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4.1 Calculating
uncertainty
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Calculating a measurement
result

A measurement result is calculated from input data. In
addition to the measurement values, the data often include
information from earlier measurements, specifications,
calibration certificates etc.

The calculation method is described with an equation (or a
set of equations) called measurement model
(mathematical model)

The model is used for both calculation of the estimate and
the uncertainty of the results.

The model should include all factors (input quantities)
affecting significantly the estimate and/or the uncertainty.
The model is never complete; approximations are needed.
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6 steps to evaluating
uncertainty

» Measurement model:

List essential input quantities (i.e. parameters xi having a
significant effect on the result) and build up a mathematical model
(function) showing how they are related to the final result: y =
f(x1,,..., xi)

» Standard uncertainty:

Estimate the standard uncertainty of each input quantity (xi)

iy Using the model in uncertainty calculations:

Determine the uncertainty due to standard uncertainty of each
input quantity (xi).

» Correlation:

Determine correlation between the input quantities (if relevant)
 Calculate the combined standard uncertainty

2 Calculate the expanded uncertainty.
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4.2 Calculations step by

Step 1: Measurﬁrt&lpnodel

Step 2: Standard uncertainty

Type A evaluation of standard uncertainty Type B
evaluation of standard uncertainty

Step 3:Using the model in uncertainty
calculations

Step 4: Correlation
Step 5: Combining the uncertainty components

Step 6: Expanded uncertainty
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Step 1. Measurement
| “model
Equation which describes the
measurement:
Measuran — Y = f(Xl’X -— In.putquantities

d Xi
The model shouldzne}udgn )

Measurement results, corrections, reference values, influence quantities...

The magnitude of a correction can be zero but it can still have
uncertainty

The values and uncertainties of the input quantities should bg
determined

Measurement result (y) is:

y=f(x1,x2,...,xn)

* xi is the value (estimate) of the input quantity Xi

- + OtCal + ot +

Example
: otG
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Step 2: Standard
ertal

All uncertalntgl'lcomponenpt%ould be comparable = standard
uncertainty ui

The variance of the sum of non-correlating random variables is the
sum of their variances

standard uncertainty is the square root of variance

all uncertainty components should be expressed as standards
uncertainties

For normal distribution standard uncertainty corres&nds to about

| |
y

confidence level
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Two methods for estimating the standard uncertainty of an input
guantity

Type A:
* Evaluated from a number of observations (usually > 10)

Tyyppi B:

* Evaluated from a single (or a small number of) data
value(s)

* Often taken from data reported earlier or by others
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Type A evaluation of standard

Uncertainty is evaluated by Hﬂﬁi@artﬁdwyof a series of

ObS‘?R’eaEBPSa%’ of the results is assumed to be

random Zq
- An estimate for the valu e of the quantity is the = n =

- Antkeateiiateéanti4e variance of the probability distribution is

y g%)c%zls termed the experimental standard

deviation s2 (gh= ,_! i q)z
' An estimate for the variance of the mean 2 - )
,
s q
(q) (@) %qtﬁ

(the experimental variance of the mean) is: B

;@ém&?& URBERHAPUPER L e |\ _ () J
g q)

If type A measurement uncertainty is based on few measurements‘t]nb estimation of
u(x) is not reliable and normal distribution can not be assumed.
(unless other information on the distribution is available)

“ MIKES
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Type B evaluation of standard

To be applied for estimates lgl‘mgtﬁﬂja:ltm;ythat has not been obtained
from repeated measurements
Typical examples :

uncertainties of values and drifts of reference standards

uncertainties of environmental quantities

uncertainties from specifications of instrument

uncertainties from literature values

uncertainty due to the method or calculation

uncertainty due to staff

uncertainties from calibration certificates
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Rectanqgular
rlicaﬂ-v'ihl rl-ira\n

< an >

uncertainty distribution T
p

Xj -4d X X;ita

All values in the range xi/ -a ...xi + a have equal
probability -
Standard uncertainty ux') = /g ~

0,577a
Examples: specifications, resolution

Applied if only limiting values are known
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Triangular

typ

Xi-a Xi Xi +
Example: convolution of two rectangular
distribution

Standard a
uncertainty: u(x,) = 6 ~ 0,408
a
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Xl = Xi +
a a

Example: sinusoidal variation between limits
+a

Standard a
uncertainty: u(x)=-—~0,707

2,
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Step 3:Using the model in uncertainty calculations

The contribution of u(x/) to the uncertainty of y is
determined by the sensitivity coefficient ci

The sensitivity coefficient can be determined
* from partial derivative of (X1, X2,...,Xn) with Xi

l.e.ci =of/oXi (atx1, x2,...,xn)

by numerical methods ci = Ay / Axi

experimentally by changing xi by Axi and determining Ay ;
ci= Ay | Axi

The contribution of u(x/) to the uncertainty of y is:
ui(y) = ci u(xr)
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Step4.
TheQ&EEQJ%tWij) of two random variables is a measure of

their mutual dependence.

