
GENERAL   METHODS   GUIDELINES 

 
The course paper in the subject Theory of Mechanisms and Machines 

is one of the basic kinds of the student’s individual work. The purpose of 

the course paper is to enhance the knowledge acquired by the student in 

the lectures, practical classes and laboratory sessions, and develop the 

skills of making research and design of present-day aircraft mechanisms 

and machines. 

The course paper is to include the following parts: 

1. Kinematic and force analyses of a leverage. 

2. A planetary gear design. 

3. A gearing design. 

Each part of the course paper should consist of a calculation and a 

graphical sections. 

All calculation sections are to be presented as an explanatory note 

that is either typed or hand written in blue or black ink on one side of size 

A4 paper. Every sheet is to be paginated and have the following margins: 

top – 5 mm, bottom – 5 mm, right – 5 mm, and left – 20 mm. 

 An explanatory note should have the following four parts: a 

kinematic analysis of a leverage, a force analysis of a leverage, a 

planetary gearing design and a gearing design, as well as the contents 

table, the assignment, the list of literature used in working on the course 

paper. Each new part is to begin with a new page.  

Each part must be subdivided into items marked with numerals 

separated by a point. The first numeral represents the number of the part, 

the second – shows the number of the item.     

Calculations should be made in an order that corresponds to the 

graphical plots. All magnitudes that are part of formulas are to be 

explained. In addition, it is necessary to denote units of measurement of 

parameters calculated. 

The graphical section is to be executed on size A1 whatman paper   

(part1) and A2 (part 2 and part 3) in pencil. Above every drawing there 

should be an inscription indicating the scale. The title block should be 

drawn in the bottom right hand corner. 
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1. KINEMATIC ANALYSIS OF LEVERAGES  

 

 1.1. Theoretical information 

 

The kinematic analysis of a mechanism is carried out taking into 

account the time factor only. In this case all forces acting on mechanism 

links are ignored.  

As we know from theoretical mechanics, the motion of any body is 

characterized by its translation in space, velocity and acceleration. That is 

why the main tasks of kinematic analysis are to plot mechanism diagrams 

and paths of motion of separate points, to determine mechanism extreme 

positions, linear velocities and accelerations of a mechanism points, 

angular velocities and accelerations of mechanism links, the radius of 

curvature at any path point and so on.  

As a result of this analysis we can determine the correspondence of 

kinematic parameters (translations, velocities and accelerations) to 

predetermined conditions of mechanism functioning as well as receive 

initial data for making further calculations. The knowledge of kinematic 

parameters is necessary to determine dynamic loads (inertia forces, 

moments of a couple of inertia forces), mechanism kinetic energy and 

power. Paths of motion of some points and mechanism extreme positions 

help to determine the links relative positions during their motion, to 

eliminate their possible collisions, to determine the working stroke of 

links, etc. 

There exist graphical, analytical and experimental methods of 

kinematic analysis.  

Graphical research methods are most common in engineering. 

They are quite simple, clear and accurate for engineering calculations. 

While using graphical methods it is necessary to plot either 

velocity and acceleration diagrams or kinematic diagrams.  

Velocity and acceleration diagrams are drawn on the basis of 

vector equations that connect velocities and accelerations of separate 

points of mechanism links. These diagrams allow finding momentary 

velocities and accelerations of different mechanism points as well as 

angular velocities and accelerations of mechanism links. 

Kinematic diagrams are graphs of mechanism point or link 

translation, velocity and acceleration depending upon the time or turning 

angle of an initial link. By means of these diagrams we may analyze the 
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changes in the above mentioned kinematic parameters during a complete 

cycle of mechanism motion.  

Analytical research methods are more complicated, but owing to 

the emergence of computers, they are widely practiced. These methods 

help to get multivariant solutions and to choose mechanism diagrams and 

sizes of their links providing optimum working conditions. 

Experimental methods are used in experimental research work. 

In graphical methods plotting mechanism diagrams, velocity and 

acceleration diagrams is made to a certain scale. For this purpose, the 

scale factor is employed. The scale factor is a ratio of a physical 

magnitude (length, velocity, acceleration, etc.) to a segment length that 

represents this magnitude in the figure. The scale factor is marked by 

letter K with the magnitude index that is in the figure. For example, the 

scale factor of length is marked by Kl , the scale factor of velocities is KV, 

the scale factor of accelerations is Ka. A scale factor has a dimension, 

where the dimension of a real physical magnitude is the numerator and 

the dimension of length in millimeters is the denominator. Thus, the scale 

factor μl has the dimension of 
m

mm
, μV has 

m / sec

mm
 and so on. If, for 

example, the velocity of point A VA = 5 m/sec is shown by segment  

pa = 100 mm in the figure, then the scale factor of the velocity diagram 

is 

AV 5 m / sec m / sec
0.05 .

100 mm mm
V

pa
     

In the figure, where this velocity is shown, the following 

inscription should be made: 1 mm ^ 0.05 m/sec.  It means that in the 

figure 1mm corresponds to 0.05 m/sec. 

It is necessary to note that the dimensions in all figures given in 

the guide were diminished. That is why the length of any segment in a 

figure is less than the corresponding length given in the guide text. 

The order of kinematic analysis is determined by mechanism 

structure and depends upon the order of attachment of Assur’s group to a 

group of initial links. That is why mechanism structural analysis always 

precedes kinematic analysis. It allows reducing kinematic analysis of any 
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mechanism to studying separate Assur’s groups, for which special 

expedients of kinematic and force analyses have been developed. 

Kinematic analysis should be carried out in the order opposite to 

mechanism structure.  

After determining a mechanism structure we should plot a 

mechanism kinematic diagram. 

The kinematic diagram of a mechanism is graphic representation 

of links relative position corresponding to a certain point of time and 

taking into account the scale. By means of a mechanism kinematic 

diagram we may analyze motion of both the whole mechanism and its 

separate links, plot path of motion of any mechanism point, find extreme 

positions of the mechanism.  

Plotting a kinematic diagram of a mechanism is usually begun with 

drawing a link whose position is given for a predetermined instant of 

time. As a rule, it is the mechanism’s initial link. Kinematic diagrams are 

drawn with the use of diagrammatic representations of links and 

kinematic pairs. 

  

Basic equations of velocities and accelerations  

 

According to the graphical method of kinematic analysis after 

drawing a mechanism kinematic diagram it is necessary to plot the 

velocity and the acceleration diagram. For that, we should set up vector 

equations of velocities and accelerations. We will consider two cases: 

when two points are parts of one link and when two points are parts of 

different links. 

Two points being parts of one link. Let points A and B, which are 

removed relative to each other at distance lAB, be parts of one link (Fig. 1). 

According to theoretical mechanics the velocity of any point of a 

perfectly rigid body can be determined as the geometric sum of velocities 

of transportation and relative motions. In our case, the transportation 

motion is the motion of point A and the relative one is the rotatory 

motion of the link about point A. Taking into account this fact, we may 

set up a vector equation for finding the velocity of point B: 

B A BAV V V  , 

where VBA is the velocity of point B with respect to point A.  
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In general, the vector of relative velocity is directed along the 

tangent to the path of motion of the corresponding point. In our case, 

BAV is perpendicular to AB. 

The magnitude of relative velocity VBA is determined by the 

following formula: 

BA ABV  , 

where ω is the link angular 

velocity. 

When the direction of 

relative velocity BAV is known 

we may find the direction of 

angular    velocity   ω   and   

vice  versa. For this purpose  it                       

is necessary to show the direction        Fig.1.Relative motions of two points                          

of VBA at point B. The direction                    that are a part of one link                             

of  ω  is  determined  according to                                                                         

the direction of VBA.  

In the same way, we can write a vector equation for finding the 

acceleration of point B. 

B A BAa = a +a , 

where aBA is the acceleration of point B relative to point A. 

During relative rotatory motion acceleration aBA is resolved into 

normal acceleration n

BAa  directed to the centre of rotation, i.e. from point 

B to point A and tangential acceleration τ
BAa  directed along the tangent to 

the path of motion of point B (in our case perpendicular to AB). Then we 

obtain the following vector equation for point B 

n τ
B A BA BAa = a + a + a . 

The magnitudes of accelerations n

BAa and τ

BAa  may be found 

according to the following formulas: 
2

2 BA
AB

AB

V
,  n

BAa  
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AB

τ
BAa    , 

where ε is the link angular acceleration. 

According to the direction of τ
BAa  we may determine the direction 

of ε and vice versa (Fig.1). 

Two points belong to different links that form a sliding kinematic 

pair and coincide with each other at given instant of time. Let point A be 

a part of link 1 and point B belong to link 2 (Fig. 2). Links 1 and 2 form 

the sliding kinematic pair with the guide of motion H12. In the same way 

as in the previous case, the velocity of point B consists of transportation 

and relative velocities. Transportation motion is the translational motion 

of link 1 and transportation velocity is the velocity of the point of link 1  

that coincides with point B at a given instant of time (in our case it is 

point A). The relative velocity of point B is the velocity of link 2 relative 

to link 1. During the motion of link 2 with respect to link 1 point B 

moves along a straight line that is parallel to guide H12. That is why 

relative velocity VBA is parallel to H12. Thus, the vector equation for the 

velocity of point B has the following form: 

B A BAV V V  . 

The acceleration of point B 

consists of three components such 

as transportation acceleration (in 

our case it is the acceleration of 

point A) aA, relative acceleration 
τ
BAa  and Coriolis acceleration c

BAa . 

Then the vector equation for the 

acceleration of point B is 
c τ

B A BA BAa a + a + a . 

           Links 1 and 2, which form the 

sliding kinematic pair, do not  have 

 Fig.2. Relative motions of points A         relative rotation. That is why  their 

and B that belong to different  links           angular velocities and  accelerations 

and  coincide  with  each  other   at           are identical, i.e.ω2 = ω1 and ε2 = ε1.  
            a given instant of time                    
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Coriolis acceleration c

BAa  appears as a result of interaction of 

transportation and relative motions. It may be found according to the 

following formula: 

BA 12 Vc

BAa    , 

where VBA is the velocity of relative motion; ω1 is the angular velocity of  

transportation motion. 

Vector  c

BAa is directed to the side where vector VBA will be 

directed if it is turned by 90 in the direction of angular velocity 1 (Fig. 

2). 

 

1.2. Kinematic analysis of  

the aircraft air compressor mechanism 

 

Init ial  data  

Geometrical dimensions of the mechanism: lOA = 20 mm; lAB = 60 

mm; lAC = 50 mm; lAS2 = 20 mm; lAS4 = 25 mm; angle between the guides 

Θ = 90˚. Link 1 rotates clockwise with constant rotational speed             

n1 = 2000 rpm. Make a kinematic analysis of the mechanism at       

position #10 (Fig. 3,a). 

1.2.1 Determination of the mechanism structure 

In order to determine the mechanism structure it is necessary to 

find its degree of freedom. 

Taking into account that the number of the movabel mechanism 

links n = 5, the number of the 1
st
 kind kinematic pairs p1 = 7, the number 

of the 2
nd

 kind kinematic pairs p2 = 0 the mechanism’s degree of freedom 

W is calculated according to Chebyshev’s formula  

W=3   n - 2   p1 - p2 = 3   5 - 2   7 = 1. 

The mechanism structure has the following form: 

1. Links 4 and 5 make up dyad # 2. 

2. Links 2 and 3 make up dyad  #2. 

3. Links 1 and 6 make up the group of initial links. 

 



 9 

1.2.2. Plotting the mechanism’s kinematic diagram 

First, we should set the length of the segment that represents the 

greatest mechanism link. In our case it is link 2, connecting rod AB 

(Fig.3,a). 

 Let segment AB be equal to 240 mm (the length of this segment is 

chosen arbitrarily but it must be greater than 200 mm). Then the scale 

factor of the mechanism diagram is determined as 

AB 0.06 m
0.00025 .

240 mmAB
      

Notes. The length of segment AB should be taken thus in order to obtain 

a finite magnitude of the scale factor.  

If the scale factor is known, we can find the length of segments 

that represent links 1 and 4. 

AO 0.02
AO 80 mm,

0.00025
  


 

AC 0.05
AC 200 mm.

0.00025
  


 

Determine the length of segments 2AS  and 4AS :  

S2

2

0.02
AS 80 mm ,

0.00025
  


 

S4

4

0.025
AS 100 mm.

0.00025
  


 

It is necessary to note that in the figure ℓOA, ℓAB, ℓAS2 are the real 

sizes of the links in meters and distances AO , AB , AC , 2AS  and 4AS  

are the lengths of the segments in millimeters. 

Now let us switch over to plotting a kinematic diagram of the 

mechanism. First, we show the initial link (crank 1) in the given position 

and draw guides H36 and H50 through point O taking into account that 

angle between them is θ = 90˚. In order to determine the positions of 

points  B and  C we will use the  intersection  method. According  to  this  



 10 

 

 

 

 

 

 

 

 

 

 
                                                                                      

           

 

 

 

 

 

 

     

         Velocity diagram                                  Acceleration diagram 

        1 mm ^ 0.02 m/sec                                         1 mm ^ 4 m/sec
2 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3.Kinematic analysis of the aircraft air compressor mechanism:  

a – mechanism diagram; b – velocity diagram; c – acceleration diagram 

Mechanism diagram 

  1 mm ^ 0.00025 m 
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method we should strike arcs of radii AB and AC on the guides H36 and 

H50. After joining points B and C with point A and using corresponding 

links diagrammatic representations we obtain a diagram of the 

mechanism in position #10. The positions of points S2 and S4 can be 

found in the same way as for points B and C. 

1.2.3. Plotting the velocity diagram 

1. Determine the velocity of the initial link of the mechanism  the 

motion of which is characterized by the motion of point A. As the initial 

link is hinged with the fixed link the velocity of point A is determined 

according to the following vector equation   

AOOA VVV  , 

where OV  is the velocity of the hinge centre O relative to which point A 

moves; AOV  is the relative velocity of point A during its motion with 

respect to point O.  

Since point O is a fixed one OV = 0 and, consequently, AOA VV  .  

