
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ
Факультет кібербезпеки і програмної інженерії

Кафедра інженерії програмного забезпечення

ДОПУСТИТИ ДО ЗАХИСТУ

Завідувач випускової кафедри

 _______Олексій ГОРСЬКИЙ

 “____”____________2023 р.

ДИПЛОМНА РОБОТА

(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬОГО СТУПЕНЯ МАГІСТРА

Тема: “Методика тестування застосунків доповненої реальності”

Виконавець: ____________ Кравець Богдан Олександрович

Керівник: ____________ д.т.н., доцент Чебанюк Олена Вікторівна

Нормоконтролер: __________ к.ф.-м.н., доцент Михайло ОЛЕНІН

КИЇВ 2023

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

 NATIONAL AVIATION UNIVERSITY
Faculty of cybersecurity and software engineering

Software engineering department

ADMIT TO DEFENCE

Head of the Department

________Oleksiy Gorskyi

“____”__________2023

GRADUATE WORK

(EXPLANATORY NOTE)

GRADUATE OF EDUCATIONAL MASTER’S DEGREE

Topic: “Approach for testing Augmented reality applications”

Performer: _________ Moskalenko Danyil Olegovych

Supervisor: _________ D.Sc, associate professor Chebanyuk OlenaViktorivna

Standard controller: _________ PhD, associate professor Mykhailo OLENIN

KYIV 2023

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет кібербезпеки і програмної інженерії

Кафедра інженерії програмного забезпечення

Освітній ступінь магістр

Спеціальність 121 Інженерія програмного забезпечення

Освітьно-професійна програма Інженерія програмного забезпечення

ЗАТВЕРДЖУЮ

Завідувач кафедри

 _____ Олексій Горський

"___" ________ 2023 р

ЗАВДАННЯ

на виконання дипломної роботи

Москаленка Даниїла Олеговича

1. Тема дипломної роботи: «Методика тестування застосунків доповненої

реальності»

затверджена наказом ректора від «29» вересня 2023р. № 1994/ст.

2. Термін виконання роботи: з 02.10.2023 р. до 31.12.2023 р.

3. Вихідні данні до проекту: методологія тестування програмного забезпечення

доповненої реальності. Програмний продукт, який буде використовуватись як

інструмент, як один із інструментів запропанованої методології.

4. Зміст пояснювальної записки:

1. Доменний аналіз предметної області - доповненої реальності, методів і

методологій тестування, інструментів тестування програм доповненої реальності.

2. Розгляд запропонованої методології тестування.

3. Системні обмеження і структура взаємодії засобів для виконання

запропонованої методології тестування.

4. Модель взаємодії програмних засобів для проведення тестування

5. Вимоги до інструменту тестування.

6. Структура інструменту.

7. Робочий прототип інструменту.

8. Результати застосування методології

5. Перелік ілюстративного матеріалу:

1. Тема, об’єкт дослідження, предмет дослідження, методи дослідження,

гіпотеза.

2. Опис запропонованої методики.

4

3. .Складності реалізаці методики

4. Можливі способи реалізаці

5. Застосування запропонованої методики на практиці.

6. Висновки.

6. Календарний план-графік

№

з/п
Завдання Термін виконання

Відмітка

про

виконання

1. Розробка плану роботи, назви розділів ПЗ та

затвердження їх керівником (див.2 лист

шаблону)

02.10.23 – 08.10.23

2. Написання розділу 1 та допоміжних

сторінок, презентація науковому керівнику 08.10.23 – 17.10.23

3. Написання розділу 2 і допоміжних сторінок.

презентація науковому керівнику. 17.10.23 – 20.10.23

4. Перший нормо-контроль 1-2 розділ
15.10.23 – 22.10.23

5. Написання розділу 3 і допоміжних сторінок.

презентація науковому керівнику 22.10.23 – 18.11.23

6. Написання розділу 4 і допоміжних сторінок.

презентація науковому керівнику
18.11.23 – 30.11.23

7. Загальне редагування пояснювальної

записки, графічного матеріалу. 30.11.23 – 10.12.23

9. Завершення написання ПЗ. Проходження

нормоконтролю. Друк ПЗ Отримання

відгуку керівника. Підготовка презентації та

доповіді на перед захист.

04.12.23 – 15.12.23

10. Передзахист каліф. Роботи. Отримання

рецензії 15.12.23 – 17.12.23

11. Підготовка документів до захисту та здача

їх секретарю ДЕК 18.12.23 – 24.12.23

12. Захист кваліф. роботи 27.12.23

7. Дата видачі завдання 05.09.2022 р.

Керівник: ____________ д.т.н., доцент Олена ЧЕБАНЮК

Завдання прийняв до виконання: ____________ Богдан КРАВЕЦЬ

NATIONAL AVIATION UNIVERSITY

Faculty of cybersecurity and software engineering

Department Software Engineering

Education degree master

Speciality 121 Software engineering

Educational-professional program Software engineering

APPROVED

Head of the Department

 ______Oleksiy GORSKYI

"___" ________ 2023

Task

on executing the graduation work

Moskalenko Danyil Olegovych

1. Topic of the graduation work: «Approach for testing Augmented reality applications»

Approved by the order of the rector from 29.09.2023 № 1994/ст.

2. Tеrms оf work еxесutіоn: from 02.10.2023 to 31.12.2023

3. Source data of the work: develop an approach that will allow solving the task of

testing augmented reality software. A software product that will be used as a tool in

the methodology.

4. Content of the explanatory note:

1. Domain analysis of the subject area - augmented reality, testing methods and

methodologies, tools for testing augmented reality programs. Proposed approach of

testing in the AR development.

2. Consideration of the proposed testing methodology.

3. System limitations and the structure of the interaction of means for execution

the proposed testing methodology.

4. Model of software interaction for testing.

5. Requirements for the testing tool.

6. Structure of the tool.

7. Working prototype of the tool.

8. Results of methodology application

5. List of presentation mandatory slides:

1. Topic, research object, research subject, research methods, hypothesis.

2. Description of the proposed approach.

3. Difficulties in implementing the approach.

7

4. Possible methods of implementation.

5. Application of the proposed approach in practice.

6. Conclusions.

 6. Calendar schedule

№ Task
Execution

term

Execution

mark

1. Development of a work plan, names of software

sections and their approval by the manager

02.10.23 – 08.10.23

2. Writing section 1 and supporting pages,

presentation to the supervisor.

08.10.23 – 17.10.23

3. Writing section 2 and supporting pages.

presentation to the supervisor.

17.10.23 – 22.10.23

4. The first norm-control 1-2 section 15.10.23 – 22.10.23

5. Writing section 3 and supporting pages.

presentation to the supervisor.

22.10.23 – 18.11.23

6. Writing section 4 and supporting pages.

presentation to the supervisor.

18.11.23 – 30.11.23

7. General editing of the explanatory note, graphic

material.

30.11.23 – 10.12.23

9. Completion of software writing. Passing control

norms.

Printing software. Receiving feedback from the

manager.

Preparation of presentations and reports for

defense.

04.12.23 – 15.12.23

10. Pre-defense of qualifying work. Receiving a

review

15.12.23 – 17.12.23

11. Preparation of materials for transfer to the

secretary of the DEC (software, CD-R with

electronic copies of the software, presentations,

feedback from supervisor, review, certificate of

success, folder: check with the secretary of the

DEC)

18.12.23 – 24.12.23

12. Graduation work defense 25.12.23 – 31.12.23

7. Date of issue of the assignment 05.09.2022.

Supervisor: ____________ Olena CHEBANYUK

Task accepted for execution: ____________ Danyil MOSKALENKO

РЕФЕРАТ

Пояснювальна записка до дипломної роботи «Підхід до тестування додатків

доповненої реальності»: 84 с., рис., табл., джерела інформації.

Об’єкт дослідження – процеси тестування програмного забезпечення

доповненої реальності.

Предмет дослідження – методи та засоби тестування програм доповненої

реальності, спрямовані на ефективну перевірку їх працездатності під час

тестування.

Мета даної роботи - запропонувати та дослідити новий метод тестування

програм доповненої реальності, який міг би доповнити існуючі методи та

інструменти тестування доповненої реальності. Крім того, у майбутньому це

може бути вдосконалено завдяки розробці хмарних технологій доповненої

реальності.

Гіпотеза - можливість використання застосунку допвненої реальності

тестування іншого застосунку доповненої реальності.

Методи дослідження:

Евристичний метод використовується для виявлення проблем і обмежень,

властивих взаємодії між двома додатками AR. Це має вирішальне значення не

тільки для тестування однієї з цих програм, але й для порівняння встановлених

методів із нещодавно запропонованим.

Метод моніторингу відповідає за відстеження передачі даних від пристрою

до емулятора.

Метод аналізу використовується для комплексного вивчення предметної

області, домену та відповідної літератури.

Метод синтезу використовується для об’єднання ідей і формування

консолідованої думки та висновку на основі проаналізованої літератури.

Метод моделювання допомагає сформулювати гіпотезу щодо

функціонування запропонованого методу тестування. Він заглиблюється в роботу

та взаємодію його компонентів, проливаючи світло як на переваги, так і на

недоліки самого методу, а також на архітектуру взаємодії між інструментами.

10

Метод моделювання орієнтований на створення середовища за допомогою

запропонованого методу тестування. Це змодельоване середовище є ключовим

для подальшої перевірки програми, що тестується.

Експериментальний метод використовується для перевірки

запропонованого методу тестування та вивчення взаємодії між основними

компонентами. Результати магістерської роботи можуть бути використані при

розробці та тестуванні додатків доповненої реальності. Вони також можуть

сприяти подальшому вдосконаленню методології та, певною мірою, допомогти в

концептуалізації хмарних додатків доповненої реальності.

Дослідження та розробки проводилися в операційних системах Windows

10/Windows 11 з використанням мультиплатформенного інструменту Unity,

середовища розробки Visual Studio 2022 і редактора Visual Studio Code.

Використаною мовою програмування була C#.

ТЕСТУВАННЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ, ДОДАТКОВА

РЕАЛЬНІСТЬ, ЕМУЛЯТОР, ПОТОКОВА ПЕРЕДАЧА ДАНИХ, ВЗАЄМОДІЯ

ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ, АПАРАТНЕ ОБМЕЖЕННЯ

ABSTRACT

Explanatory note to the thesis "Approach for testing Augmented reality

applications": 84 p., fig., tables., information sources.

The object of research - the processes of testing augmented reality software.

The subject of research - the methods and tools for testing augmented reality

programs, aimed at effectively verifying their functionality during testing.

The purpose of this work - to propose and investigate a new method for

testing augmented reality programs, which could complement existing testing

methods and tools for augmented reality. Furthermore, it could be further enhanced

with the development of augmented reality cloud technology in the future.

Hypothesis - "the possibility of using an augmented reality application for

testing another augmented reality application"

Research methods:

The heuristic method is utilized to identify problems and limitations inherent

in the interaction between two AR applications. It is crucial not only for testing

one of these applications but also for comparing established methods with the

newly proposed one.

The monitoring method is responsible for tracking the data transfer from the

device to the emulator.

The analysis method is employed for a comprehensive examination of the

subject area, domain, and relevant literature.

The synthesis method is used to amalgamate insights and form a

consolidated opinion and conclusion based on the analyzed literature.

The modeling method aids in formulating a hypothesis concerning the

functioning of the proposed testing method. It delves into the operation and

interaction of its components, shedding light on both the advantages and

disadvantages of the method itself, as well as the architecture of the interaction

among tools.

12

The simulation method is focused on creating an environment using the

proposed testing method. This simulated environment is pivotal for the subsequent

verification of the program under test.

The experimental method is leveraged to validate the proposed testing

method and to examine the interaction between essential component parts.

The results of the master's thesis can be used in the development and testing

of augmented reality applications. They can also inform further refinement of the

methodology and, to some extent, aid in the conceptualization of cloud-based

augmented reality applications.

Research and development were conducted on the Windows 10/Windows 11

operating systems, using the Unity multi-platform tool, the Visual Studio 2022

development environment, and the Visual Studio Code editor. The programming

language employed was C#.

SOFTWARE ENGINEERING TESTING, ADDITIONAL REALITY,

EMULATOR, DATA STREAMING, SOFTWARE INTERACTION,

HARDWARE LIMITATION.

