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Summary. The stability and shimmies of the front
non-steerable pillar free to turn on two channels — the
- yaw and roll relative to the longitudinal axis of the body
is analyzed. Offered approach close analysis of self-
oscillation in the ponlinear raising, that enables to
estimate stability in «large». The analysis of the typical
system parameters impact on the unstable oscillatory
region and oscillation amplitude is carried out. The
approximation percent influence of the slip force and
heel moment on the oscillation character is considered
(analytical expression, relating amplitude of vibrations
with the parameters of model, is got: by the moment of
inertia of wheel in relation to the ax of tum, turning
inflexibility of steering management, coefficient of

relaxation, size of bearing-out and angle of slope proof). -

Key words: wheel module, wobbling, force
structure, oscillation amplitude.
INTRODUCTION

Self-oscillation guided wheels of car
(wobbling) were first considered in-process
Brul'e in 1925. In future this question was the
article of research of many authors, as
representatives  of  theoretical  direction
M.V. Keldysh [11], G.V. Aronovich [2],
N.A. Fufaev [21], V.E. Zhuravlev,
D.M. Klimov [33, 34], L.G. Lobas [14],
N.P. Plakhtienko [23], H. Paceyka [22],
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G. Somesky [28], Yi. Mi-Seon [20], so
engineers-researchers of aviation and motor-
car transport B. fon Schlippe, R. Dietrich [26],
I. Besselink [4], V.S. Gozdek [9],
V.I. Goncharenko [7, 8], K.S. Kolesnikov
[12], N.P. Plakhtienko, B.M. Shifrin,
F. Smiley et al [13, 23, 25,29].

From point of modern analysis of
question, wobbling is the intensive
camoBoz0yxnarommecs vibrations of rolling
wheels, showing up as turning motions of
wheels in a horizontal plane (their rotations),
which are accompanied other motions in a
longitudinal vertical plane. First of all the
wobblings of the chassis elements are
connected with the elastic pneumatics
availability. Under certain conditions it
transforms some power entering the vehicle
into the power of wheel torsional oscillations.

There is a great number of variants of
description of model of co-operation of
balloon wheel with an absolutely even and
ideally rough horizontal plane, however
necessary it is to take into account that they
not all allow to take into account some
characteristic features of  nonlinear.
dependences of lateral withdrawal, including
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descriptions of rigid heterogeneity (conical
and angular).

In the tasks of dynamics of the wheeled
transport vehicles most distribution was got by
two approaches at determination of co-
operation of wheel with an underlayment.
There are two raising at determination of
descriptions of lateral reaction of resilient
wheel: model (theory of M.V. Keldysh [11])
and phenomenological one (axioms of I. Rokar
[24]). In this work the Rocar model is used —
slip force and aligning torque are considered to
be well-known nonlinear relations (slip angle
 fanctions), obtained empirically.

In the work [15] the analysis of the force
structure impact on the unperturbed linear
motion stability of the hitch model with two
degrees of freedom (values of typical design
parameters corresponding to different on
mathematical classification force groups have
been varied).

One of the first results in this direction
there were theorems of Tomsona-Teta-
Chetaeva [6] about influence of dissipative and
gyroscopic forces on stability of the linear
conservative  system and  results of
L1 Metelicyna [19] for the case of the
unconservative systems. Presently receptions
are successfully used constructing of quadratic
functions of Lyapunova [17], taking into

account the mathematical structure of breaking

-up of forces of the initial system [1, 7, 10, 32).
In spite of absence of general algorithm of
construction of functions of Lyapunova, he got

 wide distribution. The attractiveness of method
of functions of Lyapunova is conditioned his
high-quality character, allowing to unseal

“physical essence in a task, and also possibility
of receipt of estimations of areas of attraction
of unperturbative motion (research of stability
is «in large») [5, 16, 29]. ,

In the work [30] on the basis of the
suggested approximate approach [31] the
nonlinear analysis of the pattern shimming of
the wheel module with one degree of freedom

is carried out for various approximations of
slip forces (monotonic and with flowing
‘section). The results of the analytic treatment
are confirmed by a number of phase portraits
obtained in the result of numerical integration.

In the work comesponding estimates are
carried out for a more complete model [14,
16], taking into account aligning torque. The
impact of the design parameters and
approximation percent of the slip force
nonlinear relation on characteristics of system
oscillations is considered.

PROBLEM STATEMENT

Let 6 and v — rotation angles of the
chassis setting around front axle and roll axle
respectively, then schematically A-pillar of a
vehicle is given at-Fig. 1.

