carried out because sin 60° > 0.7381.

1.7. Check the condition of right engagement:

20



2,217, 2,>17,2,’> 20, 23 > 85, 7z3-2,"> 8.
In our case
21=24>17, z,=60> 17, z, ‘=20> 20, z3=104 > 85,
23-2,°=104-20=84>8.
Thus, the condition of right engagement is fulfilled.
If the mating condition and the condition of right engagement are

not right it is necessary to recalculate the number of teeth with other
magnitude of x.

1.8. Check the velocity ratio
ZZZ3=1+ M =14,
2z, 24- 20

U, =1-u, =1+

The number of teeth of the planetary gearing toothed wheels z; = 24,
z, = 60, z,’ =20, zz = 104 was determined correctly. They provide
given velocity ratio of the mechanism and fulfilling all necessary
conditions.

2. Determination of gears diameters:
dyi=di=m-z,=3-24=72 mm,
dyo=do=m-z,=3-60=180 mm,
dwy’ =dy’ =m- z’=3 - 20= 60 mm,
dys=ds=m-z3=3-104=312 mm.

3. Kinematic analysis of the planetary gearing. It is made in the same

way as in example 1.
Example 3

Determine the number of teeth of toothed wheels and carry out
kinematic analysis for the planetary gear speed reducer shown in Fig.1.8
if number of planet pinions k = 4; rotational speed of the input shaft n, =
1200 rpm; rotational speed of the output shaft ny = 300 rpm; module of
planetary gearing toothed wheels m = 3 mm. Number of teeth of gears
must satisfy to the following condition 17 < z < 180. Toothed wheels
have to be manufactured by standard cutter with o = 20° and h, = 1.
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Solution

1. Determination of the number of teeth of the planetary gearing
toothed wheels.

1.1. Determine the velocity 2 — 75
ratio of the planetary gearing uy4 o
.. X 1 1 X
taking into account the fact that [
driver H rotates to opposite side — ?| H [
with respect to movable sun gear 1
1. Consequently, this velocity I%I X , 4
ratio should be negative and it is ZZ| ' '
found as
Z1 3
i Z,2 —
Uy :1_u1|3 =1--2 f’: ZZ_
122
n, 1200 Fig.1.8. Planetary gearing with double
__EZ_ 300 =4, planet pinions
i 2,7, . . . .
where u,; = —— is the velocity ratio of the reversed mechanism.

172
1.2. Write the main conditions for the planetary gearing:
- coaxiality condition is
My (21 + Z2)= M3 (22" +23),

where my, is @ module of gears z; and z,; m,; is a module of gears z,’
and zz. This condition may be written in the following way

q(z1+ 22) = (23- 22°),
m, . .
where q=—% is ratio of modules.
m2'3

- mating condition is
() Z,+2 (n)_ z,+2 .
sin| — > , sin| — |>— ;
k) z,+z, k) z,+z,
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- coincidence condition is
Z3
k

where 7y is any integer numeral;

'(1_U3Hl)ZYv

- condition of right engagement (when o =20°and h, = 1) is
21217, 2,217, z,°’> 17,23 > 17.

1.3. Set up equations for determination of the number of teeth of the
planetary gearing toothed wheels. For this purpose we introduce the
following designations:

z z
—= =X , Z2 — y .
ZZ 23

Parameter y can be also calculated according to the coaxiality
condition:
gusll —X

X—0
Values of g and x have to satisfy to the following condition
guy < X<g.

y:

Equations for determination of the number of teeth of the planetary
gearing toothed wheels are

zl:zz:z;:23:yzqg—lﬁ:k[x—ﬁ}kx(x—l_gum]:kx(g—x):

Uzn

Uy —1

x(g-x)

These equations provide carrying out the coaxiality condition and
the assembling condition when the velocity ratio of the planetary gearing
is known. That is why after choosing number of teeth of toothed wheels
it is necessary to check for the mating condition and for the condition of
right engagement.

1.4. Assume x:% and g =1 (the magnitude of x is not

recommended to choose as 1) and check the condition
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H
gu;< x<g.

For this purpose we will find u_;

Uy =— = = —l-
U 1- 1-(-4) 5

Uy

After substituting g, x and u,; we obtain
1 2

l.—<—<1.
5 5
Thus, values of g and x satisfy to required inequality.

