MIHICTEPCTBO OCBITH I HAYKH YKPAIHU
HAIIIOHAJIBH1UN ABIAHIMHNNA YHIBEPCUTET

dakynapTeT KiOepOe3eKH 1 MPOorpaMHOi 1HXKEeHePil
Kadenpa imxenepii nporpaMmHoro 3abe3rneueHHs

JNOITYCTUTHU 10 3AXUCTY
3aBigyBayd BUIIYCKOBOI Kadeapu

Onekciiit TOPCBKUI

“ 7 2023 p.

JTUIIJIOMHA POBOTA

(ITOACHIOBAJIBHA 3AIIMCKA)

BUITYCKHHUKA OCBITHLBOI'O CTYIIEHA MAI'ICTPA

Tema: “Meroauka TecTyBaHHS 3aCTOCYHKIB JJOIIOBHEHOI peajbHOCTI”

Bukonage1is: Kpageup bornan Onekcanaposuy
KepiBHuk: I.T.H., noueHT Yebantok Onena BikTopiBHa
HopmoxonTposnep: K.(}.-M.H., morienT Muxaiino OJIEHIH

KUIB 2023

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Faculty of cybersecurity and software engineering
Software engineering department

ADMIT TO DEFENCE
Head of the Department
Oleksiy Gorskyi

(13 2 2023
(EXPLANATORY NOTE)
GRADUATE OF EDUCATIONAL MASTER’S DEGREE
Topic: “Approach for testing Augmented reality applications”
Performer: Moskalenko Danyil Olegovych
Supervisor: D.Sc, associate professor Chebanyuk OlenaViktorivna
Standard controller: PhD, associate professor Mykhailo OLENIN

KYI1V 2023

HAILIOHAJIBHUM ABIALIIMHUN YVHIBEPCUTET

dakyJabTeT KI0epOe3NeKy 1 MPOrpaMHoOi 1HXeHepii

Kadeapa imxenepii nmporpamMHoro 3ade3neueHHs

OcsiTHill cTyniHb MaricTp

CrneniajJbHiCTh 121 InkeHepist mporpaMHOro 3ade3neyeHHs
OcBiTbHO-IpOQeciiina mporpama [HxeHepist mporpaMHOro 3a0e3neUYeHHs

3ATBEPJIXKYIO
3aBimyBau kadeapu
Onekciit ['opcekuii
" 2023 p

3ABJIAHHA
HA BUKOHAHHS JUIVIOMHOI po00TH
MockaneHnka Jlanuina Onerosuya

1. Tema numioMHoOi poboTu: «MeToIMKa TeCTyBaHHS 3aCTOCYHKIB JJOMTOBHEHOI
peabHOCTI»
3aTBep/KeHa HaKa30oM pektopa Big «29» BepecHs 2023p. Ne 1994/cr.

2. Tepmin BukoHanHs po6otu: 3 02.10.2023 p. o 31.12.2023 p.

3. BuxizHi 1aHH1 0 MPOEKTY: METOJIOJIOTIS TECTYBaHHS IPOrPAMHOT0 3a0€3MeYeHHS
JIOTIOBHEHO1 peanbHOocTi. [IporpaMHuii mpoayKT, KU Oylie BHUKOPHUCTOBYBATUCH SIK
1HCTPYMEHT, SIK OJIUH 13 IHCTPYMEHTIB 3alpONaHOBAaHOI METOI0JIOT].

4. 3MICT OSICHIOBAJILHOI 3aITUCKHU:

1. JloMeHHMI aHAJI3 NPEeaIMETHOT 00JIacTl - TOMOBHEHOI peaIbHOCT1, METOIB 1
METO/I0JIOT1/ TECTyBaHHS, IHCTPYMEHTIB TECTYBAaHHSI IIPOrPaM JOMOBHEHOI peaIbHOCTI.

2. Posrnsn 3armpornoHOBaHOT METOO0JIOTIT TECTYBaHHS.

3. CuctemMH1 0OMEXEHHS 1 CTPYKTypa B3a€MO/Iii 3aC001B /I BUKOHAHHS
3aMpONOHOBAHOI METOI0JIOT1i TeCTyBaHHS.

4. Mopaenb B3aeMO/IIi MpOrpaMHUX 3aC001B JIJIsl MPOBEICHHS TECTYBaHHS

5. Bumoru 50 iHCTpyMEHTY T€CTYBaHHS.

6. CTpykTypa IHCTPYMEHTY.

7. PoOounii mpOTOTHUIT IHCTPYMEHTY.

8. Pe3ynbratu 3aCTOCYBaHHSI METOJ0JIOTi

5. Ilepenik UTIOCTPATUBHOTO MaTepiay:

1. Tema, 00’€KT TOCTIKEHHS, TPEAMET JOCIIIPKCHHS, METOAM JTOCI1IKEHHSI,
rinoresa.

2. Omnuc 3anpornoHOBaHOI METOIUKHU.

3. .CxiagHOCTI peati3aili MeTOANKN

4. Mo>JIMBI CITIOCOOM peartizalil

5. 3acTocyBaHHS 3allPOIIOHOBAHOT METOIMKH Ha MPAKTHII.
6. BucHOBKH.

6. Kanenpapuauit mian-rpadik

No BigmiTka
. /;[3aBiaHHA Tepmin BUKOHAHHS po
BUKOHAHHS
1. |Po3pobka mnany podotu, Ha3Bu po3aitis [13 ta
3aTBEPKEHHS iX KEPIBHUKOM (JIUB.2 JIUCT 02.10.23 - 08.10.23
1m1a6JI0HY)
2. Hanucanus po3ainy 1 Ta qonomMixHUAX
CTOPIHOK, IIPE3CHTAIlisl HAYKOBOMY KEPIBHUKY 08.10.23 - 17.10.23
3. |Hamucanus po3ainy 2 1 JONOMIXKHUX CTOPIHOK.
NpE3eHTallisl HAYKOBOMY KEPIBHUKY. 17.10.23 - 20.10.23
4. |[lepmuit HOPMO-KOHTPOIb 1-2 po3ain 15.10.23 — 22.10.23
5. |Hanwmcanns po3aury 3 1 JOMOMIKHUX CTOPIHOK.
Ipe3eHTAallisl HAYKOBOMY KEPIBHUKY 22.10.23-18.11.23
6. |Hamucanns po3miny 4 1 JONOMIXKHUX CTOPIHOK. 18.11.23 — 30.11.23
Ipe3eHTalllsl HAYKOBOMY KEPIBHUKY o T
7. |3aranbHe pefaryBaHHs MOSCHIOBAJLHOT
3aMuCcKy, TpadigHOro Marepiaiy. 30.11.23-10.12.23
Q. 3aBepuieHHs HanmcanHs 113. TIpoxomxkenns
HOpMOKOHTpOJIFO. Jpyk II3 Otprumannus 04.12.93 — 15.12.23
BIIFYKY KepiBHUKa. [linroToBKa mpe3eHTarii ta| o
JIOTIOB1/I1 HA MepeJ] 3aXHCT.
10. |[lepenzaxuct kamid. Pobotu. OtpumanHs
periensii 15.12.23 -17.12.23
11. |IligroroBKa JOKYMEHTIB JI0 3aXUCTY Ta 3/1aya
ix cexperapio JIEK 18.12.23 — 24.12.23
12. 3axuct KBaHi(b. p06OTI/I 27.12.23
7. Nata Bugadi 3aBaanus 05.09.2022 p.
KepiBHuk: I.T.H., noueHT Onena YUEBAHIOK

3aBJaHHS NPUITHSAB 10 BUKOHAHHS: bornan KPABELID

NATIONAL AVIATION UNIVERSITY

Faculty of cybersecurity and software engineering
Department Software Engineering

Education degree master

Speciality 121 Software engineering
Educational-professional program Software engineering

APPROVED
Head of the Department
Oleksiy GORSKYI
S 2023

Task

on executing the graduation work
Moskalenko Danyil Olegovych

1. Topic of the graduation work: «Approach for testing Augmented reality applications»
Approved by the order of the rector from 29.09.2023 Ne 1994/cr.

2. Terms of work execution: from 02.10.2023 to 31.12.2023

3. Source data of the work: develop an approach that will allow solving the task of
testing augmented reality software. A software product that will be used as a tool in
the methodology.

4. Content of the explanatory note:

1. Domain analysis of the subject area - augmented reality, testing methods and
methodologies, tools for testing augmented reality programs. Proposed approach of
testing in the AR development.

2. Consideration of the proposed testing methodology.

3. System limitations and the structure of the interaction of means for execution
the proposed testing methodology.

4. Model of software interaction for testing.

5. Requirements for the testing tool.

6. Structure of the tool.

7. Working prototype of the tool.

8. Results of methodology application
5. List of presentation mandatory slides:

1. Topic, research object, research subject, research methods, hypothesis.
2. Description of the proposed approach.
3. Difficulties in implementing the approach.

4. Possible methods of implementation.
5. Application of the proposed approach in practice.
6. Conclusions.

6. Calendar schedule

Task

Execution
term

Execution
mark

Development of a work plan, names of software
sections and their approval by the manager

02.10.23 - 08.10.23

Writing section 1 and supporting pages,
presentation to the supervisor.

08.10.23 -17.10.23

Writing section 2 and supporting pages.
presentation to the supervisor.

17.10.23 - 22.10.23

The first norm-control 1-2 section

15.10.23 - 22.10.23

Writing section 3 and supporting pages.
presentation to the supervisor.

22.10.23 - 18.11.23

Writing section 4 and supporting pages.
presentation to the supervisor.

18.11.23 -30.11.23

General editing of the explanatory note, graphic
material.

30.11.23 - 10.12.23

Completion of software writing. Passing control
norms.

Printing software. Receiving feedback from the
manager.

Preparation of presentations and reports for
defense.

04.12.23 - 15.12.23

10.

Pre-defense of qualifying work. Receiving a
review

15.12.23 -17.12.23

11.

Preparation of materials for transfer to the
secretary of the DEC (software, CD-R with
electronic copies of the software, presentations,
feedback from supervisor, review, certificate of
success, folder: check with the secretary of the
DEC)

18.12.23 —24.12.23

12.

Graduation work defense

25.12.23 - 31.12.23

7. Date of issue of the assignment 05.09.2022.

Supervisor:

Task accepted for execution:

Olena CHEBANYUK
Danyil MOSKALENKO

PE®EPAT

[TosicHIOBaIbHA 3amucKa J0 TUMIIOMHOI pobotu «Iliaxia 10 TecTyBaHHS OAATKIB
JIOTIOBHEHOI peanbHOCTI»: 84 c., puc., Tab., IKepena iHpopMmarii.

OO0’eKT MAOCHIIPKEHHS — TMPOIECH TECTYBaHHS MPOrpaMHOro 3abe3neyueHHs
JIOTIOBHEHO1 PEaIbHOCTI.

[Ipenmer AocHimKEeHHS — METOAMU Ta 3acOOM TECTYBAaHHS IMPOTPaM JOTMOBHEHOI
pealbHOCTI, CHpsSAMOBaHI Ha €QEeKTUBHY IIEPeBIPKY iX TIpale3laTHOCTI MiJ dac
TECTYBaHHS.

Mera ngaHoi poOOTH - 3ampOINOHYBATH Ta JOCHIIUTA HOBUU METOJ TECTyBaHHS
nporpaM JOMOBHEHOI pPEaJbHOCTI, SIKUW MIT OM JOMOBHUTH ICHYIOUI METOJIU Ta
IHCTPYMEHTH TECTYBaHHS JOMOBHEHOI peasibHOCTI. KpiM Toro, y mMailOyTHpOMY 1€
MOk€ OyTH BIOCKOHAJIEHO 3aBASKH pPO3pOOLI XMapHMX TEXHOJOTIH JOMOBHEHOI
peaIbHOCTI.

[nore3a - MOXIMBICTH BUKOPHCTAHHS 3aCTOCYHKY JIONBHEHOI pealbHOCTI
TECTYBAaHHS 1HIIOTO 3aCTOCYHKY JOIOBHEHOI PEaJIbHOCTI.

MeTtoau JOCHIIKEHHS:

EBpuctuyHmMii METOJ BUKOPUCTOBYETHCA JUIsl BUSIBICHHSI TIPOOJIEM 1 OOMEXKEHbD,
BJIACTUBUX B3aeMoAil MK aBoma gomatkamMu AR. Ile Mae BupimanbHe 3HAUCHHS HE
TITBKH TSI TECTYBaHHS OJHIET 3 WX MPOTpaM, ajie W JJIS TMOPIBHIHHS BCTAaHOBJICHHX
METO/I1B 13 HEI[0/IaBHO 3alpOMOHOBAHUM.

Metoa MOHITOPUHTY BIJIMOBIAA€E 3a BIJICTEKEHHS Mepeaadl JaHUX BiJl MPUCTPOIO
710 eMyJIsiTOpa.

Meron anHalizy BUKOPHCTOBYETHCS ISl KOMILJIEKCHOTO BHBYEHHS MPEIMETHOI
00J1acTi, TOMEHY Ta BIAMOBIAHOI JIITEPATYpPH.

Meron cUHTE3y BUKOPUCTOBYEThCS JUisi OO €AHAHHS 1Med 1 (POopMyBaHHS
KOHCOJI1JIOBaHO1 JYMKH Ta BUCHOBKY Ha OCHOBI IPOAHAII30BaHO1 JIITEpaTypH.