Let us analyze the velocity of relative motion AOV . As link 1 

rotates with the constant rotational speed, we can determine the 

magnitude of AOV  according to Euler's formula:  

.sec/m2.402.0
30

200014.3

30

n
V OA

1
OA1AO 





   

In general, the relative velocity is directed along the tangent to the 

path of motion of the corresponding point. Taking into account the fact 

that the path of motion of point A is a circle of radius AO, we can make a 

conclusion that AOV  is perpendicular to AO  segment.  

Now we will plot a velocity diagram for link 1. For this purpose it 

is necessary to give the length of segment pa  that represents the 

velocity AOV  in the figure.  Let .mm210pa Then the scale factor of 

the velocity diagram is: 
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4.2 / sec
0.02

210

A

V

V m

mm
   

pa
. 

Notes. The length of segment pa should be taken thus in order to obtain 

a finite magnitude of the scale factor.                              

Let us choose arbitrary point p (the pole of the velocity diagram) 

and lay off segment pa  perpendicular to OA  in the direction of crank 

rotation (Fig. 3, b). 

2. Determine the velocity of internal kinematic pair B of dyad #2 

consisting of links 2 and 3. For this purpose we should set up the following 

vector equation 

BAAB VVV  , 

where BV is the velocity of point B; BAV  is the velocity of relative 

motion during rotation of point B with respect to point A.  

Let us analyse all components of the obtained equation. Velocity 

AV  was found both by magnitude and direction. The velocity of relative 

motion BAV is known to us by direction only. It is perpendicular to BA . 

As slider 3 moves along  fixed guide H36  velocity BV is parallel to the 

latter. 

Thus, we have vector equation with two unknowns (the 

magnitudes of vectors BAV and BV ). It can be solved by the graphical 

method. According to this method we should pass a straight line through 

point a  that shows the direction of relative velocity BAV (BA) and a 

line parallel to guide H30 from  pole p (Fig.3, b). The point of intersection 

of these lines indicates the position of point b. Segment pb  represents 

velocity BV to scale and segment ab shows velocity BAV . The direction 

of these velocities is determined according to the rule of vector 

compositions. In our case vector BV , as well as BAV , tend to point b.  In 

order to find the magnitudes of velocities BV  and BAV , we should 

multiply corresponding lengths of the segments by scale factor μV.  
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VB = μV · pb= 0.02 · 230 = 4.6 m/sec, 

VBA = μV · ab = 0.02 · 120= 2.4 m/sec. 

   3. Determine the velocity of point S2 located on link 2. For this 

purpose we should use the similarity theorem. According to this theorem, 

point S2 is to be located in the velocity diagram in the same way as in the 

mechanism diagram, i.e. between points a and b. In order to determine 

the position of point S2 it is necessary to set up the following proportion 

2AS AB
2as ab

, 

whence  

2

2

AS 80 120
40 mm.

240AB

 
  

ab
as  

 Let us lay off segment 2as  along segment ab . After connecting 

point s2 with pole p we obtain segment 2ps  (Fig.3, b) that represents the 

velocity of point S2 to scale. The magnitude of this velocity is determined 

as  

VS2 = μv · 2ps = 0.02 · 170 = 3.4 m/sec. 

4. Determine the velocity of point C that characterizes Assur’s 

group consisting of links 4 and 5. The velocity of this point is determined 

according to the following vector equation  

CAAC VVV  , 

where CV is the velocity of point C; CAV  is the velocity of relative 

motion during rotation of point C relative to point A.  

The velocity of point A AV  was found both by magnitude and 

direction. The velocity of relative motion CAV is perpendicular to AC . 

The magnitude of this velocity should be found as well as the magnitude 

of velocity CV . The direction of the latter is parallel to H50.  
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Let us plot the velocity diagram for considered Assur’s group. 

According to the vector equation we pass a straight line through point a 

that is perpendicular to AC  and a line parallel to guide H50 through pole 

p. Point c is the intersection of these lines. Segment pc  represents  

velocity CV  to scale and segment ac characterizes relative velocity CAV . 

According to the rule of vector compositions velocities CV  and CAV  are 

directed to point c.  In order to find the magnitudes of velocities CV  and 

CAV , it is necessary to multiply corresponding lengths of segments by 

scale factor KV.  

VC = μV · pc = 0.02 · 150= 3 m/sec, 

  VCA= μV · ac= 0.02 · 205= 4.1 m/sec. 

    5. Determine the velocity of point S4. Since point S4 is located 

on segment AC  in the mechanism diagram, it should be located on the 

identical segment ac  of the velocity diagram. The disposition of this 

point is determined from the following proportion  

4

4AS AC


as ac
, 

whence  

4

4

AS 100 205
102.5 mm.

200AC

 
  

ac
as  

 After laying off segment 4as  along segment ac  and connecting 

point s4 with pole p, we obtain segment 4ps  that represents  velocity 

4SV . The magnitude of this velocity is determined as  

VS4 = μV · 4ps = 0.02 · 160 = 3.2 m/sec. 
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6. Determine the angular velocities of links 2 and 4. The 

magnitudes of these angular velocities are determined according to the 

following formulas 

BA
2

AB

V 2.4 rad
40

0.06 sec
    , 

sec

rad
82

05.0

1.4V

AC

CA
4 


. 

In order to determine the directions of angular velocities of links 2 

and 4, it is necessary to transfer the vectors of relative velocities BAV  

and CAV in the velocity diagram to corresponding points B and C in the 

mechanism diagram and to consider the motion of points B and C 

relative to point A. In our case, angular velocities ω2 and ω4 are anti-

clockwise (Fig.3, a). 

1.2.4. Plotting the acceleration diagram 

1. Determine the acceleration of the mechanism initial link the 

motion of which is characterized by the motion of point A. The 

acceleration of point A that performs a rotatory motion along the circle of 

radius ℓOA is determined according to the following vector equation 

n τ
A O AO AOa = a + a + a , 

where Oa  is the acceleration  of  hinge centre O relative to which point A 

moves; 
n

AOa  is the normal acceleration  of point A relative to point O; 
τ
AOa  is the tangential acceleration  of point A relative to point O. 

Since point O is a fixed one aO = 0. Normal acceleration 
n

AOa  is 

directed to the centre of rotation of point A, i.e. to point O. The 

magnitude of this acceleration is determined as 

2 2

2 1
1 OA OA 2

n 3.14 2000 m
0.02 876 .

30 30 sec

    
         

  

n

AOa  
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Tangential acceleration 
τ
AOa  is directed along the tangent to the 

path of motion of point A and is determined by the following formula 

1 OA ,τ
AOa     

where ε1 is the angular acceleration of the initial link. Since crankshaft 1 

rotates with the constant angular velocity we can make a conclusion that 

ε1 = 0 and consequently 
n

A AOa = a . 

Let segment a'p'  represent the acceleration of point A. The 

length of this segment is chosen arbitrarily. In our case, we assume  

a'p' =219 mm. Then the scale factor in the acceleration diagram is 

found as  

2876 m / sec
4 .

219 mm

A

a

a

p'a'
     

Notes. The length of segment a'p'  should be taken in such a way to 

obtain a finite magnitude of the scale factor.                              

Let us choose arbitrary point p’ (the pole in the acceleration 

diagram) and lay off segment a'p'  parallel to OA  in the direction from 

point A to point O (Fig.3, c). 

2. Determine the acceleration of point B that characterizes dyad #3 

consisting of links 2 and 3. For this purpose we should set up the 

following vector equation 

n τ
B A BA BAa = a + a + a , 

where Ba  is the absolute acceleration of point B that is parallel to guide 

H30; 
n

BAa  is the normal acceleration of point B relative to point A that is 

directed parallel to AB  from point B to point A; 
τ
BAa  is the tangential 

acceleration of point B relative to point A that is perpendicular to AB . 

Normal acceleration 
n

BAa  is determined as 
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2 2

BA

2

BA

V 2.4 m
96 .

0.06 sec
  n

BAa  

Let us solve  the vector equation mentioned above by the graphical 

method. For that, through point a’ we draw straight line parallel to AB  

and in the direction from point B to point A in the mechanism diagram 

we lay off segment 'b'a'  that represents normal acceleration 
n

BAa  to 

scale (Fig.3, c). The magnitude of this segment is determined by the 

following formula 

a

96
24 mm.

4

n

BAa
a'b''   


 

Through the obtained point b’’ we pass straight line perpendicular 

to AB  and through pole p’ it necessary to draw a line parallel to H30. At 

the point of intersection of these lines we obtain point b’. Segment b'p'  

represents the absolute acceleration of point B to scale and segment 

'b'b' shows tangential acceleration 
τ
BAa . The magnitudes of these 

accelerations can be found in the following way 

aB =μa · 'bp' = 4 · 100= 400 m/sec
2
, 

τ
BAa =μa · ''bb' = 4· 200 = 800 m/sec

2
. 

     3. Determine the acceleration of point S2 located on link 2. For 

this purpose we should use the similarity theorem. According to this 

theorem point S2 is to be located in the acceleration diagram in the same 

way as in the mechanism diagram, i.e. between points a’ and b’. In order 

to determine the position of point S2 it is necessary to set up the 

following proportion 

2AS AB
2a's ' a'b'

, 

whence  

2

2

AS 80 190
63.3 mm.

240AB

 
  

a'b'
a's '  
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 Let us draw segment 'sa' 2  along segment 'ba' . After connecting 

point s2’ with pole p’ we obtain segment 'sp' 2  that represents the 

acceleration of point S2 to scale. The magnitude of this acceleration is 

determined as  

aS2 = μa · 'sp' 2 = 4 · 140 = 560 m/sec
2
. 

4. Determine the acceleration of internal kinematic pair C of    

dyad #3 consisting of links 4 and 5.  In this case we should set up the 

following vector equation 

n τ
C A CA CAa = a + a + a , 

where Ca  is the absolute acceleration of point C ( Ca || H50); 
n

CAa  is the 

normal acceleration of point C relative to point A that is directed parallel 

to AC  from point C to point A; 
τ
CAa  is the tangential acceleration of 

point C relative to point A (
τ

CAa   AC). 

We can find the normal acceleration 
n

CAa  as 

2 2

CA

2

CA

V 4.1 m
336.2 .

0.05 sec
  n

CAa  

Let us represent this acceleration in the acceleration diagram by 

segment 'c'a' the length of which is  

336.2
84.05 mm.

4

n

CA

a

a
a'c''   


 

Now, through point a’ we draw a straight line parallel to AC  in 

the direction from point C to point A in the mechanism diagram and lay 

off the length of segment 'c'a' . After that through the obtained point c’’ 

we pass a straight line perpendicular to AC  and through pole p’ we draw 

a line parallel to H50. The point of intersection of these lines is point c’ 

(Fig.3, c). Segment c'p'  represents the absolute acceleration of point C 
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to scale and segment 'c'c' denotes tangential acceleration 
τ
CAa . The 

magnitudes of these accelerations are determined as 

aC = μa · c'p' = 4 · 195= 780 m/sec
2
, 

τ
CAa = μa · 'c'c' = 4· 80 = 320 m/sec

2
. 

     5. Determine the acceleration of point S4 located on link 4. 

According to the similarity theorem point S4 is to be located in the 

acceleration diagram between points a’ and c’. In order to determine the 

position of point S4 we set up the following proportion 

4

4AS AC


a's ' a'c'
, 

whence  

4

4

AS 100 103
51.5 mm.

200AC

 
  

a'c'
a's '  

 Let us lay off segment 'sa' 4  along segment 'ca' . After 

connecting point s4’ with pole p’ we obtain segment 'sp' 4  that 

represents S4a  to scale. The magnitude of this acceleration is determined 

as  

aS4 = μa · 'sp' 4 = 4 · 160 = 640 m/sec
2
. 

6. Determine the angular accelerations of mechanism links 2 and 4. 

The magnitudes of these angular accelerations are determined according 

to the following formulas 

2 2

AB

800 rad
13333.33

0.06 sec

τ
BAa

    , 

4 2

AC

320 rad
6400

0.05 sec

τ
CAa

    . 
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In order to determine the direction of the angular accelerations of 

links 2 and 4 it is necessary to transfer the vectors of tangential 

accelerations 
τ
BAa  and 

τ
CAa  in the acceleration diagram to corresponding 

points B and C in the mechanism diagram and to consider motion of 

points B and C relative to point A. In our case, angular acceleration ε2 is 

anti-clockwise and ε4  is clockwise (Fig.3, a) . 
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2. FORCE ANALYSIS OF LEVERAGES 
 

2.1.Theoretical information 

 

The main task of mechanism force analysis is to determine the 

forces of links interaction, i.e. pressures in kinematic pairs as well as 

unknown external forces acting on the mechanism links. Knowledge of 

these forces is necessary for mechanism strength analysis, rigidity 

analysis, vibration-resistance analysis, wear-resistance analysis, for the 

calculation of durability, for determining friction losses of power, etc. 

All forces that act on mechanism links are divided into the 

following groups: 

1. Driving forces that make a mechanism move. They act on the 

side of links motion. That is why the work of driving forces is always 

positive. Examples of driving forces are electromagnetic forces, pressure 

of steam or gas, pressure of water or air, elastic forces of springs, etc. 

2. Forces of resistance that act opposite to links motion. Work of 

these forces is always negative. They are subdivided into forces of useful 

resistance and forces of parasitic resistance. Forces of useful resistance 

are the forces of technological resistance to motion for the overcoming of 

which work is expended when an engineering process is made. An 

example of such forces may be the force of resistance to metal cutting, 

forces of aerodynamic resistance that act on airplane propellers and so 

on. Forces of parasitic resistance are the forces for the overcoming of 

which the additional work is expended. They include frictional forces in 

kinematic pairs as well as forces of resistance of working medium. These 

forces are quite small in comparison with all other forces acting on a 

mechanism links. That is why in our further calculations we will neglect 

them.  

3. Gravities that develop due to links’ interaction with the Earth. 
In separate parts of mechanism motion these forces may perform both 

positive and negative work. But the work of gravities per complete 

kinematic cycle is equal to zero because the points of their application 

move cyclically.   

4. Forces of inertia that are the result of nonuniform motion of  

mechanism links. The work of these forces is equal to zero per cycle of 

mechanism motion.  
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5. Reacting forces that develop owing to links’ interaction with 
each other in places of their contact, i.e. in kinematic pairs. These are the 

forces with which one link acts on the other during motion. According to 

Newton’s third law reacting forces are always inverse. In a mechanism, 

the number of these forces is equal to the number of kinematic pairs. 

