УДК 519.9

Study of the speed of a chemical reaction involving three components

Anastasia Tyshkevych

National Aviation University, Kyiv

Research supervisor - Victoria Trofymenko, PhD.
Key words: rate of a chemical reaction, three reaction components, partial derivatives of the second order, extremum of a function of many variables.

Functions of many variables are widely used in solving mathematical problems that arise in economics [2], electromagnetic field theory, electro- and radio mechanics, heat transfer theory, theory of elasticity, hydro- and aeromechanics, etc. The feasibility of studying the functions of many variables is due to their wide use in medicine, biology, and pharmacy [1]. the work is devoted to the problem of researching the speed of a chemical reaction involving three components. In the paper, it is proposed to use partial derivatives of the second order, the function of many variables at the extremum is investigated.

A chemical reaction occurs with the participation of three substances with concentrations x , y, z. The paper examines the rate of a chemical reaction at an arbitrary moment in time $v=k x^{2} y z$.

The problem is: what should be the concentrations of reactants $\mathrm{x}, \mathrm{y}, \mathrm{z}$ so that the reaction rate is maximal.

The percentage concentrations of reagents satisfy the following equality:

$$
\mathrm{x}+\mathrm{y}+\mathrm{z}=100 \% ; \quad \mathrm{x}>0 ; \mathrm{y}>0 ; \mathrm{z}>0 .
$$

From this equation we find ${ }^{z=100-x-y}$ and substitute in the equation for the reaction rate. We study the obtained function for extremum $v=k x^{2} y(100-x-y)$.

We find stationary points [2]:

$$
\left\{\begin{array}{c}
V^{\prime} x=k\left(200 x y-3 x^{2} y-2 x y^{2}\right)=0 \\
V^{\prime} y=k\left(100 x^{2}-x^{3}-2 x^{2} y\right)=0
\end{array}\right.
$$

As a result, we will get two stationary points:

$$
\begin{aligned}
& \left(x_{1} ; y_{1}\right)=(0 ; 0) \\
& \left(x_{2} ; y_{2}\right)=(50 ; 25) .
\end{aligned}
$$

For the extremum, we examine only the point
$\left(x_{2} ; y_{2}\right)$, because the first does not correspond to the content of the task. We find partial derivatives of the second order.

$$
\begin{array}{ll}
v_{x^{2}}^{\prime \prime}=k\left(200 y-6 x y-2 x^{2}\right) ; & v_{x^{2}}^{\prime \prime}=(50 ; 25)=-3750 k ; \\
v_{y^{2}}^{\prime \prime}=k\left(-2 x^{2}\right) ; & v_{y^{2}}^{\prime \prime}=(50 ; 25)=-5000 k ; \\
v_{x y}^{\prime \prime}=k\left(200 x-3 x^{2}-4 x y\right) ; & v_{x y}^{\prime \prime}(50 ; 25)=-2500 k .
\end{array}
$$

The partial derivatives of the second order at the stationary point $(50 ; 25)$ satisfy the inequality: $v_{z^{2}}^{\prime \prime} \cdot v_{y^{2}}^{\prime \prime}-\left(v_{x y}^{\prime \prime}\right)^{2}>0$, with $v_{x^{2}}^{\prime \prime}(50 ; 25)<0$. Therefore, according to [2], the function under study has a maximum at the stationary point $(50 ; 25)$.

In the results we have: at concentration $x=50 \% ; y=25 \% ; z=25 \%$ reaction occurs at maximum speed.

The paper proposes a study of the speed of a chemical reaction using the methods of the theory of the function of many variables.

References

1. Beyly N. Mathematics in biology and medicine. - M.: Mir, 1970. - 326 p
2. Mathematics for economists: teaching. manual At 3 p.m. Part 2 / I.O. Lastivka, N.I. Zatula, V.I. Trofymenko [and others]. - K.: NAU, 2012. - 312 p.