1.5. Determine number of teeth of the planetary gearing toothed
wheels:

zlzzz:zé:zazy:M:k[x— g j:kx(x— g j:kx(g—x):

l_U1H 1_U1H l_ulH
Usn

Xlg—X ,

(g )u1H_1

2
4.01-%

- ( 5) 2 1 2 (2 1
Zl:Zz:Zz:Zs:’YZ—:4- [ —— L/ R - — = |

1-(4 5 1-(4) 55 1-(

;4.2. 1_2}2.(1_3).__4,
5 5)5 5) -4-1
12 4 8 24 24

21.2,.2,: 2 = — = — . —
L2 Y T e e DE 57105

As yzlzz—i should be an integer numeral we multiply all right hand
. 125
components of the last equality by - Then

21:2,:2:23:y=30:50:20:60:12.
Consequently
21—30 Z,= 50, Z)’ 20, Z3:60.
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1.6. Check the mating condition for planet pinions:
: (nj z,+2 : (nj z,+2
sin| — |> : sin| — |> —;
k) z,+z, k) z,+z,
sin[fj=sin(@j=sin45°=o.7o71,
4 4

z,+2 20+2
z,+z, 20+60

z,+2 50+2

= = =0.275.
z,+z, 30+50

0.65,

The mating condition is carried out because sin 45° > 0.65.
1.7. Check the condition of right engagement:
2,217, 2,b>217,2,°> 17,23 > 17.
In our case
2,=30>17, z,=50> 17, z,°’=20>17, z3=60>17.

Thus, the condition of right engagement is fulfilled.

If the mating condition and the condition of right engagement are
not right it is necessary to recalculate the number of teeth with other
magnitude of x.

1.8. Check the velocity ratio

50-60
Uy, =1-u P LR A b

2.2, 30-20
The number of teeth of the planetary gearing toothed wheels z; = 30,
z, = 50, z,” = 20, z3 = 60 was determined correctly. They provide given
velocity ratio of the mechanism and fulfilling all necessary conditions.

2. Determination of gears diameters:
dyi=di=m-z;,=3-30=90 mm,
dw=dr=m-z,=3-50=150 mm,
dw2’ =dy’ =m - z°’=3 - 20= 60 mm,
duzs=ds=m-2z3;=3-60=180 mm.

3. Kinematic analysis of the planetary gearing. It is made in the same
way as in example 1.
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2. DESIGNING INVOLUTE GEARING
2.1 Theoretical information

Lateral profile of gear teeth can be outlined by different curves.
Nowadays gears with involute profile of teeth are mainly used in the
mechanical engineering.

There are two methods by means of which gears with involute teeth
profile (involute gears): formed cutter or copying method and generating
method. In the first case end and side mills are used as a tool. This
method allows to cut only gears in which tooth thickness measured along
the nominal pitch circle is equal to the space width along the same circle.
Besides, accuracy of gears manufacturing is not high by means of this
method.

Generating method is more universal method because it allows to cut
gears with different number of teeth by the same cutting tool. Besides,
we have possibility to produce both standard and non-standard
(modified) gears depending upon disposition of a cutting tool (gear
cutter, rack cutter or hob cutter) with respect to a blank (Fig.2.1).

If the module line of the rack cutter is a tangent to the nominal pitch
circle of the gear being cut we obtain a standard gear.

If the rack module line is removed from the nominal pitch circle of
the gear being cut or intersects the latter nonstandard or modified gears
are obtained.

Distance b between the module line of the rack cutter and the
nominal pitch circle of the gear being cut is called rack offset. The ratio
of the rack offset to the module of the gear is called offset factor x

X=—.
m

Offset factor can be positive, negative or equals to zero.

When the rack offset b = 0, the offset factor x = 0 and we deal with
standard also called zero-offset gears. In this case tooth thickness s of the
gear measured along the nominal pitch circle is equal to space width e
along the same circle.

T-m
S=e=——.
2

When the rack cutter is removed from the blank, b>0, x is positive

and gear being cut is called positive-offset gear. For positive-offset gears
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8>o;x>0'

=0, x=0
Fig 2.1. Disposition of the rack-cutter during production of a gear

tooth thickness measured along the nominal pitch circle is greater than
space width along the same circle (s>e; s> %).

The radius of the positive-offset gear root circle r; is increased by
the magnitude of the rack offset b=x-m in comparison with zero-
offset gears. That is why

d; =m-(z-2,5+2-x). (2.1)

When the rack cutter module line intersects the nominal pitch circle
of a gear being cut, b<0, offset factor x is negative and obtained gears
are called as negative-offset gears. For negative-offset gears

T-m
s<e; S<——.
2

Diameter of the root circle of a negative-offset gear is calculated by
formula (2.1) but offset factor x has to be substituted with sign “minus”.