13

TABLE OF CONTENTS

LIST OF ACRONYMS AND ABBREVIATIONS 15

INTRODUCTION... 16

CHAPTER 1 DOMAIN ANALYSIS OF THE AUGMENTED REALITY

SOFTWARE TESTING AND .. 18

1.1. Domain analysis of the argument reality ... 18

1.2. Main Components of Augmented Reality ... 19

1.2.1. Types of augmented reality ... 19

1.2.2 Critical Aspects of Augmented Reality 22

1.3 Domain analysis of the software testing processes 23

1.3.1 Types of Software Testing ... 24

1.4. Testing augmented reality applications ... 27

1.4.1. Special Considerations in AR Testing: 28

1.4.2. Augmented Reality Applications Testing tools. 30

1.4.3. Evaluation Metrics for Augmented Reality (AR) Applications . 33

Conclusion... 35

CHAPTER 2 SAPPROACH FOR TESTING AUGMENTED REALITY

APPLICATIONS BY USING AUGMENTED REALITY APPLICATIONS 37

2.1. Theoretical Backgrounds ... 37

2.1.1. Software Testing and Quality Assurance Principles 37

2.1.2. Software Testing and Quality Assurance Principles 39

2.1.3. Cross-Application Communication and Interaction:les.............. 40

2.1.4. Emulation and Simulation Theory .. 41

2.2. Proposed Approach .. 42

2.2.1. Methods and Challenges in Implementing AR Application

Testing Interactions in android devices. ... 42

2.2.2. The sequence of implementation of the methodology 49

Conclusion... 54

CHAPTER 3 DESCRIPTION OF AR TESTING TOOLS 55

3.1. Software Product Specification .. 55

3.2. Tools that were used in the development of the application. 56

3.2.1. Tools description ... 56

3.2.2. Libraries and technologies .. 57

3.3. Application class structure ... 59

3.4. Use cases of using AR application tool ... 63

Conclusion... 65

CHAPTER 4 .. 67

APPLICATION OF THE PROPOSED APPROACH.................................. 67

4.1. Definition of the object of testing .. 67

4.2. Define test objectives and scenarios: ... 67

4.2.1. Examine product needs. .. 68

4.2.2. The audience of the software product ... 69

4.2.3. Real-world scenarios ... 70

14

Indoor Environments... 70

Outdoor Environments .. 70

Lighting Conditions .. 70

Physical Surfaces and Markers ... 70

User Interactions ... 71

Specific Use Cases .. 71

Accessibility .. 71

Network Conditions .. 71

4.2.4. Test Coverage ... 71

4.2.5. Scope of Testing ... 72

4.3. Testing Tools .. 73

4.4. Testing tools communication ... 75

4.5. Preparing for testing tool ... 76

Conclusion... 78

CONCLUSIONS ... 80

REFERENCES .. 82

 LIST OF ACRONYMS AND ABBREVIATIONS

XR – Extended reality

AR – Augmented reality

VR – Virtual reality

ОС – Operating system

16

INTRODUCTION

Nowadays, there is a significant development of computer technologies, as well

as software solutions for them. In addition to the development of conventional

programs, there is also the development of the direction of mixed reality (XR),

especially augmented reality and virtual reality.

Although some devices for full reality are being developed or are not available to

a wide audience. The significant development of mobile has created the concept of

using augmented reality applications through personal mobile devices.[MOBILE

INDOOR AUGMENTED REALITY. Exploring Applications in Hospitality

Environments] In this direction, augmented reality (AR) relies on combining and

superimposing virtual information over the real world, providing the user with extra

(even real time) computer-based information.

In general, Augmented reality can be described as an enhanced, interactive

rendition of the real world, achieved through the incorporation of digital visual

elements, sounds, and other sensory stimuli using holographic technology. AR

encompasses three key features: the merging of digital and physical realms, real-time

interactions, and precise 3D or 2D identification of both virtual and real-world objects.

Now the technology of augmented reality continues to evolve alongside broader

technological advancements. However, it also faces certain limitations and risks due to

the ongoing development of the field. It has not yet fully realized its potential

conceptually. Currently, the proliferation of high-definition cameras, integrated

compasses, and inertial systems in mobile devices has created a fertile technological

landscape for the development of mobile AR services.

Along with the development of technology and the increase in the number of

available devices, the complexity of the software being developed increases, which

leads to more potential bugs in the software (software). In addition, software errors can

be joined by both errors of new devices for which an augmented reality program can be

developed, as well as specific nuances of already existing systems and emulators for

them.

17

Based on the above, the testing process during the development of programs can

play a wider role in the creation of augmented reality systems than in the development

processes of other types of applications.

Usually, the testing process refers to the process of identifying flaws in developed

systems, which often use debugging tools and work in stable operating systems on

widely used hardware. However, augmented reality systems can be developed both

within the framework of standard hardware with a stable OS, and within the framework

of experimental devices and OS. Moreover, it is possible to use various sensors that

may not be calibrated. Also, in the testing process, not only bugs in the developed

system, but also in the OS or hardware may be found.

18

CHAPTER 1

DOMAIN ANALYSIS OF THE AUGMENTED REALITY SOFTWARE

TESTING AND

1.1. Domain analysis of the argument reality

Augmented Reality (AR) Augmented Reality (AR) is an immersive technology

that superimposes digital information, virtual objects, or computer-generated sensory

elements onto the real world. This enriches the user's perception of their surroundings,

acting as a bridge between the physical and digital realms. AR applications are designed

for use in real-world settings, offering users a seamless blend of physical and virtual

experiences.

Fig 1.1. External Reality class diagram

AR is part of the broader field known as Extended Reality (XR), which also

includes other immersive technologies such as:

- Virtual Reality (VR): Provides immersive experiences that isolate users from

the real world, typically achieved through specialized headsets and headphones.

- Mixed Reality (MR): A fusion of AR and VR elements, allowing digital

objects to interact with the real world and enabling the integration of virtual elements

into genuine environments.

The concept of "augmented reality" is not new; its roots can be traced back to the

1960s with Ivan Sutherland's design of a head-mounted display tracked by mechanical

19

and ultrasonic trackers. However, the term, as it is known today, gained widespread

usage starting in 1992 with the work of Caudell and Mizell.

1.2. Main Components of Augmented Reality

Augmented reality technology operates on various devices and consists of five key

components, which are essential for its effective functioning:

- Artificial Intelligence (AI): AI allows users to perform actions using voice

commands and assists in processing information for AR applications.

- AR Software: These tools and applications enable access to and utilization

of

AR. Some businesses develop their own custom AR software.

- Processing Power: AR technology requires substantial processing power,

often leveraging the internal operating system of the user's device.

- Lenses: High-quality lenses or image platforms are essential for viewing

AR

content. The higher the screen quality, the more realistic the displayed images appear.

- Sensors: AR systems use sensors to collect environmental data, facilitating

the alignment of real and digital worlds. This data, captured by cameras, is processed

through software to provide a seamless AR experience.

These components collectively enable AR to deliver engaging and interactive

experiences. AR has applications across various industries, including entertainment,

gaming, education, healthcare, and more. As technology evolves, AR is becoming

increasingly integrated into our daily lives, offering new possibilities for enhancing our

interactions with the world around us.

1.2.1. Types of augmented reality

There are four primary types of augmented reality (see fig 1.1) : marker-based,

marker-less. AR face filters, Location-based AR The choice between these types of

20

AR fundamentally influences how you can display images and information within your

AR application.

Marker-Based AR: Marker-based AR relies on image recognition to identify

pre-programmed objects within your AR device or application. By placing these objects

as reference points within the user's field of view, the AR device can ascertain the

camera's position and orientation. Typically, this is achieved by switching the camera to

grayscale mode and then using image recognition algorithms to detect a specific marker,

comparing it with others stored in its database. Once a match is found, the device uses

this data to mathematically determine the object's pose and accurately position the AR

image within the real-world environment.

Marker-Less AR: Marker-less AR is a more intricate form of augmented reality,

as it doesn't rely on predefined markers or reference points. Instead, it must recognize

objects and features as they naturally appear in the user's view. This process involves

the use of recognition algorithms that analyze colors, patterns, and similar visual cues to

identify objects within the environment. Subsequently, the device utilizes data from

various sensors, including time, accelerometers, GPS, and compass information, to

orient itself and overlay digital images or information onto the real-world surroundings

captured by the camera.

AR face filters involve augmenting a user's face in real time with various digital

effects, such as masks, animations, or virtual makeup. These effects track the user's

facial features and movements using facial recognition technology, enhancing or

transforming their appearance in live video feeds, often for entertainment or social

media purposes.

Location-based AR leverages GPS and location data to overlay digital content

on the user's physical surroundings. By determining the user's real-world location, this

type of AR can provide location-specific information, such as nearby points of interest,

directions, or geolocated experiences. Location-based AR enhances the user's

understanding of their environment and can be used for navigation, tourism, and

contextual information delivery.

21

Each type of AR has its own set of advantages and limitations, and the choice

between marker-based and marker-less AR depends on the specific requirements and

goals of your AR application. Marker-based AR is often more precise and predictable

since it relies on predefined markers, while marker-less AR offers a more flexible and

natural interaction with the real world but can be more computationally intensive due to

the need for continuous recognition and tracking of objects.

t's worth noting that augmented reality (AR) programs can be categorized into

two main types based on their operating environments: those that function in a closed

environment and those designed for an open environment.

Closed Environment AR: These AR programs are designed to operate within

controlled or confined settings. They often rely on predefined markers, objects, or

features that are specific to the closed environment. This approach allows for more

precise and predictable AR interactions within a controlled space. Examples of closed

environment AR applications include indoor navigation systems within a shopping mall,

educational AR experiences within a classroom, or maintenance assistance tools in a

factory.

Open Environment AR: On the other hand, open environment AR programs are

intended to function in dynamic and uncontrolled surroundings. They are engineered to

recognize and interact with objects and features as they naturally occur in the real

world. This type of AR requires advanced computer vision and recognition algorithms

to identify and track objects and surfaces in real-time. Open environment AR is well-

suited for outdoor navigation, tourism applications, and interactive experiences that

span various locations.

Closed environment AR offers a high degree of precision but is limited to

specific, predefined areas. In contrast, open environment AR provides greater flexibility

but demands more complex algorithms and sensors to adapt to diverse and ever-

changing surroundings. The decision should align with the desired user experience and

the intended application context.

22

1.2.2 Critical Aspects of Augmented Reality

Augmented reality, as an actively developing field, encompasses several critical

aspects that significantly impact its effectiveness and usability:

- Lack of AR Design & Development Standards: A major challenge in the

AR industry is the absence of universal standards, leading to software and hardware

limitations, difficulties in support, and project testing.

- Security & Privacy Concerns: Inconsistencies in AR programming and

negligence raise security and privacy issues. The lack of clear regulations allows for

potential misuse and risks such as data leakage, dissemination of unreliable information,

and physical harm due to improperly placed virtual objects.

- Technical Limitations: AR requires sophisticated hardware and software,

including processors, sensors, cameras, displays, and network capabilities. Inaccuracies

in GPS sensors or other components can lead to erroneous display of information.

Integration challenges with VR technologies and limited interoperability further hinder

broader adoption.

- Limited Interactivity: Compared to VR, AR’s interactivity is constrained by

its reliance on real-world environments, limiting the extent to which users can

manipulate virtual elements.

- Occlusion Issues: A significant challenge in AR development is occlusion,

where objects in the environment block the view of virtual elements, requiring

substantial processing power for accurate real-time tracking and rendering.

- Challenges in Accurate Tracking: Accurate object tracking is hampered by

varying lighting conditions and viewing angles, introducing complexities in the tracking

algorithms and potential latency issues.

- Voice Recognition & Processing Limitations: Effective voice recognition

depends on robust hardware and specialized algorithms, which can be affected by

environmental factors.

- Network Bandwidth & Latency: As AR becomes more widespread,

increased demand on network infrastructure can lead to bandwidth constraints and

latency issues, impacting application performance.

23

- Camera Positioning Challenges: Determining the camera angle and location

is complex, as it requires algorithms to interpret the viewpoint and orientation relative

to virtual objects. Using markers or surface recognition can aid in this process but may

neglect non-static objects.

- Physical Object Recognition and Occlusion: Recognizing physical object

boundaries and managing occlusion, where parts of virtual objects are overlapped by

physical ones, remains a complex task.

- User Experience (UX) Design: The UX of AR apps is critical and should be

intuitive, immersive, and seamless, considering user comfort to avoid issues like motion

sickness or eye strain.

- Realism and Immersion: The success of AR depends on the realistic

integration of virtual and physical elements, including accurate 3D rendering and

appropriate scaling.

- Performance and Latency: Low latency and high performance are essential

for real-time interaction and maintaining immersion in the AR environment.

- Stability and Tracking: Accurate tracking and stability of virtual elements in

physical spaces are crucial, requiring advanced sensor technologies.

- Content Quality and Relevance: AR content should be engaging, relevant,

and provide value to the user, encompassing both visual and informational elements.

- Battery Life and Power Efficiency: Optimizing AR apps for power

efficiency is vital, especially for mobile applications, to avoid rapid battery depletion.

- Scalability and Integration: AR applications should be scalable and

integrable with various systems and technologies for expanded functionality.

- Market Viability and User Adoption: The success of AR apps hinges on

understanding the target market, meeting user needs, and ensuring ease of use.

1.3 Domain analysis of the software testing processes

Software testing is a comprehensive and crucial process within the software

development life cycle, aimed at examining and ensuring the quality, functionality, and

performance of a software product. It involves both validation and verification to

24

provide an objective view of the software, allowing businesses to understand the risks

associated with software implementation. This process includes a variety of techniques,

ranging from manual interactions to executing test scripts, to detect bugs, errors, and

ensure that the software meets its intended purpose and business logic.

