
V.M. Sineglazov, M.V. Savchenko 
A Comprehensive Framework for Underwater Object Detection Based on Improved YOLOv8                                     9 
 

___________________________________________________________________________________________________________ 

©National Aviation University, 2024 
http://jrnl.nau.edu.ua/index.php/ESU, http://ecs.in.ua 

 
 

UDC 004.032.26(045) 
DOI:10.18372/1990-5548.79.18429 

1V. M. Sineglazov, 
2M. V. Savchenko 

A COMPREHENSIVE FRAMEWORK FOR UNDERWATER OBJECT DETECTION BASED 
ON IMPROVED YOLOv8 

1Aviation Computer-Integrated Complexes Department, Faculty of Air Navigation Electronics 
and Telecommunications, National Aviation University, Kyiv, Ukraine 

2Educational and scientific Institute for Applied System Analysis, National Technical University of Ukraine 
“Ihor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine 

E-mails: 1svm@nau.edu.ua  ORCID 0000-0002-3297-9060, 2mykhailo_savchenko@outlook.com 
Abstract—Underwater object detection poses unique challenges due to issues such as poor visibility, 
small densely packed objects, and target occlusion. In this paper, we propose a comprehensive 
framework for underwater object detection based on improved YOLOv8, addressing these challenges and 
achieving superior performance. Our framework integrates several key enhancements including Contrast 
Limited Adaptive Histogram Equalization for image preprocessing, a lightweight GhostNetV2 backbone, 
Coordinate Attention mechanism, and Deformable ConvNets v4 for improved feature representation. 
Through experimentation on the UTDAC2020 dataset, our model achieves 82.35% precision, 80.98 % 
recall, and 86.21 % mean average precision at IoU = 0.5. Notably, our framework outperforms the 
YOLOv8s model by a significant margin, while also being 15.1% smaller in terms of computational 
complexity. These results underscore the efficiency of our proposed framework for underwater object 
detection tasks, demonstrating its potential for real-world applications in underwater environments. 

Index Terms—Underwater object detection; classification problem; YOLO; hybrid neural networks; 
deep learning. 

I. INTRODUCTION 

The utilization of automated intelligent 
underwater vehicles in ocean exploration has proven 
to be instrumental in various domains such as 
marine life exploration, fisheries, ecological 
monitoring, and military applications. The 
integration of deep learning, computer vision, and 
object detection algorithms has marked a significant 
leap forward in advancing the capabilities of these 
underwater vehicles. However, the realm of 
underwater image detection confronts a myriad of 
unique challenges. Issues such as poor image 
quality, the presence of small and densely-packed 
targets that are challenging to discern, a scarcity of 
high-quality training datasets, and the constrained 
computational power of underwater vehicle 
hardware collectively impede the seamless 
deployment of efficient detection algorithms. This 
underscores the need for innovative approaches 
specifically tailored to enhance the precision and 
efficiency of underwater object detection. Given the 
critical role that automated underwater vehicles play 
in various applications ranging from marine biology 
research to underwater infrastructure inspection, 
overcoming these challenges is imperative for 

unlocking their full potential and facilitating 
groundbreaking discoveries in the depths of our 
oceans. As such, this article delves into the current 
landscape of underwater object detection 
methodologies, highlighting both advancements and 
existing limitations, while also proposing a new 
deployment-efficient framework for this task (Fig. 1). 

 
Fig. 1. Sample from UTDAC2020 dataset demonstrating 
unique challenges in underwater object detection tasks 

II. RELATED WORK 

In the realm of object detection, while algorithms 
have demonstrated proficiency on generic datasets, 
their application to underwater scenes poses distinct 
challenges. These challenges stem from the inherent 
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complexities of underwater environments, including 
poor image quality, color distortion, light 
interference, and the prevalence of small, densely-
packed targets. Consequently, the task of UOD 
necessitates a nuanced approach, typically bifurcated 
into image pre-processing and object detection 
subtasks. 

A. Image preprocessing 
Underwater visibility challenges stem from water 

molecules and suspended particles affecting light 
distortion and color absorption. Recent 
advancements include leveraging absorption 
differences in color wavelengths for transmission 
plot estimation, employing graph tangent theory to 
fortify underwater neural networks [1], and 
addressing factors like absorption, scattering, and 
color distortion in underwater imagery [2]. Methods 
for underwater image dehazing and color restoration 
have been proposed [3], along with correction 
techniques based on polarization imaging models 
[4]. Algorithms such as dark channel prior [5], 
Retinex-model-based decomposition [6], and color 
correction within HSV and Retinex models [7] have 
also been applied to solve the aforementioned 
challenges. The twin adversarial contrastive learning 
algorithm has been developed for underwater image 
preprocessing [8]. 

