Engineering department Subject: Theory of mechanisms and machines

Module 1

Question card #1

1. Which of these mechanisms is called slotted-link mechanism?

2. Link with mass m = 10 kg is statically balanced by counterweight $m_{\rm cw} = 25$ g. Determine the radius of counterweight $r_{\rm cw}$, if the distance $r_{\rm S} = 0.25$ mm.

3. Determine mechanism structure

- **4. Determine** scale factor μ_V by measurement of the segment \overline{pa} . Determine linear velocities of points A, B, C, S_2 , S_4 (V_B , V_C , V_{S2} , V_{S4}), determine and mark angular velocities ω_2 and ω_4 of con-rods AB and AS on the diagram. *Initial data:* Angular velocity of the crank 1: $\omega_1 = 100 \text{ s}^{-1}$; links dimensions: $l_{OA} = 0.02 \text{ m}$; $l_{AB} = 0.1 \text{ m}$; $l_{AC} = 0.09 \text{ m}$;
- 5. Determine reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 4$ N; $P_3 = 7$ N; $\varphi = 10^0$. Dimensions of links: $\ell_{OA} = 35$ mm; $\ell_{AB} = 40$ mm; $\ell_{AS2} = 15$ mm; $\ell_{BS} = 40$ mm; $\ell_{BS3} = 20$ mm Centre of gravity of link AB (2) is in the point S_2 , Centre of gravity of link BS (3) is in the point S_3 .

1. Which of kinematic pairs is a 4 class pair?

2. A rotating link is balanced by 2 counterweights m_1 i m_2 , they are installed on equel distances r_{cw} from the axis of rotation. Determine the mass of the link, if the masses of counterweights $m_1 = m_2 = 10$ g; distances $r_S = 1$ mm;

$$r_{\rm cw} = 25$$
 cm; $\ell_1 = \ell_2$.

3. Determine mechanism structure

1. Which of kinematic pairs is a 1 class pair?

- 2. A rotating link is balanced by 2 counterweights m_1 i m_2 , are installed on equel distances $r_{\rm cw}$ from the axis of rotation. Determine the mass of the link m, distances ℓ_1 i ℓ_2 , if the masses of couterweights $m_1 = m_2 = 20$ g; distances $r_{\rm S} = 0.5$ mm; $r_{\rm cw} = 20$ sm; $\ell_1 = \ell_2 = 50$ cm.
- 3. Determine mechanism structure

- **4. Determine** inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram. *Initial data*. Links dimensions: $l_{AC} = 0.1 \text{ m}$; $l_{AC} = 0.09 \text{ m}$. The masses of the links: $m_2 = 0.6 \text{ kg}$; $m_3 = 0.5 \text{ kg}$; $m_4 = 0.55 \text{ kg}$; $m_5 = 0.48 \text{ kg}$. Links products of inertia: $J_{S2} = 0.0085 \text{ kg m}^2$; $J_{S4} = 0$, 0078 kg m^2 , $\mu_a = 10 \text{ m/sec}^{-2}/\text{mm}$.
- 5. Determine reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 4$ N; $P_3 = 7$ N; $\varphi = 60^0$. Dimensions of links: $\ell_{OA} = 30$ mm; $\ell_{AB} = 40$ mm; $\ell_{AS2} = 15$ mm; $\ell_{BS} = 40$ mm; $\ell_{BS3} = 20$ mm Centre of gravity of link AB (2) is in the point S_2 , Centre of gravity of link BS (3) is in the point S_3 .

1. Which of these mechanisms is called crank-slider mechanism?

2. Centre of gravity of link, m_0 rotates with constant frequency n = 20000 rpm, $r_S = 0.1$ mm. Determine the mass of the link, if on it a force

 $P_i = 660 \text{ N acts.}$

3. Determine mechanism structure

 $P_3 = 8 \text{ N}$; $\phi = 45^0$. Dimensions of links: $\ell_{OA} = 30 \text{ mm}$; $\ell_{AB} = 60 \text{ mm}$; $\ell_{AS2} = 25 \text{ mm}$. Centre of gravity of link AB (2) is in the point S_2 .

1. Which of kinematic pairs is a 4 kind kinematic pair?

2. Determine the mas of counterweight $m_{\rm cw}$, if it is installed on a distance $r_{\rm cw} = 10$ sm from the axes of rotation, $r_{\rm S} = 0.5$ mm; m = 2 kg.