Meron MopenmtoBaHHA ~ jgonoMarae cOpMyJSrOBaTH TIMOTE3y IMIOJAO
(GYHKI[IOHYBaHHS 3alpONIOHOBAHOTO METOAY TeCTyBaHHs. BiH 3armubioeTscsi B poOOTy
Ta B3aEMOJII0 MOro KOMIIOHEHTIB, MPOJIMBAIOYM CBITJIO SIK Ha IEpeBard, Tak 1 Ha

HEJOJIIKM CaMOro METOJy, a TAKOXK Ha apXITEeKTypy B3a€EMO/I1i MK IHCTPYMEHTaMHU.

Meroa mMonentoBaHHS OPIEHTOBAHWI HA CTBOPEHHSI CEPENOBHUIIA 3a JOMIOMOTOIO
3allpOIIOHOBAHOTO METOAY TecTyBaHHA. Lle 3MonmenboBaHe cepefoBHILE € KIHOUYOBHM
JUTSL TIO/TAJTBIIIOT TIEPEBIPKH MPOTPAMH, IO TECTYETHCA.

ExcriepumMenTansauii METOJ BUKOPUCTOBYETHCS TUTST TIepeBipKU
3alPOIIOHOBAHOTO METOAY TECTyBaHHS Ta BHUBYCHHS B3a€MOJil MiX OCHOBHHMH
KOMIIOHEHTaMH. Pe3ynpTaTH MaricTepchbkoi poOOTH MOXKYTh OyTH BHUKOPHCTaHI TpH
po3po0Ili Ta TECTyBaHHI MOAATKIB JOMOBHEHOI peaJlbHOCTI. BOHM TakoX MOXYTh
CTHPUATH TIOJANBIIOMY BIOCKOHAJICHHIO METOO0JIOTII Ta, IEBHOIO MipOI0, IOTIOMOTTH B
KOHIIENTYyati3allii XMapHUX JOJATKIB JOTIOBHEHOT peaibHOCTI.

JlocnipkeHHsT Ta pO3pOOKH MPOBOJUIUCSA B omepauiiHux cucremax Windows
10/Windows 11 3 BHUKOpPHUCTaHHSIM MYJIbTHUIUIATPOPMEHHOTO 1HCTpyMeHTy Unity,
cepepoBumia po3podku Visual Studio 2022 1 pemakropa Visual Studio Code.
Buxopuctanoro MoBoOIo riporpamyBaHHs Oyina C#.

TECTYBAHHA I[IPOTPAMHOI'O 3ABE3IEYEHHA, JOAATKOBA
PEAJIBHICTbh, EMVIJIATOP, TIOTOKOBA IIEPEJAYA JAHUX, B3AEMOILA
[TPOI'PAMHOI'O 3ABE3ITEYEHHS, AITAPATHE OBMEXEHHA

10

ABSTRACT

Explanatory note to the thesis "Approach for testing Augmented reality
applications": 84 p., fig., tables., information sources.

The object of research - the processes of testing augmented reality software.

The subject of research - the methods and tools for testing augmented reality
programs, aimed at effectively verifying their functionality during testing.

The purpose of this work - to propose and investigate a new method for
testing augmented reality programs, which could complement existing testing
methods and tools for augmented reality. Furthermore, it could be further enhanced
with the development of augmented reality cloud technology in the future.

Hypothesis - “the possibility of using an augmented reality application for
testing another augmented reality application”

Research methods:

The heuristic method is utilized to identify problems and limitations inherent
in the interaction between two AR applications. It is crucial not only for testing
one of these applications but also for comparing established methods with the
newly proposed one.

The monitoring method is responsible for tracking the data transfer from the
device to the emulator.

The analysis method is employed for a comprehensive examination of the
subject area, domain, and relevant literature.

The synthesis method is used to amalgamate insights and form a
consolidated opinion and conclusion based on the analyzed literature.

The modeling method aids in formulating a hypothesis concerning the
functioning of the proposed testing method. It delves into the operation and
interaction of its components, shedding light on both the advantages and
disadvantages of the method itself, as well as the architecture of the interaction

among tools.

The simulation method is focused on creating an environment using the
proposed testing method. This simulated environment is pivotal for the subsequent
verification of the program under test.

The experimental method is leveraged to validate the proposed testing
method and to examine the interaction between essential component parts.

The results of the master's thesis can be used in the development and testing
of augmented reality applications. They can also inform further refinement of the
methodology and, to some extent, aid in the conceptualization of cloud-based
augmented reality applications.

Research and development were conducted on the Windows 10/Windows 11
operating systems, using the Unity multi-platform tool, the Visual Studio 2022
development environment, and the Visual Studio Code editor. The programming
language employed was C#.

SOFTWARE ENGINEERING TESTING, ADDITIONAL REALITY,
EMULATOR, DATA STREAMING, SOFTWARE INTERACTION,
HARDWARE LIMITATION.

12

TABLE OF CONTENTS

LIST OF ACRONYMS AND ABBREVIATIONS ..o 15
INTRODUCTION....coitiiiiiiieiesieeie ettt s nneas 16
CHAPTER 1 DOMAIN ANALYSIS OF THE AUGMENTED REALITY
SOFTWARE TESTING ANDooiiiiiiieesie e 18
1.1. Domain analysis of the argument realityccccoeovevieiieiineieene, 18
1.2. Main Components of Augmented Realityccccovvevveiieiieeiinennn. 19
1.2.1. Types of augmented reality..........ccccooviiiiiieiicie e 19
1.2.2 Critical Aspects of Augmented Realityccccoovviiiiiiviiieene. 22

1.3 Domain analysis of the software testing processes.........cccocvevvverveene. 23
1.3.1 Types of Software TeStINGcccuevveriieiiriiieeeree e 24

1.4. Testing augmented reality applicationsccccocvevvevieiiesveenieenn, 27
1.4.1. Special Considerations in AR TeSting:cccccevvveriveriesieerinennn 28
1.4.2. Augmented Reality Applications Testing tools.c.cccccueenee. 30
1.4.3. Evaluation Metrics for Augmented Reality (AR) Applications. 33
(Of0] 0 0] [0 [0 TSRS OPPTRTRPRTR 35
CHAPTER 2 SAPPROACH FOR TESTING AUGMENTED REALITY
APPLICATIONS BY USING AUGMENTED REALITY APPLICATIONS...... 37
2.1. Theoretical Backgroundscccccoveiieiie e 37
2.1.1. Software Testing and Quality Assurance Principles 37
2.1.2. Software Testing and Quality Assurance Principles 39
2.1.3. Cross-Application Communication and Interaction:les.............. 40
2.1.4. Emulation and Simulation Theorycccccoveviviiv i, 41

2.2. Proposed APPrOACHcceiiiiie e 42
2.2.1. Methods and Challenges in Implementing AR Application
Testing Interactions in android deVICES.ccevvevierieiie e 42
2.2.2. The sequence of implementation of the methodology................ 49
(OF0] 0 0] 1113 (0] FO TSR OPPRSTRPSTRS 54
CHAPTER 3 DESCRIPTION OF AR TESTING TOOLS..........cccevvirnenn. 55
3.1. Software Product Specification.............cccceeveeveeiieiie e 55
3.2. Tools that were used in the development of the application. 56
3.2.1. TOOIS deSCHPLION......cccveeiieiriecie e 56
3.2.2. Libraries and teChNOlOgIESccceevveiiieiieiic e 57

3.3. Application class StrUCTUIEcccoeeiieiie e 59
3.4. Use cases of using AR application toolccccccevvviiiveniieiieiiennn, 63
(@70 0ol 11151 o] o OSSPSR 65
(08 1 I = USSR 67
APPLICATION OF THE PROPOSED APPROACH.........c.ccceiveieiveienn, 67
4.1. Definition of the object of teStiNgccceviriiniiii e, 67
4.2. Define test objectives and SCENAIIOS:ccoveriiiriiiieniee e, 67
4.2.1. Examine product NEEUS.cccevvrerriveieseene et 68
4.2.2. The audience of the software product.........cc.ccovvvrvviiveieninnnnn 69
4.2.3. Real-world SCENArioS.......c.cccviverveieieee e 70

INAOOr ENVIFONMIENTS. .. .ottt e e e 70

OUutdoor ENVIFONMENTS.......ooiiiiiiiie et 70
Lighting ConditioNnScocviiiiiiecc e 70
Physical Surfaces and Markersccccovveveiieiiecce s 70
USEI INTEIACLIONSc.vivieiieiie et 71
SPECITIC USE CASES.....cveiiiiicie ettt se et ae et 71
ACCESSIDIIITY ..o 71
NEtWOrK CONAITIONSocvviiiieiieciee e 71
A.2.4. TESECOVEIAQEvveeieieiiiieeiie et siee ettt sttt snae e nnaee s 71
4.2.5. SCOPE OF TESLING ..eovvvveiieiie e 72

4.3. TeSHING TOOIS....ciiiiiieeieieeee e 73
4.4, Testing tools COMMUNICALIONcccuviieiieeiieiie e 75
4.5. Preparing for testing toolcocoiiiii i 76
CONCIUSTON. ...ttt nreereas 78
CONCLUSIONS ...ttt et be e nre e 80
REFERENCES...... .ot 82

14

LIST OF ACRONYMS AND ABBREVIATIONS

XR — Extended reality
AR — Augmented reality
VR — Virtual reality

OC — Operating system

INTRODUCTION

Nowadays, there is a significant development of computer technologies, as well
as software solutions for them. In addition to the development of conventional
programs, there is also the development of the direction of mixed reality (XR),
especially augmented reality and virtual reality.

Although some devices for full reality are being developed or are not available to
a wide audience. The significant development of mobile has created the concept of
using augmented reality applications through personal mobile devices.[MOBILE
INDOOR AUGMENTED REALITY. Exploring Applications in Hospitality
Environments] In this direction, augmented reality (AR) relies on combining and
superimposing virtual information over the real world, providing the user with extra
(even real time) computer-based information.

In general, Augmented reality can be described as an enhanced, interactive
rendition of the real world, achieved through the incorporation of digital visual
elements, sounds, and other sensory stimuli using holographic technology. AR
encompasses three key features: the merging of digital and physical realms, real-time
interactions, and precise 3D or 2D identification of both virtual and real-world objects.

Now the technology of augmented reality continues to evolve alongside broader
technological advancements. However, it also faces certain limitations and risks due to
the ongoing development of the field. It has not yet fully realized its potential
conceptually. Currently, the proliferation of high-definition cameras, integrated
compasses, and inertial systems in mobile devices has created a fertile technological
landscape for the development of mobile AR services.

Along with the development of technology and the increase in the number of
available devices, the complexity of the software being developed increases, which
leads to more potential bugs in the software (software). In addition, software errors can
be joined by both errors of new devices for which an augmented reality program can be
developed, as well as specific nuances of already existing systems and emulators for

them.

16

Based on the above, the testing process during the development of programs can
play a wider role in the creation of augmented reality systems than in the development
processes of other types of applications.

Usually, the testing process refers to the process of identifying flaws in developed
systems, which often use debugging tools and work in stable operating systems on
widely used hardware. However, augmented reality systems can be developed both
within the framework of standard hardware with a stable OS, and within the framework
of experimental devices and OS. Moreover, it is possible to use various sensors that
may not be calibrated. Also, in the testing process, not only bugs in the developed

system, but also in the OS or hardware may be found.

17

CHAPTER 1
DOMAIN ANALYSIS OF THE AUGMENTED REALITY SOFTWARE
TESTING AND

1.1. Domain analysis of the argument reality

Augmented Reality (AR) Augmented Reality (AR) is an immersive technology
that superimposes digital information, virtual objects, or computer-generated sensory
elements onto the real world. This enriches the user's perception of their surroundings,
acting as a bridge between the physical and digital realms. AR applications are designed
for use in real-world settings, offering users a seamless blend of physical and virtual

experiences.

Extended Reality

v v v

Virtual reality Mixed reality Augmented reality

\ 4 \ 4 Y Y
AR face filters Location-based AR Marker-based AR Marker-less AR

Fig 1.1. External Reality class diagram

AR is part of the broader field known as Extended Reality (XR), which also
includes other immersive technologies such as:

-Virtual Reality (VR): Provides immersive experiences that isolate users from
the real world, typically achieved through specialized headsets and headphones.

-Mixed Reality (MR): A fusion of AR and VR elements, allowing digital
objects to interact with the real world and enabling the integration of virtual elements
into genuine environments.

The concept of "augmented reality” is not new; its roots can be traced back to the

1960s with Ivan Sutherland's design of a head-mounted display tracked by mechanical

18

and ultrasonic trackers. However, the term, as it is known today, gained widespread

usage starting in 1992 with the work of Caudell and Mizell.

1.2. Main Components of Augmented Reality

Augmented reality technology operates on various devices and consists of five key
components, which are essential for its effective functioning:

- Acrtificial Intelligence (Al): Al allows users to perform actions using voice
commands and assists in processing information for AR applications.

- AR Software: These tools and applications enable access to and utilization
of
AR. Some businesses develop their own custom AR software.

- Processing Power: AR technology requires substantial processing power,
often leveraging the internal operating system of the user's device.

- Lenses: High-quality lenses or image platforms are essential for viewing
AR
content. The higher the screen quality, the more realistic the displayed images appear.

- Sensors: AR systems use sensors to collect environmental data, facilitating
the alignment of real and digital worlds. This data, captured by cameras, is processed
through software to provide a seamless AR experience.

These components collectively enable AR to deliver engaging and interactive
experiences. AR has applications across various industries, including entertainment,
gaming, education, healthcare, and more. As technology evolves, AR is becoming
increasingly integrated into our daily lives, offering new possibilities for enhancing our

interactions with the world around us.