Reacting forces are considered as internal ones for the whole mechanism 

although for every separate link they are external forces. The work of 

reacting forces is never equal to zero because frictional forces in 

kinematic pairs are not equal to zero. 

The purpose of mechanism force analysis is to determine  reacting 

forces in all kinematic pairs and unknown external forces or moments 

acting on a mechanism links.  

An unknown external force (moment) is determined from the state 

of equilibrium of a mechanism initial link and is called the balancing 

force (balancing moment). This force (moment) balances the action of all 

forces applied to the initial link and, consequently, to a mechanism as a 

whole. The number of balancing forces (balancing moments) depends 

upon the number of initial links.  

As initial data for force analysis the law of motion of an initial 

link, links’ dimensions, masses, moments of inertia with respect to the 

centre of mass and external forces should be given. These data allow 

finding forces of inertia needed for further calculations. 

As it is known from theoretical mechanics, elementary forces of 

inertia of any link can be reduced to resultant force of inertia Fin applied 

at the center of mass of the link and to the resultant couple of inertia 

forces whose moment is Min.  

Force of inertia Fin  is found as 

F min sa   , 

where m is the link mass in kg; sa  is  the vector of total acceleration of 

the  centre of mass S of a link in m/sec
2
. 

Sign “-“ shows that force of inertia Fin is always directed opposite 

to the acceleration of the point of application of this force.  

Moment of a couple of inertia forces inM  is determined by the 

formula: 

sJ  inM , 
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where Js is the moment of inertia of a link relative to the axis that passes 

through the center of mass;  is the angular acceleration of a link. 

According to the formula, moment inM  is directed opposite to  

link angular acceleration . 

Force analysis may be carried out by different methods. The 

simplest of them is the method in which forces of inertia are not taken 

into account. This method takes place when accelerations of links are 

quite small and we may neglect them. In this case, reacting forces in 

kinematic pairs are determined from equations of statics. That is why it is 

called the static method of force analysis that is used for low-speed 

machines and mechanisms. 

In general, forces of inertia are not small and they should be taken 

into account during calculation. For this purpose we will use combined 

static and inertia force analysis. This method is based on the use of 

d’Alembert’s principle. According to this principle, if, besides the 

external forces, we apply to mechanism links forces of inertia, we may 

consider the whole mechanism and its separate links as stationary and in 

a state of equilibrium. In this case unknown forces are found from 

equations of statics that are written on the basis of methods of statics.  

As it is known from theoretical mechanics methods of statics may 

be used for statically determinate systems. The statically determinate 

mechanical system is a system in which the number of unknown 

parameters is equal to the number of equations of equilibrium. 

In order to determine what kinematic chain of a mechanism is the 

statically determinate system, we will consider a plane kinematic chain 

that consists of n movable links and p1 kinematic pairs of the 1
st
 kind.  

For every plane link we may set up three equations of equilibrium (two 

equations of forces and one equation of moments). As the kinematic 

chain contains n links, the total number of equilibrium equations is 3n.  

Now let us determine the number of unknown elements. For this 

purpose we should analyze reacting forces that develop in kinematic 

pairs. 

In general, any force is a vector that is characterized by its 

magnitude, direction and the point of application. If we neglect the forces 

of friction in kinematic pairs reacting forces will be directed along the 

general normal to contact surfaces. For a turning kinematic pair this 

normal passes through the hinge center. Then the point of application of 
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the reacting force is known and the unknowns are the magnitude and the 

direction of this force. For a sliding kinematic pair the general normal is 

perpendicular to the guide of motion. Consequently, we know the 

direction of the reacting force and it is necessary to find the magnitude 

and the point of application.  

Thus, one known and two unknown parameters characterize a 

reacting force that develops in the 1
st
 kind kinematic pair. As a kinematic 

chain has p1 the 1
st
 kind kinematic pairs the number of unknown elements is 2p1. 

A kinematic chain will be statically determinate when the number 

of unknown parameters is equal to the number of equilibrium equations 

2·p1 = 3·n    

  or 

3·n - 2·p1 = 0. 

But this formula determines the number of degrees of freedom of 

Assur’s group. Therefore, Assur’s group is a statically determinate 

kinematic chain.  

Thus, for carrying out a force analysis, a mechanism should be 

divided into structural groups (Assur’s groups and a group of initial 

links), i.e. we have to determine the mechanism structure. The order of 

the force analysis is the same as the representation of the mechanism 

structure. In other words, we should begin our force analysis with the 

determination of reacting forces in the kinematic pairs of the most remote 

Assur’s group relative to the group of initial links and to finish it by the 

analysis of the group of initial links.  

The force analysis of a mechanism may be made by graphical or 

analytical methods. The graphical method is the most convenient because 

it is quite simple and clear.  

Using the graphical method we should plot force diagrams for 

every Assur’s group and for separate links. Force diagrams are graphical 

solution of vector equations of equilibrium and are drawn as a closed 

polygon of forces. One vector equation is equivalent to two scalar 

(algebraic) equations and consequently allows finding two unknown 

parameters. 

In the analytical method of force analysis every vector equation is 

replaced by two scalar equations of force projections to the coordinate 

axes. 
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Sometimes there is no necessity to carry out the total force analysis 

of a mechanism as a result of which reacting forces in kinematic pairs are 

found. In this case the task is reduced to the determination of a balancing 

force, or a balancing moment, that is necessary, for example, when 

calculating engine power. For that, we will use the method of 

Zhukovsky’s rigid lever.  N. Zhukovsky showed that the equilibrium of 

any mechanism with one degree of freedom corresponds to the 

equilibrium of any lever and proposed the following theorem. 

If vectors of all forces applied at different link points of a 

mechanism are transferred parallel to themselves to the corresponding 

points of the velocity diagram that is turned through 90, we can consider 

this velocity diagram as a rigid lever rotated around the pole and loaded 

by the same forces as a prime mechanism. The sum of moments of all 

forces acting on the rigid lever with respect to the pole will be equal to 

zero, i.e.  Mp= 0. By solving this equation we may find a balancing 

force. 

Thus, to determine a balancing force (moment) by Zhykovsky’s 

method, we have to plot a velocity diagram to an arbitrary scale that is 

turned through 90, and to apply all forces that act on mechanism links at 

corresponding points. This method is used for checking the correctness 

of the combined static and inertia force analysis of a mechanism. The 

difference between the balancing forces (balancing moments) obtained 

using the above mentioned  methods should be less than 5 %. 

 

2.2. Force analysis of  

the aircraft air compressor mechanism 

Init ial  data  

Geometrical dimensions of the mechanism: lOA = 20 mm;                

lAB = 60 mm;  lAC = 50 mm; lAS2 = 20 mm; lAS4 = 25 mm; the angle between the 

guides  Θ= 90˚. Masses of the mechanism links: m2 = 0.5 kg; m3 = 0.4 kg; 

m4 = 0.45 kg; m5 = 0.35 kg. Centres of mass of links 1, 2, 3, 4 and 5 are, 

correspondingly, at points O, S2, B, S4, C. Moments of inertia of con-

rods: JS2 = 0.005 kg·m
2
; JS4 = 0.004 kg·m

2
. Compressed air pressures: P3 

= 2 kN; P5 = 1 kN. Link 1 rotates clockwise with constant rotational 

speed n1=2000 rpm. Make force analysis for the mechanism at position #10. 
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2.2.1. Determination of the mechanism structure 

The structure of the aircraft air compressor mechanism (Fig 4, a) 

has the following form: 

1. Links 4 and 5 form dyad # 2. 

2. Links 2 and 3 form dyad  # 2. 

3. Links 1 and 6 form the group of initial links. 

The mechanism force analysis is carried out in the following order:  

first, we should determine the forces in kinematic pairs of the most 

remote Assur’s group with respect to the group of initial links. In our 

case this group is formed by links 5 and 4. Then, the forces in kinematic 

pairs of Assur’s group formed by links 3 and 2 are found. Finally, we 

determine the forces in kinematic pairs of the group of initial links and 

the balancing moment applied to initial link 1. 

2.2.2. Plotting the velocity diagram and the acceleration diagram 

For the mechanism given position we plot the velocity diagram, 

the acceleration diagram (Fig.4, b, c) and determine accelerations of 

centre of mass of all mechanism links as well as angular accelerations of 

links that perform rotatory motion. 

The accelerations of points B, C, S2, S4   were found: 

aB = μa · 'bp' = 4 · 100= 400 m/sec
2
, 

aC  = μa · c'p' = 4 · 195= 780 m/sec
2
, 

aS2  = μa · 'sp' 2 = 4 · 140 = 560 m/sec
2
, 

aS4  = μa · 'sp' 4 = 4 · 160 = 640 m/sec
2
. 

The angular accelerations of links 2 and 4 are determined as 

2 2

AB AB

4 200 rad
13333.33

0.06 sec

τ
aBA

b''b'a   
     ,  

4 2

AC AB

4 80 rad
6400

0.05 sec

τ
CA aa c''c'  

     . 
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a 

             Velocity diagram                                    Acceleration diagram 

             1 mm ^ 0.02 m/sec                                      1 mm ^ 4 m/sec
2
  

 

                                                                      
 

 

 

 

 

 

 

 

 

 
Fig.4. Determination of  forces of inertia of the mechanism links: 

a – mechanism diagram; b – velocity diagram; c – acceleration diagram 

b 
c  

Mechanism diagram 
 

1 mm ^ 0.00025 m 
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2.2.3.   Determination of resultant forces of inertia  

and resultant moments of a couple of inertia  forces 

Magnitudes of links forces of inertia applied to corresponding 

centres of mass are determined by the following formulas: 

Fin2 = m2 · aS2 = 0.5· 560 = 280 N, 

Fin3 = m3 · aB = 0.4· 400 = 160 N, 

Fin4 = m4 · aS4 = 0.45· 640 = 288 N, 

Fin5 = m5 · aC  = 0.35· 780 = 273 N. 

 

Forces of inertia are oppositely directed to accelerations of 

corresponding centres of mass of links (Fig. 4, a). 

Magnitudes of moments of a couple of inertia forces that act on 

links 2 and 4 may be determined in the following way: 

 Min2 = JS2 · ε2 = 0.005· 13333.33 = 66.67 N·m, 

Min4 = JS4 · ε4 = 0.004· 6400 = 25.6 N·m. 

The direction of these moments of a couple of inertia forces is 

opposite to the angular acceleration of the corresponding link. 

In the combined static and inertia force analysis the obtained 

forces of inertia and the moments of a couple of inertia forces are 

considered as external forces that load the mechanism links. Let us show 

these forces in the mechanism diagram (Fig. 4, a). 

2.2.4. Determination of reacting forces in kinematic pairs  

of Assur’s group formed by links 4 and 5 

We are going to determine the reacting forces in kinematic pairs of 

the mechanism ignoring the forces of friction that develop in these pairs 

and links’ weight. It is explained by the fact that the forces mentioned 

above  (the forces of friction and the weight of the links) have quite small 

magnitudes in comparison with the external forces acting on the 

mechanism links. 
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1. Plot Assur’s group formed by links 4 and 5 at needed position 

taking into account the scale factor of length  μℓ = 0.00025 
m

mm
 (it was 

found when making the kinematic analysis of the mechanism) and apply 

all forces acting on the mechanism links. Besides, we will replace the 

action of separated links (in our case links 1 and 6) by reacting forces 

that develop in the corresponding kinematic pairs. The reacting force will 

be marked by letter R with double subscript of links that make up a 

kinematic pair. Dyad #2 contains three kinematic pairs. One of them 

formed by links 5 and 6 is a sliding pair. The two others formed by links 

4 and 5, 4 and 1 are turning ones. That is why there are three reacting 

forces in the kinematic pairs such as R05, R54, R14. It is necessary to take 

into consideration that R05 = - R50, R54  = - R45,, R14 = - R41. For this, Assur’s 

group forces R05 and R14 are external ones and R54  is an internal force. 

 Let us analyze the reacting forces mentioned above. As links 5 

and 6 make up a sliding kinematic pair, force R05 of interaction of these 

links is perpendicular to guide of motion H50, but the magnitude and the 

point of application are unknown. We mark the line of action of this 

force with a dotted line perpendicular to H50 that passes at certain 

distance h05 relative to point C (Fig.5, a). Arm h05 determines the point of 

application of R05 and we are to find it. 

Force R14  is a force that develops in turning kinematic pair A. That 

is why the point of application of this force is known (the center of the 

turning pair) and we should determine the magnitude and the direction of 

this force. As the direction of R14 is unknown, we will resolve it into two 

components:  normal force Rn

14

 
that is parallel to AC and tangential force 

Rτ
14 that is perpendicular to AC (Fig.5, a). The direction of Rτ

14  is chosen 

arbitrarily. If we obtain a negative magnitude of Rτ
14 , the direction of this 

force was chosen incorrectly. 

Thus, link 5 is loaded by four forces such as pressure F5, inertia 

force Fin5, force R05 that acts from the side of the fixed link 6 and force 

R45 that acts from the side of link 4. Link 4 is under the action of one 

moment Min4  and three forces: inertia force Fin4, force R14 from the side 

of link 1 and force R54 from the side of link 5.  
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2. Determine tangential component Rτ
14  of the reacting force, that 

develops in the turning pair. For this purpose we should consider the 

state of equilibrium of link 4. As this link is in a state of equilibrium the 

sum of moments of all acting forces relative to any point must be equal to 

zero. Let us set up an equation of moments with respect to point C 

( 0 CM ). We assume that the clockwise moment is positive and the 

anticlockwise moment is negative. 

R F 0τ
14 AC in4 4 in4l h - M     

Forces n

14R  and R54 do not form moments because their arms 

relative to point C are equal to zero. Arm h4  is determined from the 

Assur’s group diagram (Fig.5, a). As h4 is the shortest distance it is 

perpendicular to the line of action of force Fin4. In order to determine the 

real magnitude of this arm, it is necessary to multiply the corresponding 

segment length in mm by scale factor  μℓ. 

   
1 1

R F 288 0.014 25.6 516.03 N
0.05

τ
14 in4 4 in4

AC

h + M
l

        . 

As the magnitude of Rτ
14  is positive we chose its direction correctly. 

3. Determine the other unknown external forces that load Assur’s 

group links (R05, Rn

14 , R14). 