3. Determine mechanism structure

4. Determine acceleration scale factor μ_a by measurement of the segment $\overline{p'a'}$. Determine linear accelerations of points A, B, C, S_2 , S_4 (a_B , a_S , a_{S2} , a_{S4}). Determine tangential accelerations of points B and C relative to point A (a_{BA}^t and a_{CA}^t), determine and show angular accelerations ε_2 and ε_4 of con-rods AB and AS on the diagram. *Initial data*: Angular velocity of the crank 1: $\omega_1 = 80 \text{ s}^{-1}$.

Links dimensions: $l_{OA} = 0.05$ m; $l_{AB} = l_{AC} = 0.2$ m.

5. Determine the reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 4 \text{ N}; \ P_3 = 7 \text{ N}; \ \phi = 60^0. \ \text{Dimensions}$ of links: $\ell_{OA} = 30 \text{ mm}; \ \ell_{AB} = 45 \text{mm}; \ \ell_{AS2} = 20 \text{ mm}$ Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the point S_3

1. Which of these mechanisms is called double-slotted mechanism

2. A rotating link is balanced by 2 counterweights m_1 i m_2 , are installed on equel distancees $r_{\rm cw}$ from the axis of rotation. Determine the mass of the link, if the masses of counterweights $m_1 = m_2 = 20$ g; distances $r_{\rm S} = 1$ mm; $r_{\rm cw} = 25$ sm; $\ell_1 = \ell_2$.

3. Determine mechanism structure

4. **Determine** inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram.

Initial data: Links dimensions: $l_{AB} = l_{AC} = 0.2$ m.The masses of the links: $m_2 = m_4 = 5$ kg; $m_3 = m_5 = 4$ kg. Links products of inertia: $J_{S2} = J_{S4} = 0.035$ kg m², $K_a = 10$ m·s⁻²/mm.

5. For given mechanism position to determine reduced mass \mathbf{m}_{red} : $m_1 = 4$ kg; $m_2 = 3$ kg, $J_{S2} = 0.15$ kgm², $J_{S3} = 0.2$ kgm²; $\ell_{OB} = 40$ mm; $\ell_{AB} = 70$ mm; $\ell_{AS2} = 35$ mm. The slider I is assumed as the reduced link.

1. Which of these mechanisms is called double-slider mechanism?

2. Link with mass m = 1.5 kg rotates with constant frequency n = 30000 rpm. Determine the distance r_S from centre of mass to the axis of rotation, if on the link an inertia force $P_i = 1000$ N acts.

1. Which of these mechanisms is called slotted-slider mechanism?

2. Link with mass m = 1 kg rotates with constant frequency n = 20000 rpm. Determine the distance $r_{\rm S}$ from centre of mass to the axis of rotation, if on the link an inertia force $P_i = 500$ N acts.

Initial data. Angular velocity of the crank l: $\omega_1 = 80 \text{ s}^{-1}$. Links dimensions: $l_{\text{OA}} = l_{\text{OC}} = 0$, 06 m; $l_{\text{AB}} = l_{\text{CD}} = 0$,22 m.

5. Determine reduced moment of the mechanism by Zhukovskyi method if: P_2 = 10 N; P_3 = 6 N; φ = 50°. Dimensions of links: ℓ_{OA} = 35 mm; ℓ_{AB} = 45 mm; ℓ_{AS2} = 25 mm; ℓ_{BS} = 40 mm; ℓ_{BS3} = 20 mm Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the point S_3 .

2. Which of these mechanisms is called a slotted-slider mechanism?

2. Link with mass m = 10 kg is statically balanced by counterweight $m_{\rm cw} = 25$ g. Determine the radius of counterweight $r_{\rm cw}$, if the distance $r_{\rm S} = 0.5$ mm.

3. Determine mechanism structure

4. **Determine** inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram.

Initial data: Links dimensions: $l_{AB} = l_{CD} = 0,22$ m. The masses of the links: $m_2 = m_4 = 1,1$ kg; $m_3 = m_5 = 0,9$ kg. Links products of inertia: $J_{S2} = J_{S4} = 0,04$ kg m², $K_a = 10$ m·s⁻²/mm.

5. For given mechanism position to determine reduced mass $\mathbf{m_{red}}$: $m_1 = 4 \text{ kg}$; $m_2 = 3 \text{ kg}$, $J_{\text{S2}} = 0.15 \text{ kgm}^2$, $J_{\text{S3}} = 0.2 \text{ kgm}^2$; $\ell_{\text{OB}} = 40 \text{ mm}$; $\ell_{\text{AB}} = 70 \text{mm}$; $\ell_{\text{AS2}} = 35 \text{mm}$. The slider I is assumed as the reduced link.

