

ISSN: 2707-160X NATIONAL ACADEMY OF SCIENCES OF UKRAINE DANYLO ZABOLOTNY INSTITUTE OF MICROBIOLOGY AND VIROLOGY

Youth and modern problems of microbiology and virology

YOUNG SCIENTISTS CONFERENCE 12-14 November 2019 Kyiv, Ukraine

CONFERENCE MATERIALS

NATIONAL ACADEMY OF SCIENCES OF UKRAINE DANYLO ZABOLOTNY INSTITUTE OF MICROBIOLOGY AND VIROLOGY

РАДА

МОЛОДИХ ДОСЛІДНИКІВ ІМВ НАН УКРАЇНИ

CONFERENCE MATERIALS

of the

YOUNG SCIENTISTS CONFERENCE "YOUTH AND MODERN PROBLEMS OF MICROBIOLOGY AND VIROLOGY"

(12-14 November 2019, Kyiv, Ukraine)

Kyiv-2019

Conference materials of the Young Scientists Conference "YOUTH AND MODERN PROBLEMS OF MICROBIOLOGY AND VIROLOGY", 12-14 November 2019, Kyiv, Ukraine. 35 p.

Conference materials book contains brief reports of results of researches carried out by young scientists. The book is recommended for a broad auditory of scientists working in the fields of microbiology and virology, ecology, medical microbiology, and biotechnology.

The authors are responsible for the authenticity and accuracy of the presented results.

Editorial Leadership: Serhiy Voychuk

Reviewers: Serhiy Voychuk, Olena Andrienko, Andriy Chobotaryov, Darina Abdulina, Tetiana Bulyhina, Marichka Zlatohurska.

Graphic and cover design: Darina Abdulina

Web-design and editing of HTML-pages: Inna Lipova

Conference Materials Manager: Andriy Chobotaryov

Language: English

Editorial Office: Danylo Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine Zabolotny Str., 154 Kyiv, 03143, Ukraine e-mail: <u>rada imv@i.ua</u>

Publication date: 2019

The event was registered at the State scientific organization of UkrISTEI (certificate of registration №568 of October 17, 2019).

ISSN: 2707-160X

© DANYLO ZABOLOTNY INSTITUTE OF MICROBIOLOGY AND VIROLOGY, 2019

CONTENT:

Abdulina D.	
FATTY ACID COMPOSITION OF TOTAL LIPIDS OF SULFATE-REDUCING BACTERIA,	
ISOLATED FROM MAN-CAUSED ECOTOPES	5
Akʉlenko I, Skovorodka M, Suslov G, Serhiychuk T, Tolstanova G	
OXALATE-DEGRADING ACTIVITY OF FECAL BIOPTAT OF RATS AFTER CEFTRIAXONE	
TREATMENT	6
Babko A, Gromyko O, Tistechok S, Fedorenko V.	
ANTAGONISTIC ACTIVITY OF BACTERIA ISOLATED FROM OLEA EUROPAEA L.	
RHIZOSPHERE AGAINST SOME PHYTOPATHOGENS	7
Bakhmatska D, Havryliuk O, Hovorukha V, Tashyrev O, Yastremska L.	
THE ISOLATION OF COPPER RESISTANT RETRO MICROBIOME FROM ECO-	
FRIENDLY ECOSYSTEM OF «ATLANTIDA» KARST CAVE	8
Besarab N, Lagonenko A, Evtushenkov A.	
CHARACTERIZATION OF LYTIC PROPERTIES OF ERWINIA AMYLOVORA	
BACTERIOPHAGES	9
Biliavska L, Pankivska Y, Vasyliuk O, Povnitsa O, Garmasheva I, Zagorodnya S.	
PROSPECTS FOR THE USE EXOPOLYSACCHARIDES OF LACTIC ACID BACTERIA AS	
ANTIHERPETIC AGENTS	10
Bondarenko A, Abdulina D.	
THE ROLE OF SULFATE-REDUCING BACTERIA IN THE BIODESTRUCTION OF	
POLYMER AND RUBBER TECHNICAL MATERIALS	11
Bondarenko I.	,
ANOTHER OR ENEMY, THE MICROFLORA IN THE CAPTIVITY OF MODERNITY	12
Bulka I, Komplikevych S, Zinkovska V, Kulishko N, Ishchak O, Maslovska O.	
LIPID PEROXIDATION OF RHODOPSEUDOMONAS YAVPROVII IMV B-7620	
BACTERIA UNDER THE INFLUENSE OF COBALT (II) CHLORIDE AND FERRIC CITRATE	13
Bulyhina T.	
LIPOPOLYSACCHARIDES OF PANTOEA AGGLOMERANS P1a, P324 AND 8488:	
BIOLOGICAL PROPERTIES AND THE O-SPECIFIC POLYSACCHARIDES AND LIPIDS A	
STRUCTURE	14
Buriachenko S, Stegniy B.	
SELECTION OF PRIMERS FOR THE SUBUNITS OF HEMAGGLUTININ, NEURAMINIDASE	
AND NUCLEOPROTEIN SUBTYPES OF H1N1 AND H7N9 OF INFLUENZA A	15
Chumak O, Ganova L.	
DIAGNOSTIC THE BRUCELLOSIS USING THE ENZYME IMMUNOASSAY	16
Dimova M, Yamborko N.	
SENSITIVITY OF MICROBIOCENOSIS TO HEXACHLOROBENZENE IN DIFFERENT SOIL	
TYPES	17
Havryliuk O, Hovorukha V, Tashyrev O.	
THERMODYNAMIC PROGNOSIS TO SEARCH FOR SUPER RESISTANT TO COPPER (II)	
MICROORGANISMS AS THE BASIS FOR ENVIRONMENTAL BIOTECHNOLOGIES	18
Holovan V, Andriichuk O, Budzanivska I.	
RANGE OF THE LYTIC ACTIVITY OF BACTERIOPHAGES ISOLATED FROM ANTARCTIC	
REGION	19