1.2.1. Types of augmented reality

There are four primary types of augmented reality (see fig 1.1) : marker-based,

marker-less. AR face filters, Location-based AR The choice between these types of

19

AR fundamentally influences how you can display images and information within your
AR application,

Marker-Based AR: Marker-based AR relies on image recognition to identify
pre-programmed objects within your AR device or application. By placing these objects
as reference points within the user's field of view, the AR device can ascertain the
camera's position and orientation. Typically, this is achieved by switching the camera to
grayscale mode and then using image recognition algorithms to detect a specific marker,
comparing it with others stored in its database. Once a match is found, the device uses
this data to mathematically determine the object's pose and accurately position the AR
image within the real-world environment.

Marker-Less AR: Marker-less AR is a more intricate form of augmented reality,
as it doesn't rely on predefined markers or reference points. Instead, it must recognize
objects and features as they naturally appear in the user's view. This process involves
the use of recognition algorithms that analyze colors, patterns, and similar visual cues to
identify objects within the environment. Subsequently, the device utilizes data from
various sensors, including time, accelerometers, GPS, and compass information, to
orient itself and overlay digital images or information onto the real-world surroundings
captured by the camera.

AR face filters involve augmenting a user's face in real time with various digital
effects, such as masks, animations, or virtual makeup. These effects track the user's
facial features and movements using facial recognition technology, enhancing or
transforming their appearance in live video feeds, often for entertainment or social
media purposes.

Location-based AR leverages GPS and location data to overlay digital content
on the user's physical surroundings. By determining the user's real-world location, this
type of AR can provide location-specific information, such as nearby points of interest,
directions, or geolocated experiences. Location-based AR enhances the user's
understanding of their environment and can be used for navigation, tourism, and

contextual information delivery.

20

Each type of AR has its own set of advantages and limitations, and the choice
between marker-based and marker-less AR depends on the specific requirements and
goals of your AR application. Marker-based AR is often more precise and predictable
since it relies on predefined markers, while marker-less AR offers a more flexible and
natural interaction with the real world but can be more computationally intensive due to
the need for continuous recognition and tracking of objects.

t's worth noting that augmented reality (AR) programs can be categorized into
two main types based on their operating environments: those that function in a closed
environment and those designed for an open environment.

Closed Environment AR: These AR programs are designed to operate within
controlled or confined settings. They often rely on predefined markers, objects, or
features that are specific to the closed environment. This approach allows for more
precise and predictable AR interactions within a controlled space. Examples of closed
environment AR applications include indoor navigation systems within a shopping mall,
educational AR experiences within a classroom, or maintenance assistance tools in a
factory.

Open Environment AR: On the other hand, open environment AR programs are
intended to function in dynamic and uncontrolled surroundings. They are engineered to
recognize and interact with objects and features as they naturally occur in the real
world. This type of AR requires advanced computer vision and recognition algorithms
to identify and track objects and surfaces in real-time. Open environment AR is well-
suited for outdoor navigation, tourism applications, and interactive experiences that
span various locations.

Closed environment AR offers a high degree of precision but is limited to
specific, predefined areas. In contrast, open environment AR provides greater flexibility
but demands more complex algorithms and sensors to adapt to diverse and ever-
changing surroundings. The decision should align with the desired user experience and

the intended application context.

21

1.2.2 Critical Aspects of Augmented Reality

Augmented reality, as an actively developing field, encompasses several critical
aspects that significantly impact its effectiveness and usability:

- Lack of AR Design & Development Standards: A major challenge in the
AR industry is the absence of universal standards, leading to software and hardware
limitations, difficulties in support, and project testing.

- Security & Privacy Concerns: Inconsistencies in AR programming and
negligence raise security and privacy issues. The lack of clear regulations allows for
potential misuse and risks such as data leakage, dissemination of unreliable information,
and physical harm due to improperly placed virtual objects.

- Technical Limitations: AR requires sophisticated hardware and software,
including processors, sensors, cameras, displays, and network capabilities. Inaccuracies
in GPS sensors or other components can lead to erroneous display of information.
Integration challenges with VR technologies and limited interoperability further hinder
broader adoption.

- Limited Interactivity: Compared to VR, AR’s interactivity is constrained by
its reliance on real-world environments, limiting the extent to which users can
manipulate virtual elements.

- Occlusion Issues: A significant challenge in AR development is occlusion,
where objects in the environment block the view of virtual elements, requiring
substantial processing power for accurate real-time tracking and rendering.

- Challenges in Accurate Tracking: Accurate object tracking is hampered by
varying lighting conditions and viewing angles, introducing complexities in the tracking
algorithms and potential latency issues.

- Voice Recognition & Processing Limitations: Effective voice recognition
depends on robust hardware and specialized algorithms, which can be affected by
environmental factors.

- Network Bandwidth & Latency: As AR becomes more widespread,
increased demand on network infrastructure can lead to bandwidth constraints and

latency issues, impacting application performance.
22

- Camera Positioning Challenges: Determining the camera angle and location
Is complex, as it requires algorithms to interpret the viewpoint and orientation relative
to virtual objects. Using markers or surface recognition can aid in this process but may
neglect non-static objects.

- Physical Object Recognition and Occlusion: Recognizing physical object
boundaries and managing occlusion, where parts of virtual objects are overlapped by
physical ones, remains a complex task.

- User Experience (UX) Design: The UX of AR apps is critical and should be
intuitive, immersive, and seamless, considering user comfort to avoid issues like motion
sickness or eye strain.

- Realism and Immersion: The success of AR depends on the realistic
integration of virtual and physical elements, including accurate 3D rendering and
appropriate scaling.

- Performance and Latency: Low latency and high performance are essential
for real-time interaction and maintaining immersion in the AR environment.

- Stability and Tracking: Accurate tracking and stability of virtual elements in
physical spaces are crucial, requiring advanced sensor technologies.

- Content Quality and Relevance: AR content should be engaging, relevant,
and provide value to the user, encompassing both visual and informational elements.

- Battery Life and Power Efficiency: Optimizing AR apps for power
efficiency is vital, especially for mobile applications, to avoid rapid battery depletion.

- Scalability and Integration: AR applications should be scalable and
integrable with various systems and technologies for expanded functionality.

- Market Viability and User Adoption: The success of AR apps hinges on

understanding the target market, meeting user needs, and ensuring ease of use.

1.3 Domain analysis of the software testing processes

Software testing is a comprehensive and crucial process within the software
development life cycle, aimed at examining and ensuring the quality, functionality, and

performance of a software product. It involves both validation and verification to
23

provide an objective view of the software, allowing businesses to understand the risks
associated with software implementation. This process includes a variety of techniques,
ranging from manual interactions to executing test scripts, to detect bugs, errors, and
ensure that the software meets its intended purpose and business logic.

Testing not only prevents bugs and reduces development costs but also improves
overall performance. It's essential for maintaining software quality, particularly in the
development of mobile applications, where attention to detail in testing is increasing. As
a process of comparing expected output with actual output, software testing
encompasses all aspects of testing, including software security, reliability, correctness,
and quality.

Over time, as applications have become more complex, software testing activities
have evolved, introducing new techniques and approaches. A key aspect of software
testing is to detect failures so that defects can be resolved, although it's acknowledged
that testing cannot guarantee perfect functionality under all conditions. It includes
various phases such as test strategy, development, bug management, execution, and
more.

The software testing lifecycle (STLC) is a sequence of activities conducted in a
systematic and planned manner, aimed at improving product quality. It is a subset of the
Software Development Life Cycle (SDLC), and its phases are critical to the overall
effectiveness and reliability of software development. This lifecycle ensures that testing
iIs managed effectively, catering to various aspects like scalability, resource usage, and

reliability, and thereby plays a vital role in the software industry.

1.3.1 Types of Software Testing

Software testing can be classified into multiple categories based on test
objectives, strategies, deliverables, ways, and techniques. It can be further divided into
automated and manual methods, along with specific testing techniques like black box

and white box testing.

24

Software Testing

| Manuai Teslfng | | Avutomalion Testing ‘
v v v
| Grey Box Testing ‘ | Black Box Testing | ‘ Whife-Box Testing |
| Functional Testing ‘ | Maimntenance Testing | ‘ Non-functional Testing |
‘ Smoke Testing | | Unit Testing ‘ | Integration Testing ‘ ‘ System Tesfing | | Performance Testing | ‘ Usabitity Testing ‘ ‘ Compatibility Testing |
¢ vL Load Testing
Incremental Testing | ‘ Non-Incremental Testing ‘
StressTesting
ity Testing

Stability Testing

Fig 1.2. Software testing class diagram

Automation Testing: Automation testing, or Test Automation, involves writing
scripts and using software to test the product. It is used for re-running manual test
scenarios quickly and repeatedly, and for regression, load, performance, and stress
testing. It increases the test coverage, improves accuracy, and saves time and money
when compared to manual testing.

Manual Testing: Involves testing software manually without using any
automation tools or scripts. Testers act as end-users to identify unexpected behaviours
or bugs. This method includes various stages like unit integration testing, user

acceptance testing etc.

The above categories determine more the resources required for testing than the
methods and procedures of their implementation. So, each technique method includes
different testing techniques; the most well-known are two techniques: black box testing
and white box testing.

Black Box Testing involves testing without access to the source code. Testers
focus on the software interface and functionalities, ensuring the program meets project

requirements and functions correctly.

25

White box testing is focuses on the internal structure and logic of a software

application. It is also known as "clear box testing," "glass box testing," or "structural
testing." The primary goal of white box testing is to ensure that the code and its
components work correctly by examining the program's internal workings, code paths,
and data flows.

In addition, there exists a less-known category known as Grey Box testing. Grey
Box testing requires testers to possess knowledge of the implementation without
requiring expertise.

Among these techniques, black box testing is most common. Software testing can
be broadly classified into three types:

Functional Testing: It is a type of software testing validates the software's
conformance with functional requirements. It checks whether the application functions
as specified in the functional requirements. Various types of functional testing include
Unit testing, Integration testing, System testing, and Smoke testing.

Unit Testing - testing individual units or components of a software/system to
validate that each unit functions as designed. Typically, system programmers and
developers perform unit testing.

Integration Testing - combines units and tests them as a group to expose faults in
their interactions. It analyzes characteristics such as functional, performance, and
reliability requirements imposed on significant design elements.

System Testing - complete, integrated system/software to ensure its compliance
with specified requirements.

Smoke testing (build verification testing or sanity testing) is an initial and
minimalistic level of software testing performed to verify that the most critical and basic
functionalities of a software application are working correctly after a new build or
release. The primary purpose of smoke testing is to ensure that the software is stable
enough for more extensive testing, such as regression testing or comprehensive
functional testing.

Non-functional testing is a type of software testing that assesses the aspects of a

software application that do not relate to its specific functionality or features but rather

26

focus on its performance, reliability, scalability, and other quality attributes. These tests
evaluate how well the software performs under different conditions and constraints.
Non-functional testing is essential to ensure that the software meets user expectations
and performs effectively in real-world scenarios. Various types of non-functional testing
include Performance testing, Stress testing, and Usability Testing.

Performance Testing: Performance testing evaluates factors like stability, speed,
scalability, and responsiveness of an application under specific workloads. It plays a
crucial role in ensuring software quality and involves assessing various aspects such as
application output, processing speed, data transfer velocity, network bandwidth usage,
maximum concurrent users, memory utilization, workload efficiency, and command
response times.

Usability Testing: Usability testing involves evaluating a product or service by
testing it with representative users, observing their interactions, and noting their
feedback.

Stress testing evaluates the behavior of a software application under extreme or
unfavorable conditions.

Acceptance testing focuses on evaluating whether a software application meets
the specified business requirements and is ready for deployment to end-users or
customers.

3. Maintenance testing encompasses modifying and updating the software to meet
customer needs. It includes regression testing to ensure that recent code changes do not

negatively affect previously functioning parts of the software.

1.4. Testing augmented reality applications

In many cases, AR applications are used on a smartphone, so testing can
encompass standard types and methodologies for testing mobile applications by
employing testing tools (see table 1.1.).

Table 1.1.
Standard tool for testing applications on smartphones

27

Tool Testing type

Selenium Functional testing

TestComplete Functional testing, Graphical User Interface testing, Unit

testing

Ranorex Graphical User Interface testing, Compatibility testing
Continuation of Table 1.1

Appium Graphical User Interface testing, Functional testing

Quick Test Professional | Functional testing, Regression testing

OpenScript Functional testing, Load testing, Database testing

Janova Functional testing

Rational Functional Functional testing, Regression testing, Graphical User

Interface testing

However, due to the unique aspects of AR, certain standard tests and tools might
not always be practical.

Typically, manual testing is employed for testing AR applications. It often
involves two or more individuals to effectively incorporate human factors. In this
context, several testing techniques are used, either in their standard form or modified to
suit the specific requirements of AR technology. These techniques include functional
testing, accessibility testing, usability testing, immersive testing, hardware Testing,
Holistic Testing Approach, security testing, loss of connection testing, multiple aspect

ratio testing, localization loss, performance testing, compatibility testing.

1.4.1. Special Considerations in AR Testing:

- Integration of AR-specific Factors: While employing both manual and
automated testing, special emphasis is placed on AR's unique interaction with real-
world environments. This includes testing for spatial awareness, real-world object
recognition, and the seamless integration of virtual and physical elements.

- User Experience in AR: Leveraging the principles of usability testing, the
focus here extends to the intuitiveness of interacting with augmented elements and the
overall immersive experience. This encompasses assessing user comfort, ease of

navigation within the AR space, and the responsiveness of AR elements to user actions.

28

- Hardware Compatibility: Given the diversity of devices on which AR
applications can run, hardware testing must ensure optimal performance across various
smartphones and AR-specific devices like headsets and wearables.