Let us determine a tooth thickness along the nominal pitch circle of
nonstandard (modified) gears. For this purpose we remove a rack cutter
from the centre of a blank by the distance b =x-m(Fig.2.2). In this case
the space width of the rack cutter measured along straight line that is a
tangent to the nominal pitch circle of a gear being cut is increased by the
magnitude 2A =2-x-m-tga . Tooth thickness of a gear measured along

the nominal pitch circle is increased by the same distance. That is why

s=%+2-x-m-tga=m-(g+2-x-tgaj- (2.2)
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HI

Fig 2.2. Determination of a tooth thickness measured along
the nominal pitch circle of a non-standard gear

Let us determine a tooth thickness s, measured along a circle of
arbitrary radius r,.
From Fig. 2.3 we can see that

Y, +0,=v+6.
(2.3)
Angles y, and y are determined from the following formulas
S S S
’Yy = 2 y = y 1 ’Y = ,
f,om -z m-z

where my and m are modules along circles of
radii ryand r.

After substituting y, and y to (2.3) and
taking into account that 6, =inva, we obtain

s, . s
+invo, =——+inva,

m, -z m-z
y

whence
S S . .
2L == 47-(inva—inva,).

y

m, m

y

After substituting value of s from (2.2) to the  Fig 2.3. Determination

last formula we obtain of a tooth thiqkness
along any circle
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S, =m .[g+2.x.tgoc+z-(inVoc—ir1VOcy)}, (2.4)

y y

where

r.b
cosa, =~
ry
Formula (2.4) allows to determine a tooth thickness measured along
a circle of arbitrary radius r,. For example, tooth thickness measured

along the addendum circle is determined as

a

s,=m, -E+2-x-tga+z-(inV(x—inVOca)},

o

d
where m, =—2, cosa, =—2.
z d,

Nonstandard gearings

The nonstandard gearing may be made up of two nonstandard gears
or nonstandard and standard gears.
Depending upon the total offset factor x;=x,+x, we will

distinguish between gearings with x; =0 and gearings withx; = 0.
Let us consider a gearing with x, =0 which consists of gears 1 and

2 of numbers of teeth z; and z, and offset factors x; and X
correspondingly (Fig.2.4).

In order to determine the pressure angle e, of the gearing it is
necessary to find tooth thicknesses of gears 1 and 2 measured along pitch
circles. For this purpose we use formula (2.4)

sz=mW-[g+ 2-X,-tga+ zl-(inVa—inVaW)] (2.5)

Swo =M, [g+ 2-X, -tgoc+22-(inv<x—inV(xW)}, (2.6)

where m,, is module measured along the pith circle.
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QY ’:,e
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X
3
S| N O w
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/ dw
o 5%

A 0 ‘

Fig. 2.4. Parameters of a non-standard involute gearing

To provide engagement of gears without backlash a tooth thickness
along the pitch circle of one gear has to be equal to a space width of the
other gear. That is why

SW1+SW2 =pw =7-[:'mw (27)

After adding left and right parts of (2.5) and (2.6) and taking into
account (2.7) we obtain

: - X
inva, = —=

-tgo+inva,
ZE
where X, =X, +X, and z, =z, +z,.
If x;=0,wehave a, =a=20°.
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Let us determine centre distance a,, of a nonstandard gearing. From
Fig 2.4 we have
rbl + rb2
cosa.,,
For a standard (normal) gearing in which radii of pitch circles are
equal to corresponding radii of nominal pitch circles (ry1 = Iy, fw2 = )
and o, = 0, a centre distance is determined as

a, =l,+r,= (2.8)

h,+r, m-zg
Q=r+r=——=>=—-=,
coso 2

It follows from (2.8) and (2.9) that

(2.9)

coso. M-z, -CosaL
cosa,  2-cCoSal,

a,=a

If x; =0, we have
. _m-z
a, =8 = 5
and pitch circles coincide with nominal pitch circles.
If x, =0, nominal pitch circles of gears are removed from each

other by distance ym (Fig.2.4). This distance is called perceived offset
and y is perceived offset factor which is calculated as

a,—a _z, [ cosa
m 2 \cosa, )
Let us deduce a formula for determination of addendum circle
diameter of a nonstandard gear.
While designing an involute gearing two requirements have to be
carried out:
- teeth of gears have to be engaged with each other without a
backlash;
- standard radial clearance ¢=0.25-m has to be made between
addendum circle of one gear and root circle of the other one.
The first requirement is carried out if
a,=n+r+y-m. (2.10)
According to the second requirement

D)

y=
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a,=r,+C+r,. (2.11)
After solving (2.10) and (2.11) jointly and taking into account that
L=05-m-z, r,=05-m-z,, ,=05-m-(z,—25+2-X,), c=0.25m
we obtain
d,=m-(z,+2+2-x,-2-4y),
where Ay = x, —y is called equalized offset factor.