1. Which of these mechanisms is called a double-slider mechanism?

2. A rotating link is balanced by 2 counterweights $m_1 = m_2$, are installed on equel distancees $r_{\rm cw}$ from the axis of rotation. Determine the weight of counterweights, if the mas of the link m = 35 kg, distances - $r_{\rm S}$ = 2 mm; $\ell_1 = \ell_2 = 25$ cm; $r_{\rm cw} = 10$ cm.

4. **Determine** scale factor μ_V by measurement of the segment p^a . Determine linear velocities of points A, B, C, S_2 , S_4 (V_B , V_C , V_{S2} , V_{S4}), determine and mark angular velocities ω_2 and ω_4 of con-rods AB and AS on the diagram.

Initial data. Angular velocity of the crank l: $\omega_1 = 100 \text{ s}^{-1}$. Links dimensions: $l_{\text{OA}} = 0,075 \text{ m}$; $l_{\text{AB}} = 0,27 \text{ m}$; $l_{\text{AC}} = 0,25 \text{ m}$.

 $P_2 = 4$ N; $P_3 = 7$ N; $\varphi = 45^\circ$. Dimensions of links: $\ell_{OA} = 30$ mm; $\ell_{AB} = 45$ mm; $\ell_{AS2} = 20$ mm; $\ell_{BS} = 40$ mm; $\ell_{BS3} = 20$ mm Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the point S_3

2. Which of these mechanisms is called a slotted-slider?

- 2. A rotating link is balanced by 2 counterweights $m_1 = m_2$, are installed on equel distancees $r_{\rm cw}$ from the axis of rotation. Determine the weight of counterweights, if the mas of the link m = 40 kg, distances $r_{\rm S} = 3$ mm; $\ell_1 = 10$ cm; $\ell_2 = 10$ cm; $r_{\rm cw} = 20$ cm.
- 3. Determine mechanism structure

- **4. Determine** acceleration scale factor μ_a by measurement of the segment p'a'. Determine linear accelerations of points A, B, C, S_2 , S_4 (a_B , a_S , a_{S2} , a_{S4}). Determine tangential accelerations of points B and C relative to point A (a_{BA}^t and a_{CA}^t), determine and show angular accelerations ε_2 and ε_4 of con-rods AB and AS on the diagram. *Initial data:* Angular velocity of the crank I: $\omega_1 = 100 \text{ s}^{-1}$. Links dimensions: $l_{OA} = 0$, 075 m; $l_{AB} = 0$, 27 m; $l_{AC} = 0$, 25 m.
- 5. Determine the reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 3 \text{ N}$; $P_3 = 12 \text{ N}$; $\varphi = 60^0$. Dimensions of links: $\ell_{OA} = 30 \text{ mm}$; $\ell_{AB} = 60 \text{ mm}$; $\ell_{AS2} = 20 \text{ mm}$. Centre of gravity of link AB (2) is in the point S_2

2. Which of these mechanisms is called crank-slider mechanism?

2. A rotating link is balanced by 2 counterweights $m_1 = m_2$, are installed on equal distances $r_{\rm cw}$ from the axis of rotation. Determine the weight of counterweights, if the mass of the link m = 30 kg, distances - $r_{\rm S} = 2$ mm;

$$\ell_1 = \ell_2 = 20 \text{ cm}; r_{cw} = 20 \text{ cm}.$$

3. Determine mechanism structure

4. Determine inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram.

Initial data: Links dimensions: l_{AB} = 0,27 m; l_{AC} = 0,25 m. The masses of the links: m_2 = 6 kg; m_3 = 5 kg; m_4 = 5, 5 kg; m_5 = 4, 8 kg. Links products of inertia: J_{S2} = 0,085 kg m²; J_{S4} = 0,078 kg m². μ_a = 10 m·s⁻²/mm.

 $P_2 = 2N$; $P_3 = 5N$; $\varphi = 120^0$. Dimensions of links: $\ell_{OA} = 30$ mm; $\ell_{AB} = 60$ mm; $\ell_{AS2} = 25$ mm. Centre of gravity of link AB (2) is in the point S_2 .

1. Which of kinematic pairs is a pair of the 2 class?

2. Link with mass m = 1 kg rotates with constant frequency n = 30000 rpm. Determine the inertia force which acts to the link if its Centre of gravity of link is displaced on a distance of $r_S = 0.1$ mm from axis of rotation.

