UDC 514

THE VOLUME OF TORUS
 Maksym Nesterov
 National aviation university, Kyiv

Supervisor - Eftekharinasab K., Assoc.Prof. P.hD.

Key words: torus, definite integrals, washer method, trigonometric substitution.
A torus is a solid shape resembling a donut, formed by rotating a circle with radius r and centered at $(R, 0)$ around the y-axis. Our goal is to determine the volume of the torus using the washer method. The equations for the inner and outer radii of the torus are as follows:

$$
\text { inner radius } x=R-\sqrt{r^{2}-R^{2}} \text {, outer radius } x=R+\sqrt{r^{2}-R^{2}} \text {. }
$$

Hence, employing the washer method, the cross-sectional area is as follows:

$$
S(y)=\pi\left(\left(R+\sqrt{r^{2}-R^{2}}\right)^{2}-\left(R-\sqrt{r^{2}-R^{2}}\right)^{2}\right)=4 \pi R \sqrt{r^{2}-R^{2}}
$$

Next, the lowest cross-section will happen at ${ }^{y=-r}$ and the highest cross-section will happen at $y=r$ and so the limits for the integral will be $r \leq y \leq-r$. Therefore, the integral giving the volume is as follows:

$$
V=\int_{-r}^{r} 4 \pi R \sqrt{r^{2}-R^{2}} d y=8 \pi R \int_{0}^{r} \sqrt{r^{2}-R^{2}} d y
$$

Result

To solve the integral we will use the substitution:

$$
y=r \sin \theta
$$

by substituting into the integral we get

$$
\int_{0}^{r} \sqrt{r^{2}-R^{2}} d y=\int_{0}^{\pi / 2} r^{2} \cos ^{2} \theta d \theta=1 / 4 \pi r^{2}
$$

Therefore, the volume of the torus is

$$
V=8 \pi R \int_{0}^{r} \sqrt{r^{2}-R^{2}} d y=2 R \pi^{2} r^{2}
$$

Refrences:

1. James Stewart (2015), Calculus, Engage Learning; 8th edition