Testing not only prevents bugs and reduces development costs but also improves

overall performance. It's essential for maintaining software quality, particularly in the

development of mobile applications, where attention to detail in testing is increasing. As

a process of comparing expected output with actual output, software testing

encompasses all aspects of testing, including software security, reliability, correctness,

and quality.

Over time, as applications have become more complex, software testing activities

have evolved, introducing new techniques and approaches. A key aspect of software

testing is to detect failures so that defects can be resolved, although it's acknowledged

that testing cannot guarantee perfect functionality under all conditions. It includes

various phases such as test strategy, development, bug management, execution, and

more.

The software testing lifecycle (STLC) is a sequence of activities conducted in a

systematic and planned manner, aimed at improving product quality. It is a subset of the

Software Development Life Cycle (SDLC), and its phases are critical to the overall

effectiveness and reliability of software development. This lifecycle ensures that testing

is managed effectively, catering to various aspects like scalability, resource usage, and

reliability, and thereby plays a vital role in the software industry.

1.3.1 Types of Software Testing

Software testing can be classified into multiple categories based on test

objectives, strategies, deliverables, ways, and techniques. It can be further divided into

automated and manual methods, along with specific testing techniques like black box

and white box testing.

25

Fig 1.2. Software testing class diagram

Automation Testing: Automation testing, or Test Automation, involves writing

scripts and using software to test the product. It is used for re-running manual test

scenarios quickly and repeatedly, and for regression, load, performance, and stress

testing. It increases the test coverage, improves accuracy, and saves time and money

when compared to manual testing.

Manual Testing: Involves testing software manually without using any

automation tools or scripts. Testers act as end-users to identify unexpected behaviours

or bugs. This method includes various stages like unit integration testing, user

acceptance testing etc.

The above categories determine more the resources required for testing than the

methods and procedures of their implementation. So, each technique method includes

different testing techniques; the most well-known are two techniques: black box testing

and white box testing.

Black Box Testing involves testing without access to the source code. Testers

focus on the software interface and functionalities, ensuring the program meets project

requirements and functions correctly.

26

White box testing is focuses on the internal structure and logic of a software

application. It is also known as "clear box testing," "glass box testing," or "structural

testing." The primary goal of white box testing is to ensure that the code and its

components work correctly by examining the program's internal workings, code paths,

and data flows.

In addition, there exists a less-known category known as Grey Box testing. Grey

Box testing requires testers to possess knowledge of the implementation without

requiring expertise.

Among these techniques, black box testing is most common. Software testing can

be broadly classified into three types:

Functional Testing: It is a type of software testing validates the software's

conformance with functional requirements. It checks whether the application functions

as specified in the functional requirements. Various types of functional testing include

Unit testing, Integration testing, System testing, and Smoke testing.

Unit Testing - testing individual units or components of a software/system to

validate that each unit functions as designed. Typically, system programmers and

developers perform unit testing.

Integration Testing - combines units and tests them as a group to expose faults in

their interactions. It analyzes characteristics such as functional, performance, and

reliability requirements imposed on significant design elements.

System Testing - complete, integrated system/software to ensure its compliance

with specified requirements.

Smoke testing (build verification testing or sanity testing) is an initial and

minimalistic level of software testing performed to verify that the most critical and basic

functionalities of a software application are working correctly after a new build or

release. The primary purpose of smoke testing is to ensure that the software is stable

enough for more extensive testing, such as regression testing or comprehensive

functional testing.

Non-functional testing is a type of software testing that assesses the aspects of a

software application that do not relate to its specific functionality or features but rather

27

focus on its performance, reliability, scalability, and other quality attributes. These tests

evaluate how well the software performs under different conditions and constraints.

Non-functional testing is essential to ensure that the software meets user expectations

and performs effectively in real-world scenarios. Various types of non-functional testing

include Performance testing, Stress testing, and Usability Testing.

Performance Testing: Performance testing evaluates factors like stability, speed,

scalability, and responsiveness of an application under specific workloads. It plays a

crucial role in ensuring software quality and involves assessing various aspects such as

application output, processing speed, data transfer velocity, network bandwidth usage,

maximum concurrent users, memory utilization, workload efficiency, and command

response times.

Usability Testing: Usability testing involves evaluating a product or service by

testing it with representative users, observing their interactions, and noting their

feedback.

Stress testing evaluates the behavior of a software application under extreme or

unfavorable conditions.

Acceptance testing focuses on evaluating whether a software application meets

the specified business requirements and is ready for deployment to end-users or

customers.

3. Maintenance testing encompasses modifying and updating the software to meet

customer needs. It includes regression testing to ensure that recent code changes do not

negatively affect previously functioning parts of the software.

1.4. Testing augmented reality applications

In many cases, AR applications are used on a smartphone, so testing can

encompass standard types and methodologies for testing mobile applications by

employing testing tools (see table 1.1.).

Table 1.1.

Standard tool for testing applications on smartphones

28

Tool Testing type

Selenium Functional testing

TestComplete Functional testing, Graphical User Interface testing, Unit

testing

Ranorex Graphical User Interface testing, Compatibility testing

Continuation of Table 1.1

Appium Graphical User Interface testing, Functional testing

Quick Test Professional Functional testing, Regression testing

OpenScript Functional testing, Load testing, Database testing

Janova Functional testing

Rational Functional Functional testing, Regression testing, Graphical User

Interface testing

However, due to the unique aspects of AR, certain standard tests and tools might

not always be practical.

Typically, manual testing is employed for testing AR applications. It often

involves two or more individuals to effectively incorporate human factors. In this

context, several testing techniques are used, either in their standard form or modified to

suit the specific requirements of AR technology. These techniques include functional

testing, accessibility testing, usability testing, immersive testing, hardware Testing,

Holistic Testing Approach, security testing, loss of connection testing, multiple aspect

ratio testing, localization loss, performance testing, compatibility testing.

1.4.1. Special Considerations in AR Testing:

- Integration of AR-specific Factors: While employing both manual and

automated testing, special emphasis is placed on AR's unique interaction with real-

world environments. This includes testing for spatial awareness, real-world object

recognition, and the seamless integration of virtual and physical elements.

- User Experience in AR: Leveraging the principles of usability testing, the

focus here extends to the intuitiveness of interacting with augmented elements and the

overall immersive experience. This encompasses assessing user comfort, ease of

navigation within the AR space, and the responsiveness of AR elements to user actions.

29

- Hardware Compatibility: Given the diversity of devices on which AR

applications can run, hardware testing must ensure optimal performance across various

smartphones and AR-specific devices like headsets and wearables.

- Environmental Adaptability: AR applications should be tested in multiple

real-world scenarios to evaluate their adaptability to changes in lighting, physical space,

and user movements.

- Network Dependency and Connectivity: Special tests are required to assess

how AR applications perform under varying network conditions, particularly focusing

on scenarios like loss of connectivity to understand the resilience of the application.

Refining Standard Testing Approaches for AR:

- Functional Testing in AR: While the fundamentals of functional testing

apply, in AR, this involves ensuring that augmented elements function correctly within

their intended real-world contexts.

- Performance Testing with AR Focus: Performance testing should account

for the additional processing demands of AR, including real-time rendering of graphics

and the handling of complex user interactions.

- Security Testing for AR: The security aspect in AR includes not only data

protection but also user privacy concerns, given the technology's interaction with the

physical environment and potential access to sensitive information through the device's

sensors.

30

1.4.2. Augmented Reality Applications Testing tools.

Fig 1.3. Unity MARS presentation

a) Unity Mars: This advanced package of AR tools. It offers templates for

developing AR applications, rule-based setups, virtual simulation tools, and high-

quality scenes for AR testing. Its cross-platform support accelerates AR application

development, allowing testing in a virtual environment without preliminary settings.

However, the annual cost of €552 may be prohibitive for start-ups, and ongoing

subscription renewal is necessary due to the difference between free AR tools and Unity

Mars tools. A limitation is testing confined to the Unity environment, which may pose

challenges for test organizations requiring project source code transfer. There's also a

potential for interaction conflicts with third-party AR libraries. It's worth noting that

many augmented reality device manufacturers offer complimentary virtual device

testing both within and outside the Unity environment, presenting alternative options for

developers.

b) Arium is an open-source, lightweight, and extensible framework designed

to

streamline the creation of automation tests specifically tailored for XR Applications. It

enables scripting for user interaction and object status tracking on stage. The main

advantage lies in its capacity to test program components in real scenarios.

31

However, the manual scripting requirement for each user step, especially in

complex interactions, can be cumbersome. Although the program does not account for

user-view conditions, additional checks can partially address this issue.

c) GameDriver: GameDriver is a framework that provides developers with an

API agent that can be embedded into their program. During development, developers

incorporate the GameDriver game object into their game, enabling GameDriver to

connect to and control the game while it is running, both during development and in

standalone builds. This framework allows communication with the game through a

backchannel to the driver's API, enabling the execution of commands asynchronously or

synchronously. These commands mimic the input actions of a real user but are executed

through a different mechanism. Beyond user input functionality, GameDriver offers

features such as logging user code, recording game execution, taking screenshots,

recording user input, and accessing application data.

The primary advantage of GameDriver is that all tests are written and executed in

a separate, independent application. All operations are performed asynchronously, and

connections are established by importing a single package and configuring the required

parameters. Consequently, testing can be conducted at any time, independent of the

project's state.

However, a major drawback is that GameDriver provides extensive control,

potentially introducing vulnerabilities for attackers to exploit or enabling the tracking of

user actions.

d) Bitbar: Bitbar is a cloud-based mobile and web application testing platform

that supports both live manual app testing and automated testing across various

environments. It accommodates testing on desktop browsers (Windows, macOS, Linux)

and real iOS and Android devices, offering compatibility with a wide range of modern

web browser versions and mobile systems, including Android, iOS, Windows Phone,

and Blackberry. Bitbar aims to serve as a comprehensive solution for device and

browser testing needs, whether for web, native, or hybrid apps. The platform enables

automated testing across multiple devices, supports local testing via SecureTunnel, and

32

provides a customizable app-testing infrastructure to meet specific organizational

requirements. Bitbar's scalability and performance capabilities make it a versatile tool

for application testing.

Its main advantage lies in providing access to a multitude of devices with varying

specifications, essential for AR applications that may perform differently across

different hardware. It also facilitates remote testing and automation, speeding up the

development cycle and enabling more frequent testing. Testing on actual devices offers

a more accurate understanding of how an AR application will perform in real-world

scenarios.

However, it's important to note that Bitbar relies on a stable internet connection,

and network issues can hinder testing processes. While Bitbar supports a broad range of

testing scenarios, it may not offer the same level of customization or specialized tools

for AR application testing, which can be more complex due to the integration of real-

world environments. Depending on the scale of testing, using a cloud-based platform

like Bitbar can be expensive, particularly for small developers or startups. Also remote

testing may introduce latency, impacting the testing of AR applications where real-time

interaction is crucial.

e) UI Testing Applications: Airtest and XCUITest are testing frameworks

primarily focusing on user interface testing. However, they can also be adapted for

testing augmented reality (AR) programs utilizing tools like virtual cameras, Azure

Spatial Anchor -stores sensor data, video footage with prepared layouts for AR testing.

Their main advantage lies in supporting UI automation testing, which is beneficial for

AR applications that rely on UI elements overlaid on the real world. These frameworks

allow scripting in Python, facilitating the creation of complex test scenarios necessary

for AR applications. They employ image recognition technology, enabling interaction

with the application by recognizing on-screen elements, a valuable feature in AR where

elements can change based on the user's environment and interaction. Moreover, Airtest

supports testing on various devices and platforms, which is essential for AR apps

designed to function across different hardware and software configurations.

33

However, these frameworks are not specifically designed for AR, necessitating

their use alongside other tools. AR applications often utilize various sensors (e.g.,

gyroscope, accelerometer), which may not be fully testable without tools like Azure

Spatial Anchor. Running complex AR tests can be resource-intensive, potentially

leading to performance issues on the testing platform.

f) Performance Metric Tools: These tools provide insights into app

performance and include built-in options for Android devices. Examples include OVR

Metrics Tools (for analyzing frame rates and thermal values), Logcat (for collecting

system logs), Ovrgupprofiler (for accessing GPU pipeline metrics), GPUsystrace (for

rendering stage data), RenderDoc (for frame analysis and debugging), and Unity

Profiler (for monitoring app performance). Each tool has unique functionalities, but they

generally do not have specific disadvantages, except for the potential pre-installation on

Android devices.

1.4.3. Evaluation Metrics for Augmented Reality (AR) Applications

Evaluating AR applications presents unique challenges due to the lack of

standardized testing methods. However, the evaluation metrics can be broadly

categorized into three primary groups: Usability Metrics, User Experience Metrics, and

Impact Metrics. Additionally, other relevant metrics, though perhaps less explicit, are

also vital in assessment:

a) Usability Metrics:

1) Latency: The delay between user action and system response. Lower

latency

is crucial for a seamless AR experience.

2) Accuracy and Precision: How accurately and precisely AR elements are

placed in the real world.

3) Frame Rate: The smoothness of the visual display, measured in frames

per second.

4) Field of View (FoV): The extent of the observable environment at any

34

given moment.