- Environmental Adaptability: AR applications should be tested in multiple
real-world scenarios to evaluate their adaptability to changes in lighting, physical space,
and user movements.

- Network Dependency and Connectivity: Special tests are required to assess
how AR applications perform under varying network conditions, particularly focusing

on scenarios like loss of connectivity to understand the resilience of the application.

Refining Standard Testing Approaches for AR:
- Functional Testing in AR: While the fundamentals of functional testing

apply, in AR, this involves ensuring that augmented elements function correctly within
their intended real-world contexts.

- Performance Testing with AR Focus: Performance testing should account
for the additional processing demands of AR, including real-time rendering of graphics
and the handling of complex user interactions.

- Security Testing for AR: The security aspect in AR includes not only data
protection but also user privacy concerns, given the technology's interaction with the
physical environment and potential access to sensitive information through the device's

Sensors.

29

1.4.2. Augmented Reality Applications Testing tools.

Fig 1.3. Unity MARS presentation

a) Unity Mars: This advanced package of AR tools. It offers templates for
developing AR applications, rule-based setups, virtual simulation tools, and high-
quality scenes for AR testing. Its cross-platform support accelerates AR application
development, allowing testing in a virtual environment without preliminary settings.

However, the annual cost of €552 may be prohibitive for start-ups, and ongoing
subscription renewal is necessary due to the difference between free AR tools and Unity
Mars tools. A limitation is testing confined to the Unity environment, which may pose
challenges for test organizations requiring project source code transfer. There's also a
potential for interaction conflicts with third-party AR libraries. It's worth noting that
many augmented reality device manufacturers offer complimentary virtual device
testing both within and outside the Unity environment, presenting alternative options for
developers.

b) Arium is an open-source, lightweight, and extensible framework designed
to
streamline the creation of automation tests specifically tailored for XR Applications. It
enables scripting for user interaction and object status tracking on stage. The main

advantage lies in its capacity to test program components in real scenarios.

30

However, the manual scripting requirement for each user step, especially in
complex interactions, can be cumbersome. Although the program does not account for

user-view conditions, additional checks can partially address this issue.

C) GameDriver: GameDriver is a framework that provides developers with an
API agent that can be embedded into their program. During development, developers
incorporate the GameDriver game object into their game, enabling GameDriver to
connect to and control the game while it is running, both during development and in
standalone builds. This framework allows communication with the game through a
backchannel to the driver's API, enabling the execution of commands asynchronously or
synchronously. These commands mimic the input actions of a real user but are executed
through a different mechanism. Beyond user input functionality, GameDriver offers
features such as logging user code, recording game execution, taking screenshots,
recording user input, and accessing application data.

The primary advantage of GameDriver is that all tests are written and executed in
a separate, independent application. All operations are performed asynchronously, and
connections are established by importing a single package and configuring the required
parameters. Consequently, testing can be conducted at any time, independent of the
project's state.

However, a major drawback is that GameDriver provides extensive control,
potentially introducing vulnerabilities for attackers to exploit or enabling the tracking of
user actions.

d) Bitbar: Bitbar is a cloud-based mobile and web application testing platform
that supports both live manual app testing and automated testing across various
environments. It accommodates testing on desktop browsers (Windows, macQOS, Linux)
and real iOS and Android devices, offering compatibility with a wide range of modern
web browser versions and mobile systems, including Android, i0OS, Windows Phone,
and Blackberry. Bitbar aims to serve as a comprehensive solution for device and
browser testing needs, whether for web, native, or hybrid apps. The platform enables

automated testing across multiple devices, supports local testing via SecureTunnel, and

31

provides a customizable app-testing infrastructure to meet specific organizational
requirements. Bitbar's scalability and performance capabilities make it a versatile tool
for application testing.

Its main advantage lies in providing access to a multitude of devices with varying
specifications, essential for AR applications that may perform differently across
different hardware. It also facilitates remote testing and automation, speeding up the
development cycle and enabling more frequent testing. Testing on actual devices offers
a more accurate understanding of how an AR application will perform in real-world
scenarios.

However, it's important to note that Bitbar relies on a stable internet connection,
and network issues can hinder testing processes. While Bitbar supports a broad range of
testing scenarios, it may not offer the same level of customization or specialized tools
for AR application testing, which can be more complex due to the integration of real-
world environments. Depending on the scale of testing, using a cloud-based platform
like Bitbar can be expensive, particularly for small developers or startups. Also remote
testing may introduce latency, impacting the testing of AR applications where real-time
interaction is crucial.

e) Ul Testing Applications: Airtest and XCUITest are testing frameworks
primarily focusing on user interface testing. However, they can also be adapted for
testing augmented reality (AR) programs utilizing tools like virtual cameras, Azure
Spatial Anchor -stores sensor data, video footage with prepared layouts for AR testing.
Their main advantage lies in supporting Ul automation testing, which is beneficial for
AR applications that rely on Ul elements overlaid on the real world. These frameworks
allow scripting in Python, facilitating the creation of complex test scenarios necessary
for AR applications. They employ image recognition technology, enabling interaction
with the application by recognizing on-screen elements, a valuable feature in AR where
elements can change based on the user's environment and interaction. Moreover, Airtest
supports testing on various devices and platforms, which is essential for AR apps

designed to function across different hardware and software configurations.

32

However, these frameworks are not specifically designed for AR, necessitating
their use alongside other tools. AR applications often utilize various sensors (e.g.,
gyroscope, accelerometer), which may not be fully testable without tools like Azure
Spatial Anchor. Running complex AR tests can be resource-intensive, potentially
leading to performance issues on the testing platform.

f) Performance Metric Tools: These tools provide insights into app
performance and include built-in options for Android devices. Examples include OVR
Metrics Tools (for analyzing frame rates and thermal values), Logcat (for collecting
system logs), Ovrgupprofiler (for accessing GPU pipeline metrics), GPUsystrace (for
rendering stage data), RenderDoc (for frame analysis and debugging), and Unity
Profiler (for monitoring app performance). Each tool has unique functionalities, but they
generally do not have specific disadvantages, except for the potential pre-installation on

Android devices.

1.4.3. Evaluation Metrics for Augmented Reality (AR) Applications

Evaluating AR applications presents unique challenges due to the lack of
standardized testing methods. However, the evaluation metrics can be broadly
categorized into three primary groups: Usability Metrics, User Experience Metrics, and
Impact Metrics. Additionally, other relevant metrics, though perhaps less explicit, are
also vital in assessment:

a) Usability Metrics:

1) Latency: The delay between user action and system response. Lower
latency
is crucial for a seamless AR experience.
2) Accuracy and Precision: How accurately and precisely AR elements are
placed in the real world.
3) Frame Rate: The smoothness of the visual display, measured in frames
per second.

4) Field of View (FoV): The extent of the observable environment at any
33

given moment.
5) Object Recognition Time: How quickly the system recognizes and
interacts with real-world objects.
b) User Experience Metrics:
1) User Satisfaction: Gathered through surveys and interviews, measuring
overall satisfaction with the AR experience.

2) Ease of Use: Evaluating how intuitive and user-friendly the AR application

3) Engagement: Assessing how engaging and immersive the AR experience
IS

for users.

4) Physical Interaction and Ergonomics: How comfortable and natural it is
for users to interact with the AR environment.

C) Impact Metrics:

1) Learning and Performance Improvement: Assessing whether the AR
application helps improve user performance or learning in a given task.

2) Behavioral Change: Measuring any changes in user behavior as a result
of interacting with the AR application.

3) Emotional Impact: Understanding the emotional response elicited by

the
AR experience.
d) Additional Metrics:

4) Battery Consumption: Important for mobile AR applications, as they can
be resource-intensive.

5) Stability and Robustness: How well the application performs under
different environmental conditions and handling interruptions.

6) Network Performance: For AR applications that require internet
connectivity, assessing data transfer rates and network latency is crucial.

7) Rendering Quality: The visual fidelity of the AR elements, including

resolution and textural details.

34

8) Privacy and Security: Especially important given the use of cameras and

sensors in public or sensitive environments.

It is also worth noting that as the field of augmented reality matures, there may be
a shift toward more standardized metrics and evaluation methodologies. And therefore,
these indicators are constantly being improved and adapted so as not to lose relevance.
Additionally, depending on the application's use case, additional metrics such as social

interaction, collaboration effectiveness, or commercial success may be relevant.

Conclusion

Software testing is an integral and increasingly vital component of software
development, gaining even more prominence in emerging domains like Augmented
Reality (AR) Applications. While AR technology has seen substantial integration with
smartphones and other mobile devices, it still lacks standardized methodologies for
software testing. This absence of standardized testing procedures poses significant
challenges in the field, leading to limitations and potential inaccuracies during the
testing process.

The unique nature of AR — blending digital elements with the real world —
requires novel approaches to ensure software quality and reliability. The lack of
established testing standards for AR applications complicates the assessment of
usability, user experience, and overall functionality. Moreover, AR applications interact
with diverse hardware and software ecosystems, further complicating the testing
landscape.

This situation underscores the necessity for the development of comprehensive,
standardized testing frameworks tailored to AR applications. Such frameworks would
not only streamline the testing process but also enhance the accuracy and reliability of
the results. As the field of AR continues to evolve and expand, the establishment of
such standards will be crucial for advancing the quality and effectiveness of AR

technologies.

35

In conclusion, the growing complexity and sophistication of AR applications
demand a concerted effort toward the development of robust, standardized testing
methodologies. This advancement will be critical in unlocking the full potential of AR
technologies, ensuring their successful integration into various aspects of our lives and

industries.

36

CHAPTER 2
SAPPROACH FOR TESTING AUGMENTED REALITY APPLICATIONS BY
USING AUGMENTED REALITY APPLICATIONS

2.1. Theoretical Backgrounds
2.1.1. Software Testing and Quality Assurance Principles

The fundamental theories of software testing, including black-box testing, white-
box testing, and automated testing, provide a foundation. These principles are adapted
for AR environments, focusing on testing the unique aspects of AR applications such as
spatial awareness, real-time interaction, and 3D rendering.

Early and Continuous Testing: Given the complexity of AR applications, which
integrate real-time 3D rendering, user interaction, and often hardware components like
cameras and sensors, early and continuous t That is, the sooner an error is detected, the
less human and financial resources will be involved in its correctionesting is crucial to
identify and resolve issues before they escalate. The cost of an error grows
exponentially throughout the stages of the Software development lifecycle (SDLC). So,
we must start looking for the bug when requirements are defined.

Requirement Traceability: This involves ensuring that the AR application meets
specific requirements, such as accurate overlay of digital content onto the real world,
responsive user interaction, and stable performance across various devices and
environments.

Testing shows the presence of defects, not their absence: The purpose of
testing is to identify and correct defects in software, but testing cannot ensure that the
software is free of defects. If testing may not reveal any defects, that’s not proof that the
software is flawless. Testing only reduces the probability of having undetected defects
in the software that may affect its quality or functionality.

In AR, this principle underlines the importance of thorough testing, as defects can

significantly disrupt the immersive experience.

37

Exhaustive testing is not possible: Exhaustive testing, which entails evaluating
all possible combinations of inputs and preconditions, is unfeasible for QA teams due to
its impracticality and cost. This process would require testing every conceivable module
and scenario, posing a substantial challenge for any company.

Nevertheless, achieving high-quality software is attainable through meticulous
planning and risk assessment. Focusing testing efforts on areas with potential software
risks is the optimal approach to assure the software's quality.

Defect clustering: Defect clustering is a significant phenomenon in software
testing, which aligns with the Pareto principle. According to this principle, roughly 80%
of software issues can be traced back to only 20% of the modules. This phenomenon
highlights the importance of focusing testing efforts on specific modules or features
where the majority of defects tend to concentrate.

Factors contributing to defect clustering include the development of new features,
frequent changes in existing modules, and dealing with legacy code. Testers and
developers should be aware of this principle and prioritize testing in modules that have
undergone frequent changes or have numerous dependencies. By doing so, they can
efficiently identify and address defects, ensuring the delivery of a high-quality product
to customers.

Identifying areas in AR applications that are prone to defects, such as complex
user interactions or real-world integration points, allows more focused and effective
testing efforts.

Testing is Context Dependent: Testing strategies and approaches vary
depending on the context in which the software is developed and used. Different
software applications, such as static websites, dynamic e-commerce sites, safety-critical
industrial control software, or mobile e-commerce apps, require tailored testing
methodologies to address their specific needs. For instance, safety considerations take
precedence in aviation software, while user experience and speed are crucial for
corporate websites.

Moreover, testing practices can differ between different stages of development,

with Agile projects employing different methodologies than sequential lifecycle

38

projects. Therefore, understanding the context in which software testing is conducted is
essential for development and testing teams to design effective testing strategies.

Pesticide paradox: The concept of the Pesticide Paradox draws inspiration from
the agricultural pesticide theory, where the repetitive use of pesticides leads to their
ineffectiveness against pests over time. Similarly, in software testing, running the same
test cases repeatedly can become less productive as they may not uncover new defects
due to their redundancy. To address this paradox, it is essential to regularly review and
update test cases, introducing new testing methods and techniques to detect previously
undiscovered issues. This proactive approach ensures that testing remains effective and
avoids falling into the trap of the Pesticide Paradox.

Absence of Errors Fallacy: It is a common fallacy to assume that a software
product with minimal defects is ready for use. However, even if a software application
is almost free of bugs, its true value lies in its ability to meet user requirements and
solve business problems effectively. Simply focusing on error elimination is
insufficient.

To ensure a software product's readiness, it is crucial to test it against both system
requirements and user requirements. Testing alone cannot determine a product's
readiness; user satisfaction and usability are equally important factors. If users find the
software difficult to navigate or if it fails to address their needs, it can be considered a

defect that jeopardizes the entire software product.

