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4         Measurement uncertainty – 
part 2:  Methods

1. Calculating uncertainty

2. Calculations step by step

3. Uncertainty calculation in practice



4.1 Calculating 
uncertainty
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Calculating a measurement 
result
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 A measurement result is calculated from input data. In 
addition  to the measurement values, the data often include 
information  from earlier measurements, specifications, 
calibration  certificates etc.

 The calculation method is described with an equation (or a 
set  of equations) called measurement model 
(mathematical model)

 The model is used for both calculation of the estimate and 
the  uncertainty of the results.

 The model should include all factors (input quantities) 
affecting  significantly the estimate and/or the uncertainty.

 The model is never complete; approximations are needed.
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6 steps to evaluating 
uncertainty
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1) Measurement model:
List essential input quantities (i.e. parameters xi having a 
significant  effect on the result) and build up a mathematical model 
(function)  showing how they are related to the final result: y = 
f(x1,,…, xi)
1) Standard uncertainty:
Estimate the standard uncertainty of each input quantity (xi)
1) Using the model in uncertainty calculations:
Determine the uncertainty due to standard uncertainty of each 
input  quantity (xi).
1) Correlation:
Determine correlation between the input quantities (if relevant)
1) Calculate the combined standard uncertainty
2) Calculate the expanded uncertainty.
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4.2 Calculations step by 
stepStep 1: Measurement model

Step 2: Standard uncertainty

Type A evaluation of standard uncertainty  Type B 
evaluation of standard uncertainty

Step 3:Using the model in uncertainty 
calculations

Step 4: Correlation

Step 5: Combining the uncertainty components

Step 6: Expanded uncertainty
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Y  f ( X1,X 
2 ,...,X n )

Measuran
d

Input quantities 
Xi

Equation which describes the 
measurement:

 The model should include:

Measurement results, corrections, reference values, influence quantities...
 The magnitude of a correction can be zero but it can still have 

uncertainty
 The values and uncertainties of the input quantities should be 

determined

Measurement result (y) is:

y  f (x1,x2 ,...,xn )
 xi is the value (estimate) of the input quantity Xi

Step 1: Measurement 
model

 
tresol

 tCal  tD  
tGtx  

tind

Example 
:
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Step 2: Standard 
uncertainty

 All uncertainty components should be comparable  standard  
uncertainty ui

 The variance of the sum of non-correlating random variables is the 
sum  of their variances

 standard uncertainty is the square root of variance
 all uncertainty components should be expressed as standards  

uncertainties
 For normal distribution standard uncertainty  corresponds to about 

68%
confidence level
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Two methods for estimating the standard  uncertainty of an input 
quantity
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• Type A:

 Evaluated from a number of observations (usually > 10)

• Tyyppi B:

 Evaluated from a single (or a small number of) data 
value(s)

 Often taken from data reported earlier or by others
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Type A evaluation of standard 
uncertainty Uncertainty is evaluated by statistical analysis of a series of 

observations qi
 The spread of the results is assumed to be 

random

 An estimate for the valu e of the quantity  is the 

arithmetic mean q An estimate for the variance of the probability distribution is 
s(x)2:

experimental standard deviation of the 
mean:
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If type A measurement uncertainty is based on few measurements the estimation of 
u(x)  is not reliable and normal distribution can not be assumed.
 (unless other information on the distribution is available)

 s(q) is termed the experimental standard  
deviation

 An estimate for the variance of the mean s2 

(q)
(the experimental variance of the mean) is:
 The standard uncertainty of q equals the
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Type B evaluation of standard 
uncertainty
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 To be applied for estimates of input quantities that has not been obtained 
from  repeated measurements

 Typical examples :
 uncertainties of values and drifts of reference standards
 uncertainties of environmental quantities
 uncertainties from specifications of instrument
 uncertainties from literature values
 uncertainty due to the method or calculation
 uncertainty due to staff
 uncertainties from calibration certificates
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Rectangular 
distribution

uncertainty distribution 
p

 All values in the range xi -a …xi + a have equal 
probability

 Standard uncertainty

 Examples: specifications, resolution

 Applied if only limiting values are known

i
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3u(x )  a  
0,577a
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 Example: convolution of two rectangular 
distribution

 Standard 
uncertainty:

Triangular 
distribution

xi - a xi + 
a

 0,408 
a

13

a
iu(x ) 

6
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 Example: sinusoidal variation between limits 
± a

 Standard 
uncertainty:

U-shape 
distribution

 0,707 
a

a
iu(x ) 

2

xi – 
a

14

xi + 
a
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Step 3:Using the model in uncertainty calculations
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 The contribution of u(xi) to the uncertainty of y is 
determined by  the sensitivity coefficient ci