5) Object Recognition Time: How quickly the system recognizes and

interacts with real-world objects.

b) User Experience Metrics:

1) User Satisfaction: Gathered through surveys and interviews, measuring

overall satisfaction with the AR experience.

2) Ease of Use: Evaluating how intuitive and user-friendly the AR application

is.

3) Engagement: Assessing how engaging and immersive the AR experience

is

for users.

4) Physical Interaction and Ergonomics: How comfortable and natural it is

for users to interact with the AR environment.

c) Impact Metrics:

1) Learning and Performance Improvement: Assessing whether the AR

application helps improve user performance or learning in a given task.

2) Behavioral Change: Measuring any changes in user behavior as a result

of interacting with the AR application.

3) Emotional Impact: Understanding the emotional response elicited by

the

AR experience.

d) Additional Metrics:

4) Battery Consumption: Important for mobile AR applications, as they can

be resource-intensive.

5) Stability and Robustness: How well the application performs under

different environmental conditions and handling interruptions.

6) Network Performance: For AR applications that require internet

connectivity, assessing data transfer rates and network latency is crucial.

7) Rendering Quality: The visual fidelity of the AR elements, including

resolution and textural details.

35

8) Privacy and Security: Especially important given the use of cameras and

sensors in public or sensitive environments.

It is also worth noting that as the field of augmented reality matures, there may be

a shift toward more standardized metrics and evaluation methodologies. And therefore,

these indicators are constantly being improved and adapted so as not to lose relevance.

Additionally, depending on the application's use case, additional metrics such as social

interaction, collaboration effectiveness, or commercial success may be relevant.

Conclusion

Software testing is an integral and increasingly vital component of software

development, gaining even more prominence in emerging domains like Augmented

Reality (AR) Applications. While AR technology has seen substantial integration with

smartphones and other mobile devices, it still lacks standardized methodologies for

software testing. This absence of standardized testing procedures poses significant

challenges in the field, leading to limitations and potential inaccuracies during the

testing process.

The unique nature of AR – blending digital elements with the real world –

requires novel approaches to ensure software quality and reliability. The lack of

established testing standards for AR applications complicates the assessment of

usability, user experience, and overall functionality. Moreover, AR applications interact

with diverse hardware and software ecosystems, further complicating the testing

landscape.

This situation underscores the necessity for the development of comprehensive,

standardized testing frameworks tailored to AR applications. Such frameworks would

not only streamline the testing process but also enhance the accuracy and reliability of

the results. As the field of AR continues to evolve and expand, the establishment of

such standards will be crucial for advancing the quality and effectiveness of AR

technologies.

36

In conclusion, the growing complexity and sophistication of AR applications

demand a concerted effort toward the development of robust, standardized testing

methodologies. This advancement will be critical in unlocking the full potential of AR

technologies, ensuring their successful integration into various aspects of our lives and

industries.

37

CHAPTER 2

SAPPROACH FOR TESTING AUGMENTED REALITY APPLICATIONS BY

USING AUGMENTED REALITY APPLICATIONS

2.1. Theoretical Backgrounds

2.1.1. Software Testing and Quality Assurance Principles

The fundamental theories of software testing, including black-box testing, white-

box testing, and automated testing, provide a foundation. These principles are adapted

for AR environments, focusing on testing the unique aspects of AR applications such as

spatial awareness, real-time interaction, and 3D rendering.

Early and Continuous Testing: Given the complexity of AR applications, which

integrate real-time 3D rendering, user interaction, and often hardware components like

cameras and sensors, early and continuous t That is, the sooner an error is detected, the

less human and financial resources will be involved in its correctionesting is crucial to

identify and resolve issues before they escalate. The cost of an error grows

exponentially throughout the stages of the Software development lifecycle (SDLC). So,

we must start looking for the bug when requirements are defined.

Requirement Traceability: This involves ensuring that the AR application meets

specific requirements, such as accurate overlay of digital content onto the real world,

responsive user interaction, and stable performance across various devices and

environments.

Testing shows the presence of defects, not their absence: The purpose of

testing is to identify and correct defects in software, but testing cannot ensure that the

software is free of defects. If testing may not reveal any defects, that’s not proof that the

software is flawless. Testing only reduces the probability of having undetected defects

in the software that may affect its quality or functionality.

In AR, this principle underlines the importance of thorough testing, as defects can

significantly disrupt the immersive experience.

38

Exhaustive testing is not possible: Exhaustive testing, which entails evaluating

all possible combinations of inputs and preconditions, is unfeasible for QA teams due to

its impracticality and cost. This process would require testing every conceivable module

and scenario, posing a substantial challenge for any company.

Nevertheless, achieving high-quality software is attainable through meticulous

planning and risk assessment. Focusing testing efforts on areas with potential software

risks is the optimal approach to assure the software's quality.

Defect clustering: Defect clustering is a significant phenomenon in software

testing, which aligns with the Pareto principle. According to this principle, roughly 80%

of software issues can be traced back to only 20% of the modules. This phenomenon

highlights the importance of focusing testing efforts on specific modules or features

where the majority of defects tend to concentrate.

Factors contributing to defect clustering include the development of new features,

frequent changes in existing modules, and dealing with legacy code. Testers and

developers should be aware of this principle and prioritize testing in modules that have

undergone frequent changes or have numerous dependencies. By doing so, they can

efficiently identify and address defects, ensuring the delivery of a high-quality product

to customers.

Identifying areas in AR applications that are prone to defects, such as complex

user interactions or real-world integration points, allows more focused and effective

testing efforts.

Testing is Context Dependent: Testing strategies and approaches vary

depending on the context in which the software is developed and used. Different

software applications, such as static websites, dynamic e-commerce sites, safety-critical

industrial control software, or mobile e-commerce apps, require tailored testing

methodologies to address their specific needs. For instance, safety considerations take

precedence in aviation software, while user experience and speed are crucial for

corporate websites.

Moreover, testing practices can differ between different stages of development,

with Agile projects employing different methodologies than sequential lifecycle

39

projects. Therefore, understanding the context in which software testing is conducted is

essential for development and testing teams to design effective testing strategies.

Pesticide paradox: The concept of the Pesticide Paradox draws inspiration from

the agricultural pesticide theory, where the repetitive use of pesticides leads to their

ineffectiveness against pests over time. Similarly, in software testing, running the same

test cases repeatedly can become less productive as they may not uncover new defects

due to their redundancy. To address this paradox, it is essential to regularly review and

update test cases, introducing new testing methods and techniques to detect previously

undiscovered issues. This proactive approach ensures that testing remains effective and

avoids falling into the trap of the Pesticide Paradox.

Absence of Errors Fallacy: It is a common fallacy to assume that a software

product with minimal defects is ready for use. However, even if a software application

is almost free of bugs, its true value lies in its ability to meet user requirements and

solve business problems effectively. Simply focusing on error elimination is

insufficient.

To ensure a software product's readiness, it is crucial to test it against both system

requirements and user requirements. Testing alone cannot determine a product's

readiness; user satisfaction and usability are equally important factors. If users find the

software difficult to navigate or if it fails to address their needs, it can be considered a

defect that jeopardizes the entire software product.

2.1.2. Software Testing and Quality Assurance Principles

Core AR theories, including the concepts of virtual overlays, user interaction in

mixed reality environments, and spatial computing, are crucial. Understanding how AR

elements interact with the real world and with the user is essential for designing tests

that accurately assess an AR application's performance and usability.

- Virtual Overlays and Spatial Augmentation: This theory involves

overlaying virtual objects onto the real world in a way that they appear to coexist in the

same space. The challenge is to make these overlays as realistic and interactive as

possible, taking into account the physical properties of the real environment.

40

- User Interaction in Mixed Reality: This concept focuses on how users

interact with both real and virtual elements in an AR environment. It includes studying

user interface design, interaction modalities (like gestures, voice commands, or touch),

and user experience design specific to AR.

- Spatial Computing: This is a broad concept that refers to the ability of

computers to interact with and understand the 3D space and objects within it. In AR,

this involves processing and interpreting data about the physical environment, such as

depth sensing, object recognition, and spatial mapping.

2.1.3. Cross-Application Communication and Interaction:les

Cross-application communication and interaction, especially in the context of

Augmented Reality (AR), refers to the ability of different software applications or

processes to communicate and interact with each other. It also includes data exchange

formats and protocols that enable the testing tool to interact with and assess the tested

application effectively. This concept is crucial in scenarios where multiple applications,

possibly including AR applications, need to work in tandem or exchange data.

- Inter-Process Communication (IPC): IPC is a fundamental concept where

multiple processes (which can be parts of the same or different applications) exchange

data. In the context of AR, this might involve an AR application communicating with a

backend server application, or with other applications running on the same device.

- APIs and Protocols: Application Programming Interfaces (APIs) and

communication protocols are essential for cross-application interaction. They define a

set of rules and methods for applications to communicate. For AR applications,

RESTful APIs, WebSocket, and other real-time communication protocols are

commonly used.

- Data Formats and Standards: For effective communication, applications

often need to agree on specific data formats and standards. In AR, this could include

formats for 3D models, spatial data, and user interaction events.

- Middleware and Frameworks: Middleware and frameworks can facilitate

cross-application communication by providing a layer of abstraction that handles the

41

communication details. This is particularly useful in complex AR systems that involve

multiple components, such as tracking systems, content management systems, and user

interfaces.

- Synchronization: When multiple applications interact, especially in real-

time environments like AR, synchronization is crucial. This ensures that all interacting

applications have a consistent and up-to-date view of the data and state of the system.

- Networking and Connectivity: For applications that are distributed over a

network (e.g., cloud-based AR services), networking principles and connectivity issues

become significant. This includes handling latency, bandwidth constraints, and

connection stability.

- Security and Privacy: Secure communication channels are vital, especially

when sensitive data is being transmitted. Encryption, authentication, and authorization

mechanisms are key considerations in cross-application communication.

- Scalability: The communication and interaction mechanisms should be

scalable to handle varying loads, which is important in AR applications that might need

to support a large number of users or high volumes of data.

- Error Handling and Robustness: The system should be robust against

communication failures or errors. This includes implementing retries,

acknowledgments, and error-checking mechanisms.

- User Context and Experience: In AR, cross-application interaction should

also consider the user context and experience. This includes how data exchange and

application interaction impact the user's experience in an AR environment.

Cross-application communication and interaction in AR involve a combination of

software engineering practices, networking principles, and user experience

considerations. They ensure that multiple applications, including AR applications, can

work together seamlessly, providing a coherent and integrated user experience.

2.1.4. Emulation and Simulation Theory

42

2.2. Proposed Approach

The methodology is based on the interaction of two AR programs, where data

from one program must be transmitted to the other. The approach is such that both

programs are independent, i.e., it does not imply the integration of an API to substitute

incoming data for the system being tested. This, in turn, avoids adding potential

vulnerabilities to the controlled program.

2.2.1. Methods and Challenges in Implementing AR Application

Testing Interactions in android devices.

Before describing approaches to implement program interaction, it's important to

note several complexities in such interactions. In the Android system, applications can

only use one camera, and if at least one application uses the camera, others cannot use

the device's camera. Therefore, it is not possible to set up program interaction through

data transfer via a virtual camera on one device. Also, it is difficult to obtain virtual

camera applications from official sources.

Moreover, even if it is possible to run two applications where one transmits data

in the form of video from the camera to the other, there are issues with program

operation services. A program in minimized mode can remain in working condition for

a limited time, and the system begins to free up memory under high load. Since AR

applications exert high load on mobile devices, closing the application for testing can be

challenging to avoid.

Additionally, there is an issue with potential incompatibility of some programs

with certain virtual machines and emulators, as well as the inability to install a virtual

camera.

Before describing approaches, it's important to note that the tested application may have

several types of information sources:

- Broadcasting Video from the Screen: This method involves testing in live

mode, minimizing human error. However, it may suffer from delays in data

transmission and reduced video quality.

43

- Pre-recorded Video: Using specially recorded videos transferred to a

device for virtual camera transmission. This method is advantageous for automating

testing and ensuring repeatability, though re-recording may be necessary in case of

errors.

- Photos and Screenshots: This approach requires precise programming

techniques and is suitable for testing that demands accurate imagery.

The first approach involves testing using cloud technologies. The most effective

implementations are as follows:

Fig. 2.1. Deployment Diagram. AR Application Cloud Testing Framework

a) The first implementation (see fig. 2.1.) is based on using the AR

application for program testing on a mobile device, while the tested application is

installed on an emulator set up in the cloud. During testing, data from the mobile device

44

is transmitted to the emulator. This approach allows controlling the tested application

from any location, including the device running the AR testing tool. The disadvantage

of this approach is that when testing on the same device, the test program may be closed

by the Android system.

Fig. 2.2. Deployment Diagram. AR Application Cloud Testing Framework

b) The second implementation (see fig. 2.2.) involves placing both

applications in separate cloud virtual machines. Data transmission occurs from the

mobile device to the virtual machine with the AR testing tool, and then data is

transferred from one virtual machine to another. This way, both programs can be

45

controlled from any device without the risk of unexpected program closure. However,

dependence on connectivity increases, as does the potential for noise and delays.