2.1.2. Software Testing and Quality Assurance Principles

Core AR theories, including the concepts of virtual overlays, user interaction in
mixed reality environments, and spatial computing, are crucial. Understanding how AR
elements interact with the real world and with the user is essential for designing tests
that accurately assess an AR application's performance and usability.

- Virtual Overlays and Spatial Augmentation: This theory involves
overlaying virtual objects onto the real world in a way that they appear to coexist in the
same space. The challenge is to make these overlays as realistic and interactive as

possible, taking into account the physical properties of the real environment.
39

- User Interaction in Mixed Reality: This concept focuses on how users
interact with both real and virtual elements in an AR environment. It includes studying
user interface design, interaction modalities (like gestures, voice commands, or touch),

and user experience design specific to AR.

Spatial Computing: This is a broad concept that refers to the ability of
computers to interact with and understand the 3D space and objects within it. In AR,
this involves processing and interpreting data about the physical environment, such as

depth sensing, object recognition, and spatial mapping.

2.1.3. Cross-Application Communication and Interaction:les

Cross-application communication and interaction, especially in the context of
Augmented Reality (AR), refers to the ability of different software applications or
processes to communicate and interact with each other. It also includes data exchange
formats and protocols that enable the testing tool to interact with and assess the tested
application effectively. This concept is crucial in scenarios where multiple applications,
possibly including AR applications, need to work in tandem or exchange data.

- Inter-Process Communication (IPC): IPC is a fundamental concept where
multiple processes (which can be parts of the same or different applications) exchange
data. In the context of AR, this might involve an AR application communicating with a
backend server application, or with other applications running on the same device.

- APIs and Protocols: Application Programming Interfaces (APIs) and
communication protocols are essential for cross-application interaction. They define a
set of rules and methods for applications to communicate. For AR applications,
RESTful APIs, WebSocket, and other real-time communication protocols are
commonly used.

- Data Formats and Standards: For effective communication, applications
often need to agree on specific data formats and standards. In AR, this could include
formats for 3D models, spatial data, and user interaction events.

- Middleware and Frameworks: Middleware and frameworks can facilitate

cross-application communication by providing a layer of abstraction that handles the
40

communication details. This is particularly useful in complex AR systems that involve
multiple components, such as tracking systems, content management systems, and user
interfaces.

- Synchronization: When multiple applications interact, especially in real-
time environments like AR, synchronization is crucial. This ensures that all interacting
applications have a consistent and up-to-date view of the data and state of the system.

- Networking and Connectivity: For applications that are distributed over a
network (e.g., cloud-based AR services), networking principles and connectivity issues
become significant. This includes handling latency, bandwidth constraints, and
connection stability.

- Security and Privacy: Secure communication channels are vital, especially
when sensitive data is being transmitted. Encryption, authentication, and authorization
mechanisms are key considerations in cross-application communication.

- Scalability: The communication and interaction mechanisms should be
scalable to handle varying loads, which is important in AR applications that might need
to support a large number of users or high volumes of data.

- Error Handling and Robustness: The system should be robust against
communication failures or errors. This includes implementing retries,
acknowledgments, and error-checking mechanisms.

- User Context and Experience: In AR, cross-application interaction should
also consider the user context and experience. This includes how data exchange and
application interaction impact the user's experience in an AR environment.

Cross-application communication and interaction in AR involve a combination of
software engineering practices, networking principles, and user experience
considerations. They ensure that multiple applications, including AR applications, can

work together seamlessly, providing a coherent and integrated user experience.

2.1.4. Emulation and Simulation Theory

41

2.2. Proposed Approach

The methodology is based on the interaction of two AR programs, where data
from one program must be transmitted to the other. The approach is such that both
programs are independent, i.e., it does not imply the integration of an API to substitute
incoming data for the system being tested. This, in turn, avoids adding potential
vulnerabilities to the controlled program.

2.2.1. Methods and Challenges in Implementing AR Application

Testing Interactions in android devices.

Before describing approaches to implement program interaction, it's important to
note several complexities in such interactions. In the Android system, applications can
only use one camera, and if at least one application uses the camera, others cannot use
the device's camera. Therefore, it is not possible to set up program interaction through
data transfer via a virtual camera on one device. Also, it is difficult to obtain virtual
camera applications from official sources.

Moreover, even if it is possible to run two applications where one transmits data
in the form of video from the camera to the other, there are issues with program
operation services. A program in minimized mode can remain in working condition for
a limited time, and the system begins to free up memory under high load. Since AR
applications exert high load on mobile devices, closing the application for testing can be
challenging to avoid.

Additionally, there is an issue with potential incompatibility of some programs
with certain virtual machines and emulators, as well as the inability to install a virtual
camera.

Before describing approaches, it's important to note that the tested application may have
several types of information sources:

- Broadcasting Video from the Screen: This method involves testing in live
mode, minimizing human error. However, it may suffer from delays in data

transmission and reduced video quality.

42

- Pre-recorded Video: Using specially recorded videos transferred to a
device for virtual camera transmission. This method is advantageous for automating
testing and ensuring repeatability, though re-recording may be necessary in case of

errors.
- Photos and Screenshots: This approach requires precise programming

techniques and is suitable for testing that demands accurate imagery.

The first approach involves testing using cloud technologies. The most effective

implementations are as follows:

deployment AR Application Cloud Testing Framework

Cloud service

Android virtual machine

«device»

i icati Other devi
Testing application er device

e —

Http/Https

Browser

Additional test

tools —>“

TWEL\RTC J/ Http/Https T
en

AR Test Tool Browser

Fig. 2.1. Deployment Diagram. AR Application Cloud Testing Framework

a) The first implementation (see fig. 2.1.) is based on using the AR
application for program testing on a mobile device, while the tested application is

installed on an emulator set up in the cloud. During testing, data from the mobile device

43

Is transmitted to the emulator. This approach allows controlling the tested application
from any location, including the device running the AR testing tool. The disadvantage
of this approach is that when testing on the same device, the test program may be closed

by the Android system.

deployment AR Application Distributed Cloud Testing Architecture //'

Cloud service

Android virtual machine Android virtual machine

Testing application gl @

AR Test Tool
WebRTC

I «flow»

Additional test E

tools

WebRTC Http/Https

Http/Https

«device» «devicen
Android device Other device

Transfer Stream @ Browser E Browser @

Program

Fig. 2.2. Deployment Diagram. AR Application Cloud Testing Framework

b) The second implementation (see fig. 2.2.) involves placing both
applications in separate cloud virtual machines. Data transmission occurs from the
mobile device to the virtual machine with the AR testing tool, and then data is

transferred from one virtual machine to another. This way, both programs can be

44

controlled from any device without the risk of unexpected program closure. However,

dependence on connectivity increases, as does the potential for noise and delays.

deployment Integrated VM AR Testing Configuration /

«device»
Android device

Android virtual machine

Testing application gl

AR Test Tool E

WebRTC

A «flow»
1

«flow»

Virtual Camera E

Fig. 2.3. Deployment Diagram. Integrated VM AR Testing Configuration

The second approach (see fig. 2.3.) involves using a virtual machine on the
mobile device itself. In this case, the program for testing must itself perform the
broadcast of its work, and the virtual machine must have the ability to set the source for
the camera. This approach puts a tremendous load on the device itself but also does not
depend on connectivity and works within a single device.

The main advantage of this approach is its autonomous nature. The convenience

of using one device to perform one task - testing.

45

However, this approach does have significant implications in terms of device
resource utilization. Running a virtual machine alongside the application places a high
demand on the device's processing power, memory, and battery life. This could
potentially lead to slower performance and might not accurately reflect the application's
behavior in a typical usage scenario.

This method is best suited for preliminary testing stages where the focus is on
functionality rather than performance. For performance and scalability testing,
additional methods, possibly involving multiple devices or cloud-based solutions, would
be more appropriate to get a comprehensive understanding of the application's behavior

in real-world conditions.

deployment AR Testing Environment with Computer-Assisted Virtualization

«device»
Computer

Streaming tool
Android virtual machine/Emulator

. S — Virtual camera
Testing application SCEEEEEEE

N
Additional test «flow»
tools)
Android devices

mirrors

RED

«device»
Android device

AR Test Tool

Fig. 2.4. Deployment Diagram. AR Testing Environment with Computer-Assisted
Virtualization

46

The third approach (see fig. 2.4.) to AR application testing involves using a
computer or laptop as an auxiliary device. In this setup, a virtual machine hosting the
tested program is run on the computer. The key feature of this approach is the
transmission of data from the AR device to the virtual machine, which can be facilitated
either directly through the computer or via other connected devices.

This method leverages the computing power and resources of the computer to
handle most of the testing workload. By offloading the processing and operational
demands from the AR device to the computer, it allows for a more robust and stable
testing environment. This can be particularly useful for applications that are resource-
intensive or require a stable and controlled environment for accurate testing.

One of the benefits of this approach is the flexibility it offers in terms of testing
configurations. Since the virtual machine is on a computer, it allows for easier
manipulation and observation of the tested program's behavior. Additionally, it can
facilitate the testing of different versions or configurations of the application without
needing multiple physical devices.

However, this approach also requires a reliable connection between the AR
device and the computer, whether it's via a local network, USB connection, or other
means. The quality and reliability of this connection are crucial, as any interruption or
lag could impact the testing process.

Moreover, setting up and configuring the virtual machine, along with ensuring the
compatibility of the tested program with this environment, can add complexity to the
testing process. It requires a certain level of technical expertise and understanding of
both the AR technology and virtual machine management. Despite these challenges, this
approach offers a versatile and powerful option for AR application testing, especially
for developers and testers who have access to the necessary resources and technical
skills.

47

deployment Starter Deployment Diagram

devicen
Android device

Testing application

Auto-test tools

WebRTC

«device
Android device

AR Test Tool

Fig. 2.5. Deployment Diagram. AR Streaming Deployment Architecture

The fourth approach involves using a single device with an application for testing
and streaming the image to multiple devices. This approach, combined with the use of
other tools, allows for automated testing of the application on multiple devices.

This method capitalizes on the concept of centralized testing and broadcasting.
By streaming the test application's output from one device, it can be simultaneously
observed and analyzed on multiple other devices. This setup is particularly beneficial
for scenarios where the behavior of the application needs to be tested under different
device conditions or operating environments.

One of the key advantages of this approach is the ability to conduct

comprehensive testing without the need for multiple copies of the test application to be

48

running on different devices. It simplifies the setup and reduces the resources needed for
testing. Additionally, this approach can be integrated with automated testing tools to
further streamline the testing process, allowing for more efficient identification of
potential issues across different devices.

However, it's important to consider factors such as network reliability and
bandwidth, as these can impact the effectiveness of streaming and, consequently, the
testing process. The quality of the streaming should be sufficient to accurately represent
the application's performance and any potential issues it may have. This method also
requires a robust setup for capturing and streaming the application's output in real-time,

which may involve additional technical complexities and resource requirements.

2.2.2. The sequence of implementation of the methodology

As no standards for development and testing are defined, certain sequences of
steps may change and be supplemented depending on the evolution of the industry and
the complexity and comprehensiveness of various projects. This overall process can be
divided into the following subprocesses:

a) Define test objectives and scenarios: is the initial phase of AR application
testing, where the primary goals, testing scenarios, usage variations, and functions
subject to testing are established. Testing objectives are set to determine the ultimate
outcomes of the testing process. Test scenarios outline specific situations, actions, and
user interactions that will be simulated and verified within the AR application. The
results of this phase play a central role in the testing process, ensuring that testing
efforts align with project objectives and user expectations.

1) Study software requirements - involves a comprehensive analysis of both
technical and user requirements. Technical requirements encompass the understanding
of necessary hardware and software capabilities essential for augmented reality support,
which include processing power, graphics, and sensor technologies. On the other hand,
user requirements concentrate on the needs and preferences of end-users, emphasizing
aspects such as usability, accessibility, and the integration of desired features or

functionalities.
49

2) Examine product needs refers to a thorough analysis of both the functional
and non-functional requirements of a testing app.

3) Research product audience involves the identification and understanding of
the target users of the software. During this stage, testers gather information about the
demographic data of the target users and their expectations to create profiles of potential
software users, including factors such as age, gender, location, interests, technical
proficiency, and any other relevant characteristics. This information can be used to form
an understanding of user expectations, preferences, as well as information about
possible scenarios for using the AR software. This information serves as the basis for
adapting the testing process to ensure that the software meets the specific needs and
desires of the target audience.

4) Prepare a List of Real-World Experiences is the phase of AR app testing,

the

goal is to create a comprehensive list of real-world scenarios and experiences that the
Application Under Test (AUT) should replicate. Testers identify and document specific
user interactions, conditions, and situations users may encounter. These scenarios cover
indoor and outdoor environments, different lighting conditions, various physical
surfaces, and user actions. The aim is to ensure the AR app performs reliably across
diverse real-world contexts, providing users with a seamless, immersive experience that
meets their expectations.

5) Determine Supported Devices and Interactions: at this stage, specific

devices
for testing and the types of user interactions supported by the tested program (AUT) are
identified.

6) Define Test Coverage is focus is on outlining the specific areas and aspects
of the application that will be subjected to testing. This includes identifying and
defining the scope of testing, such as evaluating the user interface, functionality, and
performance of the application. Test coverage ensures that all critical components and
functionalities of the AR application are thoroughly examined and assessed during the

testing process.