 Let us consider the equilibrium of the whole of Assur’s group. As 

Assur’s group is in a state of equilibrium the vector sum of all forces 

acting on the group links must be equal to zero ( 0 iF ): 

R F F F R R 0τ n
14 in4 5 in5 65 14+ + + + +  . 

This vector equation does not contain forces R54  and R45  because 

their sum is equal to zero. Forces underlined by two lines are known both 

by direction and by magnitude. If a force is underlined by one line it is 

known by direction only.  

The vector equation has two unknown parameters. We will solve 

this equation by plotting a force diagram. For that, we arbitrarily choose 
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a scale factor for the force diagram and find the lengths of segments that 

represent the corresponding forces in the figure.  

Let μF =10 
N

mm
. Through pole H we lay off forces Rτ

14 , Fin4, F5, 

Fin5   in   succession   marking   vector   ends   by   letters   a,  b,  c, and d,  
 

Assur’s group diagram  

(links 4 and 5) 

1 mm ^ 0.00025 m 

 
a                                                              

             Force diagram                                          Force diagram 

             (links 4 and 5)                                                  (link 4) 
                                                        

              1 mm ^ 10 N                                              1 mm ^ 10 N  

     
                 b                                                                c 
 

Fig. 5. Determination of forces in kinematic pairs of  

Assur’s group formed by links 4 and 5: a – Assur’s group diagram; 

b – force diagram for  Assur’s group; c – force diagram for link 4  
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correspondingly (Fig.5, b). The lengths of segments Ha , ab , bc  and cd  

are determined in the following way: 

F

R 516.03
51.6mm

10

τ
14Ha =  


, 

F

F 288
28.8mm

10

in4ab=  


, 

F

F 1000
100mm

10

5bc=  


, 

F

F 273
27.3mm

10

in5cd =  


. 

Through the obtained point d we draw a line parallel to R05 and 

through pole H we pass a line parallel to 4R n

1 . The point of intersection of 

these lines is point e. Segments andde, aH ea represent corresponding 

forces R05, 4R n

1 , R14 to scale. To determine the magnitudes of these 

forces, we should multiply corresponding segments by the scale factor.  

FR 10 56.5 565 N65 de     , 

FR 10 62 620 Nn

14 eH     , 

FR 10 80 800 N14 ea     . 

The directions of these forces are determined according to the rule 

of vector composition (Fig.5, b). Thus, forces  R05, 4R n

1  and R14  were 

found. 

4. Determine reacting forces in the internal kinematic pair of  

Assur’s group (R54 and R45). 
For that, we should consider the state of equilibrium of either link 

5 or link 4 and set up a vector equation of forces, acting on the link 

( 0 iF ). For example, let us consider the state of equilibrium of link 4: 
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R F R 014 in4 54+  . 

This vector equation has two unknowns (the direction and the 

magnitude of force R54). We solve this equation by plotting a force 

diagram. Taking into account the scale factor, we lay off  R14 ,  Fin4 in 

succession marking corresponding vector ends with letters a and b. After 

connecting point b with pole H we obtain segment bH  that represents 

force R54 (Fig.5, c).   

FR 10 93 930 N54 bH     . 

According to the rule of vector composition we can determine the 

direction of  force R54 (Fig.5, c). 

5. Determine arm h05 , i.e. the point of application of force R05.  

For this purpose we will consider the state of equilibrium of link 5. 

The sum of moments of all acting forces with respect to point C must be 

equal to zero ( 0 CM ): 

R05  h05 = 0. 

Moments of forces R45, F5 and Pin5 are equal to zero because their arms 

relative to point C are equal to zero too.   

As force R605 0, we may make a conclusion that  h05 = 0. 

2.2.5.Determination of reacting forces in kinematic pairs of 

Assur’s group formed by links 2 and 3 

1. Plot Assur’s group formed by links 2 and 3 at a given 

mechanism position taking into account the scale factor of length           

μℓ = 0.00025 
m

mm
 and apply all forces acting on the mechanism links   

(Fig.6, a). The action of separated links 1 and 6 is replaced by reacting 

forces R03, R12 that develop in the corresponding kinematic pairs.  

 Link 3 is loaded by four forces such as pressure F3, inertia force 

Fin3 , force R03 that acts from the side of the fixed link 6 and force R23 that 

acts from the side of link 2. Link 2 is under the action of one moment of 
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a couple of inertia forces Min2  and three forces: inertia force Fin2, force 

R12 from the side of link 1 and force R32 from the side of link 3. Unknown 

forces are: reacting force in the sliding kinematic pair R03, forces 

R R23 32 = -  in internal turning kinematic pair B and force R12  that 

develops in external turning pair A.  

Force R03  is perpendicular to guide of motion H30, but the point of 

application of this force is unknown. That is why we mark the line of 

action of this force with a dotted line perpendicular to H50 that passes at 

certain distance h03 relative to point B (Fig.6, a). Arm h03 should be 

found. 

Unknown force  R12  is resolved  into two components:  normal 

force n

12N
 

that is parallel to AB and tangential force Rτ
12 that is 

perpendicular to AB (Fig.6, a). The direction of Rτ
12  is chosen arbitrarily.  

2. Determine tangential component Rτ
12  of the reacting force, that 

develops in turning pair A. 

For this purpose we will consider the state of equilibrium of link 2. 

As this link is in a state of equilibrium, the sum of moments of all acting 

forces relative to any point must be equal to zero. Let us set up an 

equation of moments with respect to point B ( 0 BM ):  

R F 0τ
12 AB in2 2 in2l h M     . 

Forces Rn

12  and R32 do not form moments because their arms 

relative to point B are equal to zero. Arm h2 is determined from the 

Assur’s group diagram (Fig.6, a). For that, we should multiply the 

corresponding segment length in millimeters by scale factor  μℓ. 

   
1 1

R F 280 0.04 66.67 1297.83 N
0.06

τ
12 in2 2 in2

AB

h + M
l

           . 

Sign “-“ shows that the direction of Rτ
12 was chosen incorrectly. In 

this case it is necessary to change the direction of the reacting force in the 

Assur’s group diagram (Fig.6, a). 
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            Assur’s group diagram                                          Force diagram                                

        (links 2 and 3)                                                     (links 2 and 3)                                          

   1 mm ^ 0.00025 m                                                   1 mm ^ 20 N 

 

 

 
а 

 
b 

Force diagram (link 2) 

1 mm ^ 20 N 

 
с 

Fig. 6. Determination of forces in kinematic pairs of  

Assur’s group formed by links 2 and 3: a – Assur’s group diagram; 

b – force diagram for Assur’s group; c – force diagram for link 2  

3. Determine all unknown external forces that load the Assur’s 

group links (R03, Rn

12 , R12).   
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Let us consider equilibrium of the whole of Assur’s group. As 

Assur’s group is in a state of equilibrium the vector sum of all forces 

acting on the group links must be equal to zero ( 0 iF ): 

0R F F F R R 0τ n
12 in2 3 in3 3 12+ + + + +  . 

The vector equation has two unknown parameters. We will solve 

this equation by plotting a force diagram. For that, we arbitrarily choose 

the scale factor  μF = 20 
N

mm
 of the force diagram and lay off forces 

Rτ
12 , Fin2 ,F3, Fin3  in succession marking vector ends with letters a,  b,  c,  

and  d correspondingly (Fig.6, b). Through obtained point d we draw a 

line parallel to R03 and through pole H we pass a line parallel to Rn

12 . The 

point of intersection of these lines is marked as e. Segments 

andde,aH ea  represent corresponding forces R03, Rn

12 , R12 to scale. To 

determine the magnitudes of these forces, we should multiply 

corresponding segments by the scale factor.  

0 FR 20 85.5 1710 N3 de     , 

FR 20 113 2260 Nn

12 eH     , 

FR 20 130 2600 N12 ea     . 

The direction of these forces is determined according to the rule of 

vector composition (Fig.6, b).  

4. Determine reacting forces in internal kinematic pair B of  

Assur’s group (R32 and R23). 
For that, we should consider the state of equilibrium of either link 

2 or link 3 and set up a vector equation of forces, acting on the link 

( 0 iF ). For example, let us consider the state of equilibrium of link 2: 

R F R 012 in2 32+  . 

This vector equation has two unknowns (the direction and the 

magnitude of force R32). We solve this equation by plotting a force 
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diagram. Taking into account the scale factor we lay off  R12 , Fin2 in 

succession marking corresponding vectors ends with letters a and b. 

After connecting point b with pole H we obtain segment bH  that 

represents force R32 (Fig.6, c).   

FR 20 125.5 2510 N32 bH     . 

According to the rule of vector composition we can determine the 

direction of  force R32 (Fig.6, c). 

5. Determine arm h03 .  

For this purpose we will consider the state of equilibrium of link 3. 

The sum of moments of all acting forces with respect to point B must be 

equal to zero ( 0 BM ): 

R03  h03 = 0. 

Moments of forces R23, F3 and Fin3 are equal to zero because their arms 

relative to point B are equal to zero, too.   

As force R03  0 consequently arm   h03 = 0. 

2.2.6. Force analysis of the group of initial links 

1. Draw the group of initial links at the given position taking into 

account the scale factor   μℓ = 0.00025 
m

mm
 and apply all forces that act 

on  crank 1 (Fig.7, a). 

 The crank is under the action of one balancing moment Mbal that 

balances the action of all forces applied to the mechanism links and three 

forces: R41 from the side of link 4, R21 from the side of link 2 and R01 

from the side of the fixed link 6. 

Forces R41 and R21 are known. Their magnitudes are equal to 

corresponding forces R14 and R12 but the direction is opposite to the 

latter. Thus, in the force analysis of the group of initial links we should 

determine balancing moment Mbal  and reacting force R01. 

 

2. Determine reacting force R01 that develops in  turning kinematic 

pair O. 
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Let us consider equilibrium of crank 1. The vector sum of all 

forces acting on this link should be equal to zero ( 0 iF ): 

        0R R R 021 41 1+  . 

We solve this equation by plotting a force diagram. After choosing 

the scale factor μF = 20 
N

mm
, we lay off forces R41 and R21 marking 

vector ends with letters a and b (Fig.7, b). The obtained point b is 

connected with pole H. Segment bH represents reacting force R01 to 

scale. Let us determine the magnitude of this force: 

0 FR 20 88 1760 N1 bH     . 

        Diagram of the initial                                             Force diagram                                

                 mechanism                                                           (link 1)                                         

          1 mm ^ 0.00025 m                                                  1 mm ^ 20 N 

 
              a    b 

Fig. 7. Determination of the balancing moment and reacting 

 force N61 in kinematic pair O: a – diagram of the group of initial links; 

b - force diagram  for link 1    

3. Determine balancing moment Mbal . 

For that, we set up an equation of moments of all forces relative to 

point O: 

b 
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0bal 21 21 41 41M - R h + R h   . 

Moment of force R61 is equal to zero due to the fact that its arm 

with respect to point O is zero. Arms h21 and h41 are determined from the 

diagram of the group of initial links. For that, we multiply the 

corresponding segments in millimeters by μℓ. 

M R R 2600 0.018 800 0.019 31.6 N mbal 21 21 41 41= h - h        . 

As the magnitude of Mbal is positive the direction was chosen 

correctly. 

2.2.7. Determination of the balancing moment by Zhukovsky’s method  

1. For the given mechanism position we plot the velocity diagram 

turned through 90 to an arbitrary scale. After that we will transfer all 

external forces that act on the mechanism links from the mechanism 

diagram to the corresponding points of the velocity diagram (Fig. 8).  

The known moment Min2 is represented by a couple of forces F’in2 

and F’’in2 that are applied at points A and B perpendicular to AB (Fig. 4). 

The magnitude of these forces is determined by the formula 

66.67
1111.17

0.06

' '' in2
in2 in2

AB

M
F = F =

l
  N. 

In the same way we will represent moment Min4 by a couple of 

forces F’in4 and F’’in4 that are applied at points A and C perpendicular to 

AC. The magnitude of these forces is determined as 

4
4 4

25.6
512

0.05

' '' in
in in

AC

M
F = F = N

l
  . 

Unknown balancing moment Mbal is represented by a couple of 

forces F’bal  and  F’’bal , that are applied at points A and O perpendicular to 

AO. The direction of these forces is chosen arbitrarily (Fig. 4). 

 

2. Set up an equation of moments of all forces with respect to the 

pole of the velocity diagram and determine P’bal and Mbal: 
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0.

' ' ' ' ' '' ''

bal in2 2 in4 4 3 in3 in2 2

'' ''

in5 5 in4 4 in2 2 in4 4

F pa + F h - F h + F pb - F pb + F h +

+F pc - F pc - F h - F h + F h

     

     
 

Arms of all forces are substituted in the equation in millimeters. 

The lengths of these arms are determined from Fig. 8. As a result we 

obtain 

 
Fig. 8. Determining the balancing moment by Zhukovsky’s method 
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

 



1

1
1111.17 12

100

512 81 2000 106 160 106 1111.17 36 273 65 1000 65

512 12 280 30 288 40 1566.25 .

' ' ' ' ' '' ''

bal in2 2 in4 4 3 in3 in2 2 in5

'' ''

5 in4 4 in2 2 in4 4

F F h F h F pb F pb F h F pc
pa

F pc F h F h F h

N

             

            

            

       

 

Sign “-“ shows that the direction of Mbal was chosen incorrectly. In 

reality the balancing moment is clockwise. The magnitude of this 

moment is determined as 

1566.25 0.02 31.325'

bal bal OAM = F l N m      

3. Determine the difference between the balancing moments 

obtained by the two methods (combined static and inertia force analysis 

and Zhukovsky’s method): 

31.6 31.325
100% 0.88 %

31.325
balΔM


   . 

 The error must be not more than 5 %. 
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PREFACE 

 
The term paper on the subject Theory of Mechanisms and Machines 

is one of the basic kinds of the student‟s individual work. The purpose of 

the term paper is to enhance the knowledge acquired by the student in 

the lectures, practical classes and laboratory sessions, and develop the 

skills of making research and design of present-day aircraft mechanisms 

and machines. 

The term paper is to include the following parts: 

1. Kinematic and force analyses of a leverage. 

2. Designing a planetary gearing. 

3. Designing  an involute  gearing. 

Each part of the term paper should consist of a calculation and 

graphical sections. 