Fig. 2.3. Deployment Diagram. Integrated VM AR Testing Configuration

The second approach (see fig. 2.3.) involves using a virtual machine on the

mobile device itself. In this case, the program for testing must itself perform the

broadcast of its work, and the virtual machine must have the ability to set the source for

the camera. This approach puts a tremendous load on the device itself but also does not

depend on connectivity and works within a single device.

The main advantage of this approach is its autonomous nature. The convenience

of using one device to perform one task - testing.

46

However, this approach does have significant implications in terms of device

resource utilization. Running a virtual machine alongside the application places a high

demand on the device's processing power, memory, and battery life. This could

potentially lead to slower performance and might not accurately reflect the application's

behavior in a typical usage scenario.

This method is best suited for preliminary testing stages where the focus is on

functionality rather than performance. For performance and scalability testing,

additional methods, possibly involving multiple devices or cloud-based solutions, would

be more appropriate to get a comprehensive understanding of the application's behavior

in real-world conditions.

Fig. 2.4. Deployment Diagram. AR Testing Environment with Computer-Assisted

Virtualization

47

The third approach (see fig. 2.4.) to AR application testing involves using a

computer or laptop as an auxiliary device. In this setup, a virtual machine hosting the

tested program is run on the computer. The key feature of this approach is the

transmission of data from the AR device to the virtual machine, which can be facilitated

either directly through the computer or via other connected devices.

This method leverages the computing power and resources of the computer to

handle most of the testing workload. By offloading the processing and operational

demands from the AR device to the computer, it allows for a more robust and stable

testing environment. This can be particularly useful for applications that are resource-

intensive or require a stable and controlled environment for accurate testing.

One of the benefits of this approach is the flexibility it offers in terms of testing

configurations. Since the virtual machine is on a computer, it allows for easier

manipulation and observation of the tested program's behavior. Additionally, it can

facilitate the testing of different versions or configurations of the application without

needing multiple physical devices.

However, this approach also requires a reliable connection between the AR

device and the computer, whether it's via a local network, USB connection, or other

means. The quality and reliability of this connection are crucial, as any interruption or

lag could impact the testing process.

Moreover, setting up and configuring the virtual machine, along with ensuring the

compatibility of the tested program with this environment, can add complexity to the

testing process. It requires a certain level of technical expertise and understanding of

both the AR technology and virtual machine management. Despite these challenges, this

approach offers a versatile and powerful option for AR application testing, especially

for developers and testers who have access to the necessary resources and technical

skills.

48

Fig. 2.5. Deployment Diagram. AR Streaming Deployment Architecture

The fourth approach involves using a single device with an application for testing

and streaming the image to multiple devices. This approach, combined with the use of

other tools, allows for automated testing of the application on multiple devices.

This method capitalizes on the concept of centralized testing and broadcasting.

By streaming the test application's output from one device, it can be simultaneously

observed and analyzed on multiple other devices. This setup is particularly beneficial

for scenarios where the behavior of the application needs to be tested under different

device conditions or operating environments.

One of the key advantages of this approach is the ability to conduct

comprehensive testing without the need for multiple copies of the test application to be

49

running on different devices. It simplifies the setup and reduces the resources needed for

testing. Additionally, this approach can be integrated with automated testing tools to

further streamline the testing process, allowing for more efficient identification of

potential issues across different devices.

However, it's important to consider factors such as network reliability and

bandwidth, as these can impact the effectiveness of streaming and, consequently, the

testing process. The quality of the streaming should be sufficient to accurately represent

the application's performance and any potential issues it may have. This method also

requires a robust setup for capturing and streaming the application's output in real-time,

which may involve additional technical complexities and resource requirements.

2.2.2. The sequence of implementation of the methodology

As no standards for development and testing are defined, certain sequences of

steps may change and be supplemented depending on the evolution of the industry and

the complexity and comprehensiveness of various projects. This overall process can be

divided into the following subprocesses:

a) Define test objectives and scenarios: is the initial phase of AR application

testing, where the primary goals, testing scenarios, usage variations, and functions

subject to testing are established. Testing objectives are set to determine the ultimate

outcomes of the testing process. Test scenarios outline specific situations, actions, and

user interactions that will be simulated and verified within the AR application. The

results of this phase play a central role in the testing process, ensuring that testing

efforts align with project objectives and user expectations.

1) Study software requirements - involves a comprehensive analysis of both

technical and user requirements. Technical requirements encompass the understanding

of necessary hardware and software capabilities essential for augmented reality support,

which include processing power, graphics, and sensor technologies. On the other hand,

user requirements concentrate on the needs and preferences of end-users, emphasizing

aspects such as usability, accessibility, and the integration of desired features or

functionalities.

50

2) Examine product needs refers to a thorough analysis of both the functional

and non-functional requirements of a testing app.

3) Research product audience involves the identification and understanding of

the target users of the software. During this stage, testers gather information about the

demographic data of the target users and their expectations to create profiles of potential

software users, including factors such as age, gender, location, interests, technical

proficiency, and any other relevant characteristics. This information can be used to form

an understanding of user expectations, preferences, as well as information about

possible scenarios for using the AR software. This information serves as the basis for

adapting the testing process to ensure that the software meets the specific needs and

desires of the target audience.

4) Prepare a List of Real-World Experiences is the phase of AR app testing,

the

goal is to create a comprehensive list of real-world scenarios and experiences that the

Application Under Test (AUT) should replicate. Testers identify and document specific

user interactions, conditions, and situations users may encounter. These scenarios cover

indoor and outdoor environments, different lighting conditions, various physical

surfaces, and user actions. The aim is to ensure the AR app performs reliably across

diverse real-world contexts, providing users with a seamless, immersive experience that

meets their expectations.

5) Determine Supported Devices and Interactions: аt this stage, specific

devices

for testing and the types of user interactions supported by the tested program (AUT) are

identified.

6) Define Test Coverage is focus is on outlining the specific areas and aspects

of the application that will be subjected to testing. This includes identifying and

defining the scope of testing, such as evaluating the user interface, functionality, and

performance of the application. Test coverage ensures that all critical components and

functionalities of the AR application are thoroughly examined and assessed during the

testing process.

51

7) Confirm the Scope of Testing: During this phase, the testing team validates

and reiterates the defined scope of testing to ensure it aligns with the project's

objectives. The scope encompasses the extent and boundaries of what will be tested,

including the features, functionalities, and specific testing areas such as user interface,

functionality, and performance. Confirming the scope of testing helps maintain focus

and consistency throughout the testing process, ensuring that all critical aspects are

appropriately covered.

b) Choose Testing Tools: involves the careful selection and configuration of

the appropriate testing tools and resources. Testers identify and set up the necessary

software, hardware, and frameworks to support the testing activities effectively. The

choice of testing tools and resources is critical to ensure the thorough evaluation of the

AR application's functionality, usability, and performance.

c) The preparation for testing using an AR test tool, as part of the

methodology,

is distinct from the selection of the testing tool. This stage includes defining the method

of establishing connectivity, configuring tools, and verifying the correct functioning of

the test application. Depending on the chosen method of interaction, the steps of this

stage may vary and can evolve over time. When considering testing using a virtual

machine, the following stages can be identified:

1) The choice of an emulator or virtual machine involves selecting between

these two software tools, each with its own operational characteristics. Depending on

the collected data about the Android version and the required devices, either a particular

virtualization tool may be chosen, or it may be necessary to abandon this approach

altogether. This step should be the first when using a virtual machine approach, as

proceeding with other steps in most cases can lead to significant time loss.

2) Verification of the correctness of sensor operation in a virtual machine or

52

emulator - virtual machines and emulators offer great possibilities for device

configuration, but at the same time, this does not guarantee that the settings will be

correct or that they will not require changes due to the specifics of their operation.

3) Check the operation of the program under test on an emulator/virtual

machine - during this process, the tester needs to ensure that the program's core

functions are working correctly. Particular attention should be paid to the camera

launch, interface interaction, and the ability to use gestures. This step is necessary due

to the limitations of emulators; for example, it is not possible to use gestures on a

standard computer or laptop, and also due to the lack of support for some important

libraries, the embeddedness of the Google Play service for AR, and limitations in the

architecture and bit-depth of the processor.

4) Selection of tools and operating system for setting up system interactions.

At this stage, depending on the chosen virtual machine or system, the tester needs to

decide on the data transmission sources from the device with the AR testing tool to the

virtual environment with the application under test. The choice of operating system also

depends on the selected tools; for example, the Linux system offers higher performance

for conducting tests and greater precision in settings, while the Windows system

provides easier setup, and the Mac OS has better integration with virtual components, as

with full-fledged devices.

5) Set Up Data Transfer. This stage involves configuring the interaction

between the chosen devices with the help of defined tools. Initially, this step can be

quite labor-intensive.

d) Set Up the Working Environment: During this phase, the testing team

prepares the necessary devices and physical spaces required for conducting tests. The

goal is to create a controlled testing environment that accurately simulates real-world

conditions. This preparation ensures the effective execution of testing by replicating

scenarios and contexts that users encounter when using the AR application.

e) Setting up the AR testing tool involves configuring and loading virtual

objects, as well as determining their placement within the virtual environment. This

53

stage focuses on preparing the digital elements and defining their positions on the

virtual plane within the AR tool.

f) Define Testing Metrics: In this phase, specific metrics are outlined to

evaluate the performance of the application. These metrics include factors such as

latency, accuracy, and usability, among others. These metrics provide a structured and

measurable way to assess the application's performance in key areas, helping to identify

strengths and areas that require improvement.

g) Decide the Type of Testing: During this phase, the testing team determines

the types of testing that will be conducted. This includes identifying whether functional

testing, usability testing, performance testing, or other specific testing types are

required. The decision on the type of testing to be conducted guides the testing strategy

and ensures that the appropriate testing methods and criteria are applied to evaluate the

AR application effectively.

h) Prepare Collaboration Tools: In this phase, the testing team sets up and

configures the necessary tools and platforms to facilitate effective collaboration with

developers. This includes implementing bug tracking systems, communication

platforms, and other collaborative tools. The aim is to establish seamless

communication and coordination between testers and developers to streamline issue

reporting, resolution, and overall project collaboration.

i) Testing AR Application: This phase involves the actual testing of the AR

application based on the prepared scenarios using the chosen tools and methodologies.

The testing encompasses both automated and manual procedures to evaluate the

application thoroughly. It also includes iterative testing and feedback loops, allowing

for continuous improvement of the application. During this phase, detailed records are

maintained to document testing processes, observations, and any issues discovered.

Finally, a final evaluation is conducted to assess whether the AR application aligns with

the initial objectives and requirements, ensuring that all criteria are met

54

Conclusion

This section has systematically presented and defined the foundational principles

underlying the proposed methodology for testing AR applications. A crucial aspect that

emerged is the current lack of standardized AR testing programs. While this absence

allows for greater flexibility and freedom in developing testing methodologies, it

simultaneously introduces a level of uncertainty. Addressing this uncertainty is pivotal

in establishing robust and reliable testing practices for AR applications.

Furthermore, the section elaborated on a specific methodology that utilizes an AR

testing tool. This tool plays a crucial role in the interaction of AR programs and

facilitates the essential transfer of data between them. The methodology's effectiveness

hinges on this interaction and data transfer capabilities, underscoring the need for

innovative solutions in AR application testing.

In addition, a brief overview of potential interaction methods was provided,

offering insights into various approaches for data transfer to the devices. These methods

include cloud-based interactions, the use of virtual machines, and leveraging external

computing devices, each with its unique advantages and challenges.

Lastly, a comprehensive description of the methodology and the steps for its

implementation was outlined. This detailed account serves as a guide for effectively

employing the methodology in practical testing scenarios.

In conclusion, the development and refinement of this methodology represent a

significant contribution to the field of AR application testing. As AR technology

continues to evolve, the adaptation and enhancement of these testing approaches will be

crucial for ensuring the reliability and effectiveness of AR applications in various

domains.

55

CHAPTER 3

DESCRIPTION OF AR TESTING TOOLS

3.1. Software Product Specification

The software product is a tool that uses AR technology for testing other AR

applications.

The mission of the software is to assist in the development of the educational

environment and its components, including the participants of this environment. More

specifically, its mission is to provide an information base of competencies, which

includes the analysis and collection of modern requirements for specialists in certain

fields of activity, as well as the competencies already present in the students of the

department to assist in forming a system of professional and positional adaptation for

graduates.

The mission of the software is also to assist in conducting works related to the

testing of AR applications. More specifically, its mission is to form a surrounding

environment that will contain the necessary real and virtual objects for checking the

functionality of the program, as well as its behavior and functioning in a mixed reality

environment.

According to the need to form an environment and place virtual applications, the

software tool must be related to Marker-Less AR.

Accordingly, the following functional capabilities of the software application can

be formed:

- Recognition of surfaces for placing virtual objects

- Placement of virtual objects

- Deletion of objects

- Changing the position of an object in the environment

- Changing the size of virtual objects

- Changing the appearance of objects

- Forming templates

- Selecting virtual objects for placement

56

3.2. Tools that were used in the development of the application.

The development of the software product was decided to be conducted on the

cross-platform development environment Unity, using the integrated development

environment (IDE) Visual Studio and the text editor VS Code.