50

7) Confirm the Scope of Testing: During this phase, the testing team validates

and reiterates the defined scope of testing to ensure it aligns with the project's
objectives. The scope encompasses the extent and boundaries of what will be tested,
including the features, functionalities, and specific testing areas such as user interface,
functionality, and performance. Confirming the scope of testing helps maintain focus
and consistency throughout the testing process, ensuring that all critical aspects are

appropriately covered.

b) Choose Testing Tools: involves the careful selection and configuration of
the appropriate testing tools and resources. Testers identify and set up the necessary
software, hardware, and frameworks to support the testing activities effectively. The
choice of testing tools and resources is critical to ensure the thorough evaluation of the
AR application’s functionality, usability, and performance.

C) The preparation for testing using an AR test tool, as part of the
methodology,
is distinct from the selection of the testing tool. This stage includes defining the method
of establishing connectivity, configuring tools, and verifying the correct functioning of
the test application. Depending on the chosen method of interaction, the steps of this
stage may vary and can evolve over time. When considering testing using a virtual
machine, the following stages can be identified:

1) The choice of an emulator or virtual machine involves selecting between
these two software tools, each with its own operational characteristics. Depending on
the collected data about the Android version and the required devices, either a particular
virtualization tool may be chosen, or it may be necessary to abandon this approach
altogether. This step should be the first when using a virtual machine approach, as
proceeding with other steps in most cases can lead to significant time loss.

2) Verification of the correctness of sensor operation in a virtual machine or

o1

emulator - virtual machines and emulators offer great possibilities for device
configuration, but at the same time, this does not guarantee that the settings will be
correct or that they will not require changes due to the specifics of their operation.

3) Check the operation of the program under test on an emulator/virtual
machine - during this process, the tester needs to ensure that the program's core
functions are working correctly. Particular attention should be paid to the camera
launch, interface interaction, and the ability to use gestures. This step is necessary due
to the limitations of emulators; for example, it is not possible to use gestures on a
standard computer or laptop, and also due to the lack of support for some important
libraries, the embeddedness of the Google Play service for AR, and limitations in the
architecture and bit-depth of the processor.

4) Selection of tools and operating system for setting up system interactions.
At this stage, depending on the chosen virtual machine or system, the tester needs to
decide on the data transmission sources from the device with the AR testing tool to the
virtual environment with the application under test. The choice of operating system also
depends on the selected tools; for example, the Linux system offers higher performance
for conducting tests and greater precision in settings, while the Windows system
provides easier setup, and the Mac OS has better integration with virtual components, as
with full-fledged devices.

5) Set Up Data Transfer. This stage involves configuring the interaction
between the chosen devices with the help of defined tools. Initially, this step can be

quite labor-intensive.

d) Set Up the Working Environment: During this phase, the testing team
prepares the necessary devices and physical spaces required for conducting tests. The
goal is to create a controlled testing environment that accurately simulates real-world
conditions. This preparation ensures the effective execution of testing by replicating
scenarios and contexts that users encounter when using the AR application.

e) Setting up the AR testing tool involves configuring and loading virtual

objects, as well as determining their placement within the virtual environment. This

52

stage focuses on preparing the digital elements and defining their positions on the
virtual plane within the AR tool.

f) Define Testing Metrics: In this phase, specific metrics are outlined to
evaluate the performance of the application. These metrics include factors such as
latency, accuracy, and usability, among others. These metrics provide a structured and
measurable way to assess the application's performance in key areas, helping to identify
strengths and areas that require improvement.

g) Decide the Type of Testing: During this phase, the testing team determines
the types of testing that will be conducted. This includes identifying whether functional
testing, usability testing, performance testing, or other specific testing types are
required. The decision on the type of testing to be conducted guides the testing strategy
and ensures that the appropriate testing methods and criteria are applied to evaluate the
AR application effectively.

h) Prepare Collaboration Tools: In this phase, the testing team sets up and
configures the necessary tools and platforms to facilitate effective collaboration with
developers. This includes implementing bug tracking systems, communication
platforms, and other collaborative tools. The aim is to establish seamless
communication and coordination between testers and developers to streamline issue
reporting, resolution, and overall project collaboration.

) Testing AR Application: This phase involves the actual testing of the AR
application based on the prepared scenarios using the chosen tools and methodologies.
The testing encompasses both automated and manual procedures to evaluate the
application thoroughly. It also includes iterative testing and feedback loops, allowing
for continuous improvement of the application. During this phase, detailed records are
maintained to document testing processes, observations, and any issues discovered.
Finally, a final evaluation is conducted to assess whether the AR application aligns with

the initial objectives and requirements, ensuring that all criteria are met

53

Conclusion

This section has systematically presented and defined the foundational principles
underlying the proposed methodology for testing AR applications. A crucial aspect that
emerged is the current lack of standardized AR testing programs. While this absence
allows for greater flexibility and freedom in developing testing methodologies, it
simultaneously introduces a level of uncertainty. Addressing this uncertainty is pivotal
in establishing robust and reliable testing practices for AR applications.

Furthermore, the section elaborated on a specific methodology that utilizes an AR
testing tool. This tool plays a crucial role in the interaction of AR programs and
facilitates the essential transfer of data between them. The methodology's effectiveness
hinges on this interaction and data transfer capabilities, underscoring the need for
innovative solutions in AR application testing.

In addition, a brief overview of potential interaction methods was provided,
offering insights into various approaches for data transfer to the devices. These methods
include cloud-based interactions, the use of virtual machines, and leveraging external
computing devices, each with its unique advantages and challenges.

Lastly, a comprehensive description of the methodology and the steps for its
implementation was outlined. This detailed account serves as a guide for effectively
employing the methodology in practical testing scenarios.

In conclusion, the development and refinement of this methodology represent a
significant contribution to the field of AR application testing. As AR technology
continues to evolve, the adaptation and enhancement of these testing approaches will be
crucial for ensuring the reliability and effectiveness of AR applications in various

domains.

54

CHAPTER 3
DESCRIPTION OF AR TESTING TOOLS

3.1. Software Product Specification

The software product is a tool that uses AR technology for testing other AR
applications.

The mission of the software is to assist in the development of the educational
environment and its components, including the participants of this environment. More
specifically, its mission is to provide an information base of competencies, which
includes the analysis and collection of modern requirements for specialists in certain
fields of activity, as well as the competencies already present in the students of the
department to assist in forming a system of professional and positional adaptation for
graduates.

The mission of the software is also to assist in conducting works related to the
testing of AR applications. More specifically, its mission is to form a surrounding
environment that will contain the necessary real and virtual objects for checking the
functionality of the program, as well as its behavior and functioning in a mixed reality
environment.

According to the need to form an environment and place virtual applications, the
software tool must be related to Marker-Less AR.

Accordingly, the following functional capabilities of the software application can
be formed:

- Recognition of surfaces for placing virtual objects

- Placement of virtual objects

- Deletion of objects

- Changing the position of an object in the environment

- Changing the size of virtual objects

- Changing the appearance of objects

- Forming templates

- Selecting virtual objects for placement
55

3.2. Tools that were used in the development of the application.

The development of the software product was decided to be conducted on the
cross-platform development environment Unity, using the integrated development
environment (IDE) Visual Studio and the text editor VS Code.

The programming language chosen for writing the program was C# using the
NET Standard 2.1 specification and the Mono framework. This combination offers a
robust platform for developing versatile and high-performance software.

The development of graphical 2D elements was carried out using the GNU Image
Manipulation Program (GIMP).

Version control, an essential aspect of software development, was managed using

the Git system, ensuring efficient tracking and management of code changes.

3.2.1. Tools description

Unity is a development platform widely used for creating interactive media such
as video games, architectural visualizations, and real-time 3D animations. It's known for
its versatility and ease of use, enabling developers to deploy projects across various
platforms including PCs, consoles, mobile devices, and VR/AR systems.

Visual Studio is an integrated development environment (IDE) from Microsoft.
It is used to develop computer programs, as well as websites, web apps, web services,
and mobile apps. Visual Studio supports a range of programming languages, including
C#, VB.NET, C++, and F#, and features tools for developing and debugging code,
managing source code repositories, and deploying applications.

C# (pronounced "C Sharp") is a modern, object-oriented programming with a
safe typing system for the .NET platform.

Mono is an open-source implementation of Microsoft's .NET Framework based
on the ECMA standards for C# and the Common Language Runtime (CLR). It was
originally developed by Ximian, which was later acquired by Novell, and is currently

maintained by the .NET Foundation and the Mono community.

56

NET Standard 2.1 is a formal specification of .NET APIs that are intended to be
available on all .NET implementations. This standard facilitates the development of
libraries that are compatible across multiple .NET platforms, enabling developers to
write code that can run on various systems without modification.

Git is a distributed version control system, widely used for tracking changes in
source code during software development. It is designed for speed, data integrity, and
support for distributed, non-linear workflows.

GIMP is a free and open-source raster graphics editor used for image retouching
and editing, free-form drawing, converting between different image formats, and more

specialized tasks. GIMP is available for various operating systems

3.2.2. Libraries and technologies

Package Manager is a tool of Unity Editor that facilitates the discovery,
installation, and management of Unity packages. Unity packages are collections of
assets, tools, and plugins that can be used to add functionality and content to Unity
projects.

AR Foundation is a framework developed by Unity Technologies for building
augmented reality (AR) experiences. It provides a common API that works across both
Android and iOS devices, enabling developers to create AR applications that are
deployable on multiple platforms without having to write platform-specific code.

Raycasting is a computational technique used in computer graphics and
simulation to simulate the behavior of rays or lines as they interact with objects in a 2D
or 3D environment. It is commonly used in various applications such as 3D computer
graphics, virtual reality, and game development for tasks like collision detection,
rendering, and visibility determination.

The Google ARCore XR Plugin is a component designed for integrates Google's
ARCore technology into Unity, enabling developers to create augmented reality (AR)
experiences for Android devices. ARCore is Google's platform for building AR

applications. It uses the phone's camera to understand and interact with the world.

57

OpenXR is an open and royalty-free standard for creating and deploying virtual
reality (VR) and augmented reality (AR) applications and devices. It is designed to
provide a unified and standardized interface for different VR and AR platforms,
allowing developers to write their applications once and have them work seamlessly
across various hardware and software ecosystems.

ProBuilder is a plugin for the Unity game engine that allows developers and 3D
artists to easily create, edit, and prototype 3D models directly within the Unity editor. It
iIs a powerful and versatile tool that streamlines the 3D modeling and level design
process.

TextMeshPro is an advanced text rendering and layout system for the Unity
game engine. It is designed to provide enhanced text rendering and formatting
capabilities compared to Unity's built-in Text component. TextMeshPro is especially
useful for creating visually appealing and high-quality text in interactive applications.

The Universal Render Pipeline (formerly known as the Lightweight Render
Pipeline or LWRP) is a rendering system that is designed to provide high-quality
graphics and performance while remaining efficient and lightweight. It is a versatile
rendering pipeline suitable for a wide range of platforms and devices.

The XR Interaction Toolkit is a set of tools and features provided by Unity to
facilitate the development of XR (Extended Reality) applications, including virtual
reality (VR) and augmented reality (AR) experiences. This toolkit simplifies the process
of creating immersive and interactive environments in Unity, allowing developers to
focus more on the unique aspects of their applications rather than the foundational
elements of XR development.

XR Plugin Management is tool that allows developers to manage and configure
various XR (Extended Reality) platforms and technologies for building Virtual Reality
(VR), Augmented Reality (AR), and Mixed Reality (MR) applications. XR Plugin
Management provides a unified interface for handling different XR platforms, making it
easier to develop cross-platform XR applications.

OpenJDK (Open Java Development Kit) is an open-source implementation of

the Java Platform, Standard Edition (Java SE). It provides a free and open-source

58

alternative to Oracle's Java Development Kit (JDK), which is the official reference
implementation of Java SE. OpenJDK is maintained and developed by the open-source
community and is widely used for Java application development. OpenJDK in Unity is
used to complement the Android SDK.

The Android SDK (Software Development Kit) is a set of development tools
provided by Google to create applications for the Android platform. The SDK includes
a comprehensive set of development tools, including libraries, a debugger, a handset
emulator, documentation, sample code, and tutorials.

The Android Native Development Kit (NDK) is a toolset that allows developers
to implement parts of their app using native-code languages such as C and C++. It is
used when performance is critical for the app, such as for computationally intensive
applications like game engines.

The "*Native Gallery for Android & iOS™ is a Unity asset designed to enhance
the interaction with the device's gallery or photo library on both Android and iOS
platforms.

LiteDB is an open-source NoSQL database that is lightweight and designed for
use in .NET applications. It is serverless and fully embedded, meaning it doesn't require
installation of an additional database server, but rather it runs directly within the
application. LiteDB stores data in a single file using a document-oriented approach,

similar to how MongoDB operates.

3.3. Application class structure

During the software development process, 17 classes and 3 interfaces were
identified. The overall structure of these classes can be seen in the class diagrams (see
fig. 3.1 - 3.2).

59

MonoBehaviour

wnterfacen ‘ Singleton
i Le
subc wel o88e
pref + ActivateElements(): void
+ HideElements(type: ElementType): void ‘ s
| LogLevel
vels |
—> literai:

1 Info
Warn
Erro

): void

Behay
MenuSubcomponentsViewer MonoBeh
SubMenuViewButton
activeComponent: List<GameObject>
- hiddenComponent: List<GameObject> - sub : Menusub
t - — - subMenu: GameObject
- Select gs: SelectEnts 5): void |+ ActivateElements(): v —
- SelectExited[eventArgs: SelectexiteventArgs): void + HideElements(type: ElementType): void + OpenClosesubMenu(): void
Update(): void - setComponentsActive(components; List<GameObject>, isAdtive: bod): vaid
«interface» = =

linteractableObjectManeger MeroBeliaiadl XRinteractionManaget

XRinteractionM BlockUl

+ ChangePlacementARObject(placemen tARObject: Transform}; vaid Shrlitiabdn oot

blockHandlers: List<OnBlock> =

-xrinteractionManager| new List<OnBlock>()

datePhase: XRinteractionUpdateOrder.UpdatePtase): void
+ Rem k{onBlock: OnBlock): void
- shouldBlock{}: bool

SelectObjectController

- aRObjectTag: string = "ARObject"
tableTag: string = "ARPlacementirt...