Initial data: Angular velocity of the crank l: $\omega_1 = 60 \text{ s}^{-1}$. Links dimensions: $l_{\text{OA}} = l_{\text{OC}} = 0,08 \text{ m}$; $l_{\text{AB}} = l_{\text{CD}} = 0,3 \text{ m}$.

5. For given mechanism position to determine reduced mass $\mathbf{m_{red}}$: $m_1 = 4$ kg; $m_2 = 3$ kg, $J_{S2} = 0.15$ kgm², $J_{S3} = 0.2$ kgm²; $\ell_{OB} = 40$ mm; $\ell_{AB} = 70$ mm; $\ell_{AS2} = 35$ mm. The slider I is assumed as the reduced link.

e

1. Which of kinematic pairs is a 4 class kinematic pair?

2. Link with mass m = 1 kg rotates with constant frequency n = 15000 rpm. Determine the inertia force which acts to the link if its Centre of gravity of link is displaced on a distance of $r_S = 0.2$ mm from axis of rotation.

3. Determine mechanism structure

4. **Determine** acceleration scale factor μ_a by measurement of the segment $\overline{p'a'}$. Determine linear accelerations of points A, B, C, S_2 , S_4 (a_B , a_S , a_{S2} , a_{S4}). Determine tangential accelerations of points B and C relative to point A (a_{BA}^t and a_{CA}^t), determine and show angular accelerations ε_2 and ε_4 of con-rods AB and AS on the diagram. *Initial data:* Angular velocity of the crank I: $\omega_1 = 60$ s⁻¹. Links dimensions: $l_{OA} = l_{OC} = 0.08$ m; $l_{AB} = l_{CD} = 0.3$ m.

1. Which of kinematic pairs is a 3 kind kinematic pair?

2. Link with mass m=12 kg is statically balanced with a counterweight $m_{\rm cw}=20$ g. Determine the radius $r_{\rm cw}$, if distance $r_{\rm S}=0.7$ mm.

3. Determine mechanism structure

Initial data: Angular velocity of the crank 1: $\omega_1 = 120 \text{ s}^{-1}$. Links dimensions: $l_{OA} = 0.05 \text{ m}$; $l_{AB} = l_{AC} = 0.2 \text{ m}$.

5 Determine reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 2$ N; $P_3 = 5$ N; $\phi = 20^0$. Dimensions of links: $\ell_{OA} = 30$ mm; $\ell_{AB} = 60$ mm; $\ell_{AS2} = 25$ mm; $\ell_{BS} = 60$ mm; $\ell_{BS3} = 30$ mm Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the point S_3 .

2. Which of these mechanisms is called double-slider mechanism?

2. Link with mass m=15 kg is statically balanced with a counterweight $m_{\rm cw}=35$ g. Determine the radius $r_{\rm cw}$, if distance $r_{\rm S}=1$ mm.

3. Determine mechanism structure

4. **Determine** acceleration scale factor μ_a by measurement of the segment $\overline{p'a'}$. Determine linear accelerations of points A, B, C, S_2 , S_4 (a_B , a_S , a_{S2} , a_{S4}). Determine tangential accelerations of points B and C relative to point A (a_{BA}^t and a_{CA}^t), determine and show angular accelerations ε_2 and ε_4 of con-rods AB and AS on the diagram.

Initial data. Angular velocity of the crank 1: ω_1 = 120 s⁻¹. Links dimensions: $l_{OA} = 0.05$ m; $l_{AB} = l_{AC} = 0.2$ m.

5 Determine reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 7$ N; $P_3 = 10$ N; $\varphi = 30^{\circ}$. Dimensions of links: $\ell_{OA} = 30$ mm; $\ell_{AB} = 45$ mm; $\ell_{AS2} = 25$ mm; $\ell_{BS} = 40$ mm; $\ell_{BS3} = 20$ mm Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the point S_3 .

1. Which of kinematic pairs is a 5 class kinematic pair?

- 2. Link with mass m = 1 kg rotates with constant frequency n = 40000rpm. Determine the distance r_S from the Centre of mass if on the link an inertia force $P_i = 500 \text{ N}$ acts.

4. **Determine** inertia forces moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The of inertia forces directions and should moments be shown on mechanism diagram.

Initial data. Links dimensions: $l_{AB} =$ $l_{\rm AC} = 0.09$ m. The masses of the links: $m_2 = m_4 = 1.5 \text{ kg}; m_3 = m_5 = 1.2 \text{ kg}.$ Links products of inertia: $J_{S2} = J_{S4} =$ $0,008 \text{ kg m}^2$. $\mu_a = 10 \text{ m} \cdot \text{s}^{-2}/\text{mm}$.