The programming language chosen for writing the program was C# using the

.NET Standard 2.1 specification and the Mono framework. This combination offers a

robust platform for developing versatile and high-performance software.

The development of graphical 2D elements was carried out using the GNU Image

Manipulation Program (GIMP).

Version control, an essential aspect of software development, was managed using

the Git system, ensuring efficient tracking and management of code changes.

3.2.1. Tools description

Unity is a development platform widely used for creating interactive media such

as video games, architectural visualizations, and real-time 3D animations. It's known for

its versatility and ease of use, enabling developers to deploy projects across various

platforms including PCs, consoles, mobile devices, and VR/AR systems.

Visual Studio is an integrated development environment (IDE) from Microsoft.

It is used to develop computer programs, as well as websites, web apps, web services,

and mobile apps. Visual Studio supports a range of programming languages, including

C#, VB.NET, C++, and F#, and features tools for developing and debugging code,

managing source code repositories, and deploying applications.

C# (pronounced "C Sharp") is a modern, object-oriented programming with a

safe typing system for the .NET platform.

Mono is an open-source implementation of Microsoft's .NET Framework based

on the ECMA standards for C# and the Common Language Runtime (CLR). It was

originally developed by Ximian, which was later acquired by Novell, and is currently

maintained by the .NET Foundation and the Mono community.

57

.NET Standard 2.1 is a formal specification of .NET APIs that are intended to be

available on all .NET implementations. This standard facilitates the development of

libraries that are compatible across multiple .NET platforms, enabling developers to

write code that can run on various systems without modification.

Git is a distributed version control system, widely used for tracking changes in

source code during software development. It is designed for speed, data integrity, and

support for distributed, non-linear workflows.

GIMP is a free and open-source raster graphics editor used for image retouching

and editing, free-form drawing, converting between different image formats, and more

specialized tasks. GIMP is available for various operating systems

3.2.2. Libraries and technologies

Package Manager is a tool of Unity Editor that facilitates the discovery,

installation, and management of Unity packages. Unity packages are collections of

assets, tools, and plugins that can be used to add functionality and content to Unity

projects.

AR Foundation is a framework developed by Unity Technologies for building

augmented reality (AR) experiences. It provides a common API that works across both

Android and iOS devices, enabling developers to create AR applications that are

deployable on multiple platforms without having to write platform-specific code.

Raycasting is a computational technique used in computer graphics and

simulation to simulate the behavior of rays or lines as they interact with objects in a 2D

or 3D environment. It is commonly used in various applications such as 3D computer

graphics, virtual reality, and game development for tasks like collision detection,

rendering, and visibility determination.

The Google ARCore XR Plugin is a component designed for integrates Google's

ARCore technology into Unity, enabling developers to create augmented reality (AR)

experiences for Android devices. ARCore is Google's platform for building AR

applications. It uses the phone's camera to understand and interact with the world.

58

OpenXR is an open and royalty-free standard for creating and deploying virtual

reality (VR) and augmented reality (AR) applications and devices. It is designed to

provide a unified and standardized interface for different VR and AR platforms,

allowing developers to write their applications once and have them work seamlessly

across various hardware and software ecosystems.

ProBuilder is a plugin for the Unity game engine that allows developers and 3D

artists to easily create, edit, and prototype 3D models directly within the Unity editor. It

is a powerful and versatile tool that streamlines the 3D modeling and level design

process.

TextMeshPro is an advanced text rendering and layout system for the Unity

game engine. It is designed to provide enhanced text rendering and formatting

capabilities compared to Unity's built-in Text component. TextMeshPro is especially

useful for creating visually appealing and high-quality text in interactive applications.

The Universal Render Pipeline (formerly known as the Lightweight Render

Pipeline or LWRP) is a rendering system that is designed to provide high-quality

graphics and performance while remaining efficient and lightweight. It is a versatile

rendering pipeline suitable for a wide range of platforms and devices.

The XR Interaction Toolkit is a set of tools and features provided by Unity to

facilitate the development of XR (Extended Reality) applications, including virtual

reality (VR) and augmented reality (AR) experiences. This toolkit simplifies the process

of creating immersive and interactive environments in Unity, allowing developers to

focus more on the unique aspects of their applications rather than the foundational

elements of XR development.

XR Plugin Management is tool that allows developers to manage and configure

various XR (Extended Reality) platforms and technologies for building Virtual Reality

(VR), Augmented Reality (AR), and Mixed Reality (MR) applications. XR Plugin

Management provides a unified interface for handling different XR platforms, making it

easier to develop cross-platform XR applications.

OpenJDK (Open Java Development Kit) is an open-source implementation of

the Java Platform, Standard Edition (Java SE). It provides a free and open-source

59

alternative to Oracle's Java Development Kit (JDK), which is the official reference

implementation of Java SE. OpenJDK is maintained and developed by the open-source

community and is widely used for Java application development. OpenJDK in Unity is

used to complement the Android SDK.

The Android SDK (Software Development Kit) is a set of development tools

provided by Google to create applications for the Android platform. The SDK includes

a comprehensive set of development tools, including libraries, a debugger, a handset

emulator, documentation, sample code, and tutorials.

The Android Native Development Kit (NDK) is a toolset that allows developers

to implement parts of their app using native-code languages such as C and C++. It is

used when performance is critical for the app, such as for computationally intensive

applications like game engines.

The "Native Gallery for Android & iOS" is a Unity asset designed to enhance

the interaction with the device's gallery or photo library on both Android and iOS

platforms.

LiteDB is an open-source NoSQL database that is lightweight and designed for

use in .NET applications. It is serverless and fully embedded, meaning it doesn't require

installation of an additional database server, but rather it runs directly within the

application. LiteDB stores data in a single file using a document-oriented approach,

similar to how MongoDB operates.

3.3. Application class structure

During the software development process, 17 classes and 3 interfaces were

identified. The overall structure of these classes can be seen in the class diagrams (see

fig. 3.1 – 3.2).

60

Fig 3.1. Class diagram (part 1)

Menu - A class responsible for managing menu components.

IMenuSubcomponentsViewer - An interface that defines functionality for controlling

the display of menu items and also differentiates components into active - constantly

active components and hidden - components that are hidden by default.

MenuSubcomponentsViewer - Implements the IMenuSubcomponentsViewer

interface and defines the behavior for displaying and hiding components when opening

and closing the menu.

SubMenuViewButton - A logic class for controlling the display of submenus.

Determines the submenu items that need to be displayed and the logic for closing other

submenus. Logger - A class for logging information and displaying logs on devices.

Designed to track logs during program operation. Also inherits from the class

Singleton<T> and implements the singleton pattern.

61

Singleton<T> - A generic class for implementing a single logic for creating a

class according to the singleton pattern.

SelectedARObjectMenu - A class for managing the display of a menu for a

selected AR object. Tracks the selection operation of an AR object and displays menu

components upon selection. Hides components while another menu is open until it is

closed.

IInteractableObjectManeger - An interface that defines the logic for replacing the

template in an interactable object - determines how the object will appear.

SelectObjectController - A class that tracks the selection of a template for object

replacement.

MediaService - A submenu component that blocks the use of AR tools during the

setting of images on virtual objects. The class also uses native logic to enable image

upload to the software tool.

XRInteractionManagerBlockUI - An extended class of the AR tools manager,

which additionally implements the function of blocking the operation of AR tools when

interacting with UI components, as well as the ability to configure blocking under

certain conditions.

62

Fig 3.2. Class diagram (part 2)

RaycastDebugger – A class for logging the operation of raycast technology,

tracking elements interacted with by emitted rays.

Rotator – A class that allows the addition of rotation functionality to a linked

component, enabling it to rotate around a specified axis.

PreferencesButtonViewController – A class that defines the logic for time-based

fading of menu buttons.

ARGameObjectSaveData – A class for saving active interactive objects in a

database, as well as creating templates based on them.

ARGameObject – Responsible for the properties of AR objects.

ISelectObjectManager – An interface that defines methods for working with a

selected interactive object.

63

SelectObjectManager – Inherits from ISelectObjectManager and implements

methods for managing the state of an interactive object.

SelectObjectMenuContentController – A class that manages templates, as well as

being responsible for creating UI components for template selection.

RaycastPhysicsImagePlacer – Implements the invocation of physical raycasting

for interacting with virtual 3D objects and applying selected images onto them.

ARGestureInteractorLog – A class that subscribes to events of AR tools for

further logging of their operations.

3.4. Use cases of using AR application tool

Options for using the application are presented in Figure 3.3

Fig 3.2. Use case diagram for tester

64

Let's take a closer look at the diagram of the tester's choice options.

Interaction with the program menu - enables the tester to use UI elements of the

interface without interacting with the virtual AR environment and its components. This

includes the ability to change operating modes.

Operating mode changes - the tester's ability to interact with the application

interface, which changes the program's behavior. This includes normal operation mode,

picture setting mode, and multiple selection mode.

Normal operation mode - the tester's ability to work in the standard mode.

Picture setting mode - the ability for the tester to work in image selection and

installation mode.

Add image to object - the ability of the tester to set images for an object or its

face, depending on the settings of the virtual object.

Menu items visible management - using UI elements, the user can control the

visibility of some system components.

Object selection blocking mode - the user's ability to interact with the AR scene

using rays for more precise targeting of virtual objects for further adding to them or

their edges of selected images.

Multiple selection mode – the ability of the tester to select multiple objects for

simultaneous interaction with them or for unification. This mode does not work

simultaneously with other modes, and the combination is performed with the first

selected component.

Camera control - the ability of the tester to control the position of his device,

thereby changing the position of the camera.

Controlling the generation of space for placing virtual objects - the recognition

and generation of planes for placing virtual objects depend on the control of the user’s

device.

Management of virtual objects - the tester’s ability to manage virtual objects. This

includes features such as deleting a virtual object, saving an object, selecting a virtual

object, and managing the state of virtual objects.

65

Selection of a virtual object - the tester’s ability to select a virtual object for

further manipulations.

Delete virtual object - allows the tester to delete the selected object.

Save object - allows the tester to save the selected object. This includes the ability

to create a template.

Create a new template - the tester can create a new template based on a saved

object.

Selecting an object template - the ability to select an object template that will be

used to create a virtual object when placing it on a surface.

Managing the state of virtual objects - the ability of the tester to set the position in

space, as well as change the virtual object. This includes features such as gesture

control, moving an object, scaling an object, changing the height of an object, rotating

an object, and changing object material.

Gesture control - the tester’s ability to control a virtual object using gestures on

the smartphone screen.

Moving object - the ability of the tester to move a virtual object within the

territory area for placing virtual objects.

Object scaling - the tester’s ability to change the scale of the selected virtual

object.

Change the height of an object - the ability to change the height of virtual objects.

Rotate object - the ability to change the angle of placement of a virtual object.

Change object material - the tester can change the material of an object. This

includes changing the material color.

Change material color - allows the tester to set the material color for the selected

virtual object. Experience: Users expect a stable and smooth AR experience.

Conclusion

This section has systematically outlined the functional requirements for a tool

designed to test advanced reliability programs. These requirements form the backbone

66

of the tool's development and ensure that it meets the specific needs of reliability testing

in complex software environments.

In addition, it was presented а comprehensive list of the main technologies,

frameworks, and tools utilized in the development of the testing program was presented.

This list provides insights into the technical stack and the rationale behind the selection

of each component, reflecting the latest trends and best practices in software

development.

Also delineated the primary capabilities available to the user of the tester

program. This aspect is crucial as it directly impacts the user experience and the

effectiveness of the program in conducting thorough and efficient reliability tests.

Visual representation of the program structure was done using a class diagram,

showcasing the relationships and interactions between different classes. This diagram

serves as a valuable tool for understanding the program’s architecture and for guiding

future modifications or enhancements.

67

CHAPTER 4

APPLICATION OF THE PROPOSED APPROACH

4.1. Definition of the object of testing

An application called Zappar was chosen for testing. Zappar is an augmented

reality (AR) application that allows users to create and interact with an AR world. It

uses marker-based technology to trigger AR content. When users scan a Zappar code or

a physical object designated as a token (such as product packaging, advertising, or even

clothing), the app overlays the digital content onto the real world viewed through the

device's camera.

This program is part of a large infrastructure project that includes work for both

beginners and professionals, so the digital content can vary from simple animations and

videos to interactive games and 3D models. Zappar is often used in marketing and

advertising to create engaging and attractive brands, but it also has applications in

education and entertainment.

The app is designed to be user-friendly, allowing you to not only consume AR

content, but also create your own AR experience. This makes it a popular choice for

companies looking to incorporate AR into their marketing strategies, as well as

educators and creators who want to explore the potential of AR technology.

4.2. Define test objectives and scenarios:

According to the specific requirements of the software, the following technical

requirements can be identified: compatibility with various models and types of mobile

devices. There should also be compatibility between different operating systems,

ensuring productive performance in poor environmental conditions, supporting various

types of graphics, and optimal resource utilization – as the program interacts with an

additional source, stable data exchange control is necessary. Additionally, the ability to

support multiple interactions simultaneously is required.