If Xi = F(Ql) and Xj = G(Q/) depend on the same quantities QI
(I=1..n)

then u(x,x)  OF uiq)

. oql
a—c; Z aql u(xi, x j
- Correlation rx, x)= “t .
coefficient : i j xi)
u(xj )

The covariance can increase or decrease uncertainty.

If the correlation coefficient is =1 the components will be added
in a linear way.
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Step 5: Combining the uncertainty
components

= = (y)
Correlated input
guantities:

u(y) u(x) 212 g u(xi, x

=1 j

=i+1 5)(;

uc(y combl ed standa u(xi,xj) =
. MIKES uncertalnty covariance
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Step 6: Expanded

Often the result Qﬂ[h@&étalilfbtyent is reported with a higher level
of confidence than given by the standard uncertainty.
* Expanded uncertainty U is the standard uncertainty multiplied by a

ot e
k:

U=kuc (y)

* In calibration it is recommended to report 95 % level of

confidence.

* For normal distribution this corresponds to k=2 (approximately).

Normal
distribution

Coverage probability Coverage factor
p k
68,27 % 1,00
90 % 1,65
95 % 1,96
95,45% 2,00
99 % 2,58
99,73% 3,00
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Normal
distribution

N

7

Measurement result is approximately normally distributed if

* it is a combination of several random variables (independent of
distribution)

* none of the (non-normally distributed) components is dominating.
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Degrees of freedom and the coverage factor

For a combined standard uncertainty, we can calculate
dfeective number of degrees of freedom (veff) : v

u4
. 4 U (x
* The figure shows that we need a coverage =/ |
Smamd

factor larger than 2 to obtain 95 %
confidence level if the number of degrees of [

fr adnm ic ecmall
ODOUVIITT To ollTiadll.

p=95,45 %;
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4.2 Uncertainty calculation in
practice
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Example: Measurement of SO2

An analyzer with electﬁgrujergit signal output was used
for measuring SO2 content in exhaust gas.

The signal was measured with a DMM and the total error in

the current measurement was estimated to be within 0,1
mA.

The arithmetic mean of the 15 recorded DMM readings is

9,59mA and the corresponding standard deviation is 0,49
mA.

/
An accredited labof&tthf? Nas ad:Ghimg’ fﬁbﬁgii%ﬁ%ozn
SRR R M BRAIES Gincertainty (k=2) is 6 mg/ma

* When comparing two last calibrations, we can conclude
that the drift of the analyzer is less than 5 mg/m3/year
(calibr. interval is 1 year)

Metrology and Standardization
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Example: Measurement of SO2 content -
continuing

The measurement result is calculated as

f%lows: e
SO2 = fc(Um+
SIm ) + 5/ jﬁg
= —7,64 mg/m + S (Um+8Im) +
. ng/m Um + Olm ) + 0

The3\7%gables can be assumgd incfsé%endent on  Drift
each other; therefore we can calculate the
uncertainty:

u(Csp )= g ull, ¥ +leu@] B +eu@ )] +ed,,
u( 2 2 ’ )12
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Example: Measurement of SO2 content -

continuing
* The sensitivity coefficients are:
oC
cl gl
3,25 gnA
C
2 @8,
c3 é SO C4 a SO __
2
e @80 = Drif 1
Thus f O !
u(Cyy )5 ¢ ¢ 1 () GRS )+ uby,
+u? “( )’
““ MIKES
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Example: Measurement of SO2 content -
continuing

Standard uncertainties of the

components:

u(lm) = 0,49 type A, normal

distri%ution I
m) — _ type B, rectangular

’(’)‘(g’é nl; O mA = distribution

u,(5f0) 6 _ 3 3 type B, normal

_ mg/ m3 mg/m distribution

u(o g\/@ﬁ =29 ’ type B, rectangular
Drift ) = mg/m distribution
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Example: Measurement of SO2 content -
continuing

Standard uncertainties of the

components:
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_ mg/ m3 mg/m distribution

u(o g\/@ﬁ =29 ’ type B, rectangular
Drift ) = mg/m distribution

Metrology and Standardization 26



Example: Measurement of SO2 content -
continuing

Standard uncertainties of the

components:

u(lm) = 0,49 type A, normal

distri%ution I
m) — _ type B, rectangular

’(’)‘(g’é nl; O mA = distribution

u,(5f0) 6 _ 3 3 type B, normal

_ mg/ m3 mg/m distribution
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