Equalized offset Ay-m is introduced to obtain an involute gearing
without backlash and with standard value of the radial clearance.

2.2.Geometrical calculation of involute gearing
of external contact

Initial data

Make geometrical calculation of an involute gearing of external
contact if centre distance a,, = 70 mm, number of teeth of the pinion z; =
15, number of teeth of the gear z, = 30, module m =3 mm, offset factors

ratio 2L =155 (¢ =20°; ¢ =0.25; h =1).
2
Solution

1. Determine the total number of teeth

Zs = 71+7, = 15 + 30 = 45.
2. Calculate the pressure angle
m-z,-coso. _3-45-0.94

cosa,, =
2-a, 2-70

=0.9064;

a,, =0.4361rad =24°59'; tga,, =0.466.
inva, =tga,, —o,, =0.466—0.4361=0.0299.
3. Find the total offset factor

_ Zy-(inva,, —inva)  45-(0.0299 -0.0149)
- 2-tgo - 2-0.364

=0.927.

z
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4. Determine offset factors for the pinion and the gear taking into

X
account that =+ =1.55.
X2

The pinion offset factor is

X1=1.55 - xo.
On the other hand x; + X, = Xs. That is why
x, =X 0927 _ 364
255 255

X, =X, —X, =0.927 —0.364 = 0.563.

Taking into account that z;<17 the following condition should be
carried out to eliminate a tooth undercutting

X1 2 Ximin »

where

17-z, 17-15
lein = =
17 17
The condition is carried out.

=0.1176.

5. Calculate the perceived offset factor

_a,-05-m-z, _70-05-3-45
m

=0.83.

6. Determine the equalized offset factor
Ay = X, —y =0.927 - 0.83 = 0.097.
7. Determine diameters of nominal pitch circles
di=m-z=3-15=45 mm,
dry=m-z =330=90 mm.
8. Find diameters of base circles
d,=m-z -cosa=3-15-c0s20 =42.3mm,

d,, =m-z,-cosa=3-30-c0s20=84.6 mm.
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9. Determine diameters of pitch circles

d =m.z, 5% _3.15. 9% _ 45668 mm,
cosa,, 0.9064

coso 0.94
d.=m

w2 =m-z,- =3-30- ———=93.336 mm.
cosa,, 0.9064

10. Check the center distance

d,, +d,, 46.668+93.336
2 2
11. Calculate diameters of addendum circles

a, = =70.002 mm.
da1= M- (zy+2+2-x1-2-Ay) =3- (15+ 2+2-0.563-2- 0.097) =53.796 mm,
dap= M- (z,+2+2-x,-2-Ay) =3- (30 +2+2-0.364-2- 0.097) =97.602 mm.
12. Determine diameters of root circles
d;, = m-(zl —2.5+2-x1)=3-(15—2.5+2-0.563)=40.878 mm,
di, = m-(z2 —2.5+2-x2)=3-(3O—2.5+2-0.364):84.684 mm.
13. Check the correctness of previous calculations:

a, =d—231+d—;2+0.25-m _ 53.2796 N 84.684

+0.25-3=69.99 mm,

a, = %u%w.zs- m= 27602 40878 55 3_69.99 mm.

14. Determine the whole depth of the tooth
h=2.25'm-Ay'm=2.25-3-0.097-3=6.459 mm,

by —dy, _53.796 40878
2 2

=6.459 mm,
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d,,—d,, 97.602—84.684

h= =6.459 mm.
2
15. Find the circular pitch
o, =m-m. coso. _3.14-3-0.94 —9.769 mm.

cosa,, 0.9064

16. Determine tooth thicknesses measured along nominal pitch
circles

sl=m-(g+2-x1-tgaj:3-(3'—214+2-O.563-0.364}=5.94mm,

S, = m-[g+2~x2 'tgaj=3-(3'—214+2'0.364~0.364j=5.5 mm.
17. Calculate tooth thicknesses measured along pitch circles