5. For a given mechanism position determine reduced moment of inertia

$$m_2 = 5 \text{ kg}; m_3 = 9 \text{ kg}; J_{S1} = 0.2 \text{ kgm}^2,$$

 $J_{S2} = 0.5 \text{ kgm}^2; \ell_{OA} = 35 \text{ mm}; \ell_{AB} = 70 \text{mm}.$ $\ell_{AS} = 30 \text{ mm}.$

1. Which of kinematic pairs is a 1 class kinematic pair?

- 2. Link with mass m = 2 kg rotates with constant frequency n = 40000 rpm. Determine the distance $r_{\rm S}$ from the Centre of mass if on the link an inertia force $P_i = 500$ N acts.
- 3. Determine mechanism structure
- 4. **Determine** scale factor μ_V by measurement of the segment \overline{pa} . Determine linear velocities of points A, B, C, S_2 , S_4 (V_B , V_C , V_{S2} , V_{S4}), determine and mark angular velocities ω_2 and ω_4 of con-rods AB and AS on the diagram

Initial data. Angular velocity of the crank 1: $\omega_1 = 100 \text{ s}^{-1}$. Links dimensions: $l_{\text{OA}} = 0.06 \text{ m}$; $l_{\text{AB}} = 0.25 \text{ m}$; $l_{\text{AC}} = 0.2 \text{ m}$.

5. For a given mechanism position determine reduced moment of inertia if:

$$m_2 = 5 \text{ kg}; m_3 = 9 \text{ kg}; J_{S1} = 0.2 \text{ kgm}^2, J_{S2} = 0.5 \text{ kgm}^2;$$

 $\ell_{OA} = 35$ mm; $\ell_{AB} = 70$ mm. $\ell_{AS} = 30$ mm.

1. Which of these mechanisms is called a double-slider mechanism?

2. Link with mass m = 1 kg rotates with constant frequency n = 20000 rpm. Determine the distance r_S from the Centre of mass if on the link an inertia force $P_i = 500$ N acts.

3. Determine mechanism structure

4. **Determine** acceleration scale factor μ_a by measurement of the segment $\overline{p'a'}$. Determine linear accelerations of points A, B, C, S_2 , S_4 (a_B , a_S , a_{S2} , a_{S4}). Determine tangential accelerations of points B and C relative to point A (a_{BA}^t and a_{CA}^t), determine and show angular accelerations ε_2 and ε_4 of con-rods AB and AS on the diagram.

Initial data. Angular velocity of the crank 1: ω_1 = 100 s⁻¹. Links dimensions: l_{OA} = 0,06 m; l_{AB} = 0,25 m; l_{AC} = 0,2 m.

5. Determine the reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 6 \text{ N}$; $P_3 = 10 \text{ N}$; $\varphi = 30^0$. Dimensions of

 $P_2=6$ N; $P_3=10$ N; $\phi=30^0$. Dimensions of links: $\ell_{OA}=30$ mm; $\ell_{AB}=50$ mm; $\ell_{AS2}=25$ mm; $\ell_{BS}=40$ mm; $\ell_{BS3}=20$ mm Centre of gravity of link AB (2) is in the point S_2 , Centre of gravity of link BS (3) is in the point S_3 .

1. Which of these mechanisms is called a slotted-slider mechanism?

2. A rotating link is balanced by 2 counterweights $m_1 = m_2 = 30$ g., are installed on equal distances $r_{\rm cw}$ from the axis of rotation. Determine the distance $r_{\rm S}$, if the mass of the link m = 5 kg, distances - $\ell_1 = \ell_2 = 20$ cm; $r_{\rm cw} = 20$ cm.

1.4. **Determine** inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram.

Initial data. Links dimensions: l_{AB} = 0,25 m; l_{AC} = 0,2 m. The masses of the links: m_2 = 1,4 kg; m_3 = 1,1 kg; m_4 = 1,2 kg; m_5 = 0,9 kg. Links products of inertia: J_{S2} = 0,0085 kg m²; J_{S4} = 0,008 kg m² μ_a =10 m·s⁻²/mm.