A comprehensive framework for underwater 
image enhancement covered in [9] combines 
techniques like image fusion, edge sharpening, and 
contrast enhancement. Utilizing algorithms like 
MSRCR, CLAHE, and homomorphic filtering within 
different color spaces improves color saturation and 
contrast, resulting in significant quality enhancement. 
Augmentation methods enhance domain 
generalization in underwater object detection [10], 
while candidate frame fusion algorithms refine 
underwater target detection [11]. Transfer learning 
techniques have led to exceptional object 
identification results in low-quality underwater 
videos in [12], achieving an average classification 
accuracy of 99.68% for 23 fish species. 

B. Object detection and classification 
In the realm of deep-learning-based object 

detection models, two main methodologies have 
emerged: anchor-based and anchor-free algorithms. 
Anchor-based approaches like Faster R-CNN [13], 
SSD [14], and RetinaNet [15] rely on predefined 
anchor boxes for object localization. In contrast, 
anchor-free algorithms such as YOLOX [16] and 
FCOS [17] calculate only the center point and 
position coordinates of bounding boxes, simplifying 

detection. Recent advancements, including attention 
mechanisms, have further improved object 
localization and classification accuracy.  

Effective object detection in underwater 
environments requires advanced techniques due to 
challenges posed by small and dense targets. Deep 
Convolutional Neural Networks (CNNs), 
particularly the YOLO series [18], excel in such 
tasks. Researchers have applied YOLO-based 
architectures for various underwater applications, 
showcasing their versatility. For instance, a real-time 
YOLO-based CNN achieved a 93 % fish detection 
accuracy [19]. YOLOv2 and YOLOv3 were utilized 
for marine-animal detection [20], and a lightweight 
underwater object detection framework based on 
YOLOv4 was introduced [21]. Other researchers 
have proposed novel approaches like TC-YOLO 
[22], mDFLAM [23], SA-FPN [24]. These 
algorithms address challenges such as small target 
detection, noisy samples, and mutual occlusion. 

Despite advancements, current methodologies 
have drawbacks. Many focus on isolated aspects of 
the detection pipeline, neglecting comprehensive 
approaches that synergize image preprocessing and 
detection algorithms. Moreover, algorithms often 
overlook practical constraints imposed by hardware 
limitations of underwater vehicles, hindering 
scalability and applicability. There's a need for 
holistic, hardware-aware approaches to underwater 
object detection. 

III. PROBLEM STATEMENT 

Generally, loss function and weight update 
procedure for object detection and classification 
tasks can be defined as:  

coord coord conf conf class class ,L L L L        
 where coord conf class, ,L L L  are the localization, 

confidence and classification losses in that order,

 

coord conf class, ,    are the coefficients to balance the 
influence of each component in general loss 
function. The velocity term is defined as: 

 1 1 ,t t tV V L 
     

where β is the momentum, and the weight update 
rule takes the following form: 

1 ,t t tV     

where η is the learning rate. 
Specifically, for YOLOv8, the loss function can 

be defined as follows: 
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Here, posN  represents the number of cells 
featuring an object, 

,x yc
1  is an indicator function for 

the cells featuring an object, ,x y  is the ground truth 

bounding box position, ,x yb  is the predicted box of 

the respective cell, ,
ˆ

x y  are the coordinates of the 
center point of the ground truth bounding box, cy  
represents the ground truth label for class c for each 
individual grid cell (x, y) in the input, ( , ) 1x yq   are the 
nearest left and right predicted boxes IoU which 
belong to ,x yc , ,x yw  and ,x yh  are width and height of 
the box,   is the diagonal length of the smallest 
enclosing box covering the predicted and ground 
truth boxes. 

The best candidate is then determined by each 
cell for predicting the bounding box of the object. In 
YOLOv8, CIoU [25] is used as the box loss, binary 
cross entropy is used for multi-label classification as 
the classification loss and distribution focal loss [26] 
is used as the third term in general loss function. 

YOLOv8, considered a state-of-the-art model for 
object detection, offers significant improvements 
over earlier versions, featuring a lighter backbone 
structure and a decoupled head design. It introduces 
anchor-free design and incorporates distribution 
focal loss and task-aligned label matching in its loss 
function. Despite offering slimmed-down versions 

like YOLOv8s, YOLOv8 still faces challenges such 
as high computational complexity and network 
transmission volume, hampering its speed and 
hardware requirements. A more hardware-aware 
approach is needed to address these issues and 
enable efficient operation on edge devices. 

IV. PROBLEM SOLUTION 

To solve the unique challenges, present in UOD 
task, such as visibility issues, the presence of small 
densely packed objects and target occlusion, we 
present a new method consisting of three main 
advancements: image preprocessing module using 
Contrast Limited Adaptive Histogram Equalization 
(CLAHE), replacing YOLOv8 pre-packaged 
Darknet-53 backbone with lightweight GhostNetV2 
backbone, incorporating Coordinate Attention (CA) 
to highlight regions of interest (RoI) within the 
image, and replacing in-built convolutional layers in 
YOLOv8 neck and C2f block bottleneck with 
Deformable ConvNets v4 (DCNv4). 

