Ye. Gayev, Dr, V. Kalmikov
(National Aviation University, Ukraine)

The Travelling Salesman Problem in the engineering education programming
curriculum

The paper explains shortly the famous Traveling Salesman Problem, develops GUI
MATLAB-program for its solution by “Brute-force algorithm” and suggests to include
this in standard curriculum of Programming for students in aeronavigation area.

Mastering complex algorithms and their programming realization became an
important part of modern education on each engineering specialties. There are two
motivations for this: students get a powerful tool that facilitates learning almost all
other disciplines, and master the instrument for developing computer programs for
their future professional practice. Educators are obliged to look for new benchmarks
and appropriate computerized platforms to allow their learning computer science as
effective as possible. We find it not effective the common approach to learn particular
popular languages that start from the famous standard program Hallo World!. Instead,
we suggest learning mathematical platforms like Wolfram Mathematica, Maple,
MATLAB etc. that focus on algorithmization processes providing ready tools for
basic mathematical problems rather than peculiarities of programming language. We
accept the last one, the MATLAB, as one of the most appropriate for students in
aeronavigation. As such, we follow to revolutionary educational approach "Learn
things by imaginable computer experiments" suggested in recent book [1].

Such an educational approach requires just another means to attract students,
and also a totally different collection of exercises and practicing tasks. It is to
background in this paper that such a difticult problem as Traveling Salesman Problem
(TSP) may serve as one of them. The latter combines all the cognitive content
required for mastering algorithmization and programming with the practical direction
to aeronavigation area. We discuss in this paper the most direct solution of the TSP in
MATLAB along with fundamental subprograms required for it.

Mathematical formulation of the Traveling Salesman Problem (TSP) was
initially given in 1800s by W.R Hamilton. It sounds in the following way: a
“salesman” from the city 0 should visit all the other » cities named as 1,2, ..., n
only once and come back to 0; among N=n! possible routes the shortest is to be
found. Despite the simplicity of the formulation and the significant “age” of the
problem, it turned to be one of most complicated in the discrete mathematics and
optimization theory up to nowadays.

Direct solution of the TSP lies in the “honest” search of all the possible
routes, accurate calculation their length and comparing them until all the variants are
checked. Existence of a solution is, theoretically, thus evident. With the grows of n,
the number of cities, it turns however that the time, required for enumeration of all
possibilities, grows drastically so that the solution cannot be achieved during the
reasonable time period. As an example: the time 7(100) is, say, equal to 1 minute for
n=100; the time for »=101 will be 7(101)=101*7(100), i.e. about 100 minutes;
moreover, the next case for n=102 cities will consume the time 7(102)=102*7(101),
i.e. about 100? minutes, or 167 hours, or about 7 days. That is why this “naive” way

336

was called “brute-force algorithm”, and efforts were paid into invention of more
heuristic but realistic algorithms. Several such algorithms were elaborated, that
found their recent applications in effective popular automotive GPS navigators [2].
However, the TSP still remains unsolved “in full”. The problem’s state of the art has
been completely described in popular resources as [3.4]. It is not surprising that the
TSP is topical for acronavigation as well.

The Traveling Salesman Problem has already been realized in MATLAB.

One should simply run in the Command Window

>>travel 8
(the symbol >> denotes relation to the Command Window of MATLAB). Graphical
User Interface (GUI) that appears is shown in the Figure 1A along with solution for
n=50 cities on American map. It is imperfection of this program that enumeration of
routes currently in consideration is too fast to follow them and to understand the
process. Why do we suggest such TSP problem for engineering programming
education just when it has been solved and realized in such and in similar
demonstrations? Our answer is: 1. To present to students such a practical task on their
major in aeronavigation area; 2. To encourage them to their original research and
development, and 3. To allow research of their own by means of programming,
especially testing the program efficiency (section IV.F). It is to account as well that
the MATLAB-program has other weak points and is oriented to USA rather than to
our country Ukraine.

Graphical appearance of our program called SalesMan.m has been shown in
the Figure 1,B. It uses the map of Ukraine. Issuing SalesMan in the MATLAB
Command Window like (1) leads to the Graphical User Interface (GUI) shown. The
button “Help” provides a short explanation window 2a on the right top. One could
choose the number of cities in the narrow List Box window 3 to consider, n. For
demonstration purpose, it is prescribed for only n of 5, 10, 15 and 20. When chosen,
the button “Generate cities” is to be pressed, and corresponded number of Ukrainian
cities becomes labeled as green points, see Fig. 1B for n=20. Pressing then the button
“Optimize distances” 4b starts process of possible routes enumeration, and each route
under consideration may be observed by user. At the end, the final route with the least
length is demonstrated. As told, we “honestly” enumerate all the possible routes what
is called the “Brute-force Method”. We find it methodologically correct to research
this method first; students will have a comparison base if go on with other methods,
more heuristic.

When the final programming product has been highlighted in such a way, we
can start explanation how to go to such result. To achieve it, one needs to split the
whole problem to several tasks, subtasks and subprogram. We describe most
important of them in the next section. There are few relative simple subprograms
among them, but there are also some especially important ones that form an
educational and intellectual background of the profession of programming.