68

As for user requirements, the interface should provide intuitiveness and simplicity

in navigation. Users should also be provided with sufficient information and be able to

interact with the AR content.

4.2.1. Examine product needs.

Functional Requirements:

- Marker Detection and Tracking: The app must effectively detect and track

markers in various environments to trigger AR experiences.

- Content Rendering: Ability to render 3D models, animations, videos, and

interactive content smoothly in an AR setting.

- User Interaction: Support for user interactions with AR content, such as

touch gestures, motion tracking, or voice commands.

- Content Management: Features for managing AR content, including

downloading, updating, and caching.

- Integration with Other Services: If applicable, integration with external

services like social media, cloud storage, or analytics.

- Marker Detection and Tracking: The app must effectively detect and track

markers in various environments to trigger AR experiences.

- Content Rendering: Ability to render 3D models, animations, videos, and

interactive content smoothly in an AR setting.

- User Interaction: Support for user interactions with AR content, such as

touch gestures, motion tracking, or voice commands.

- Content Management: Features for managing AR content, including

downloading, updating, and caching.

- Integration with Other Services: If applicable, integration with external

services like social media, cloud storage, or analytics.

- Cross-Platform Support: Ensuring compatibility and optimized performance

across different devices and operating systems.

69

Non-Functional Requirements:

- Performance: The app should function smoothly without significant lags or

crashes, even when rendering complex AR scenes.

- Usability: User-friendly interface, intuitive navigation, and ease of use for a

wide range of users.

- Scalability: Ability to handle an increasing amount of work and number of

users without performance degradation.

- Reliability: Consistent performance over time, with minimal downtime or

errors.

- Compatibility with another device

- Network Efficiency: Optimized data usage, especially important for mobile

users with limited data plans.

4.2.2. The audience of the software product

Due to the specific infrastructure that the Zappar product is part of, it has a broad

user audience, ranging from children and their parents who use it for entertainment and

learning, to 3D artists who use it to review their own work. Several user groups can be

identified:

- Children and Their Parents or Guardians: They use the app for

entertainment and educational purposes.

- General Users: These users engage with the software for entertainment

purposes.

- Advertisers: They utilize the app for presenting unique interactive

advertising.

- Artists and Designers: Use the software for skill development and artistic

growth.

70

4.2.3. Real-world scenarios

Given the described user groups, it's challenging to specify statistical conditions

in which the software application can operate, thus potential scenarios include:

Indoor Environments

- Home Settings: Testing in various rooms like living rooms, kitchens,

bedrooms to ensure the app recognizes markers on different surfaces and under varying

lighting conditions.

- Offices and Workplaces: Scenarios involving office equipment, furniture,

and variable ambient light.

- Educational Institutions: Classrooms and lecture halls, with a focus on

usability for educational purposes.

Outdoor Environments

- Urban Streets: Busy streets with varying lighting and background noise,

testing the app's performance in a crowded, dynamic environment.

- Parks and Open Spaces: Natural lighting and different types of natural

surfaces, including grass, trees, and water bodies.

- Commercial Areas: Shopping malls, markets, where the app might be used

for interactive advertising or navigation.

Lighting Conditions

- Bright Daylight: Ensuring the app works well in direct sunlight.

- Low Light: Testing in evening or dimly lit conditions.

- Artificial Lighting: Various indoor lighting conditions, including

fluorescent and incandescent lights.

Physical Surfaces and Markers

- Flat Surfaces: Tables, walls, and floors, testing the app's ability to anchor

AR objects.

- Irregular Surfaces: Objects with uneven surfaces, like sculptures or plants.

- Moving Surfaces: Testing with markers on moving objects or people.

71

User Interactions

- Gestures: Swiping, pinching, and tapping to interact with AR content.

- Movement: Walking around or moving objects to see how the AR adjusts.

- Voice Commands: If supported, testing voice interaction under various

ambient noise levels.

Specific Use Cases

- Educational Content: Interacting with educational material in AR, such as

historical reconstructions or scientific models.

- Marketing and Advertising: Engaging with AR ads, like interactive posters

or product packaging.

- Entertainment: Playing AR games or experiencing AR stories and art.

Accessibility

- For Users with Disabilities: Testing with screen readers, voice navigation,

or other accessibility tools.

- Ease of Use for All Ages: Ensuring that the app is user-friendly for both

younger and older users.

Network Conditions

1. Wi-Fi Connectivity: Testing app performance on stable, high-speed

internet.

2. Mobile Data: Ensuring functionality on various mobile networks.

3. Offline Mode: If applicable, testing how the app performs without internet.

The above scenarios are just a few of the many possible scenarios.

4.2.4. Test Coverage

Considering the technical and time constraints, the most rational approach is to

conduct:

Functional Testing, which will include the following checks:

72

- Marker Detection and Multi-marker Detection: Verify the app's ability to

detect and track AR markers in various conditions.

- AR Content Rendering: Test how well the app renders AR content,

including 3D models, animations, and interactive elements.

- User Interaction: Assess the app's response to user inputs like touch,

gestures, and voice commands.

- Content Management: Test functionalities related to managing AR content,

such as downloading, updating, and deleting content.

Also, partially conduct Compatibility Testing - Network Compatibility: Evaluate

the app's performance in various network conditions and speeds.

4.2.5. Scope of Testing

a) Functionality Testing

The main objective is to ensure that all features of the Zappar app work as

intended and provide a seamless user experience.

Key Areas to Test

Multi-Markers Detection and Tracking: Test the app's ability to quickly and

accurately detect and track markers in various environments and lighting conditions.

AR Content Rendering: Evaluate the rendering of AR content, such as

animations, 3D models, and interactive elements, ensuring they appear correctly and

without delay.

User Interactions: Verify the app's response to user inputs, including touch

gestures, swipes, and any other interaction methods supported by the app.

Content Management: Test the functionalities for downloading, updating, and

managing AR content within the app.

Test Scenarios:

Scanning markers placed in different positions in a well-lit room and observing

the speed and accuracy of the appearing AR content.

73

Interacting with AR content, like moving or resizing 3D models, and checking for

responsiveness and any glitches.

Testing the download and update mechanisms for new AR content and ensuring

smooth integration within the app.

b) Compatibility Testing

Objective: To confirm the stability of the application's performance under various

network conditions.

Key Area of Testing: Network Compatibility - the app's performance under

different network conditions.

Testing Scenario: assessing the app's performance in areas with varying network

strength and speed, including testing how well it performs with limited or no internet

connectivity.

In both Functionality and Compatibility Testing, the goal is to cover a

comprehensive range of scenarios and conditions to ensure that the Zappar app delivers

a reliable and high-quality experience to all users, regardless of their device or

environment.

4.3. Testing Tools

For conducting the testing, an approach involving the use of a virtual machine

and a device with the testing software has been chosen (see fig. 2.4.).

For this, it was chosen:

a) The Android Studio Emulator is a feature within Android Studio, the

integrated development environment (IDE) for Android app development. It's a tool that

allows developers to simulate different Android devices on their computers. This

emulator provides a convenient way to test and debug Android applications in a

controlled environment without needing a physical device.

The emulator replicates the functionalities and behavior of various Android

devices, including smartphones and tablets. It allows developers to test their

74

applications across different Android versions, screen sizes, hardware specifications,

and configurations. This flexibility is crucial for ensuring that apps perform consistently

and as expected across the diverse Android ecosystem.

One of the key advantages of the Android Studio Emulator is its deep integration

with Android Studio. It provides features like drag-and-drop installation of apps, screen

recording, and even simulating different network conditions, GPS locations, and

hardware sensors. Developers can also use it to simulate user interactions with the app,

including multi-touch gestures, device rotation, and other physical actions.

Additionally, the emulator supports advanced features like OpenGL ES graphics

and camera emulation, making it particularly useful for testing more complex

applications, such as games or AR apps. Its performance and fidelity in emulating

Android devices make it an essential tool for Android developers.

b) Scrcpy is an open-source application that provides a way to display and

control Android devices from a desktop computer, whether it be Windows, macOS, or

Linux. The name "scrcpy" stands for "screen copy". This tool is highly valued for its

performance and low latency, making it a popular choice for a wide range of

applications, from app development and testing to gaming and general device

management.

One of the key features of scrcpy is that it does not require any root access to the

Android device. It works by creating a server on the Android device and then

transmitting the screen data to the computer, where it's rendered in a window. The tool

also supports sending input from the computer back to the Android device, enabling full

control of the device using the computer's keyboard and mouse or touchpad.

Scrcpy is known for its high-resolution and smooth display capabilities,

maintaining good performance even at high screen resolutions. It can handle real-time

interaction, making it useful for tasks that require rapid response, such as gaming or

interactive app testing. Moreover, it's lightweight and doesn't impose significant

performance overhead on the device.

75

Another advantage of scrcpy is its simplicity and ease of use. It doesn't require a

complex setup or configuration, and it connects to the Android device via a USB cable

or wirelessly. This makes it a convenient tool for developers who need a quick and

efficient way to interact with their apps.

c) SplitCam is a software application designed for video streaming and

webcam effects. It's primarily used to enhance live video calls, streams, and recordings

by adding various effects and features. The software allows users to split their webcam

video stream, enabling them to use the same webcam in multiple applications

simultaneously, which is a functionality not commonly available in standard webcam

software.

The core appeal of SplitCam lies in its ability to add fun and creative elements to

video streams. Users can apply different filters, backgrounds, and effects to their video

feed, making it popular for personalizing online interactions, whether for casual video

chats or professional live streams.

In addition to its webcam splitting and effects capabilities, SplitCam often

includes features for screen sharing, recording videos, and streaming to various

platforms. This makes it a versatile tool for content creators, gamers, and anyone

looking to enhance their live video presence.

SplitCam can be substituted with Webcamoid for higher-quality video

transmission, although additional configuration will be necessary.

4.4. Testing tools communication

The interaction can be described as follows: Scrcpy gains control over the device

and streams its screen to the computer. SplitCam connects to this display stream and

broadcasts the image onto a canvas, which can display images thanks to a virtual

camera receiving the display stream.

The Android Emulator is capable of working only with a physical camera, which

is usually designated as the default webcam. By disabling the webcam, the virtual

camera takes the place of the default camera and can also be used by the Android

76

Emulator. However, this approach has a significant drawback. When using SplitCam,

we cannot control the size or scale of the area transmitted to the emulator, resulting in

the image being cropped. This problem can be solved by using Webcamoid because it

does not automatically create a virtual camera with fixed characteristics – the camera

needs to be manually created using the console by setting the necessary characteristics,

which significantly improves data transmission to the emulator but requires additional

time for configuration.

It should also be noted that the method of replacing the default camera is usually

the most effective way to use a virtual camera. However, it is also possible to try

specifying the correct index in the name for the virtual camera within the configuration

file. An important aspect is that this method only works with cameras that have a public

tag. Additionally, it is worth mentioning that in the MacOS system, there is a possibility

to find out the camera's number.

4.5. Preparing for testing tool

Preparation for testing involved setting up the working environment, searching

for special images - zapcodes, which are used for AR effects in Zappar, configuring the

virtual environment and virtual components, and verifying the functionality of Zappar

in the virtual environment.

4.6. Testing the Zappar application

77

Fig 4.1. Class diagram (part 1)

Testing was fully conducted using the application for testing and the emulator

(refer to Fig. 4.1). It was found that only one program can be processed at a time, and

objects at a distance were processed first. Additionally, in the creation of 3D objects,

they could not interact with the user but were able to interact with objects in the

environment. The program was sensitive to lighting and could not function effectively

with poor lighting or in its absence.

The results of the test showed:

Lighting Sensitivity: The testing revealed the application's high sensitivity to

lighting conditions, indicating a need for optimal lighting for effective AR rendering.

Single Program Processing: The limitation of processing only one program at a

time suggests a need for optimization to handle multiple tasks concurrently, enhancing

user experience.

Object Processing Order: The preference for distant objects in processing could

impact the AR experience, particularly in scenarios where foreground objects are more

critical.

3D Object Interactivity: The inability of 3D objects to interact with the user might

limit the application's use in interactive AR experiences, though their interaction with

environmental objects is a positive aspect.

78

Recommendations for Improvement: Based on these findings, it's recommended

to enhance the application's light processing capabilities, improve multitasking

functionalities, refine object processing priorities, and explore ways to enable user

interaction with 3D objects.

Further Testing: Additional tests under different lighting conditions and with

varied user interaction scenarios could provide more insights into the application's

performance and areas for improvement.

User Experience Consideration: Future tests should also consider the overall user

experience, especially in scenarios where the user's interaction with the AR

environment is crucial.

These observations and recommendations can guide further development and

refinement of the application to better meet user needs and improve overall

performance.

Conclusion

This section has systematically presented and defined the foundational principles

underlying the proposed methodology for testing AR applications. A crucial aspect that

emerged is the current lack of standardized AR testing programs. While this absence

allows for greater flexibility and freedom in developing testing methodologies, it

simultaneously introduces a level of uncertainty. Addressing this uncertainty is pivotal

in establishing robust and reliable testing practices for AR applications.