S .
Sy =0, -(d—l-i-anOL—anOLWj:
1

=46.668- (% +0.0149 - 0.0299j =546 mm,

S, . :
Swo =0y {d—2+ InV(x—InVOLWj =
2

=93.336- [% +0.0149 - 0.0299) =4.304 mm.
18. Calculate tooth thicknesses measured along base circles

5, =0y, -(3—1 + inmj - 42.3-(% + 0.0149) ~6.214mm,
d 45

1

5, =d,, -[S—2+ inVOcj =84.6-(§+0.0149J:6.431 mm.
d 90

2
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19. Determine tooth thicknesses measured along addendum circles
taking into account that we know pressure angles 0,1, 0, for involute
points through which addendum circles pass. These angles are calculated
in the following way:

dy, 423

080 = T 53796

=0.786,
dal

0q = 0.667 rad = 38° 09, tg 0,,=0.787,
inva,, =tgo,, —a,, =0.787-0.667 =0.12

cos,, = Gz _ 848

=2 0867,
d,, 97.602

0= 0.522 rad = 29° 53", tg 0,,,=0.575,

inve,, =tga.,, —a,, =0.575-0.522 = 0.053.

Consequently,

S, . :
Sy =0, (d—1+ InV(x—InVOLal] =
1

=53.796- (% +0.0149 - 0.12) =1.447 mm,

S, . .
S,, =d., (d—2+ II’]VOL—InVOLaZJ =
2

=97.602- (% +0.0149 - 0.053j =2.246 mm.

20. Check a tooth for sharpening. According to this condition a tooth
thickness measured along an addendum circle should not be less than
0.2'm. In our case

S1>0.2-m=0.2-3 = 0.6 mm,
Sa2>0.2:m=0.2-3 = 0.6 mm.

Consequently, sharpening condition is carried out.
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21. Calculate the contact ratio
1

€, =§-(Zl ‘tgo, +2,-tga,, — 7 -tgaw)z
=#-(15-0.787+30-0.575—45-0.466) =1.287.
2-3.14

The contact ratio must be greater or equal to 1.05 (g, >1.05).

2.3. Plotting involute profile of a tooth

1. Choose the length of a segment that represents the centre distance
a, on a drawing. We mark this segment as O,0, . The length of O,0,

has to be greater than 450 mm. The centres of gears O; and O, may be
located outside the drawing. Determine the scale factor y, . It should be
chosen in such way to obtain a tooth whole depth not less than 40 mm.

Let segment O,0, be equal to 500 mm. Then the scale factor p is
found as

& _007 400014 ™.
0,0, 500 mm

W=

2. Lay off segment 0,0, and through obtained points O, and O, we
draw pitch circles of radii r,, and r,, (Fig.2.5). Point P of their contact is
the pitch point. After that we draw base circles of radii ry; and ry, and the
general tangent n-n to these circles that is the line of action. Points of
contact of line n-n with the base circles are correspondingly marked as
M; and M,. The line of action has to pass through the pitch point P and

segments O,M, and O,M, must be perpendicular to the first one.

3. Through point P we draw straight line perpendicular to the centre
distance O,0,. This line will be the tangent to both pitch circles. The

angle between the line of action and the perpendicular to the centre
distance is the pressure angle a,,. The magnitude of this angle should be
equal to the pressure angle found by the analytical method. In our case
Oy =~ 25°.
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Fig.2.5. Engagement of gears with external contact

4, Draw addendum circles of radii ry; and ra, as well as root circles of
radii ry and r,. The distance between the addendum circle of one gear
and the root circle of the other measured along the centre distance is the
radial clearance ¢ of a gearing. It is always equal to 0.25-m. It is
necessary to check if this distance corresponds to 0.25-m on the drawing.

5. Plot a tooth profile of one gear. For this purpose through point P
we lay off an arc along the pitch circle whose length is equal to half of
the tooth thickness (sy/2). As a result we obtain point 2 that is on the
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tooth symmetry axis (Fig 2.6). Through points 2 and O, we draw straight
line (tooth axis of symmetry) to intersection of this line with the
addendum circle, the nominal pitch circle, the base circle at points 1, 3
and 4. After laying off arcs from these points whose lengths are equal to
half of tooth thickness measured along corresponding circles we obtain
points 1°, 3°, 4°.If we connect points 1°, P, 3", 4" by smooth curve we
will obtain right lateral profile of the tooth. In the same way we may find
position of points 17,27, 3"", 4"" that are on the tooth left lateral profile.