All calculation sections are to be presented as an explanatory note 

that should be carried out according to requirements of «ДСТУ 3008-95. 

Державний стандарт України. Документація. Звіти в сфері науки і 

техніки. Структура і правила оформлення».  The explanatory note is 

either typed or hand written in blue or black ink on one side of size A4 

paper. Every sheet is to be paginated and have the following margins: 

top – 5 mm, bottom – 5 mm, right – 5 mm, and left – 20 mm. 

Besides calculation sections an explanatory note should have the 

contents table, the assignment, the list of literature used in working on 

the term paper. Each new part is to begin with a new page.  

Each part must be subdivided into items marked with numerals 

separated by a point. The first numeral represents the number of the part, 

the second one shows the number of the item.     

Calculations should be made in an order that corresponds to the 

graphical plots. All magnitudes that are part of formulas should  be 

explained. In addition, it is necessary to denote units of measurement of 

parameters calculated. 

The graphical section is to be executed on size A1 whatman paper   

(part1) and A2 (part 2 and part 3) in pencil. Above every drawing there 

should be an inscription indicating the scale. The title block should be 

drawn in the bottom right hand corner. 
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1. DESIGNING PLANETARY GEAR TRAINS 

1.1 Theoretical information 

The planetary gear train is a mechanism in which geometrical axes 

of one or several gears can move relative to the frame. 

Planetary gear trains are divided into four groups: 

- differential gear mechanisms that have two or more degrees of 

freedoms; 

- planetary gearings having one degree of freedom; 

- closed differential gear mechanisms obtained from ordinary 

differential gear mechanisms by constraining two main links with a 

simple gearing;  

- combined gear trains consisting of planetary gearings and simple 

gearings joined with each other in succession. 

In comparison with the other gear trains planetary gear trains have 

the following advantages: 

- small size and mass. This follows from the fact that the power is 

transmitted through several routes at the same time, the number of routes 

being equal to the number of planet pinions. Accordingly, the load 

imposed on the teeth in the meshing gears falls to a fraction of its 

original value; 

- the input and output shafts are arranged coaxially simplifying the 

layout of machines; 

- planetary gear trains are less noisy in operation than ordinary gear 

trains, because toothed wheels of the planetary gear train  are smaller and 

the forces balance out one another when the planets are arranged 

symmetrically. 

- lighter loads on the bearings result in minimum loses and simpler 

designs; 

- they have high velocity ratios with small overall dimensions; 

- they allow to compose and decompose motions. For example, 

transmission of motion from two independent motors to one driven link or 

from one motor to two driven links by means of differential gear mechanisms. 

On the other hand, planetary gear trains require high accuracy of 

manufacturing and assembling, their efficiency falls with rising the 

velocity ratio. 

Planetary gear trains may be used as speed reducers with a constant 

velocity ratio in power transmissions and various devices, gearboxes 
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where the velocity ratio can be varied by locking appropriate members, 

and differential gear mechanisms of automobiles, tractors, machine tools 

and like that. 

Design (synthesis) of a planetary gear train consists of two stages: 

- selection of the mechanism diagram taking into accounts its 

purpose and efficiency; and  

- determination of a number of teeth of all toothed wheels to 

provide the given velocity ratio.  

As a rule, planetary gear trains are formed by means of standard 

involute straight spur gears. 

Selection of the planetary gear train diagram 

Fig.1.1 shows four diagrams of planetary gearings that have found 

the most wide application in the mechanical engineering.  

Every of planetary gearings has one degree of freedom and consists 

of four links.  Toothed wheels z1 and z3 whose geometrical axes coincide 

with the main axis of the mechanism are called sun gears. Toothed 

wheel z2 having a movable axis is named a planet pinion. The shaft of 

the planet pinion rotates in the bearing B, which is mounted on link 4, 

named a driver or carrier, and together with this link, rotates around the 

main axis of the planetary gear train. The planetary gearing may contain 

single (Fig.1.1, a) or double planet pinions (Fig.1.1, b, c, d).  

 
Fig.1.1. Typical diagrams of planetary gearing 

If in a planetary gear train the immovable sun gear becomes 

movable, we deal with a differential gear mechanism that consists of five 

links and has two degrees of freedom. 

 In order to carry out kinematic analysis of the planetary gear train 

we should use the method of reversed motion.  According to this method 
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 it is necessary to add the rotational speed of the driver with opposite 

sign to rotational speeds of all mechanism links. In this case rotational 

speeds of links 1, 2, 3 and 4 are correspondingly equal to (n1 - nH), (n2 - 

nH),  (n3 - nH) and (n4- nH) = 0. Thus, driver H becomes immovable and a 

planetary gear train is transformed into ordinary gear train with fixed 

axes of toothed wheels. Diagrams of reversed mechanisms for mentioned 

above planetary gearings (Fig.1.1) are shown in Fig.1.2. 

Fig.1.2. Diagrams of reversed mechanisms 

The velocity ratio of the reversed mechanism from link 1 to link 3 

13

Hu  may be found as product of velocity ratios of single stage gearings 

that are a part of the mechanism: 

13 12 23

H H Hu u u  . 

For diagrams shown in Fig.2 '
13u  is calculated in the following way:  
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where z1, z2, 
'
2z and z3 are number of teeth of corresponding toothed 

wheels. 

On the other hand, the velocity ratio '
13u  may be determined as ratio 

of rotational speeds of links 1 and 3. Taking into account that in the 

reversed mechanism the rotational speed of link 1 is (n1-nH) and the 

rotational speed of link 3 is (n3-nH) = -nH we obtain: 

  11 1

11

3

1

13 








 H

HH

H

H

HH u
n

n

n

nn

nn

nn
u , 

where u14 is the velocity ratio of the planetary gearing. 

Then  
H

H
uu

131
1 . 

 

The obtained formula allows to determine the velocity ratio of the 

planetary gearing. For this purpose it is necessary to reverse a 

mechanism and to find its velocity ratio.  

The simplest planetary gearings may be divided into two groups:  

- planetary gearings with positive value of the velocity ratio of the 

reversed mechanism (Fig.1.1, c, d); 

- planetary gearings with negative value of the velocity ratio of 

the reversed mechanism (Fig.1.1, a, b). 

Mechanisms of the first group ( )(

13

Hu >0) are formed by gears with 

either only external (Fig.1.2, c) or only internal (Fig.1.2, d) toothing. As a 

rule, in these mechanisms the driving link is the driver. Planetary gearings 

of this group are characterized by the high velocity ratio. For example, if 

in the mechanism with two gears of external contact (Fig.1.1, c) we 

assume z1 = '
2z =100, z2 = 99, z3 = 101 the velocity ratio from driver 4 to 

sun gear 1 (u41) will be 10 000. But in this case the efficiency is less than 1 

%. That is why planetary gearings of this group are used in non-power 

short-term transmissions. The most rational values of the velocity ratio u41 

of mentioned above mechanisms are ranged from 30 to 1700. 

Mechanisms of the second group ( )(

13

Hu <0) consist of gears with 

both external and internal contact. They may be with either single 

(Fig.1.1, a) or double  (Fig.1.1, b) planet pinion. Mechanisms of this 

group are used in power and auxiliary drives as multi-planet pinions 

speed reducers of medium and high power with the velocity ratio u14 
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ranged from 2 to 15 and the efficiency from 96 to 99 %.  Planetary 

gearings with a single planet pinion (Fig.1.1, a) have the highest 

efficiency (97-99 %), small overall dimensions in the axial direction. 

Besides, they are the most compact. That is why they find very wide 

application in the mechanical engineering. We may meet these 

mechanisms in remote control plants, in aircraft drives, Moon research 

vehicles and others. 

In order to obtain the high velocity ratio multi-stage planetary 

gearings are used that are formed as a result of successive connection of 

simple planetary gearings. The example of this mechanism is shown in 

Fig.1.3. It consists of three planetary gearings with single planet pinion. 
 

 

 

 

 

 

 

 

 

Fig. 1.3. Three-stage planetary gear train 

 

The velocity ratio of the mentioned above mechanism is determined 

as product of velocity ratios of simple planetary gearings 

1 2 31 1 4 6H H H Hu u u u , 

where  

1 3
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If the velocity ratio of every stage is 5 ( 5321 641  HHH uuu ), the 

total velocity ratio of the whole mechanism is 
31H

u  = 125 with relatively 

high efficiency (88 – 94 %). The overall dimensions of this triple-stage 

planetary gear speed reducer are less in comparison with the speed 

reducer with fixed axes of gears (when the power and the velocity ratio 

are identical). 
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Z1 

Z2 Z5 Z7 

Z3 Z3 Z3 

H1 
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Determination of a  number of teeth  

of planetary gearing toothed wheels  

 

After choosing the planetary gear train diagram it is necessary to 

determine a number of teeth of mechanism toothed wheels. In this case 

the following conditions should be carried out: coaxiality condition, 

mating condition, coincidence condition and condition of the right 

engagement. 

Coaxiality condition   

In order to provide the engagement of planet pinions with sun gears 

both sun gears and the driver must have the common geometrical axis of 

rotation. In this case, the centre distance between the movable sun gear 

and the planet pinion should be equal to the centre distance between the 

immovable sun gear and the planet pinion. For planetary gear trains 

shown in Fig.1.1 the condition of coaxiality has the following form: 

                  r1 + r2 = r3 - r2     or    z1 + z2 = z3 - z2             for Fig. 1.1, a, 
'

1 2 3 2r r r r                                  for Fig.1.1, b, 
'

1 2 3 2r r r r                                  for Fig.1.1, c, 
'

1 2 3 2r r r r                                for Fig.1.1, d, 

where r1  and r3 are nominal pitch circle radii of the movable and 

immovable sun gears correspondingly; r2 and '

2r  are nominal pitch circle 

radii of the planet pinions. 

Mating condition  

This condition takes into account necessity of collocation of several 

planet pinions along a circle in one plane. According to this condition  

the addendum circles of mating planet pinions should not be intersected 

or touch each other. The mating condition is carried out when  

'

2 2 a2O O 2 r 
,                                          (1.1)  

where 
'

22  is the centre distance between two adjacent  planet pinions 

(Fig.1.4);  ra2 = 0.5∙m∙(z2+2) is the addendum circle diameter of the 

planet pinion. 
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  Fig.1.4. For determination of the mating and coincidence conditions 

 

The centre distance 
'

2 2O O  between two adjacent planet pinions is 

determined as 

                              '

2 2 2 1 2O O 2 O A 2 O O sin
2

 
      

 
,                      (1.2)     

where 
2

k


   (k is a number of planet pinions). 

The centre distance O1O2 between the planet pinion and the movable 

sun gear is  

                      1 2 1 2 1 2O O r r 0.5 m (z z )      .                         (1.3)    

After substituting (1.3) to (1.2) we obtain 

'

2 2 1 2O O m (z z ) sin
k

 
     

 
. 

Then the mating condition (1.1) has the following form: 

1 2 2(z z )sin (z 2)
k

 
   

 
, 

or                                           2

1 2

z 2
sin

k z z

 
 

 
 .                   

Coincidence condition  

This condition takes into account necessity of simultaneous 

engagement of all planet pinions with both sun gears when angles 

between planet pinions β is identical.  

After installing the first planet pinion the movable sun gear has 

certain position. If we do not carry out certain requirements after 

installing the other planet pinions tops of their teeth may not coincide 
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with spaces of one of sun gears. In this case, mechanism assembling is 

impossible.  

Coincidence condition is carried out when the curve formed by parts 

BC and DE of pitch circles of both sun gears (Fig.1.4) consists of the 

whole number of pitches, that is (i.e.) when 

BC+DE= γ, 

where γ is any integer numeral. 

Let us assume that arc BC consists of the whole number of pitches γ1 

and remainder s1: 

BC 1 1BC p s    . 

In the same way, we may write that  

DE 2 2DE p s    . 

Arcs BC and DE can also be determined by sun gears number of 

teeth:  

BC 1p z
BC

k


 , DE 3p z

DE
k


 , 

where z1 and z3 are number of teeth  of movable and immovable sun 

gears correspondingly; k is number of planet pinions. 

The sum of these arcs is found as 

BC+DE 1 3 1 2 1 2

p
BC DE (z z ) p ( ) (s s )

k
           , 

whence  

                           1 2
1 3 1 2

k (s s )
(z z ) k ( )

p

 
       .                      (1.4) 

As (z1+z3) is an integer numeral then the right part of (1.4) has to be 

an integer numeral too. It is possible when (s1+s2) = p. After substituting 

(s1+s2) = p to (1.4) we obtain  

1 3 1 2(z z ) k ( 1) k          , 

or                                           1 3(z z )

k


  , 

where γ is an integer numeral. 

Thus, coincidence condition is carried out when the sum of sun gears 

number of teeth is devisable by the number of planet pinions k. 
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Condition of right engagement 

This condition takes into account absence of teeth undercutting and 

interference. In order to eliminate these phenomena a number of teeth of 

standard involute spur gears with external toothing (when  = 

20, *

ah 1 ) should not be less than 17. For gears with internal toothing a 

number of teeth of the annual gear has to be greater or equal to 85 and 

the pinion must have not less than 20 teeth. In this case, the difference 

between number of teeth of the annular gear and the pinion has to be not 

less than 8. 

In order to determine number of teeth z1, z2 and z3 of toothed wheels 

of the planetary gear train with a single planet pinion  (Fig.1.1, a) we 

should set up three equations. For planetary gear trains with a double 

planet pinion (Fig.1.1, b, c, d) it is necessary to write four equations to 

find z1, z2, 
'

2z  and z3. However, it is possible to set up two equations 

only: the first equation is determination of the velocity ratio and the 

second one is the equation of coaxiality.  Thus, solution of this problem 

is multivariant.  

 

 

1.2. Examples of synthesis of planetary gear trains 

Example 1 

Determine number of teeth of 

gears and carry out kinematic 

analysis of the planetary gear speed 

reducer with a single planet pinion 

shown in Fig.1.5 if number of 

planet pinions k = 4; rotational 

speed of the input shaft n1 = 5600 

rpm; rotational speed of the output 

shaft nH = 1400 rpm; module of 

gears m = 3 mm. Number of teeth 

of gears must satisfy to the 

following condition 17 ≤ z ≤ 180. 