Furthermore, the section elaborated on a specific methodology that utilizes an AR

testing tool. This tool plays a crucial role in the interaction of AR programs and

facilitates the essential transfer of data between them. The methodology's effectiveness

hinges on this interaction and data transfer capabilities, underscoring the need for

innovative solutions in AR application testing.

In addition, a brief overview of potential interaction methods was provided,

offering insights into various approaches for data transfer to the devices. These methods

include cloud-based interactions, the use of virtual machines, and leveraging external

computing devices, each with its unique advantages and challenges.

79

Lastly, a comprehensive description of the methodology and the steps for its

implementation was outlined. This detailed account serves as a guide for effectively

employing the methodology in practical testing scenarios.

In conclusion, the development and refinement of this methodology represent a

significant contribution to the field of AR application testing. As AR technology

continues to evolve, the adaptation and enhancement of these testing approaches will be

crucial for ensuring the reliability and effectiveness of AR applications in various

domains.

Conclusion

In this section, comprehensive and methodical testing of the Zappar software was

conducted. The initial phase involved defining test objectives and scenarios, where both

functional and non-functional requirements were carefully analyzed. This step was

crucial to understanding the specific needs and expectations of the program's core user

groups. The scope of testing was carefully outlined, ensuring that all critical aspects of

the application, including user interface, functionality, performance and compatibility,

were properly covered. By defining the test coverage, the testing process was adapted to

comprehensively evaluate the capabilities and performance of the program.

Preparation for testing included setting up the necessary tools and environments

for individual interaction. This setup was integral to creating realistic test scenarios that

closely mimic real-world conditions and user interactions.

Actual testing of the Zappar application was conducted using an emulator and

other relevant tools, which provided valuable information about the application's

performance under various conditions. The testing process revealed important findings,

such as the app's sensitivity to lighting and its limitations in handling multiple apps at

the same time. In addition, it emphasized the dynamics of interaction between 3D

objects and the user, as well as with other objects in the environment.

Therefore, the test results provide a solid basis for further optimization and

improvement of the application, ensuring that it meets the ever-evolving needs of users

and remains competitive in the dynamic field of augmented reality applications.

80

CONCLUSIONS

 During the execution of the diploma project, the fields of augmented reality (AR)

application development and testing were explored, and several issues in this area were

identified. These issues include the absence of specific tools for conducting testing

within the augmented reality sphere and the lack of development and testing standards

for software, resulting in an ambiguous situation in this field.

Additionally, a new approach to testing augmented reality applications was

proposed within the framework of the diploma project. This approach is based on

conducting testing using another AR application, effectively within the realm of mixed

reality. Possible implementation options for the interaction of these applications were

presented, along with the challenges associated with their implementation. Furthermore,

the steps of this methodology were outlined.

To conduct such testing, it was decided to create an augmented reality application

that could place objects in the real world, which could then be used for testing purposes.

In the second section of this work, the functional capabilities of this application were

presented, and its structure was depicted in the form of a class diagram.

The methodology was applied to test the Zappar application. Overall, its

functional and non-functional requirements were determined, as well as its target

audience and usage scenarios. The scope of testing was defined. During the testing

process, certain issues with this program were identified.

Additionally, during testing, it was discovered that many emulators do not

support the selection of a camera or a virtual camera, which further complicates the

testing process. It was also found that not all virtual machines support augmented reality

applications due to the inability to install the required service or due to outdated system

configurations or bugs. Furthermore, it was revealed that some applications either do

not work at all within an emulator or, although available, do not work properly.

In conclusion, as a result of completing the thesis, a methodology for testing

augmented reality software using a mixed environment created by other software has

been developed. This approach allows not only to test the program's functionality in a

conventional environment but also its operation within a mixed reality context with the

81

emergence of cloud-based augmented reality. This methodology transcends hardware

limitations and is becoming increasingly straightforward to use. Additionally, it

currently demonstrates the possibility of implementing mixed reality with at least one

augmented reality program.

82

REFERENCES

1. Systematic Systematic Mapping Studies in Software Engineering / P.Kai,

F. Robert, M. Shahid, M. Michael // Proceedings of the 12th international conference on

Evaluation and Assessment in Software Engineering / P.Kai, F. Robert, M. Shahid, M.

Michael. – Swindon, United Kingdom, 2008. – (BCS Learning & Development Ltd). –

С. 68–77.

2. Style guidelines for naming and labeling ontologies in the multilingual web

/ [E. Montiel-Ponso, D. Vila-Suero, B. Villazón-Terraz та ін.]. // Dublin Core Metadata

Initiative. – 2011. – №11. – С. 105–115.

3. Mobile Indoor Augmented Reality. Exploring applications in hospitality

environments. / [B. Barbolla, C. Corredera, J. Ramón та ін.] // 1st International

Conference on Pervasive and Embedded Computing and Communication Systems / [B.

Barbolla, C. Corredera, J. Ramón та ін.]. – Algarve, Portugal, 2011. – (Science and

Technology Publications, Lda). – С. 232–236.

4. Embedded System Architecture for Mobile Augmented Reality. Sailor

Assistance Case Study. / [J. Diguet, N. Bergmann, J. Morgère та ін.] // 3rd International

Conference on Pervasive and Embedded Computing and Communication Systems / [J.

Diguet, N. Bergmann, J. Morgère та ін.]. – Barcelona, Spain, 2018. – (Science and

Technology Publications, Lda). – С. 16–25.

5. A Practical Framework for the Development of Augmented Reality

Applications by using ArUco Marker / [D. Avola, L. Cinque, G. Foresti та ін.] //

Proceedings of the 5th International Conference on Pattern Recognition Applications

and Methods / [D. Avola, L. Cinque, G. Foresti та ін.]. – Rome, Italy, 2016. – (Science

and Technology Publications, Lda.). – С. 645–654.

6. Liberatore M. Virtual, mixed, and augmented reality: a systematic review

for immersive systems research / M. Liberatore, W. Wagner. // Springer Science and

Business Media LLC. – 2021. – №3. – С. 773–799.

7. Augmented Reality Learning Experiences: Survey of Prototype Design and

Evaluation / [M. Santos, A. Chen, T. Taketomi та ін.]. // IEEE Transactions on

Learning Technologies. – 2014. – №1. – С. 38 – 56

8. Rafi T. PredART: Towards Automatic Oracle Prediction of Object

Placements in Augmented Reality Testing / T. Rafi, X. Zhang, X. Wang // 37th

IEEE/ACM International Conference on Automated Software Engineering / T. Rafi, X.

Zhang, X. Wang. – USA, 2011. – (Dublin Core Metadata Initiative). – С. 105–115.

9. Wenkai L. A State-of-the-Art Review of Augmented Reality in

Engineering Analysis and Simulation / L. Wenkai, A. Nee. // MDPI AG. – 2017. – №3.

– С. 17.

10. Singh S. Analysis of Software Testing Techniques: Theory to Practical

Approach / S. Singh, S. Tanwar. // Indian Journal of Science & Technology. – 2016. –

№32. – С. 1–6

11. Software Testing: Survey of the Industry Practices / J.Kasurinen, A.

Knutas, O. Taipale, T. Hynninen // 41st International Convention on Information and

83

Communication Technology, Electronics and Microelectronics / J.Kasurinen, A.

Knutas, O. Taipale, T. Hynninen. – Opatija, Croatia, 2018. – (IEEE)

12. Guoning Y. Testing of mobile applications. A review of industry practices

[Електронний ресурс] / Y. Guoning, Z. Wenkai // Blekinge Tekniska Högskola,

Institutionen för programvaruteknik. – 2019. – Режим доступу до ресурсу:

http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17880.

13. Khan R. Agile approach for Software Testing process [Електронний

ресурс] / R. Khan, A. Srivastava, D. Pandey // 2016 International Conference System

Modeling & Advancement in Research Trends (SMART). – 2016. – Режим доступу до

ресурсу:

https://www.researchgate.net/publication/315914633_Agile_approach_for_Software_T

esting_process

14. Vukovic V. A Business Software Testing Process-Based Model Design /

V. Vukovic, J. Djurkovic, J. Trninic. // International Journal of Software Engineering &

Knowledge Engineering. – 2018. – №5. – С. 701–749.

15. Augmented Reality Issues – What You Need to Know [Електронний

ресурс] // The app solutions. – 2023. – Режим доступу до ресурсу:

https://theappsolutions.com/blog/development/augmented-reality-challenges/.

16. 3 Challenges Of Augmented Reality Development [Електронний ресурс]

// ImagineAR. – 2021. – Режим доступу до ресурсу: https://imaginear.com/blog/ar-

development-challenges.

17. 12 Augmented Reality Challenges [Електронний ресурс] // XR. – 2023. –

Режим доступу до ресурсу: https://www.xreality1.com/artificial-

intelligence/augmented-reality-challenges/.

18. What are the Challenges Faced by AR App Developers? [Електронний

ресурс] // ParamInfo. – 2019. – Режим доступу до ресурсу:

https://paraminfo.com/what-are-the-challenges-faced-by-ar-app-developers/.

19. Explore The Challenges and Opportunities of Developing AR/VR

Solutions [Електронний ресурс] // A3logics logo. – 2023. – Режим доступу до

ресурсу: https://www.a3logics.com/blog/explore-the-challenges-and-opportunities-of-

developing-ar-vr-solutions.

20. Dafnis C. Applications Analyses, Challenges and Development of

Augmented Reality in Education, Industry, Marketing, Medicine, and Entertainment

[Електронний ресурс] / C. Dafnis, L. David, P. Luis // mdpi. – 2023. – Режим

доступу до ресурсу: https://www.mdpi.com/2076-3417/13/5/2766.

21. Watson T. SPECIFICS AND CHALLENGES OF AUGMENTED

REALITY TESTING [Електронний ресурс] / Tracy Watson // Skywell Software. –

2019. – Режим доступу до ресурсу: https://skywell.software/blog/specifics-and-

challenges-of-augmented-reality-testing/.

22. Martis B. The 7 QA Software Testing Principles [Електронний ресурс] /

Beniamin Martis // Linkedin. – 2022. – Режим доступу до ресурсу:

https://www.linkedin.com/pulse/7-qa-software-testing-principles-beniamin-martis.

23. Quality Assurance, Quality Control and Testing — the Basics of Software

Quality Management [Електронний ресурс] // Altexsoft. – 2018. – Режим доступу до

84

ресурсу: https://www.altexsoft.com/whitepapers/quality-assurance-quality-control-and-

testing-the-basics-of-software-quality-management/.

24. Venkatesh V. 7 Principles of Software Testing [Електронний ресурс] /

Vasu Venkatesh // Linkedin. – 2023. – Режим доступу до ресурсу:

https://www.linkedin.com/pulse/7-principles-software-testing-vasu-venkatesh.

25. Shah H. The Key Principles of Software Testing Every QA Must Consider

[Електронний ресурс] / Hardik Shah // Able.bio. – 2021. – Режим доступу до

ресурсу: https://able.bio/hardikshah/the-key-principles-of-software-testing-every-qa-

must-consider--02b0618d.

26. How do you measure and improve the performance and reliability of AR

and VR applications? [Електронний ресурс] // Linkedin – Режим доступу до

ресурсу: https://www.linkedin.com/advice/0/how-do-you-measure-improve-

performance-reliability#testing-metrics.

27. Minor S. Test automation for augmented reality applications: a

development process model and case study [Електронний ресурс] / Sascha Minor //

Degruyter. – 2023. – Режим доступу до ресурсу:

https://www.degruyter.com/document/doi/10.1515/icom-2023-0029/html.

28. How do you create effective AR test cases? [Електронний ресурс] //

Linkedin. – 2023. – Режим доступу до ресурсу:

https://www.linkedin.com/advice/3/how-do-you-create-effective-ar-test-cases-skills-

augmented-reality.

29. Uddin A. Importance of Software Testing in the Process of Software

Development [Електронний ресурс] / A. Uddin, A. Anand // International Journal for

Scientific Research & Development. – 2019. – Режим доступу до ресурсу:

https://www.researchgate.net/publication/331223692_Importance_of_Software_Testing

_in_the_Process_of_Software_Development.

30. Dynamic Testing Techniques of Non-functional Requirements in Mobile

Apps: A Systematic Mapping Study / [M. Júnior, D. Amalfitano, L. Garcés та ін.] //

ACM Computing Surveys / [M. Júnior, D. Amalfitano, L. Garcés та ін.]. – New York,

United States, 2022. – (Association for Computing Machinery New York, NY, United

States). – С. 1–38.

31. Okezie A. A Critical Analysis of Software Testing Tools / A. Okezie, I.

Odun-Ayo, B. Sherrene. // Journal of Physics Conference Series. – 2019. – №4. – С. 1–

11.

32. Augmented Reality: Survey [Електронний ресурс] / [E. Carlos, J. Carlos,

L. Santos та ін.] // Mdpi. – 2023. – Режим доступу до ресурсу:

https://www.mdpi.com/2076-3417/13/18/10491.

33. What is Quality Assurance (QA) in Software Testing? [Електронний

ресурс] // Testsigma – Режим доступу до ресурсу:

https://testsigma.com/guides/quality-assurance/.