Fig. 2.6. Plotting a tooth involute profile

The tooth lateral surface is described by an involute. The initial point
of this curve is on the base circle and inside this circle the involute
cannot exist. That is why part of a tooth profile between the base circle
and the root circle (when r,>ry) is described by a straight line parallel to
the radius. Obtained linear portion of a tooth profile is joined with the
root circle by an arc of radius p = 0.38'm. If r,<r; the whole lateral
profile of a tooth is described by an involute. In this case an involute is
joined with the root circle by an arc of the same radius p =0.38-m.

6. Plot a tooth of the second gear with usage of mentioned above
method. In this case teeth lateral profiles should contact each other at the
pitch point P.
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7. Plot two adjacent teeth for gear 1. For that we lay off either arcs
of the circular pitch length p,, along the pitch circle or chords of length

¢, =d,, 'sin(lgo
z1

symmetry. As a result we obtain points located on the axes of symmetry
of two adjacent teeth. Straight lines connecting these points with the gear
centre O; represent the axes of symmetry of these teeth. The angle

o

j in both directions relative to the tooth axis of

between axes of two adjacent teeth should be equal to 360 . Two
Zl
adjacent teeth are plotted by means of transferring sizes of the already
plotted tooth or with usage of the method of templates.
8. Plot two adjacent teeth of gear 2. For this purpose we will use the
same method as in the previous point. It is necessary to remember that

the angle between axes of two adjacent teeth should be equal to 360 :

ZZ
The drawing of the gearing engagement is shown in Fig. 2.6. Teeth
of gear 1 have to contact teeth of gear 2 at three points. These points are
located on line n-n that is the general tangent to base circles of both gears
and passes through the pitch point P. Normal n;-n; to teeth profiles is the
line of action for left profiles of teeth of gear 1 and mating profiles of
gear 2.

9. Determine working parts of teeth profiles. The most remote points
of teeth profiles with respect to centres of gears are points located on the
addendum circles. The addendum circle of gear 1 intersects the line of
action at point B and the addendum circle of gear 2 intersects line n-n at
point A. That is why at point A mating profiles are engaged and at point
B they are disengaged. Thus, the engagement of gears is carried out
within portion AB. This part of the line of action is called a path of
contact.

In predetermined direction of rotation only one side of a gear tooth
transmits or withstands load. Besides, during operation not the whole
tooth profile works and only its certain part. This part is called an active
flank. The active flank of gear 1 tooth is limited by a point that is met at
point A of the line of action with a point of gear 2 located on the
addendum circle. In order to determine position of this point at the tooth
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profile of gear 1 it is necessary to draw the arc of radius O;A to
intersection of the latter with the tooth profile.

In the same way we can find the limit of the active flank of the tooth
for gear 2. On the drawing the active flanks are marked by double lines.

10. Determine the contact ratio by the graphical method:

where ABis the length of the path of contact in mm; py is the pitch
measured along the base circle in mm.

The error between the contact ratios calculated by analytical method
and graphical method should not be greater than 5%.
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3youacTi mexaHizmu

MeToau4Hi peKoMeHAalii 10 KypCcoBOi poOOTH s
CTyZeHTiB crienianpHOocTel 6.100100 “BupobHHUITBO,
TEXHIYHE 00CITyTOBYBaHHS Ta PEMOHT IMOBITPSIHUX CY/IEH 1
aBiagBuryHis”, 6.100100 “TexHoJIOTIT i TEXHOJIOTIYHE
o0naTHaHHS aeporopTiB".

(AHTITIHCEKOI0 MOBOIO)

Vinanaui; KPUXKAHOBCBKUM Amnnpiii CraHicIaBOBUY
BABEHKO €Breuiit Muxaitnosud
KOPHIEHKO Amnatomniit Onexcanapoud

Texuiunmii pegaxtop A.l. JlaBpuHOBHY

[Mign. mo npyky . ®opmar 60x84/16. ITamip ode.
Odc. npyk. YM. IpyK. apk. . O6m.-BuA. apk. .
Tupax 100 mp. 3amoBnenHs Ne . Bug. Ne 2/1V

Bupasuuurso HamionansHoro aBianiiinoro yHiBepcurety «HAY-npyx»
03680. Kuie-58, npocnext Kocmonasra Komapoga,1

Cainonrso npo BHeceHHs 10 [epskaBHoro peectpy AK Ne 977 Bin 05.07.2002
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