 The sensitivity coefficient can be determined
 from partial derivative of f(X1, X2,…,Xn) with Xi

i.e. ci  = f /  Xi (at x1, x2,…,xn)
 by numerical methods ci = Δy / Δxi
 experimentally by changing xi by Δxi  and determining Δy ;

ci = Δy / Δxi
 The contribution of u(xi) to the uncertainty of y is:
ui(y) = ci u(xi)
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Step4: 
CorrelationThe covariance u(xi,xj) of two random variables is a measure of 

their  mutual dependence.
If Xi = F(Ql) and Xj = G(Ql) depend on the same quantities Ql 
(l=1..n)

i j


i

ql 

ql

then F 
G

u(x , x ) 


lu (q )2

 Correlation 
coefficient : u(xi )

u(xj )
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u(xi , x j 
)i

j

r(x , x ) 

The covariance can increase or decrease uncertainty.
If the correlation coefficient is r=1 the components will be added 
in a  linear way.



Step 5: Combining the uncertainty 
components

 Uncorrelated input quantities:

 Correlated input 
quantities:

2
i
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uc(y) = combined standard 
uncertainty;

u(xi,xj) = 
covariance



Metrology and Standardization

Step 6: Expanded 
uncertainty
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factor 
k:

Often the result of the measurement is reported with a higher level 
of  confidence than given by the standard uncertainty.
 Expanded uncertainty U is the standard uncertainty multiplied by a 

coverage

U  kuc (y)
 In calibration it is recommended to report 95 % level of 

confidence.
 For normal distribution this corresponds to k=2 (approximately).

Normal  
distribution
:

Coverage probability
p

Coverage factor
k

68,27 % 1,00
90 % 1,65
95 % 1,96

95,45% 2,00
99 % 2,58

99,73% 3,00
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Normal 
distribution




19

2


Measurement result is approximately normally distributed if
 it is a combination of several random variables (independent of 

distribution)
 none of the (non-normally distributed) components is dominating.
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Degrees of freedom and the coverage factor

 For a combined standard uncertainty, we can calculate 
theeffective number of degrees of freedom (eff) :

 The figure shows that we need a coverage 
factor  larger than 2 to obtain 95 % 
confidence level if the  number of degrees of 
freedom is small.
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4.2 Uncertainty calculation in 
practice
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Example: Measurement of SO2 
content An analyzer with electrical current signal output was used 

for  measuring SO2 content in exhaust gas.
 The signal was measured with a DMM and the total error in 

the  current measurement was estimated to be within ±0,1 
mA.

 The arithmetic mean of the 15 recorded DMM readings is  
9,59mA and the corresponding standard deviation is 0,49 
mA.

 An accredited laboratory has determined the calibration 
function  for the analyzer:The reported expanded uncertainty (k=2) is 6 mg/m3
 When comparing two last calibrations, we can conclude 

that the  drift of the analyzer is less than 5 mg/m3/year 
(calibr. interval is  1 year)

m
A

22

fc (Im )  7,64 mg/m  3,25  
Im

mg/m
3

3



Example: Measurement of SO2 content - 
continuing

 The measurement result is calculated as 
follows:

 The variables can be assumed independent on 
each  other; therefore we can calculate the 
uncertainty:

  
Drift

 (Im  δIm )  
δfc

  
Drift

mg/m
3

CSO 2   fc (Im  
δIm )  δfc
 7,64 mg/m  
3,25 m

A

3

3
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Example: Measurement of SO2 content - 
continuing
 The sensitivity coefficients are:

 Thus
:
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Example: Measurement of SO2 content - 
continuing

 Standard uncertainties of the 
components:

3

25

5 
mg/m3

3

3

6 
mg/m3

 2,9 
mg/m3

u( 
Drift ) 

 3 
mg/m2

u(fc ) 


u(Im )  0,49 
mA

mu(δI )  0,1 mA  
0,06 mA

type A, normal 
distribution
type B, rectangular 
distribution

type B, rectangular 
distribution

type B, normal 
distribution
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Example: Measurement of SO2 content - 
continuing

 Standard uncertainties of the 
components:

3
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5 
mg/m3

3

3

6 
mg/m3

 2,9 
mg/m3

u( 
Drift ) 

 3 
mg/m2

u(fc ) 


u(Im )  0,49 
mA

mu(δI )  0,1 mA  
0,06 mA

type A, normal 
distribution
type B, rectangular 
distribution

type B, rectangular 
distribution

type B, normal 
distribution



Metrology and Standardization

Example: Measurement of SO2 content - 
continuing

 Standard uncertainties of the 
components:

3
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5 
mg/m3

3

3

6 
mg/m3

 2,9 
mg/m3

u( 
Drift ) 

 3 
mg/m2

u(fc ) 


u(Im )  0,49 
mA

mu(δI )  0,1 mA  
0,06 mA

type A, normal 
distribution
type B, rectangular 
distribution

type B, rectangular 
distribution

type B, normal 
distribution
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