A. Preprocessing module 
As confirmed in our ablation experiments, 

CLAHE [27] introduces a boost in recall by 
improving the details and restoring original colors of 
the underwater image, which results in a decreased 
number of missed detections when it comes to 
smaller targets, CLAHE algorithm consists of four 
steps: 

1) Divide the image into non-overlapping tiles of 
a specified size. 

2) Compute the histogram   iH k  for each tile i. 
3) Perform histogram equalization independently 

for each tile: 

    , , , , eq iI x y L I x y H  

where L is the function that maps the intensity 
values of  ,I x y  to the corresponding equalized 
values using the histogram  .iH  

4) Apply contrast limiting: 
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The images from training and testing set were 
resized to 640x640 and then processed by CLAHE 
algorithm using OpenCV library with ‘clip limit’ 
value manually lowered to 2 to avoid unnecessary 
changes in color. Average processing time for each 
image sample is 2.1 ms, which we consider an 
acceptable trade-off between time and performance 
(Fig. 2). 
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Fig. 2. Image taken from UTDAC2020 dataset before and 
after preprocessing 

B. Lightweight network backbone 
To achieve higher inference speed on edge 

devices, we replaced the YOLOv8 DarkNet-53 
backbone with the lightweight GhostNetV2 
backbone [28]. The GhostNetV2 architecture reduces 
network parameter count and computational cost by 
utilizing 1x1 convolutions to aggregate local and 
long-range information with decoupled fully 
connected (DFC) attention. The GhostNet building 
block comprises Ghost modules, replacing standard 
convolutions, where intrinsic features are generated 
using 1 1Y X F     with   being convolution 
operation, 1 1F   being point-wise convolution and Y   
being intrinsic features with the size lower than the 
original output feature size. Then depth-wise 
convolutions are used to generate more features based 
on obtained intrinsic features, and the output feature 
Y  by concatenation along the channel dimension as 

 , ,dpY Concat Y Y F      where dpF  is 1x1 
convolutional filter and Y  is the output feature. 

To compensate for lowered representation ability 
of the module, GhostNetV2 uses DFC attention 
module. A straightforward usage of fully-connected 
layers to generate attention map is considered 
deployment inefficient, and thus replaced by the 
operation of decomposing it into two fully-
connected layers and aggregating features along 
horizontal and vertical dimensions, effectively 
reducing the computation costs. Then, the input 
feature is sent to two branches of the network, which 
are Ghost and DFC modules, and the final output is 
calculated as element-wise product of normalized 
attention map and the feature. Notably, to further 
reduce the computational cost of DFC operation, the 
feature is down-sampled by both dimensions. 
Overall, the usage of GhostNetV2 allows for the 
reduction of the parameter count of the backbone, 
making it more deployment-efficient while 
maintaining accuracy. 

C. Coordinate attention 
Coordinate Attention (CA) [36], enhances spatial 

information utilization within feature maps by 
learning attention weights for each spatial position. 

Unlike traditional channel-wise attention 
mechanisms, CA focuses on relationships between 
spatial positions, aiming to capture long-range 
dependencies and contextual information. Firstly, 
direction-aware feature maps are generated for each 
spatial dimension, concatenated, and passed through 
a 1x1 convolutional function 1F . Next, 1x1 
convolutional transformations hF  and wF  are 
applied, with their outputs serving as attention 
weights for spatial dimensions. The final block 
output is computed as 

( , ) ( , ) ( ) ( ).h w
c c c cy i j x i j g i g j    Placing the CA 

block in object detection algorithms enhances 
performance by enabling the model to focus on 
relevant spatial positions, improving the detection of 
smaller targets and reducing false negatives. 

D. Deformable Convolutions 
Deformable convolutions are adaptive 

convolutional operations that adjust the receptive 
field of each kernel based on input data, enhancing 
the network's ability to capture spatial structures and 
patterns, especially for objects at different scales or 
positions. Unlike traditional convolutions with fixed 
receptive fields, deformable convolutions introduce 
learnable offsets, enabling kernels to sample from 
arbitrary locations in the input feature map [29]. 

In deformable convolutions, the regular grid 
       1, 1 , 1,0 ,..., 0,1 , 1,1R      is augmented 

with offsets np , yielding a feature map Y at 
position 0p  as: 

     0 0 ,
n

n n n
p R

Y p w p x p p p


      

where x  represents the input feature map, w  are the 
weights, np  are the coordinates in the grid R , and 

np  are the offsets. 
Another extension, Deformable RoI Pooling, an 

extension of traditional RoI pooling used in object 
detection, extracts fixed-size feature maps from 
varying-sized feature maps generated by a CNN. 