Page

Horlov A, Serdyuk V, Chumak E, Spivak N. DEVELOPMENT OF A HIGHLY SENSITIVE 4-TH GENERATION ELISA TEST KIT FOR THE DETECTION OF HEPATITIS C VIRUS	20
Karachkovska A, Syrvatka V, Gromyko O, Fedorenko V. ANTIBACTERIAL PROPERTIES OF SILVER NANOPARTICLES WITH VARIOUS MODIFICATIONS OF THEIR SURFACES	21
	21
Kharchuk M, Hrabova H, Kharkhota M. SYNTHESIS OF FLUORESCENT PIGMENTS BY BACTERIA OF THE GENUS BACILLUS	22
Loboda M, Biliavska L. BIOSYNTHESIS OF POLYENE ANTIBIOTICS BY STREPTOMYCES NETROPSIS IMV AC-5025	
UNDER THE ACTION OF EXOGENOUS INDOLE-3-CARBINOL	23
Milantieva T, Patyka N. ADVANCED IDENTIFICATION METHODS OF THE FUNCTIONAL FEATURES OF WINTER WHEAT RHIZOSPHERE MICROBIOME	24
Minchuk Y, Shapoval S, Faidiuk Y, Kharkhota M, Moroz S, Tovkach F. PRELIMINARY ANALYSIS OF THE FATTY ACID CONTENT IN ERWINIA AMYLOVORA AND ERWINIA 'HORTICOLA' STRAINS REVEALS THE DIFFERENCES BETWEEN THE	
CLOSELY-RELATED SPECIES	25
Motronenko V, Lutsenko T, Rybalko S, Starosyla D, Hryhoreva S, Galkin O. OBTAINING OF RECOMBINANT HUMAN INTERLEUKIN-7 AND THEIR USE FOR THE TREATMENT OF WOUND INFECTIONS	26
Naumenko K, Chaika M, Stasevych M, Zagorodhya S.	
BIOLOGICAL ACTIVITY OF ANTHRAQUINONE DERIVATIVES	27
Papska T, Zvir H, Moroz O.	_,
NITRITE-IONS OXIDATION BY PHOTOTROPHIC PURPLE SULFUR BACTERIA	
THIOCAPSA SP. YA-2003 UNDER THE INFLUENCE OF INORGANIC POLLUTANTS	28
Pokhylko Y.	
USE OF THE STRAIN LACTOBACILLUS SP. 13/2 FOR GROWING RABBITS	29
Putivskiy I, Havryliuk O, Hovorukha V, Tashyrev O. THE RESISTANCE OF ECUADOR SOIL MICROBIOME TO TOXIC COPPER(II) COMPOUNDS	30
Skvortsova M, Chornobay V, Tistechok S, Fedorenko V, Gromyko O. PLANT GROWTH PROMOTING PROPERTIES OF ACTINOMYCETES FROM DESCHAMPSIA ANTARCTICA E. DESV. RHIZOSPHERE (GALINDEZ ISLAND,	
ANTARCTICA)	31
Vasyliuk O, Garmasheva I. INVESTIGATION OF ANTIBACTERIAL METABOLITES OF LACTIC ACID BACTERIA AGAINST PHYTOPATHOGENIC BACTERIA	32
Vishovan Y, Ushkalov V.	
BIOLOGICAL PROPERTIES OF STAPHYLOCOCLES ANIMAL COMPANIES	33
Zlatohurska M, Gorb T, Romaniuk L, Korol N, Faidiuk Y, Khlibiichuk Y, Kropinski A, Kushkina A, Tovkach F.	
COMPLETE GENOME SEQUENCES OF ERWINIA AMYLOVORA LYTIC PHAGE KEY	34