5. For a given mechanism position determine reduced moment of inertia if:

 $m_2 = 4.5 \text{ kg}; m_3 = 9.5 \text{ kg}; J_{S1} = 0.2 \text{ kgm}^2, J_{S2} = 0.5 \text{ kgm}^2; \ell_{OA} = 35 \text{ mm}; \ell_{AB} = 70 \text{mm}. \ell_{AS} = 30 \text{ mm}.$

1. Which of kinematic pairs is a 3 class kinematic pair?

2. Link with mass m = 1.2 kg rotates with constant frequency n = 34000 rpm. Determine the inertia force which acts to the link if its Centre of gravity of link is displaced on a distance of $r_S = 0.1$ mm from axis of rotation.

4. **Determine** scale factor μ_V by measurement of the segment \overline{pa} . Determine linear velocities of points A, B, C, S_2 , S_4 (V_B , V_C , V_{S2} , V_{S4}), determine and mark angular velocities ω_2 and ω_4 of con-rods AB and AS on the diagram.

Initial data. Angular velocity of the crank l: $\omega_1 = 125 \text{ s}^{-1}$. Links dimensions: $l_{\text{OA}} = 0$, 04 m; $l_{\text{AB}} = 0$, 16 m; $l_{\text{AC}} = 0$, 14 m.

5. For a given mechanism position determine reduced moment of inertia if: $m_2 = 10 \text{ kg}$; $m_3 = 25 \text{ kg}$; $J_{\text{S1}} = 0.5 \text{ kgm}^2$, $J_{\text{S2}} = 1.3 \text{ kgm}^2$; $\ell_{\text{OA}} = 50 \text{ mm}$; $\ell_{\text{AB}} = 90 \text{mm}$. $\ell_{\text{AS2}} = 50 \text{ mm}$.

1. Which of these mechanisms is called double-slotted mechanism?

2. A rotating link is balanced by 2 counterweights m_1 i m_2 , are installed on equal distances $r_{\rm cw}$ from the axis of rotation. Determine the weight of counterweights, if the mass of the link m = 10 kg, distances - $r_{\rm S} = 1$ mm; $\ell_1 = 30 = \ell_2 = 20$ cm; $r_{\rm cw} = 20$ cm.

4. **Determine** acceleration scale factor μ_a by measurement of the segment p'a'. Determine linear accelerations of points A, B, C, S_2 , S_4 (a_B , a_S , a_{S2} , a_{S4}). Determine tangential accelerations of points B and C relative to point A (a_{BA}^t and a_{CA}^t), determine and show angular accelerations ε_2 and ε_4 of con-rods AB and AS on the diagram.

Initial data. Angular velocity of the crank l: $\omega_1 = 125 \text{ s}^{-1}$. Links dimensions: $l_{\text{OA}} = 0.04 \text{ m}$; $l_{\text{AB}} = 0.16 \text{ m}$; $l_{\text{AC}} = 0.14 \text{ m}$.

5. Determine reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 5$ N; $P_3 = 8$ N; $\varphi = 60^{\circ}$. Dimensions of links: $\ell_{OA} = 35$ mm; $\ell_{AB} = 70$ mm; $\ell_{AS2} = 25$ mm. Centre of gravity of link AB (2) is in the point S_2 .

Engineering department Subject: Theory of mechanisms and machines Module 1

Question card # 23

2. Which of these mechanisms is called slotted-link mechanism?

- 2. A rotating link is balanced by 2 counterweights $m_1 = m_2$, are installed on equal distances $r_{\rm cw}$ from the axis of rotation. Determine the weight of counterweights, if the mass of the link m = 30 kg, distances $r_{\rm S} = 2$ mm; $\ell_1 = \ell_2 = 30$ cm; $r_{\rm cw} = 10$ cm.
- 3. Determine mechanism structure

4. **Determine** inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram

Initial data. Links dimensions: $l_{AB} = 0.16 \text{ m}$; $l_{AC} = 0.14 \text{ m}$. The masses of the links: $m_2 = 0.9 \text{ kg}$; $m_3 = 0.6 \text{ kg}$; $m_4 = 0.8 \text{ kg}$; $m_5 = 0.5 \text{ kg}$. Links products of inertia: $J_{S2} = 0.07 \text{ kg m}^2$; $J_{S4} = 0.06 \text{ kg}$ m². $\mu_a = 10 \text{ m} \cdot \text{s}^{-2}/\text{mm}$,

 $P_2 = 7$ N; $P_3 = 10$ N; $\varphi = 45^0$. Dimensions of links: $\ell_{OA} = 30$ mm; $\ell_{AB} = 60$ mm; $\ell_{AS2} = 20$ mm. Centre of gravity of link AB (2) is in the point S_2 .