Gears have to be manufactured by  

standard  cutter  with  α = 20º  and 

 ha
* 
= 1. 

1 

2 

3 
H 

z1 

z2 

z3 

Fig.1.5. Planetary gearing with a 

single planet pinion 
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Solution 

1. Determination of a number of teeth of the planetary gearing 

toothed wheels.   

1.1. Determine the velocity ratio of the planetary gearing:  

Í 3 1
14 13

1 Í

z n 5600
u 1 u 1 4

z n 1400
       , 

where Í 3

13

1

z
u

z
   is the velocity ratio of the reversed mechanism. 

1.2. Write the main conditions for the planetary gearing:           

-  coaxiality condition is                                

z1 + z2 = z3 - z2; 

-  mating condition is     

2

1 2

z 2
sin

k z z

 
 

 
; 

-  coincidence condition is 

1 14z u

k


  , 

where γ is any integer numeral; 

- condition of right engagement (when   α = 20º and ha
* 
= 1) is 

z1  17,  z2  20,  z3  85,  z3 - z2  8. 

1.3. Set up equations for determination of gears number of teeth: 

3
1Í

1

z
u 1 ,

z
              z1 + z2 = z3 - z2,        

1 1Íz u

k


  . 

Let us find z2 and z3 taking into account mentioned above equations 

3 1 1Íz z (u 1);    

3 1 1 1Í
2

z z z (u 2)
z .

2 2

  
   

In order to determine gears number of teeth we will set up the 

following system of relations 

 
 1 1 1 1

1 2 3 1 1 1

2
: : : : : 1 :

2

H H
H

z u z u
z z z z z u

k


    
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The obtained system is considered as the basic equation for 

determination of the gears number of teeth of the planetary gearing. It 

provides carrying out the coaxiality condition and the coincidence 

condition when the velocity ratio of the planetary gearing is known. That 

is why after choosing gears number of teeth it is enough to make 

checking for the mating condition and the condition of right engagement. 

1.4. Choose number of teeth z1 arbitrarily as less as possible. 

According to the condition of right engagement and the coincidence 

condition it should be greater or equal to 17 and divisible by k. Let z1 = 20. 

1.5. Determine gears number of teeth of the planetary gearing:  

z1 : z2 : z3 : γ = 
20 (4 2) 20 4

20: : 20 (4 1) :
2 4

  
  , 

z1 : z2 : z3 : γ  =  20 : 20 : 60 : 20. 

Consequently  

z1 = 20,  z2 = 20,  z3 = 60. 

1.6. Check the mating condition: 

2

1 2

z 2
sin

k z z

 
 

 
, 

180
sin sin sin 45 0.7071

4 4

   
      

   
, 

2

1 2

z 2 20 2
0.55

z z 20 20

 
 

 
. 

The mating condition is carried out because sin 45˚ > 0.55. 

1.7. Check the condition of right engagement: 

z1  17,  z2  20,  z3  85,  z3 - z2  8. 

In our case this condition is not carried out because  

z1 > 17,  z2  20,  z3 < 85,  z3 - z2  8. 

1.8. Reselect number of teeth z1 and recalculate the number of teeth 

of all gears.  

Let z1= 30. Then 
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z1 : z2 : z3 : γ = 
30 (4 2) 30 4

30: :30 (4 1) :
2 4

  
  , 

z1 : z2 : z3 : γ  =  30 : 30 : 90 : 30. 

Thus 

z1 = 30,  z2 = 30,  z3 = 90. 

1.9. Check the mating condition: 

2

1 2

z 2
sin

k z z

 
 

 
, 

180
sin sin sin 45 0.7071

4 4

   
      

   
, 

2

1 2

z 2 30 2
0.533

z z 30 30

 
 

 
. 

The mating condition is carried out because sin 45˚ > 0.533. 

1.10. Check the condition of right engagement: 

z1  17,  z2  20,  z3  85,  z3 - z2  8. 

In our case  

z1 = 30 > 17,  z2 = 30 > 20,  z3 = 90 > 85,  z3 - z2 = 60 > 8. 

Thus, the condition of right engagement is carried out. 

1.11. Check the velocity ratio 

Í 3

1Í 13

1

z 90
u 1 u 1 1 4

z 30
       . 

Thus, gears number of teeth of the planetary gearing (z1 = 30,          

z2 = 30, z3 = 90) was determined correctly. They provide given velocity 

ratio of the mechanism and fulfilling all necessary conditions. 

2. Determination of gears diameters: 

dw1 = d1 = m ∙ z1 = 3 ∙ 30 = 90 mm, 

dw2 = d2 = m ∙ z2 = 3 ∙ 30 = 90 mm, 

dw3 = d3 = m ∙ z3 = 3 ∙ 90 = 270 mm. 

3. Kinematic analysis of the planetary gearing. 
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3.1. Plot the mechanism diagram (Fig.1.6, a). For that we choose 

arbitrarily the length of a segment that represents the largest gear diameter. 

In our case it is the annular gear diameter d3. The length of this segment has 

to be greater or equal to 220 mm. Let 
3d = 270 mm. Then the scale factor is   

3

3

d 0.270 m
0.001

270 mmd
l    . 

3.2. Plot the velocity diagram of the mechanism.  

3.2.1. Determine the linear velocity of point P1 located on sun      

gear 1: 

1
P1 1

n 3,14 5600 0,045 m
V r 26.376

30 30 sec

  
    . 

3.2.2. Choose the length of segment '

1P a  that represents VP1 on the 

velocity diagram (Fig.1.6, b). The length of this segment should not be 

less than 150 mm. Let '

1P a =168 mm. Then the scale factor of the 

velocity diagram is  

P1V 26.376 m/sec
0.157

168 mm
V

'

1P a
    . 

3.2.3. Draw straight line MM perpendicular to the mechanism 

common axis and transfer points O1, O2, P1 and P2   to this line. As a 

result we will have points O1’, O2’, P1’ and P2’.  

3.2.4. Plot the velocity diagram for sun gear 1. For this purpose we 

lay off segment '

1P a perpendicular to line MM and connect obtained point 

a with point '

1O . Segment aO '

1
shows the distribution law of velocities of 

the movable sun gear points.  

3.2.5. Plot the velocity diagram for planet pinion 2. Velocities of 

two points (P1 and P2) of this gear have been known.  At point P1 the 

velocity of the planet pinion is equal to the velocity of the movable sun 

gear VP1. At point P2 the planet pinion velocity is zero because point P2  

is the pitch point of planet pinion 2 and immovable sun gear 3. After 

connecting points P2’ and a we obtain the velocity diagram for the planet 

pinion. The velocity of the planet pinion center O2  will be represented by 

segment bO '

1
 and is determined as  

VO2 = μV ∙ bO '

1
= 0.157 ∙ 84 = 13.188 m/sec. 
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3.2.6. Plot the velocity diagram for driver H. The velocity of point 

O2 of the planet pinion is simultaneously the velocity of the bearing 

center of the driver that rotates around point O1. After connecting point 
'

1O  with point b we obtain segment bO '

1
 that is the distribution law of 

velocities of driver points. 

3.3. Plot the rotational speed diagram.  

3.3.1. Draw straight line NN parallel to the mechanism axis through 

arbitrarily chosen point s located on line MM (Fig.1.6, c). Then we lay 

off segment sf of arbitrary length along line MM. The length of 

sf should be greater or equal to a segment that represents the radius of 

the smaller sun gear pitch circle. Through point f we draw straight lines 

parallel to segments 1 'O a , 1O'b  and 2P'a  of the velocity diagram. 

Intersections of these lines with line NN are marked by points n1, nH  and  

n2 correspondingly. Segments 1sn ,  2sn and 4sn  will represent rotational 

speeds of sun gear 1, planet pinion 2 and driver H to certain scale.  

 Let sf = 50 mm. Then the scale factor of the rotational speed 

diagram is  

n

30 30 0 157 rpm
30

3 14 50 0 001 mm

V

l

.

. .sf

 
   

   
. 

3.3.2. Determine rotational speeds of planetary gearing links:  

1 nn 30 187 5610 rpm1sn      , 

2 n 2n 30 94 2820 rpmsn     , 

H n 4n 30 47 1410 rpmsn     . 

3.3.3. Determine the velocity ratio of the planetary gearing: 

1 n
1H

H n

n 187
u 3.98

n 47

1 1

4 4

sn sn

sn sn

 
    

 
. 

The difference between the planetary gearing velocity ratio obtained by 

the analytical and graphical methods has to be less than 4 %. In our case 

1H

4 3.98
u 100 % 0.5 %

4


    . 
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Example 2 

Determine the number of 

teeth of toothed wheels and carry 

out kinematic analysis for the 

planetary gear speed reducer 

shown in Fig.1.7 if number of 

planet pinions k = 3; rotational 

speed of the input shaft n1 = 8400 

rpm; rotational speed of the 

output shaft nH =600 rpm; 

module of planetary gearing 

gears m = 3 mm. Number of 

teeth of gears must satisfy to the 

following condition 17 ≤  z  ≤ 

180. Toothed wheels have to be 

manufactured by standard cutter 

with α = 20º and ha
* 
= 1. 

Solution 

1. Determination of the number of teeth of the planetary gearing 

toothed wheels. 

1.1. Determine the velocity ratio of the planetary gearing  

21

32

131
11

zz

zz
uu Н

H


 = 1

H

n 8400
14,

n 600
    

where 2 3

13

1 2

Í z z
u

z z
 


 is the velocity ratio of the reversed mechanism. 

1.2. Write the main conditions for the planetary gearing: 

-  coaxiality condition is 

m12·(z1 + z2)= m2‟3·(z3 - z2‟), 

where m12  is a module of gears  z1 and z2;  m2‟3 is a module of gears z2‟ 

and z3. This condition may be written in the following way 

q·(z1 + z2) = (z3 - z2‟), 

where 12

2'3


m

q
m

 is ratio of modules. 

1 

2 

3 
H  

z1 

z2 

z3 

z2‟ 

Fig.1.7. Planetary gearing with double 

planet pinions 
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-  mating condition is 

2

1 2

z 2
sin

k z z

 
 

 
,          

'

2

'

3 2

z 2
sin

k z z

 
 

 
; 

-  coincidence condition is 

3z

k
 (1 – 31

Íu )  , 

where γ is any integer numeral; 

- condition of right engagement (when   α = 20º and ha
* 
= 1) is 

z1  17,  z2  17,  z2‟ 20, z3  85,  z3 - z2 „ 8. 

1.3. Set up equations for determination of the number of teeth of the 

planetary gearing toothed wheels. For that we make the following 

designations: 
'

2

2

z

z
 x ,         

'

2

3

z

z
 y . 

Parameter y can be also found according to the coaxiality condition:   

y 
 

  
1

1

1

1

H

H

u x g

u x g

 


 
. 

Equations for determination of the number of teeth of the planetary 

gearing toothed wheels have the following form  

 

 

 
1

1 2 2 3

1 1

2
: : : : : : : :

1 1

H

H H

u xk kx
z z z z k kx

y u y y u


  

 
. 

These equations provide carrying out the coaxiality condition and the 

coincidence condition when the velocity ratio of the planetary gearing is 

known. That is why after choosing gears number of teeth it is necessary to 

check for the mating condition and for the condition of right engagement. 

1.4. Assume 
1

3
x  and q=1 (the magnitude of x is not recommended 

to be chosen as 1). Then it is possible to calculate y:  
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y 
 

  

 

 

1

1

1
14 1 11 53

11 26
14 1 1

3

H

Í

u x g

u x g

  
  

   
  

 

. 

1.5. Number of teeth of the planetary gearing toothed wheels may be 

calculated in the following way:  

 

 

 
1

1 2 2 3

1 1

2
: : : : : : : :

1 1

H

H H

u xk kx
z z z z k kx

y u y y u


  

 
, 

z1 : z2 : z2‟: z3 : γ = 

 

 

 

1 1
3 14 2

3 1 3 3:3:3 : :
5 5 53

14 1 14 1
26 26 26

  



   

, 

z1 : z2 : z2‟: z3 : γ = 
6 26 8

:3:1: :
5 5 5

. 

As 
8

5
   should be an integer numeral we multiply all right hand 

components of the last equality by 20. Then 

z1 : z2 : z2‟: z3 : γ = 24:60:20:104:32 . 

Consequently  

z1 = 24,  z2 = 60, z2‟=20,  z3 = 104. 

1.6. Check the mating condition for planet pinions: 

2

1 2

z 2
sin

k z z

 
 

 
,          

'

2

'

3 2

z 2
sin

k z z

 
 

 
, 

180
sin sin sin60 0.866

3 3

   
      

   
, 

2

1 2

z 2 60 2
0.7381

z z 24 60

 
 

 
,             

'

2

'

3 2

z 2 20 2
0.2619

z z 104 20

 
 

 
. 

The mating condition is carried out because sin 60˚ > 0.7381. 

1.7. Check the condition of right engagement: 
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z1  17,  z2  17, z2‟ 20, z3  85,  z3 - z2‟  8. 

In our case  

z1 = 24 > 17,  z2 = 60 > 17,  z2 „= 20  20,  z3 = 104 > 85,   

z3 - z2‟ = 104 – 20 = 84 > 8. 

Thus, the condition of right engagement is fulfilled. 

If the mating condition and the condition of right engagement are 

not right it is necessary to recalculate the number of teeth with other 

magnitude of x. 

1.8. Check the velocity ratio 

2 3

1 13

1 2

1 1Í

H

z z
u u

z z
   


= 1 + 

60 104

24 20




 = 14. 

The number of teeth of the planetary gearing toothed wheels z1 = 24,  

z2 = 60,  z2‟ = 20, z3 = 104  was determined correctly. They provide 

given velocity ratio of the mechanism and fulfilling all necessary 

conditions. 

 2. Determination of gears diameters: 

dw1 = d1 = m ∙ z1 = 3 ∙ 24= 72 mm, 

dw2 = d2 = m ∙ z2 = 3 ∙ 60 = 180 mm, 

dw2‟ = d2‟ = m ∙ z2‟= 3 ∙ 20= 60 mm, 

dw3 = d3 = m ∙ z3 = 3 ∙ 104 = 312 mm. 