THE ISOLATION OF COPPER RESISTANT RETRO MICROBIOME FROM ECO-FRIENDLY ECOSYSTEM OF "ATLANTIDA" KARST CAVE

Bakhmatska D¹, Havryliuk O², Hovorukha V², Tashyrev O², Yastremska L¹.

¹National Aviation University, Faculty of environmental safety, engineering and technology, Department of biotechnology

²D.K. Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine, Department of extremophilic microorganism's biology *e-mail: arabellu@ukr.net*

Copper (II) in low concentrations is a necessary trace element for microorganisms. However, Cu²⁺ at the concentration of 100 ppm and higher acquires the properties of a xenobiotic and becomes an extreme factor alien to natural ecosystems, including the microbiome. Therefore, the study of the regularities of microorganism's adaptation to copper as the alien extreme factor allows to investigate the patterns of microbial homeostasis to extreme factors and to identify the formation of adaptive mechanisms.

According to geological data, the "Atlantida" karst cave ecosystem was formed hundreds of thousands years ago. This cave is eco-friendly and completely isolated from any natural and man-made contaminants, including toxic Cu (II) compounds. Quantitative characteristics of retro microbiome growth at the presence of toxic Cu (II) is an indicator of the ability of microorganisms to adapt to the spontaneous influence of extreme factors. Thus, the aim of our work was to determine the quantitative regularities of resistance of cave "Atlantida" clay microbiome to toxic compounds of Cu (II).

Clay samples were collected from "Atlantida" karst cave in Khmelnitsky region of Ukraine. Microorganisms resistant to copper were determined by their ability to form colonies Microbial resistance was determined by the number of cell forming units (CFU) on the agar nutrient medium (NA) that contained the concentration gradient of Cu (II) (100-2500 ppm). Accumulation of Cu (II) in bacteria was confirmed by H₂S test. The reduction of Cu (II) was shown by the formation of insoluble brown Cu₂O in colonies.

The microorganisms resistant to toxic copper (II) were present in cave clay. They grew on the nutrient agar containing copper at high concentration, up to 200 ppm Cu^{2+} cation (CuSO₄ solution) and up to 2000 ppm Cu^{2+} (in complex with citrate). Chelation of copper (II) with citrate led to a drastic (by one order) increase of microbial resistance to this metal. The dependence between the number of live cells and copper concentration described by the hyperbolic curve, confirming the toxic effect of Cu (II) compounds on microorganisms. But the number of viable microorganisms was 7×10³ CFU/g even at 2000 ppm of Cu (II).

Thus, the capability of the retro microbiome of "Atlantida" cave eco-friendly ecosystem to grow at the presence of toxic concentrations of Cu (II) was shown. The offered methodological approach is a novel universal method of isolation of copper-resistant microorganisms from natural extreme and retro ecosystems of the globe. The isolated copperresistant microorganisms are prospective for industrial purification of copper-containing waste-waters and contaminated soils.