The latest version of Deformable Convolution 
operator [30] called DCNv4 features further speed-
up and optimizations of memory access by 
minimizing the count of redundant operations. In our 
work, DCNv4 is used in both YOLOv8 neck part 
and C2f bottleneck, demonstrating significant boost 
in small target detection capabilities of the model.  

V. EXPERIMENTS 

A. Dataset overview  
A challenging underwater detection dataset 

UTDAC2020, which is short for Underwater Target 
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Detection Algorithm Competition 2020, has been 
selected to test the performance of the proposed 
algorithm. The dataset features 5168 training and 
1293 validation images in various resolutions 
(3840x2160, 1920x1080, 720x405 and 586x480), 
four classes are represented (echinus, holothurian, 
scallop and starfish). 

B. Implementation details 
The experimental setup consisted of Intel Xeon 

E5 CPU (2.00 GHz), two NVIDIA Tesla T4 GPU 
with 16 GB VRAM each with Ubuntu 20.04.6 LTS, 
Python 3.10.13, CUDA 12.1, PyTorch 2.2.1 
installed. The training process was limited to 200 
epochs with early stopping, batch size was fixed at 
32, stochastic gradient descent has been used as an 
optimization algorithm with momentum 0.95 and 
weight decay coefficient 0.005, initial learning rate 
set to 0.01. Default augmentation strategies from 
YOLOv8 have been applied, and no other 
augmentations have been used.  

C. Experiment results 
The following metrics have been used to assess 

the performance of the algorithm: 
 precision, defined as true positives count, 

divided by the sum of true positives and false 
positives, indicating false-detection rate of the 
algorithm; 

 recall, defined as true positives count, divided 
by the sum of true positives and false negatives, 
reflecting the missed-detection rate of the algorithm; 

 mApIoU=0.5, defined as the mean average 
precision (mAp) for all target classes across entire 
dataset with IoU = 0.5 set as an evaluation threshold; 

 floating point operations count, measured in 
GFLOPs, reflecting the computational complexity of 
the network.  

The results of the experiments are as follows 
(Table I). 

 

TABLE I THE RESULTS OF THE EXPERIMENTS 

Model Precision Recall mApIoU=0.5 GFLOPs 

YOLOv8n 71.02% 66.92% 82.65% 8.1 

YOLOv8s 75.02% 69.78% 84.71% 28.4 

YOLOv8m 76.72% 70.53% 84.92% 78.7 

YOLOv8l 79.24% 73.12% 85.09% 164.8 

Ours 82.35% 80.98% 86.21% 24.1 
 

The proposed models surpassed even larger 
YOLOv8l model in precision, recall and mApIoU = 0.5 

metrics, while maintaining smaller size, acceptable 
to be deployed on devices with limited processing 
power. 

VI. CONCLUSIONS 

This paper proposes a comprehensive framework 
tailored for Underwater Object Detection, enhancing 
YOLOv8 architecture to improve detection 
performance in underwater environments. Key 
enhancements include a novel image preprocessing 
module using Contrast Limited Adaptive Histogram 
Equalization to address visibility issues and enhance 
object detection accuracy. The substitution of the 
Darknet-53 backbone with the lightweight 
GhostNetV2 backbone reduces computational 
overhead while maintaining or improving accuracy. 
Incorporating a Coordinate Attention mechanism 
highlights regions of interest, and replacing 
convolutional layers with Deformable ConvNets v4 

enhances adaptability to non-rigid underwater 
environments. The framework achieves superior 
computational efficiency compared to pre-made 
slimmed versions of YOLO, demonstrating an 
optimal balance for real-world underwater object 
detection applications. 
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В. М. Синєглазов, М. В. Савченко. Мережа для виявлення підводних об’єктів з використанням 
модифікованої архітектури YOLOv8 
В даній роботі розроблено нейронну мережу для виявлення підводних об’єктів на основі модифікованої 
архітектури YOLOv8. Розглянуто використання модуля попередньої обробки зображень на основі контрастно-
обмеженого адаптивного вирівнювання гістограми, архітектури GhostNetV2 для ефективного вилучення ознак і 
зменшення загальної кількості параметрів, механізму уваги Coordinate Attention та оператора Deformable 
ConvNets v4 для покращеної репрезентації ознак. Модель перевірено на вибірці UTDAC2020 (результати – 
precision 82.35%, recall 80.98%, mAp 86.21% при значенні IoU = 0.5), що випереджає результати YOLOv8s на 
даній вибірці при зменшенні обчислювальної складності на 15.1%. Результат даної роботи можна застосувати 
для розробки програмного забезпечення для безпілотних підводних апаратів. 
Ключові слова: виявлення підводних об’єктів; класифікація; YOLO; гібридні нейронні мережі; глибоке 
навчання. 
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