1. Which of kinematic pairs is a 5 class kinematic pair?

- 2. A rotating link is balanced by 2 counterweights $m_1 = m_2$, are installed on equal distances $r_{\rm cw}$ from the axis of rotation. Determine the weight of counterweights, if the mass of the link m = 30 kg, distances $r_{\rm S} = 2$ mm; $\ell_1 = \ell_2 = 15$ cm; $r_{\rm cw} = 20$ cm.
- 3. Determine mechanism structure
- 4. **Determine** scale factor μ_V by measurement of the segment \overline{pa} . Determine linear velocities of points A, B, C, S_2 , S_4 (V_B , V_C , V_{S2} , V_{S4}), determine and mark angular velocities ω_2 and ω_4 of con-rods AB and AS on the diagram.

Initial data. Angular velocity of the crank I: $\omega_1 = 100 \text{ s}^{-1}$. Links dimensions: $l_{\text{OA}} = 0.03 \text{ m}$; $l_{\text{AB}} = 0.12 \text{ m}$; $l_{\text{AC}} = 0.1 \text{ m}$.

5. Determine the reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 3N$; $P_3 = 8 N$; $\varphi = 45^0$. Dimensions of links:

 $\ell_{OA} = 33$ mm; $\ell_{AB} = 45$ mm; $\ell_{AS2} = 25$ mm; $\ell_{BS} = 40$ mm; $\ell_{BS3} = 20$ mm Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the point S_3 .

1. Which of kinematic pairs is a 5 class kinematic pair?

- 2. Centre of gravity of link, that rotates with constant frequency n = 20000 rpm, is displaced relative to axis of rotation on a distance $r_S = 0.1$ mm. Determine the mass of the link, if on it an inertia force $P_i = 660$ N acts..
- 3. Determine mechanism structure
- 4. **Determine** acceleration scale factor μ_a by measurement of the segment p'a'. Determine linear accelerations of points A, B, C, S_2 , S_4 (a_B , a_S , a_{S2} , a_{S4}). Determine tangential accelerations of points B and C relative to point A (a_{BA}^t and a_{CA}^t), determine and show angular accelerations ε_2 and ε_4 of con-rods AB and AS on the diagram

Initial data. Angular velocity of the crank $l: \omega_1 = 100 \text{ s}^{-1}$. Links dimensions: $l_{\text{OA}} = 0.03 \text{ m}$; $l_{\text{AB}} = 0.12 \text{ m}$; $l_{\text{AC}} = 0.1 \text{ m}$.

5. Determine the reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 3 \text{ N}$; $P_3 = 10 \text{ N}$; $\varphi = 60^0$. Dimensions of links: $\ell_{OA} = 30 \text{ mm}$; $\ell_{AB} = 60 \text{ mm}$; $\ell_{AS2} = 20 \text{ mm}$. Centre of gravity of link AB (2) is in the point S_2 .

1. Which of kinematic pairs is a 4 class kinematic pair?

2. Link with mass m = 10 kg is statically balanced with a counterweight $m_{\rm cw} = 25$ g. Determine the radius $r_{\rm cw}$, if distance $r_{\rm S} = 0.5$ mm.

- 3. Determine mechanism structure
- 4. **Determine** inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram. *Initial data*. Links dimensions: $l_{AB} = 0.12$ m; $l_{AC} = 0.1$ m. The masses of the links: $m_2 = 0.8$ kg; $m_3 = 0.5$ kg; $m_4 = 0.6$ kg; $m_5 = 0.4$ kg. Links products of inertia: $J_{S2} = 0.0065$ kg m²; $J_{S4} = 0.0055$ kg m². $\mu_a = 10$ m·s ⁻²/mm.

1. Which of kinematic pairs is a 4 kind kinematic pair?

2. Link with mass m = 5 kg is statically balanced with a counterweight $m_{\rm cw} = 25$ g. Determine the radius $r_{\rm cw}$, if distance $r_{\rm S} = 0.5$ mm.

3. Determine mechanism structure

4. **Determine** scale factor μ_V by measurement of the segment \overline{pa} . Determine linear velocities of points A, B, C, S_2 , S_4 (V_B , V_C , V_{S2} , V_{S4}), determine and mark angular velocities ω_2 and ω_4 of conrods AB and AS on the diagram Initial data. Angular velocity of the crank I: $\omega_1 = 80 \text{ s}^{-1}$. Links dimensions: $l_{OA} = l_{OC} = 0{,}275 \text{ m}$; $l_{AB} = l_{CD} = 0{,}28 \text{ m}$.