Fig 3.1. Class diagram (part 1)

Menu - A class responsible for managing menu components.
IMenuSubcomponentsViewer - An interface that defines functionality for controlling
the display of menu items and also differentiates components into active - constantly
active components and hidden - components that are hidden by default.

MenuSubcomponentsViewer - Implements the IMenuSubcomponentsViewer
interface and defines the behavior for displaying and hiding components when opening
and closing the menu.

SubMenuViewButton - A logic class for controlling the display of submenus.
Determines the submenu items that need to be displayed and the logic for closing other
submenus. Logger - A class for logging information and displaying logs on devices.
Designed to track logs during program operation. Also inherits from the class

Singleton<T> and implements the singleton pattern.

60

Singleton<T> - A generic class for implementing a single logic for creating a
class according to the singleton pattern.

SelectedARObjectMenu - A class for managing the display of a menu for a
selected AR object. Tracks the selection operation of an AR object and displays menu
components upon selection. Hides components while another menu is open until it is
closed.

lInteractableObjectManeger - An interface that defines the logic for replacing the
template in an interactable object - determines how the object will appear.

SelectObjectController - A class that tracks the selection of a template for object
replacement.

MediaService - A submenu component that blocks the use of AR tools during the
setting of images on virtual objects. The class also uses native logic to enable image
upload to the software tool.

XRInteractionManagerBlockUI - An extended class of the AR tools manager,
which additionally implements the function of blocking the operation of AR tools when
interacting with Ul components, as well as the ability to configure blocking under

certain conditions.

61

class Class diagram ,

«interfacen
IselectObjectManager

+ AddToARObject(gameObject: GameObjedt): veid
+ ChangeColor{color: Color}: void

+ DeleteSelectedObject(): void

+ SaveARObject(): void

MonoBehaviour

Rotator

MonoBehaviour

PreferencesButtonView Cortrol ler

rotateSpeed: Vectord

+ disappearTime: float = 3.0f

MonoBehaviour [oo s
«enumeration»
RaycastDebuger ElementType
arRaycasterManager: ARRaycastManager T el
- debugstr: StringBuilder = new StringBulder() Al
- hits: List<ARRayeastHit> = new US<ARRAVc... Defaulthidden
textObject: Text DefaultActive

Update(): void

ARGameObjectSaveData

=

chields: List<ARGameObjectSaveData> = new List<ARGame.
tag: string = "ARObject”

+

MonoBehaviour
SelectObjectManager

- arGesturelnteractor: ARGesturelnteractor
arObjectTag: string = "ARObject”

- colorPicker: ColorPicker
selectedARObject: Transform
selectedObject: GameObject

AddAllChild{arGameObjects: List<ARGameObjectSaveData>*, removeChieldFromlist: bod): void
ARGameObjectSaveDatal)

ARGameObjectSaveData(objectTransform: Transform, parentld: Guid)
ARGameObjectSaveData{objectTransform; Transform)

GetAll(): List<ARGameObjectSaveData>

+ + + + o+

«propertys
Color(): float]]
1D{): Guid
ParentID(): Guid
Position(): float(]
Rotation(): float]
Scalef): float(]
SourceName(): string

ettt * &

SelectObjectMenuContentController

Update(): void

imageC : Image
isFadeln; bool = false

- fadeln(): void
Update(): void

ARGameObject

MonoBehaviour

MonoBefavio

+ IsUVSupport: bool
+ SourceName: s

tring

ur

defaultScale: float = 561
- objectsPrefab: List<GameObject>
- parentTag: string = "ParentObject”

- selectObjectMenu: SelectObjectMenuContentCortroller selectObjectPrefab: GameObject

—selectObjectMenur

+

AddToARObject{gameObject: GameObject): void
ChangeColor{color: Color): void

+ AddContent(arObject: GameObject}: void
addContent(): void

¥

+ DeleteSelectedObject(): void calculateC Dbject: GameObject): Bounds
- OnDisable(): void getParentC ObjectsPref: tableObject: Transform): Transform
OnEnable(): void - getsavedGameObject(): List<ARGameObjectsaveData>
+ SaveARObject(): void - {p P : Transform, Object: ARGameObjectsaveData): GameObject

S bj
setGameObjectscale(parentComponent: RectTransform, gameObject: GameObiject, isCompositeOtject: bool): void
- start{): void

lectEnte lectEnterEventArgs}: void

SelectExited(eventArgs: SelectExitEventArgs): void

MonoBehaviour

RaycastPhysicsimagePlacer | MonoBehaviour

ARGesturelnteractorLog

mainCamera: Camera
- shader: Shader
- textureContainer: Image

arGesturelnteractor: ARGesturelnteractor

D 2 Di void
- OnDisable(): void

- changeARGameObjectMaterial(hit: RaycastHit): void |

Fi Mesh, irt): it | ted(pinchGesture: PinchGesture): vold
- getNewMaterial(}: Material Start(): void
- TwoFingerD, Star(twoF; : TwoFingerD void

start(): void
- Update(): void

Fig 3.2. Class diagram (part 2)

RaycastDebugger — A class for logging the operation of raycast technology,
tracking elements interacted with by emitted rays.

Rotator — A class that allows the addition of rotation functionality to a linked
component, enabling it to rotate around a specified axis.

PreferencesButtonViewController — A class that defines the logic for time-based
fading of menu buttons.

ARGameObjectSaveData — A class for saving active interactive objects in a
database, as well as creating templates based on them.

ARGameObject — Responsible for the properties of AR objects.

ISelectObjectManager — An interface that defines methods for working with a
selected interactive object.

62

SelectObjectManager — Inherits from ISelectObjectManager and implements

methods for managing the state of an interactive object.
SelectObjectMenuContentController — A class that manages templates, as well as

being responsible for creating Ul components for template selection.
RaycastPhysicsimagePlacer — Implements the invocation of physical raycasting

for interacting with virtual 3D objects and applying selected images onto them.
ARGesturelnteractorLog — A class that subscribes to events of AR tools for

further logging of their operations.

3.4. Use cases of using AR application tool

Options for using the application are presented in Figure 3.3

]
uc Use Case Model

Delete virtual object

Controlling the ™\

generation of space | Selecting an object

for placing virtual template
objects
x T s Moving object
/ Gesture control
{ Virtual object
/“ management
: ;
Y Scaling object
- b ’ 7
i
Camera con tol |
- / tend»
nclude»
Test |
Choose virtual object >)
/ __(Cchange the height of
/ Managing the stateof _____ . .- -------- P an object
/ / virtual objects
Menu items managing L/ Interaction with the ide
\ program menu L'/' g «il vy‘.uiu —
{ Rotate object
: Multipl t
: ultijeseieciion Change object material
I mode | /
! |
inclu |
\¢ T
v | extend
- ludk |
| xtend Change material color
Operating Mode
Changes
d y l (y 2
Normal operati Object selecti Add image to object
blocking mod;

A

Picture setting mode

Fig 3.2. Use case diagram for tester

63

Let's take a closer look at the diagram of the tester's choice options.

Interaction with the program menu - enables the tester to use Ul elements of the
interface without interacting with the virtual AR environment and its components. This
includes the ability to change operating modes.

Operating mode changes - the tester's ability to interact with the application
interface, which changes the program's behavior. This includes normal operation mode,
picture setting mode, and multiple selection mode.

Normal operation mode - the tester's ability to work in the standard mode.

Picture setting mode - the ability for the tester to work in image selection and
installation mode.

Add image to object - the ability of the tester to set images for an object or its
face, depending on the settings of the virtual object.

Menu items visible management - using Ul elements, the user can control the
visibility of some system components.

Object selection blocking mode - the user's ability to interact with the AR scene
using rays for more precise targeting of virtual objects for further adding to them or
their edges of selected images.

Multiple selection mode — the ability of the tester to select multiple objects for
simultaneous interaction with them or for unification. This mode does not work
simultaneously with other modes, and the combination is performed with the first
selected component.

Camera control - the ability of the tester to control the position of his device,
thereby changing the position of the camera.

Controlling the generation of space for placing virtual objects - the recognition
and generation of planes for placing virtual objects depend on the control of the user’s
device.

Management of virtual objects - the tester’s ability to manage virtual objects. This
includes features such as deleting a virtual object, saving an object, selecting a virtual

object, and managing the state of virtual objects.

64

Selection of a virtual object - the tester’s ability to select a virtual object for
further manipulations.

Delete virtual object - allows the tester to delete the selected object.

Save object - allows the tester to save the selected object. This includes the ability
to create a template.

Create a new template - the tester can create a new template based on a saved
object.

Selecting an object template - the ability to select an object template that will be
used to create a virtual object when placing it on a surface.

Managing the state of virtual objects - the ability of the tester to set the position in
space, as well as change the virtual object. This includes features such as gesture
control, moving an object, scaling an object, changing the height of an object, rotating
an object, and changing object material.

Gesture control - the tester’s ability to control a virtual object using gestures on
the smartphone screen.

Moving object - the ability of the tester to move a virtual object within the
territory area for placing virtual objects.

Object scaling - the tester’s ability to change the scale of the selected virtual
object.

Change the height of an object - the ability to change the height of virtual objects.

Rotate object - the ability to change the angle of placement of a virtual object.

Change object material - the tester can change the material of an object. This
includes changing the material color.

Change material color - allows the tester to set the material color for the selected

virtual object. Experience: Users expect a stable and smooth AR experience.

Conclusion

This section has systematically outlined the functional requirements for a tool

designed to test advanced reliability programs. These requirements form the backbone

65

of the tool's development and ensure that it meets the specific needs of reliability testing
in complex software environments.

In addition, it was presented a comprehensive list of the main technologies,
frameworks, and tools utilized in the development of the testing program was presented.
This list provides insights into the technical stack and the rationale behind the selection
of each component, reflecting the latest trends and best practices in software
development.

Also delineated the primary capabilities available to the user of the tester
program. This aspect is crucial as it directly impacts the user experience and the
effectiveness of the program in conducting thorough and efficient reliability tests.

Visual representation of the program structure was done using a class diagram,
showcasing the relationships and interactions between different classes. This diagram
serves as a valuable tool for understanding the program’s architecture and for guiding

future modifications or enhancements.

66

CHAPTER 4
APPLICATION OF THE PROPOSED APPROACH

4.1. Definition of the object of testing

An application called Zappar was chosen for testing. Zappar is an augmented
reality (AR) application that allows users to create and interact with an AR world. It
uses marker-based technology to trigger AR content. When users scan a Zappar code or
a physical object designated as a token (such as product packaging, advertising, or even
clothing), the app overlays the digital content onto the real world viewed through the
device's camera.

This program is part of a large infrastructure project that includes work for both
beginners and professionals, so the digital content can vary from simple animations and
videos to interactive games and 3D models. Zappar is often used in marketing and
advertising to create engaging and attractive brands, but it also has applications in
education and entertainment.

The app is designed to be user-friendly, allowing you to not only consume AR
content, but also create your own AR experience. This makes it a popular choice for
companies looking to incorporate AR into their marketing strategies, as well as

educators and creators who want to explore the potential of AR technology.

4.2. Define test objectives and scenarios:

According to the specific requirements of the software, the following technical
requirements can be identified: compatibility with various models and types of mobile
devices. There should also be compatibility between different operating systems,
ensuring productive performance in poor environmental conditions, supporting various
types of graphics, and optimal resource utilization — as the program interacts with an
additional source, stable data exchange control is necessary. Additionally, the ability to

support multiple interactions simultaneously is required.

67

As for user requirements, the interface should provide intuitiveness and simplicity
in navigation. Users should also be provided with sufficient information and be able to

interact with the AR content.

4.2.1. Examine product needs.

Functional Requirements:

- Marker Detection and Tracking: The app must effectively detect and track
markers in various environments to trigger AR experiences.

- Content Rendering: Ability to render 3D models, animations, videos, and
interactive content smoothly in an AR setting.

- User Interaction: Support for user interactions with AR content, such as
touch gestures, motion tracking, or voice commands.

- Content Management: Features for managing AR content, including
downloading, updating, and caching.

- Integration with Other Services: If applicable, integration with external
services like social media, cloud storage, or analytics.

- Marker Detection and Tracking: The app must effectively detect and track
markers in various environments to trigger AR experiences.

- Content Rendering: Ability to render 3D models, animations, videos, and
interactive content smoothly in an AR setting.

- User Interaction: Support for user interactions with AR content, such as
touch gestures, motion tracking, or voice commands.

- Content Management: Features for managing AR content, including
downloading, updating, and caching.

- Integration with Other Services: If applicable, integration with external
services like social media, cloud storage, or analytics.

- Cross-Platform Support: Ensuring compatibility and optimized performance

across different devices and operating systems.

68

Non-Functional Requirements:

- Performance: The app should function smoothly without significant lags or
crashes, even when rendering complex AR scenes.

- Usability: User-friendly interface, intuitive navigation, and ease of use for a
wide range of users.

- Scalability: Ability to handle an increasing amount of work and number of
users without performance degradation.

- Reliability: Consistent performance over time, with minimal downtime or
errors.

- Compatibility with another device

- Network Efficiency: Optimized data usage, especially important for mobile

users with limited data plans.