First, one needs to create Graphical User Interface (GUI) of the program
where all its functionality should be foreseen by means of windows for inputting and
outputting information and by buttons that start execution of certain tasks. One of
latter is a procedure how to choose particular cities. Secondly, a subprogram should
be elaborated that enumerates all possible routes between the cities chosen (the brute-

337

force method). Thirdly, all the routes generated are to be “passed by the program™ and
the length of them calculated. It would be visual to demonstrate on the map any route
currently in consideration and control duration of the visualization. Finally, the route
with the least length is to be returned as the final problem solution for the city
collection chosen.

There is a special program in MATLAB, guide, that helps in creation
Graphical User Interface. Choosing standard GUI-elements such as Static Text 7, Edit
Text, List Box 3 or Pop-Up Menus, Push Buttons 2 and 4 and Axes 5 etc. from
special visual environment, programmers are able to create variety of pleasant GUIs.
For our GUI in Fig. 1,B these elements have been displayed under the numbers
specified. The program is saved in MATLAB workspace in two files SalesMan.fig
and SalesMan.m. The first one is a binary file keeping all the visual information (GUI
element positions, their colors, fonts etc.), but the second is the text with the future
program. It contains function signatures for all the GUI-elements yet empty and to be
programmed in next sections.

What is to stress here is projection of picture with a map of Ukraine to the
GIU axes 5, Fig. 1B. This is an undocumented MATLAB’ feature that will be
explained in a separate publication.

The simplest GUI-elements of the GUI-program Fig. 1B are the Static Texts
1 and the Push Button 2. The first ones are unchangeable and serve mainly for
inscription and titling. The Push Button 2, through corresponding function within the
SalesMan.m, refers to only ready MATLAB-command helpdig() that displays the
Help-information labeled as 2a. To the List Box 3 corresponds another function in the
program-file SalesMan.m that supplies the integer » obtained to one more function of
the Push button 4a “Generate cities”. The latter starts a simple logic that chose one of
totally four prepared collections of cities along with their coordinate pairs {x;);} on
the Ukrainian map. The final route will be colored green and its length, the least
among others, will be displayed in the Edit Text window 6.

. . * Tra.ehn) Wweman Problem

fle (M Yew ot Lot indow Helg B

3.3.8

. (B U
Tt 2
- —
o AL R . W ‘_': J— I Mlm*m
e — B Sy S AN
"-'__-— RN e S e
s N — N
- ‘-~\.‘_ Sy — -:- :_ 40
— e M e N
= e, -‘_r\::__ — - Sorrvam i
P -—;; e
> - »
e 4b
S a: .
e » SR, - 4

Fig. 1: (A) TSP GUI in MATLAB; (B) GUI of our MATLAB-program with the map
of Ukraine

Behind this Button in the file SalesMan.m lies the most profound algorithm
portion that starts all possible enumerations of city collection chosen and,
simultaneously, calculation of their route length. At the same time the route under
consideration is ruled thick yellow to visually follow and observe the algorithm
action. This consideration of all the roots is called the “Brute Force Algorithm™. It
may be partially shortened in time if it breaks out any current route with the length
that exceeds the length of previous routes already examined. Different approaches are
mentioned in section F.

The most important part of the algorithm described is generation of
permutations of cities from the collection chosen.

Many of algorithms and subprograms required here may devote special
attention. Generation of permutations is particularly difficult to students and is
described in more details below. Solution suggested below is based on recursion what
is one of key stone algorithms in Computer Science.

Say, we need to get all permutations of numbers 1, 2, . . ., n, what means that
function T=Permutations(n) depends on n. In the simplest case n=1 the list of
permutations 7 contains only 1. If #n=2 the Permutation-program returns 7" as a matrix
[1 2]. Similar, Permutation(3)=[1 2 3;1 3 2,3 1 2], ie. new element 3 situates
within all previous matrix rows.

As the result, students have a pleasant up-to-date graphical program
SalesMan that realizes the real logistics problem in aeronavigation area. It is worth to
provide its wide investigation, and particularly the time it consumes. They estimate
that the 7ime is proportional to »!, i.e. it grows drastically huge, see section /1. It is to
motivate them to look for other algorithms able to reduce the Time significantly. A

3.3.9

number of heuristic approaches were suggested in five last decades [2.3] but the TSP
remains far from complete solution.

Conclusion

Despite the Traveling Salesman Problem (TSP) is one of the most difficult in
discrete mathematics, its synopsis was shortly suggested to include in educational
courses for students in aeronavigation area. MATLAB was considered as one of most
appropriate mathematical workbenches for this. The program SalesMan was
developed and briefly explained as a single GUI-program that manages several other
programs and algorithms to realize “brute-force method” in the search of shortest
route between given number of cities. Ukrainian map and several collections of
Ukrainian cities were used to demonstrate the program. Several programs employed
belong to key stone algorithms of the Computer Science.

References

1 Wolfram S. A new kind of science.--1213 pp.

2 https://en. wikipedia.org/wiki/GPS navigation device An overview of GPS
technique.

3 https://en. wikipedia.org/wiki/Travelling_salesman problem A full and
modern overview of the Travelling Salesman Problem (TSP).

4 https://ru.wikipedia.org/wiki/3amaua_kommuBosbképa A rather detailed
description of the TSP art state.

3.3.10