Fig. 1. Wheeled Module

Equations of the chassis leg motion in
the linear motion environment at zero removal
(c=0) have the form [16] (to complete the
setting the aligning torque M(a)is added,
occurring in the wheel contact with bearing
surface at rolling with slipping):

B-d+2-0+h0-L20 4 M=o,
F
Cvgyrh-v+l2er v@y=0 D
r .

a=6+w.!9
v

where: B, C — axial moments of the pillar
inertia relative to the rotation axis and rolling
axis respectively,

I — central axial moment of the wheel
inertia relative to own rotation axis,

r — wheel radius,
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v — unperturbed motion velocity,
X x; — coefficients of the wheel module

torsional stiffness,

ho h -

oscillation damping,

[ — distance from road surface up to
rolling axis.

Slip forces and heel moment are
considered in the form of nonlinear relations
of the slip angle & :

Y(a )=ka /1+(ka/oN )?,

where: k — resistance coefficient to the
slip,

parameters, determining

N — vertical bearing reaction,
¢ — traction coefficient in the transverse
direction,

M(a)=palp,a + po? +1).

Linearized equations of the wheel
module perturbed motion have a wide range of
forces according to the conventional
mathematical  classification -  inertial,
dissipative, gyroscopic, potential, and non-
conservative positional ones:

A+ (D +v@)x+ (K +IP)x =0,

where:
' k-Poul
A= C 0 » D= h}+T 2v )
0 B 41 h
2v
0 I_pl
r

G= [I ﬂ!] 2
- =-£2 0
o 2v
P
_ 2 _
K=k =

LU _k
5 At H >

0

=T S

where: 4, D, K — symmetrical matrixes
of the inertial, dissipative and potential forces
coefficients,

G, P — alternate matrixes of the
gyroscopic, non-conservative positional forces
coefficients.

The availability of two typical
parameters, determining values of gyroscopic
terms (according to the traverse speed) and
non-conservative positional terms (according
to the pillar height), enable to apply general
theorems of the force structure impact on the
unperturbed motion stability using linear
analysis. _

Known results [8, 10, 19, 27, 32] of
stabilization conditions of linear mechanical
systems, under the impact of arbitrary
mathematical structure forces, ensure stability
at sufficiently great complete dissipation and
positive definiteness of the conservative forces
matrix or sufficiently great potential forces and
positive definiteness of the dissipative forces
matrix which is imposed certain additional

condition [31]. And availability of sufficient

great positional non-conservative forces as a
rule leads to the stability loss of the general
linear system. However, in case of finite
forces, mechanisms of the stabilization and
stability loss are possible. They result in an
ambiguous treatment of the force structure
impact on the stability of linear system.

In the regions of the flutter instability
stationary monofrequent oscillations can occur
(one of mechanisms of their occurrence — the
Andronov - Hopf bifurcation [18]). The
problem of the stability loss character (unsafe-
safe according to N.N. Bautin [3]) can be
solved on the basis of the amplitude curve
analysis and characteristics of the linearized
model stability. Then the approximate
approach how to get an amplitude curve as an
mmplicit function of system parameters is
given. It is related, in turn, to the solvability
condition of a certain auxiliary system of non-
linear finite equations.

EVALUATION OF THE OSCILLATION
AMPLITUDES IN THE NEIGHBORHOOD
OF LINEAR MOTION CONDITION

To carry out the approximate method of
the  self-oscillating  system  amplitude
evaluation let’s introduce an auxiliary
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differential equation, corresponding to the
unsteady slip theory:

oc-a+v-a-v-0-1-y=0.
Then the system (1) is:
c-ag+v-a-v-8-1-y =0,

B-O+z-0+h6-1 2y M@ =0, @)
¥
. . Ly,
C.W+Z.W+hl-;{/+——6+Z‘Y(a)=0-
r

It is supposed that the system periodic
solution (2) in the neighborhood of the largest
deflection moment from the equilibrium
position and in the moment neighborhood
when deflections amount zero varies according
to the harmonic law having some phase delay:

a=asinwt, y = pysin(wt+g, ),
0 =q,sin(@t+¢,),

where: a, pg, go — amplitude, @ -
angular frequency of oscillations, Dyr P =
phase delay.