3. Kinematic analysis of the planetary gearing. It is made in the same 

way as in example 1. 

Example 3 

Determine the number of teeth of toothed wheels and carry out 

kinematic analysis for the planetary gear speed reducer shown in Fig.1.8 

if number of planet pinions k = 4; rotational speed of the input shaft n1 = 

1200 rpm; rotational speed of the output shaft nH = 300 rpm; module of 

planetary gearing toothed wheels m = 3 mm. Number of teeth of gears 

must satisfy to the following condition 17 ≤  z  ≤ 180. Toothed wheels 

have to be manufactured by standard cutter with α = 20º and ha
* 
= 1. 
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Solution 

1. Determination of  the number of teeth of the planetary gearing 

toothed wheels. 

1.1. Determine the velocity 

ratio of the planetary gearing u14 

taking into account the fact that 

driver H rotates to opposite side 

with respect to movable sun gear 

1. Consequently, this velocity 

ratio should be negative and it is 

found as 

2 3

1 13

1 2

1 1Í

H

z z
u u

z z
   


=

1

H

n 1200
4,

n 300
       

where 2 3
13

1 2

Í z z
u

z z



 is the velocity ratio of the reversed mechanism. 

1.2. Write the main conditions for the planetary   gearing: 

-  coaxiality condition is 

m12·(z1 + z2)= m2‟3·(z2‟ +z3 ), 

where m12 is a module of gears z1 and z2;  m2‟3 is a module of gears z2‟ 

and z3. This condition may be written in the following way 

q·(z1 + z2) = (z3 - z2‟), 

where 12

2'3


m

q
m

 is ratio of modules. 

-  mating condition is 

2

1 2

z 2
sin

k z z

 
 

 
,            

'

2

'

2 3

z 2
sin

k z z

 
 

 
; 

z1 

1 

2 

 3 

H 
z2 

z2‟ 

z3 

Fig.1.8. Planetary gearing with double 

planet pinions 
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-  coincidence condition is 

 H3
31

z
1 u

k
    , 

where γ is any integer numeral; 

- condition of right engagement (when   α = 20º and ha
* 
= 1) is 

z1  17,  z2  17,  z2‟ 17, z3  17. 

1.3. Set up equations for determination of the number of teeth of the 

planetary gearing toothed wheels. For this purpose we introduce the 

following designations: 
'

2

2

z

z
 x ,         

'

2

3

z

z
 y . 

Parameter y can be also calculated according to the coaxiality 

condition:   

y 31

Ígu x

x g





. 

Values of q and x have to satisfy to the following condition 

g 31

Íu < x < g. 

Equations for determination of the number of teeth of the planetary 

gearing toothed wheels are  

 
 ::

1
:

1
:

1
::::

111

3221 xgkx
u

g
xkx

u

g
xk

u

xgk
zzzz

HHH



























  

 
1

:
1

1




H

H

u

u
xgx  

These equations provide carrying out the coaxiality condition and 

the assembling condition when the velocity ratio of the planetary gearing 

is known. That is why after choosing number of teeth of toothed wheels 

it is necessary to check for the mating condition and for the condition of 

right engagement. 

1.4. Assume 
2

5
x  and q =1 (the magnitude of x is not 

recommended to choose as 1) and check the condition   
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g Нu
31

< x < g. 

For this purpose we will find Нu
31

 

31

113

1 1

1

Í

Í

H

u
uu

 
  

1 1
51 4

 
 

. 

After substituting q, x and Нu
31

we obtain   

1 2
1 1

5 5
   . 

Thus, values of q and x satisfy to required inequality. 

1.5. Determine number of teeth of the planetary gearing toothed 

wheels:  

 
 ::

1
:

1
:

1
::::

111

3221 xgkx
u

g
xkx

u

g
xk

u

xgk
zzzz

HHH





























 
1

:
1

1




H

H

u

u
xgx , 

'

1 2 2 3

2
4 1

2 1 2 2 15
z : z : z : z : : 4 : 4 :

1 ( 4) 5 1 ( 4) 5 5 1 ( 4)

 
       

         
        

 

2 2 2 2 4
: 4 1 : 1

5 5 5 5 4 1

   
        

    
, 

z1 : z2 : z2‟: z3 : γ = 
12 4 8 24 24

: : : :
25 5 25 25 125

. 

As 
24

125
   should be an integer numeral we multiply all right hand 

components of the last equality by 
125

2
. Then 

z1 : z2 : z2‟: z3 : γ = 30:50:20:60:12 . 

Consequently  

z1 = 30,  z2 = 50, z2‟=20,  z3 = 60. 
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1.6. Check the mating condition for planet pinions: 

2

1 2

z 2
sin

k z z

 
 

 
,        

'

2

'

3 2

z 2
sin

k z z

 
 

 
; 

180
sin sin sin 45 0.7071

4 4

   
      

   
, 

2

1 2

z 2 50 2
0.65

z z 30 50

 
 

 
,             

'

2

'

2 3

z 2 20 2
0.275

z z 20 60

 
 

 
. 

The mating condition is carried out because sin 45˚ > 0.65. 

1.7. Check the condition of right engagement: 

z1  17,  z2  17, z2‟ 17, z3  17. 

In our case  

z1 = 30 > 17,  z2 = 50 > 17,  z2‟= 20 >17,  z3 = 60 > 17. 

Thus, the condition of right engagement is fulfilled. 

If the mating condition and the condition of right engagement are 

not right it is necessary to recalculate the number of teeth with other 

magnitude of x. 

1.8. Check the velocity ratio 

21

32

131
11

zz

zz
uu Н

H


    4
2030

6050
1 




 . 

The number of teeth of the planetary gearing toothed wheels z1 = 30, 

z2 = 50, z2‟ = 20, z3 = 60 was determined correctly. They provide given 

velocity ratio of the mechanism and fulfilling all necessary conditions. 

 2. Determination of gears diameters: 

dw1 = d1 = m ∙ z1 = 3 ∙ 30= 90 mm, 

dw2 = d2 = m ∙ z2 = 3 ∙ 50 = 150 mm, 

dw2‟ = d2‟ = m ∙ z2‟= 3 ∙ 20= 60 mm, 

dw3 = d3 = m ∙ z3 = 3 ∙ 60 = 180 mm. 

3. Kinematic analysis of the planetary gearing. It is made in the same 

way as in example 1.
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2. DESIGNING INVOLUTE GEARING 

2.1 Theoretical information 

Lateral profile of gear teeth can be outlined by different curves. 

Nowadays gears with involute profile of teeth are mainly used in the 

mechanical engineering. 

 There are two methods by means of which gears with involute teeth 

profile (involute gears): formed cutter or copying method and generating 

method. In the first case end and side mills are used as a tool. This 

method allows to cut only gears in which tooth thickness measured along 

the nominal pitch circle is equal to the space width along the same circle. 

Besides, accuracy of gears manufacturing is not high by means of this 

method. 

Generating method is more universal method because it allows to cut 

gears with different number of teeth by the same cutting tool. Besides, 

we have possibility to produce both standard and non-standard 

(modified) gears depending upon disposition of a cutting tool (gear 

cutter, rack cutter or hob cutter) with respect to a blank (Fig.2.1).  

If the module line of the rack cutter is a tangent to the nominal pitch 

circle of the gear being cut we obtain a standard gear. 

If the rack module line is removed from the nominal pitch circle of 

the gear being cut or intersects the latter nonstandard or modified gears 

are obtained. 

Distance b between the module line of the rack cutter and the 

nominal pitch circle of the gear being cut is called rack offset. The ratio 

of the rack offset to the module of the gear is called offset factor x 

b
x .

m
 

Offset factor can be positive, negative or equals to zero.  

When the rack offset b = 0, the offset factor x = 0 and we deal with 

standard also called zero-offset gears. In this case tooth thickness s of the 

gear measured along the nominal pitch circle is equal to space width e 

along the same circle. 

s e .
2


 

m
 

When the rack cutter is removed from the blank, b>0, x is positive 

and gear being cut is called positive-offset gear. For positive-offset gears  
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Fig 2.1. Disposition of the rack-cutter during production of a gear 

 

tooth thickness measured along the nominal pitch circle is greater than 

space width along the same circle (s>e; s
2

 


m
). 

The radius of the positive-offset gear root circle rf  is increased by 

the magnitude of the rack offset b x m  in comparison  with zero-

offset gears. That is why  

fd (z 2,5 2 x).    m                             (2.1) 

When the rack cutter module line intersects the nominal pitch circle 

of a gear being cut, b<0, offset factor  x is negative and obtained gears 

are called as negative-offset gears. For negative-offset gears 

s<e; s
2

 


m
. 

Diameter of the root circle of a negative-offset gear is calculated by 

formula (2.1) but offset factor x has to be substituted with sign “minus”. 

Let us determine a tooth thickness along the nominal pitch circle of 

nonstandard (modified) gears. For this purpose we remove a rack cutter 

from the centre of a blank by the distance b x m (Fig.2.2). In this case 

the space width of the rack cutter measured along straight line that is a 

tangent to the nominal pitch circle of a gear being cut is increased by the 

magnitude 2 2 x tg     m . Tooth thickness of a gear measured along 

the nominal pitch circle is increased by the same distance. That is why  

s 2 x tg 2 x tg
2 2

  
            

 

m
m m .          (2.2) 
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Fig 2.2. Determination of a tooth thickness measured along  

the nominal pitch circle of a non-standard gear 

 

Let us determine a tooth thickness sy measured along a circle of 

arbitrary radius ry. 

From Fig. 2.3 we can see that  

y y       .                                       

(2.3) 

Angles γy and γ are determined from the following formulas 

y y

y

y y

s s
;

2 r z
  

 m
    

s
,

z
 

m
 

where my and m are modules along circles of 

radii ry and r. 

After substituting γy and γ  to (2.3) and 

taking into account that y y  inv  we obtain 

y

y

y

s s
,

z z
    

 
inv inv

m m
 

whence 

y

y

y

s s
z ( ).     inv inv

m m
 

After substituting value of s from (2.2) to the 

last formula we obtain 

Fig 2.3. Determination 

of a tooth thickness 

along any circle 
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 y y ys 2 x tg z ,
2

 
           

 
m inv inv           (2.4) 

where  

b
y

y

r
cos .

r
   

Formula (2.4) allows to determine a tooth thickness measured along 

a circle of arbitrary radius ry. For example, tooth thickness measured 

along the addendum circle is determined as 

 a a as 2 x tg z ,
2

 
           

 
m inv inv  

where a
a

d
,

z
m  b

a

a

d
cos .

d
   

Nonstandard gearings 

The nonstandard gearing may be made up of two nonstandard gears 

or nonstandard and standard gears. 

 Depending upon the total offset factor 1 2x x x    we will 

distinguish between gearings with x 0   and gearings with x 0  . 

Let us consider a gearing with x 0    which consists of gears 1 and 

2 of numbers of teeth z1 and z2 and offset factors x1 and x2  

correspondingly (Fig.2.4). 

In order to determine the pressure angle αw of the gearing it is 

necessary to find tooth thicknesses of gears 1 and 2 measured along pitch 

circles. For this purpose we use formula (2.4) 

w1 w 1 1 ws 2 x tg z ( )
2


  m inv inv

 
        

 
,           (2.5) 

w2 w 2 2 ws 2 x tg z ( ) ,
2


  m inv inv

 
        

 
         (2.6) 

where mw  is module measured along the pith circle. 
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Fig. 2.4. Parameters of  a non-standard involute gearing 

To provide engagement of gears without backlash a tooth thickness 

along the pitch circle of one gear has to be equal to a space width of the 

other gear. That is why  

w1 w2 w ws s p  m                                 (2.7) 

After adding left and right parts of (2.5) and (2.6) and taking into 

account (2.7) we obtain 

w

2 x
tg ,

z





  inv inv


    

where 1 2x x x    and 1 2z z z .    

If  x 0  , we have w 20    . 
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Let us determine centre distance aw of a nonstandard gearing. From 

Fig 2.4 we have 

   b1 b2

w w1 w2

w

r r
r r .

cos
a


                                     (2.8) 

For a standard (normal) gearing in which radii of pitch circles are 

equal to corresponding radii of nominal pitch circles (rw1 = r1, rw2 = r2) 

and αw = α, a centre distance is determined as  

   b1 b2

0 1 2

r r z
r r .

cos 2





m
a

 
                             (2.9) 

It follows from (2.8) and (2.9) that 

w 0

w w

z coscos
.

cos 2 cos

 

 

m
a a

 
  


 

If  x 0  , we have  

w 0

z

2

m
a a


   

and pitch circles coincide with nominal pitch circles. 

If x 0  , nominal pitch circles of gears are removed from each 

other by distance ym (Fig.2.4). This distance is called perceived offset 

and y is perceived offset factor which is calculated as 

w 0

w

z cos
1 .

2 cos

 



a a
y

m

 
    

 
 

Let us deduce a formula for determination of addendum circle 

diameter of a nonstandard gear. 

While designing an involute gearing two requirements have to be 

carried out: 

- teeth of gears have to be engaged with each other without  a 

backlash; 

- standard radial clearance c 0.25 m  has to be made between 

addendum circle of one gear and root circle of the other one. 

The first requirement is carried out if  

w 1 2r ra y m    .                                     (2.10) 

According to the second requirement 



 32 

w a2 f 2r c ra    .                                        (2.11) 

After solving (2.10) and (2.11) jointly and taking into account that 

1 1r 0.5 zm   , 2 2r 0.5 zm   ,  f 2 2 2r 0.5 z 2.5 2 xm      , c=0.25∙m 

we obtain    

 a2 1 1d z 2 2 x 2 m y       , 

where xy y   is called equalized offset factor. 

Equalized offset Δy∙m is introduced to obtain an involute gearing 

without backlash and with standard value of the radial clearance. 

 

2.2.Geometrical calculation of  involute gearing  

of external contact 

Init ial  data  

Make geometrical calculation of  an involute gearing of external 

contact if centre distance aw = 70 mm, number of teeth of the pinion z1 = 

15, number of teeth of the gear z2  = 30, module m  = 3 mm, offset factors 

ratio 1

2

x
1.55

x
  ( = 20º ; c

*
 = 0.25;  1*

ah  ).           

Solution 

1. Determine the total number of teeth  

z = z1+z2 = 15 + 30 = 45. 