5. Determine reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 8$ N; $P_3 = 5$ N; $\varphi = 60^0$. Dimensions of links: $\ell_{OA} = 35$ mm; $\ell_{AB} = 45$ mm; $\ell_{AS2} = 25$ mm; $\ell_{BS} = 40$ mm; $\ell_{BS3} = 20$ mm Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the point S_3 .

APPROVED M. Kindrachuk.

Engineering department
Subject: Theory of mechanisms and machines
Module 1
Question card # 28

1. Which of these mechanisms is called a double-slotted mechanism?

2. Link with mass m = 8 kg is statically balanced with a counterweight $m_{\rm cw} = 30$ g. Determine the radius $r_{\rm cw}$, if distance $r_{\rm S} = 0.5$ mm.

3. Determine mechanism structure

- 4. **Determine** acceleration scale factor μ_a by measurement of the segment p'a'. Determine linear accelerations of points A, B, C, S_2 , S_4 (a_B , a_S , a_{S2} , a_{S4}). Determine tangential accelerations of points B and C relative to point A (a_{BA}^t and a_{CA}^t), determine and show angular accelerations ε_2 and ε_4 of con-rods AB and AS on the diagram *Initial data*. Angular velocity of the crank I: $\omega_1 = 80 \text{ s}^{-1}$. Links dimensions: $l_{OA} = l_{OC} = 0.075 \text{ m}$; $l_{AB} = l_{CD} = 0.28 \text{ m}$.
- 5. For a given mechanism position determine reduced moment of inertia if: m_2 = 12 kg; m_3 = 20 kg; J_{S1} = 0,5 kgm², J_{S2} = 1,0 kgm²; ℓ_{OA} = 40 mm; ℓ_{AB} = 80mm, ℓ_{AS2} = 30 mm.

1. Which of kinematic pairs is a 4 kind kinematic pair?

2. Link with mass m = 10 kg is statically balanced by counterweight $m_{\rm cw} = 25$ g. Determine the radius of counterweight $r_{\rm cw}$, if the distance $r_{\rm S} = 0.25$ mm.

3. Determine mechanism structure

4. **Determine** inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram

Initial data. Links dimensions: $l_{AB} = l_{CD} = 0.28$ m. The masses of the links: $m_2 = m_4 = 8.5$ kg; $m_3 = m_5 = 6$ kg. Links products of inertia: $J_{S2} = J_{S4} = 0$, 12 kg m². $\mu_a = 10$ m·s⁻²/mm.

Determine the reduced moment of the mechanism by Zhukovskyi method if:

 $P_2=6$ N; $P_3=10$ N; $\phi=30^0$. Dimensions of links: $\ell_{OA}=30$ mm; $\ell_{AB}=50$ mm; $\ell_{AS2}=25$ mm; $\ell_{BS}=40$ mm; $\ell_{AS3}=20$ mm Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the point S_3 .

APPROVED M. Kindrachuk.

Engineering department
Subject: Theory of mechanisms and machines
Module 1
Question card # 31

3. Which of these mechanisms is called a double-slider mechanism?

r2. Link with mass m = 0.5 kg rotates with constant frequency n = 15000 rpm. Determine the inertia force which acts to the link if its Centre of gravity of link is displaced on a distance of $r_S = 0.1$ mm from axis of rotation.

3. . Determine mechanism structure

4. **Determine** inertia forces and moments of inertia forces acting to pistons 3 and 5, con-rods 2 and 4. The directions of inertia forces and moments should be shown on mechanism diagram

Initial data. Links dimensions: $l_{AB} = l_{CD} = 0.24$ m. The masses of the links: $m_2 = m_4 = 7.5$ kg; $m_3 = m_5 = 5$ kg. Links products of inertia: $J_{S2} = J_{S4} = 0.11$ kg m². $\mu_a = 10$ m·s²/mm.

5. Determine the reduced moment of the mechanism by Zhukovskyi method if: $P_2 = 3 \text{ N}$; $P_3 = 5 \text{ N}$; $\phi = 30^{\circ}$. Dimensions of links: $\ell_{OA} = 30 \text{ mm}$; $\ell_{AB} = 50 \text{mm}$; $\ell_{AS2} = 25 \text{mm}$; $\ell_{BS} = 40 \text{ mm}$; $\ell_{AS3} = 20 \text{ mm}$ Centre of gravity of link AB (2) is in the point S_2 , a Centre of gravity of link BS (3) is in the

point S_3 .

APPROVED M. Kindrachuk.

Engineering department
Subject: Theory of mechanisms and machines
Module 1
Question card # 33