In typical instants of time phase variables

and their generated variables possess the
value:

8 =qycos9,,

0 = —qywsin g,,

8 = —q,0° cos g,

a=a, a=0, d=-aw’,

Y =pycose,,

4 =_p0m51n(0¢/:

%‘;/: = _powz cos @w’
a=0,a=aw, &=0,

wt=ml2:

wt=0:

¥ =pysing,, ¥ = py@cosg, ¥ = —pamz sing,,

6 =1,5ing,,
0= roa)cgs Do,
\ 0 = —t,0" sing,

substituting these correlations in the system
(2), we’ll get the system of six finite equations
relative to the required parameters of

oscillations (a, py, g5, @, 9, 04)-

- of parameters: N=5000 H,

129

After the eclimination of unknowns
Po- 499, %y > Pg from the first four equations of
the system, two remaining equations are
polynomials relative to the amplitude a and
angular frequency @. Composing their
resultant (unknown angular frequency is
eliminated w), we’ll get the implicit function
determining the amplitude of oscillations
according to design parameters of the system
and traverse speed v.

Amplitude curves are given on the Fig.
2: a - slip force 1s approximated by the linear

Ko

and cubic terms Y(q) = ko~ , curve 1

takes into account aligning torque, curve 2 —
its absence, b — slip force presents fractionally
irrational dependence
Y(a)=ka(l+ka* | N*¢*)"?, curve 1 takes into
account aligning torque, curve 2 — its absence.

Obtained at following numerical values
k=42700 H,
B=9,81 kgm’, #=37,3 H'm's, =981 Hm's,
X=421100 H'm, x,=12160 H'm, C=165 kg'm’,
L=11,8 kgm®, =04 m, /=0,85 m, ¢=0.7,
1=0,3742771659, 12=71,4533726,
44=39122,6523.

Thereby, approximate approach of the
slip force leads to the branch of unstable
oscillations (Fig. 2, a ), in case of slip force
assignment  in the form :of fractionally
irrational dependence the branch of unstable
oscillations is absent (Fig. 2, b). Aligning
torque impact causes either insignificant
expansion of the unstable region (Fig. 2), or
significant qualitative changes of the
oscillation region according to the damping
characteristics (Fig. 3).

Note. In general at the implementation of
the oscillation analysis method (1), the
introduction of an auxiliary differential
equation (describing unstable wheel slip) can
be avoided. The third system equation (1)
enables to introduce formally redundant
variable , and two auxiliary finite equations
occurring in this case v-gy +/7-gy.-@=0
and

v‘q"c_l'pos'a)za'v,
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Fig. 2. Amplitude Curves
where:
THE IMPACT OF THE FORCE
9os =90 sin( o A ), Poc = Po cos( o, ), STRUCTURE ON THE OSCILLATION
AMPLITUDE (CASE WITH AN

Goc =90 €0S( 9y ), Pos = Py sin(o, ),

ensure implementation of the following
correlation for linear combination of two
harmonics with similar frequencies (quad erat
for this method implementation):

asinwt =

qosin(mz+¢9)+-{w—pocos(wt+gp¥,)’
v

as:

v-qosin(w't~;¢9)+l-w-pocos(a)z+¢w)=
=(vequ +1 poc-@)cos(an)+
VG =1 pys - @) sin( ot ).

Suggested approach makes possible to
determine onset regions of stable and unstable
oscillations — a curve abutting upon the
.abscissa axis meets to stable oscillations but an
mterval cut by it on the axis of the longitudinal
velocity meets to the region of oscillatory
instability. It enables to analyze parallel the
force system impact on the stability of linear
system.

The consistency of obtained results has
been confirmed on the basis of the Routh-
Hurwitz criterion.

INCOMPLETE DISSIPATION)

Using the method examined above the
following results have been obtained: '
if h=0, then:

1. A damping increase on the rotational
angle relative to the vertical leads to the
decrease of the unstable region and oscillation
intensity. The first part of deductions is
coordinated with general theorems of the force
structure impact. Thus the impact of the
aligning torque reveals insignificantly.

2. An increase of the non-conservative
positional forces parameter / (pillar height)
leads to the increase of the unstable region
according to the velocity and growth of the
oscillation intensity (Fig.3, a: curvel
corresponds to 1=0,85 m., curve 2 — 1=1,1 m,,

curve 3 - I=0,6 m). It corresponds to
deductions from general theorems of the force
structure impact.