2. Calculate the pressure angle  

w

z cos 3 45 0.94
cos 0.9064

2 2 70

    
   

 w

m

a
;  

w 0.4361rad 24 59    ; wtg 0.466  . 

w w wtg 0.466 0.4361 0.0299      inv .  

3. Find the total offset factor  

   wz 45 0.0299 0.0149
x 0.927

2 tg 2 0.364





     
  

  

inv inv
.  
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4. Determine offset factors for the pinion and the gear taking into 

account that 1

2

x
1.55

x
 .  

The pinion offset factor is   

x1 = 1.55 · x2. 

On the other hand   x1  + x2 = xΣ. That is why  

2

x 0.927
x 0.364

2.55 2.55

   , 

1 2x x x 0.927 0.364 0.563     . 

Taking into account that z1<17 the following condition should be 

carried out to eliminate a tooth undercutting  

x1 ≥ x1min , 

where   

     1
1min

17 z 17 15
x 0.1176

17 17

 
   . 

The condition is carried out. 

5. Calculate the perceived offset factor  

0.5 z 70 0.5 3 45
0.83.

3

     
 wa m

y =
m

 

6. Determine the equalized offset factor  

  yxy 0.927 - 0.83 = 0.097. 

7. Determine diameters of nominal pitch circles  

d1 = m ∙ z1 = 3 ∙ 15 = 45 mm, 

d2 = m ∙ z2  = 3∙30 = 90 mm. 

8. Find diameters of base circles  

b1 1d z cos 3 15 cos20 42.3 mm       m , 

b2 2d z cos 3 30 cos20 84.6 mm       m . 
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 9. Determine diameters of pitch circles  

w1 1

w

cos 0.94
d z 3 15 46.668 mm

cos 0.9064


      


m , 

w2 2

w

cos 0.94
d z 3 30 93.336 mm

cos 0.9064


      


m . 

10. Check the center distance  

w1 w2d d 46.668 93.336
70.002 mm

2 2

 
  wa . 

11. Calculate diameters of addendum circles  

da1= m·(z1+2+2·x1-2·Δy)  3 15 2 2 0.563 2 0.097 53.796 mm        , 

da2= m·(z2+2+2·x2-2·Δy)  3 30 2 2 0.364 2 0.097 97.602 mm        . 

12. Determine diameters of root circles  

   f1 1 1d z 2.5 2 x 3 15 2.5 2 0.563 40.878 mm          m , 

   f 2 2 2d z 2.5 2 x 3 30 2.5 2 0.364 84.684 mm          m . 

13. Check the correctness of previous calculations: 

a1 f 2
d d 53.796 84.684

0.25 0.25 3 69.99 mm
2 2 2 2

        wa m , 

a2 f1
d d 97.602 40.878

0.25 0.25 3 69.99 mm
2 2 2 2

        wa m . 

14. Determine the whole depth of the tooth 

h = 2.25·m - Δy·m 2.25 3 0.097 3 6.459 mm     , 

a1 f1d d 53.796 40.878
6.459 mm

2 2

 
  h , 
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a2 f 2d d 97.602 84.684
6.459 mm

2 2

 
  h . 

15.  Find the circular pitch  

w

w

cos 3.14 3 0.94
p 9.769 mm

cos 0.9064

  
    


m .  

16. Determine tooth thicknesses measured along nominal pitch 

circles  

1 1

3.14
s 2 x tg 3 2 0.563 0.364 5.94 mm

2 2

   
              

   
m , 

2 2

3.14
s 2 x tg 3 2 0.364 0.364 5.5 mm

2 2

   
              

   
m .  

17. Calculate tooth thicknesses measured along pitch circles  

1
w1 w1 w

1

s
s d

d

 
       

 
inv inv  

5.94
46.668 0.0149 0.0299 5.46 mm

45

 
     

 
, 

2
w2 w2 w

2

s
s d

d

 
       

 
inv inv  

5.5
93.336 0.0149 0.0299 4.304 mm

90

 
     

 
. 

18. Calculate tooth thicknesses  measured along base circles  

1
b1 b1

1

s 5.94
s d 42.3 0.0149 6.214 mm

d 45

   
          

  
inv , 

2
b2 b2

2

s 5.5
s d 84.6 0.0149 6.431mm

d 90

   
          

  
inv . 
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19. Determine tooth thicknesses measured along addendum circles 

taking into account that we know pressure angles αa1, αa2 for involute 

points through which addendum circles pass. These angles are calculated 

in the following way: 

b1
a1

a1

d 42.3
cos 0.786

d 53.796
    , 

αa1 = 0.667 rad = 38º 09´, tg αa1=0.787,  

a1 a1 a1tg 0.787 0.667 0.12      inv  

b2
a2

a2

d 84.6
cos 0.867

d 97.602
    , 

αa2 = 0.522 rad = 29º 53´, tg αa1=0.575, 

a2 a2 a2tg 0.575 0.522 0.053      inv . 

Consequently,  

1
a1 a1 a1

1

s
s d

d

 
       

 
inv inv  

5.94
53.796 0.0149 0.12 1.447 mm

45

 
     

 
, 

2
a2 a2 a2

2

s
s d

d

 
       

 
inv inv  

5.5
97.602 0.0149 0.053 2.246 mm

90

 
     

 
. 

20. Check a tooth for sharpening. According to this condition a tooth 

thickness measured along an addendum circle should not be less than 

0.2·m. In our case  

sa1 ≥ 0.2·m=0.2·3 = 0.6 mm, 

sa2 ≥ 0.2·m=0.2·3 = 0.6 mm. 

Consequently, sharpening condition is carried out.  
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21. Calculate the contact ratio  

 1 a1 2 a2 w

1
z tg z tg z tg

2
            


 

 
1

15 0.787 30 0.575 45 0.466 1.287
2 3.14

       


. 

The contact ratio must be greater or equal to 1.05 ( 1.05  ). 

 

2.3. Plotting involute profile of a tooth 

 
1.  Choose the length of a segment that represents the centre distance 

aw on a drawing. We mark this segment as 1 2O O . The length of 1 2O O  

has to be greater than 450 mm. The centres of gears O1 and O2 may be 

located outside the drawing. Determine the scale factor μl . It should be 

chosen in such way to obtain a tooth whole depth not less than 40 mm.  

Let segment 1 2O O be equal to 500 mm. Then the scale factor μl is 

found as 

1 2

0.07 m
0.00014

500 mmO O

w

l

a
    . 

2.  Lay off segment 1 2O O  and through obtained points O1 and O2 we 

draw pitch circles of radii rw1 and rw2 (Fig.2.5). Point P of their contact is 

the pitch point. After that we draw base circles of radii rb1 and rb2 and the 

general tangent n-n to these circles that is the line of action. Points of 

contact of line n-n with the base circles are correspondingly marked as 

M1 and M2. The line of action has to pass through the pitch point P and 

segments 1 1
O M  and 2 2

O M must be perpendicular to the first one. 

3.  Through point P we draw straight line perpendicular to the centre 

distance 1 2O O . This line will be the tangent to both pitch circles. The 

angle between the line of action and the perpendicular to the centre 

distance is the pressure angle αw. The magnitude of this angle should be 

equal to the pressure angle found by the analytical method. In our case 

αw ≈ 25º.  
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Fig.2.5. Engagement of gears with external contact 

 

4.  Draw addendum circles of radii ra1 and ra2 as well as root circles of 

radii rf1 and rf2. The distance between the addendum circle of one gear 

and the root circle of the other measured along the centre distance is the 

radial clearance c of a gearing. It is always equal to 0.25∙m. It is 

necessary to check if this distance corresponds to 0.25∙m on the drawing. 

5.  Plot a tooth profile of one gear. For this purpose through point P 

we lay off an arc along the pitch circle whose length is equal to half of 

the tooth thickness (sw/2). As a result we obtain point 2 that is on the 
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tooth symmetry axis (Fig 2.6). Through points 2 and O1 we draw straight 

line (tooth axis of symmetry) to intersection of this line with the 

addendum circle, the nominal pitch circle, the base circle at points 1, 3 

and 4. After laying off arcs from these points whose lengths are equal to 

half of tooth thickness measured along corresponding circles we obtain 

points 1‟, 3‟, 4‟.If we connect points 1´, P, 3´, 4´ by smooth curve we 

will obtain right lateral profile of the tooth. In the same way we may find 

position of points 1´´, 2´´, 3´´, 4´´ that are on the tooth left lateral profile. 

 
Fig. 2.6. Plotting a tooth involute profile 

 

The tooth lateral surface is described by an involute. The initial point 

of this curve is on the base circle and inside this circle the involute 

cannot exist. That is why part of a tooth profile between the base circle 

and the root circle (when rb>rf)  is described by a straight line parallel to 

the radius. Obtained linear portion of a tooth profile is joined with the 

root circle by an arc of radius ρ = 0.38·m. If rb<rf  the whole lateral 

profile of a tooth is described by an involute. In this case an involute is 

joined with the root circle by an arc of the same radius  ρ = 0.38·m. 

6.  Plot a tooth of the second gear with usage of mentioned above 

method. In this case teeth lateral profiles should contact each other at the 

pitch point P. 
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7.  Plot two adjacent teeth for gear 1. For that we lay off either arcs 

of the circular pitch length pw along the pitch circle or chords of length 

x w1

180
d sin

z1

 
   

 
 in both directions relative to the tooth axis of 

symmetry. As a result we obtain points located on the axes of symmetry 

of two adjacent teeth. Straight lines connecting these points with the gear 

centre O1 represent the axes of symmetry of these teeth. The angle 

between axes of two adjacent teeth should be equal to
1

360

z


. Two 

adjacent teeth are plotted by means of transferring sizes of the already 

plotted tooth or with usage of the method of templates. 

8.  Plot two adjacent teeth of gear 2. For this purpose we will use the 

same method as in the previous point. It is necessary to remember that 

the angle between axes of two adjacent teeth should be equal to 
2

360

z


. 

The drawing of the gearing engagement is shown in Fig. 2.6. Teeth 

of gear 1 have to contact teeth of gear 2 at three points. These points are 

located on line n-n that is the general tangent to base circles of both gears 

and passes through the pitch point P. Normal n1-n1  to teeth profiles is the 

line of action for left profiles of teeth of gear 1 and mating profiles of 

gear 2. 

9.  Determine working parts of teeth profiles. The most remote points 

of teeth profiles with respect to centres of gears are points located on the 

addendum circles. The addendum circle of gear 1 intersects the line of 

action at point B and the addendum circle of gear 2 intersects line n-n at 

point A. That is why at point A mating profiles are engaged and at point 

B they are disengaged. Thus, the engagement of gears is carried out 

within portion AB. This part of the line of action is called a path of 

contact.  

In predetermined direction of rotation only one side of a gear tooth 

transmits or withstands load. Besides, during operation not the whole 

tooth profile works and only its certain part. This part is called an active 

flank. The active flank of gear 1 tooth is limited by a point that is met at 

point A of the line of action with a point of gear 2 located on the 

addendum circle. In order to determine position of this point at the tooth 
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profile of gear 1 it is necessary to draw the arc of radius O1A to 

intersection of the latter with the tooth profile. 

In the same way we can find the limit of the active flank of  the tooth 

for gear 2. On the drawing the active flanks are marked by double lines. 

10. Determine the contact ratio by the graphical method: 

b

AB

p
  , 

where AB is the length of the path of contact in mm; pb is the pitch 

measured along the base circle in mm.  

The error between the contact ratios calculated by analytical method 

and graphical method should not be greater than 5%. 

 

References 

1. Кулик М. В. Положення про курсове проектування /              

М. В. Кулик, А. В. Полухін. – К.: НАУ, 2002. – 32с. 

2. Баранов Г. Г. Курс теории механизмов и машин / Баранов Г. Г. – 

М.: Машиностроение, 1975. – 496 с. 

3. Berezovsky Yu. Machine Design / Berezovsky Yu., Chernilevsky D., 

Petrov M. – М.: Мир, 1983. – 456 с. 

4. Воронкін М. Ф. Основи теорії механізмів і машин: Конспект 

лекцій. / Воронкін М. Ф., Цимбалюк А. А. – К.: КМУЦА, 2000. – 

208 с. 

5. Теорія механізмів і машин. Зубчасті механізми: Методичні 

вказівки до курсової роботи / [Є. М. Бабенко, А. С. Крижановський, 

В. М. Павлов та ін.]. – К.: НАУ, 2007. – 36 с. 

 



 42 

Contents  
 

  

Preface  ...…………………………….................................... 3 

1.Designing planetary gear trains…………………………… 4 

1.1.Theoretical information ……………………………… 4 

1.2.Examples of synthesis of planetary gear trains …….. 12 

2. Designing involute gearing ……………………………… 27 

2.1.Theoretical information ……………………………. 27 

2.2. Geometrical calculation of involute gearing of 

external contact ……………………………………………. 
33 

2.3. Plotting involute profile of a tooth ………………… 38 

References ……………..…………………………………… 42 

 



 43 

Навчальне видання 

 

 

 

 

 

 

 

 

 

ТЕОРІЯ МЕХАНІЗМІВ І МАШИН 

Зубчасті механізми 

 

Методичні рекомендації до курсової роботи для 

студентів спеціальностей 6.100100  “Виробництво, 

технічне обслуговування та ремонт повітряних суден і 

авіадвигунів”, 6.100100 “Технології і технологічне 

обладнання аеропортів". 

(Англійською мовою) 

 

  

 

 Укладачі: КРИЖАНОВСЬКИЙ Андрій Станіславович  

БАБЕНКО Євгеній Михайлович 

КОРНІЄНКО Анатолій Олександрович 

         

        

Технічний редактор А.І. Лавринович 

   

 
Підп. до друку           . Формат 60х84/16. Папір офс. 

Офс. друк. Ум. друк. арк.        . Обл.-вид. арк.      . 

Тираж 100 пр. Замовлення №         . Вид. № 2/IV 

 

Видавництво Національного авіаційного університету «НАУ-друк» 

03680. Київ-58, проспект Космонавта Комарова,1 

 

Свідоцтво про внесення до Державного реєстру ДК № 977 від 05.07.2002 


	KINEMATIC ANALYSIS OF LEVERAGES
	DESIGNING PLANETARY GEAR TRAINS