3. An imcrease of the wheel inertia
moment leads to the decrease of the unstable
region and oscillation amplitude.
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Fig. 3. AmpIitude Curves

4. An impact of the relaxation
parameter (c#0) — an increase ¢ leads to the
decrease of the unstable region and oscillation
amplitude (Fig. 3, d: curve 1 corresponds to
6=0,45, curve 2 - 6=0,5), a decrease of the
traction coefficient leads also to the decrease

of oscillation amplitude (Fig. 3, d: curve 1
corresponds to ¢=0,7, curve 3 —=0,4).

If h=0, then:

1. An aligning torque impact is
characterized in this case by an auxiliary
oscillation region occurrence at slow speeds
(up to 7,3 m/s), "main" oscillation region
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(existed in the range of 42,7 m/s<v<136,7 m/s)
doesn’t change here (Fig.3, b: a curve 1
corresponds to the absence of the aligning
torque, a curve 2 — its availability).

2. An increase of the torsional stiffness
(relative to the vertical axis) leads to the
increase of the oscillatory instability region
and oscillation amplitude. In general it doesn’t
conflict with theorem points about force
structure impact as in this case complete
dissipation is absent.  Oscillation region
connected with the aligning torque availability
doesn’t change practically but at sufficiently
great values of the torsional stiffness it "is
absorbed" by the oscillation region,
determined by single side force (Fig. 3, =B:
curve 1 corresponds to X,=12160 H-m, curve 2
- X,=20160 H'm, curve 3 - ¥X=4160 Hm,
curve 4 - X,=32160 H-m).

3. An increase of the torsional stiffness
(relative to the longitudinal axis) leads to the
decrease of the oscillation region and intensity.
Oscillation region connected with the aligning
torque availability doesn’t change practically.
(Fig. 3, r: curve | corresponds to %=421100
H-m, curve 2 -
X; =501100 H-m, curve 3 - X =361100 H'm,).

4. A relaxation parameter change (o #
0) leads to same results as in the point 4 (Fig.
3, f: curve 1 corresponds to =0,45, curve 2 —
6=0,5), the same impact as in the point 4 (Fig.
3, f: curve 1 corresponds o
@ =0,7, curve 3 — ¢ =0,4) remains at variations
‘of the traction coefficient.

CONCLUSIONS

l1.In the work the method of
approximate construction of amplitude curves
in the task of the wobbling of the front non-
steerable chassis pillar is developed -
possibility of the redundant variable
introduction for the method impleRnentation is
examined.

2. Force structure impact on the
oscillatory instability region and oscillation
characteristics is analyzed.
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BJIMSIHUE CTPYKTVPBI CIJI HA
VCTOHYMBOCTD KOJIECHOTIO MOOVILI 1
[MPOLIECC ABTOKOJIEBAHHHA

Anexcandp Kpaeuenxo, Bradumup Bepbuyxuil,
Banepuii Xpebem, Hamanua Benvmazuna

AHHOTauHsa. AMHanusupyercs YCTOHYHBOCTE H
aBTOKONEeGAHMS nepepHell «HEYNpABIAEMOID) CTOHKH,
HMeromell csoboxmy [DOBOPOTA NO ABYM KaHanaM —
PHICKAHBA M KpeHa OTHOCHMTENLHO MPOAONBHOH OCH
xopiyca. TIpemioxer noAxon NPHOMDKEHHOrO aHanH3a
aBTOKONEO0aHUH B HENHMHESHHOH NOCTAHOBKE, YTO AACT
BO3MOKHOCT OLCHHTh YCTOHYMBOCTE B «GONBLIOMY.
IlpoBeseH aBann3 BAMAHMA XapaKTEPHEIX NAPaMETpOB
cHcTeMbl Ha o6nacTe KonebaTe/bHOH HeyCTOHYMBOCTH
" aMILIATY A5 aproxoneGaHui {momy4eno
AHANHTHYECKOE BRIPAKCHHE, CBALIBAIOMIEE aMIUIUTY LY

xoneGanuil ¢ IADAMETPAMH MOZENH: MOMEHTOM
MHEpUHEK KOJeca OTHOCHTENBHO OCH IOBOPOTA,
KPYTHJIBHOH JKECTKOCTBI0  PYNEBOTO  YNpaBIeHUA,

K03 QHIEEHTOM penaKcaldH, BEIMYHHOH BEIHOCA H
YTTOM HAaKJIOHA CTOHKH).

Knwouessle CHNOBa: KOJNECHBIH MOXYNb, MIMMMH,
CTPYKTYpa CHJL, aMILTUTY k] aBTOKOIeOaHU.