4.2.2. The audience of the software product

Due to the specific infrastructure that the Zappar product is part of, it has a broad
user audience, ranging from children and their parents who use it for entertainment and
learning, to 3D artists who use it to review their own work. Several user groups can be
identified:

- Children and Their Parents or Guardians: They use the app for
entertainment and educational purposes.

- General Users: These users engage with the software for entertainment
purposes.

- Advertisers: They utilize the app for presenting unique interactive
advertising.

- Artists and Designers: Use the software for skill development and artistic
growth,

69

4.2.3. Real-world scenarios

Given the described user groups, it's challenging to specify statistical conditions
in which the software application can operate, thus potential scenarios include:

Indoor Environments

- Home Settings: Testing in various rooms like living rooms, kitchens,
bedrooms to ensure the app recognizes markers on different surfaces and under varying
lighting conditions.

- Offices and Workplaces: Scenarios involving office equipment, furniture,
and variable ambient light.

- Educational Institutions: Classrooms and lecture halls, with a focus on
usability for educational purposes.

Outdoor Environments

- Urban Streets: Busy streets with varying lighting and background noise,
testing the app's performance in a crowded, dynamic environment.

- Parks and Open Spaces: Natural lighting and different types of natural
surfaces, including grass, trees, and water bodies.

- Commercial Areas: Shopping malls, markets, where the app might be used
for interactive advertising or navigation.

Lighting Conditions

- Bright Daylight: Ensuring the app works well in direct sunlight.

- Low Light: Testing in evening or dimly lit conditions.

- Artificial Lighting: Various indoor lighting conditions, including
fluorescent and incandescent lights.

Physical Surfaces and Markers

- Flat Surfaces: Tables, walls, and floors, testing the app's ability to anchor
AR objects.

- Irregular Surfaces: Objects with uneven surfaces, like sculptures or plants.

- Moving Surfaces: Testing with markers on moving objects or people.

70

User Interactions

- Gestures: Swiping, pinching, and tapping to interact with AR content.

- Movement: Walking around or moving objects to see how the AR adjusts.

- Voice Commands: If supported, testing voice interaction under various

ambient noise levels.

Specific Use Cases

- Educational Content: Interacting with educational material in AR, such as
historical reconstructions or scientific models.

- Marketing and Advertising: Engaging with AR ads, like interactive posters
or product packaging.

- Entertainment: Playing AR games or experiencing AR stories and art.

Accessibility

- For Users with Disabilities: Testing with screen readers, voice navigation,
or other accessibility tools.

- Ease of Use for All Ages: Ensuring that the app is user-friendly for both

younger and older users.

Network Conditions

1. Wi-Fi Connectivity: Testing app performance on stable, high-speed
internet.

2. Mobile Data: Ensuring functionality on various mobile networks.

3. Offline Mode: If applicable, testing how the app performs without internet.

The above scenarios are just a few of the many possible scenarios.

4.2.4. Test Coverage

Considering the technical and time constraints, the most rational approach is to
conduct:

Functional Testing, which will include the following checks:
71

- Marker Detection and Multi-marker Detection: Verify the app's ability to
detect and track AR markers in various conditions.

- AR Content Rendering: Test how well the app renders AR content,
including 3D models, animations, and interactive elements.

- User Interaction: Assess the app's response to user inputs like touch,
gestures, and voice commands.

- Content Management: Test functionalities related to managing AR content,
such as downloading, updating, and deleting content.

Also, partially conduct Compatibility Testing - Network Compatibility: Evaluate

the app's performance in various network conditions and speeds.

4.2.5. Scope of Testing

a) Functionality Testing

The main objective is to ensure that all features of the Zappar app work as
intended and provide a seamless user experience.

Key Areas to Test

Multi-Markers Detection and Tracking: Test the app's ability to quickly and
accurately detect and track markers in various environments and lighting conditions.

AR Content Rendering: Evaluate the rendering of AR content, such as
animations, 3D models, and interactive elements, ensuring they appear correctly and
without delay.

User Interactions: Verify the app's response to user inputs, including touch
gestures, swipes, and any other interaction methods supported by the app.

Content Management: Test the functionalities for downloading, updating, and

managing AR content within the app.

Test Scenarios:
Scanning markers placed in different positions in a well-lit room and observing

the speed and accuracy of the appearing AR content.
72

Interacting with AR content, like moving or resizing 3D models, and checking for
responsiveness and any glitches.
Testing the download and update mechanisms for new AR content and ensuring

smooth integration within the app.

b) Compatibility Testing

Objective: To confirm the stability of the application's performance under various
network conditions.

Key Area of Testing: Network Compatibility - the app's performance under
different network conditions.

Testing Scenario: assessing the app's performance in areas with varying network
strength and speed, including testing how well it performs with limited or no internet

connectivity.

In both Functionality and Compatibility Testing, the goal is to cover a
comprehensive range of scenarios and conditions to ensure that the Zappar app delivers
a reliable and high-quality experience to all users, regardless of their device or

environment.

4.3. Testing Tools

For conducting the testing, an approach involving the use of a virtual machine
and a device with the testing software has been chosen (see fig. 2.4.).

For this, it was chosen:

a) The Android Studio Emulator is a feature within Android Studio, the
integrated development environment (IDE) for Android app development. It's a tool that
allows developers to simulate different Android devices on their computers. This
emulator provides a convenient way to test and debug Android applications in a
controlled environment without needing a physical device.

The emulator replicates the functionalities and behavior of various Android

devices, including smartphones and tablets. It allows developers to test their
73

applications across different Android versions, screen sizes, hardware specifications,
and configurations. This flexibility is crucial for ensuring that apps perform consistently
and as expected across the diverse Android ecosystem.

One of the key advantages of the Android Studio Emulator is its deep integration
with Android Studio. It provides features like drag-and-drop installation of apps, screen
recording, and even simulating different network conditions, GPS locations, and
hardware sensors. Developers can also use it to simulate user interactions with the app,
including multi-touch gestures, device rotation, and other physical actions.

Additionally, the emulator supports advanced features like OpenGL ES graphics
and camera emulation, making it particularly useful for testing more complex
applications, such as games or AR apps. Its performance and fidelity in emulating

Android devices make it an essential tool for Android developers.

b) Scrcpy is an open-source application that provides a way to display and
control Android devices from a desktop computer, whether it be Windows, macQOS, or
Linux. The name "scrcpy” stands for “screen copy”. This tool is highly valued for its
performance and low latency, making it a popular choice for a wide range of
applications, from app development and testing to gaming and general device
management.

One of the key features of scrcpy is that it does not require any root access to the
Android device. It works by creating a server on the Android device and then
transmitting the screen data to the computer, where it's rendered in a window. The tool
also supports sending input from the computer back to the Android device, enabling full
control of the device using the computer's keyboard and mouse or touchpad.

Scrcpy is known for its high-resolution and smooth display capabilities,
maintaining good performance even at high screen resolutions. It can handle real-time
interaction, making it useful for tasks that require rapid response, such as gaming or
interactive app testing. Moreover, it's lightweight and doesn't impose significant

performance overhead on the device.

74

Another advantage of scrcpy is its simplicity and ease of use. It doesn't require a
complex setup or configuration, and it connects to the Android device via a USB cable
or wirelessly. This makes it a convenient tool for developers who need a quick and

efficient way to interact with their apps.

c) SplitCam is a software application designed for video streaming and
webcam effects. It's primarily used to enhance live video calls, streams, and recordings
by adding various effects and features. The software allows users to split their webcam
video stream, enabling them to use the same webcam in multiple applications
simultaneously, which is a functionality not commonly available in standard webcam
software.

The core appeal of SplitCam lies in its ability to add fun and creative elements to
video streams. Users can apply different filters, backgrounds, and effects to their video
feed, making it popular for personalizing online interactions, whether for casual video
chats or professional live streams.

In addition to its webcam splitting and effects capabilities, SplitCam often
includes features for screen sharing, recording videos, and streaming to various
platforms. This makes it a versatile tool for content creators, gamers, and anyone
looking to enhance their live video presence.

SplitCam can be substituted with Webcamoid for higher-quality video

transmission, although additional configuration will be necessary.

4.4. Testing tools communication

The interaction can be described as follows: Scrcpy gains control over the device
and streams its screen to the computer. SplitCam connects to this display stream and
broadcasts the image onto a canvas, which can display images thanks to a virtual
camera receiving the display stream.

The Android Emulator is capable of working only with a physical camera, which
is usually designated as the default webcam. By disabling the webcam, the virtual

camera takes the place of the default camera and can also be used by the Android
75

Emulator. However, this approach has a significant drawback. When using SplitCam,
we cannot control the size or scale of the area transmitted to the emulator, resulting in
the image being cropped. This problem can be solved by using Webcamoid because it
does not automatically create a virtual camera with fixed characteristics — the camera
needs to be manually created using the console by setting the necessary characteristics,
which significantly improves data transmission to the emulator but requires additional
time for configuration.

It should also be noted that the method of replacing the default camera is usually
the most effective way to use a virtual camera. However, it is also possible to try
specifying the correct index in the name for the virtual camera within the configuration
file. An important aspect is that this method only works with cameras that have a public
tag. Additionally, it is worth mentioning that in the MacOS system, there is a possibility

to find out the camera's number.

4.5. Preparing for testing tool

Preparation for testing involved setting up the working environment, searching
for special images - zapcodes, which are used for AR effects in Zappar, configuring the
virtual environment and virtual components, and verifying the functionality of Zappar

in the virtual environment.

4.6. Testing the Zappar application

76

Fig 4.1. Class diagram (part 1)

Testing was fully conducted using the application for testing and the emulator
(refer to Fig. 4.1). It was found that only one program can be processed at a time, and
objects at a distance were processed first. Additionally, in the creation of 3D objects,
they could not interact with the user but were able to interact with objects in the
environment. The program was sensitive to lighting and could not function effectively
with poor lighting or in its absence.

The results of the test showed:

Lighting Sensitivity: The testing revealed the application's high sensitivity to
lighting conditions, indicating a need for optimal lighting for effective AR rendering.

Single Program Processing: The limitation of processing only one program at a
time suggests a need for optimization to handle multiple tasks concurrently, enhancing
user experience.

Obiject Processing Order: The preference for distant objects in processing could
impact the AR experience, particularly in scenarios where foreground objects are more
critical.

3D Object Interactivity: The inability of 3D objects to interact with the user might
limit the application's use in interactive AR experiences, though their interaction with

environmental objects is a positive aspect.

77

Recommendations for Improvement: Based on these findings, it's recommended
to enhance the application's light processing capabilities, improve multitasking
functionalities, refine object processing priorities, and explore ways to enable user
interaction with 3D objects.

Further Testing: Additional tests under different lighting conditions and with
varied user interaction scenarios could provide more insights into the application's
performance and areas for improvement.

User Experience Consideration: Future tests should also consider the overall user
experience, especially in scenarios where the user's interaction with the AR
environment is crucial.

These observations and recommendations can guide further development and
refinement of the application to better meet user needs and improve overall

performance.

Conclusion

This section has systematically presented and defined the foundational principles
underlying the proposed methodology for testing AR applications. A crucial aspect that
emerged is the current lack of standardized AR testing programs. While this absence
allows for greater flexibility and freedom in developing testing methodologies, it
simultaneously introduces a level of uncertainty. Addressing this uncertainty is pivotal
in establishing robust and reliable testing practices for AR applications.

Furthermore, the section elaborated on a specific methodology that utilizes an AR
testing tool. This tool plays a crucial role in the interaction of AR programs and
facilitates the essential transfer of data between them. The methodology's effectiveness
hinges on this interaction and data transfer capabilities, underscoring the need for
innovative solutions in AR application testing.

In addition, a brief overview of potential interaction methods was provided,
offering insights into various approaches for data transfer to the devices. These methods
include cloud-based interactions, the use of virtual machines, and leveraging external

computing devices, each with its unique advantages and challenges.
78

Lastly, a comprehensive description of the methodology and the steps for its
implementation was outlined. This detailed account serves as a guide for effectively
employing the methodology in practical testing scenarios.

In conclusion, the development and refinement of this methodology represent a
significant contribution to the field of AR application testing. As AR technology
continues to evolve, the adaptation and enhancement of these testing approaches will be
crucial for ensuring the reliability and effectiveness of AR applications in various

domains.

Conclusion

In this section, comprehensive and methodical testing of the Zappar software was
conducted. The initial phase involved defining test objectives and scenarios, where both
functional and non-functional requirements were carefully analyzed. This step was
crucial to understanding the specific needs and expectations of the program'’s core user
groups. The scope of testing was carefully outlined, ensuring that all critical aspects of
the application, including user interface, functionality, performance and compatibility,
were properly covered. By defining the test coverage, the testing process was adapted to
comprehensively evaluate the capabilities and performance of the program.

Preparation for testing included setting up the necessary tools and environments
for individual interaction. This setup was integral to creating realistic test scenarios that
closely mimic real-world conditions and user interactions.

Actual testing of the Zappar application was conducted using an emulator and
other relevant tools, which provided valuable information about the application's
performance under various conditions. The testing process revealed important findings,
such as the app's sensitivity to lighting and its limitations in handling multiple apps at
the same time. In addition, it emphasized the dynamics of interaction between 3D
objects and the user, as well as with other objects in the environment.

Therefore, the test results provide a solid basis for further optimization and
improvement of the application, ensuring that it meets the ever-evolving needs of users

and remains competitive in the dynamic field of augmented reality applications.

79

CONCLUSIONS

During the execution of the diploma project, the fields of augmented reality (AR)
application development and testing were explored, and several issues in this area were
identified. These issues include the absence of specific tools for conducting testing
within the augmented reality sphere and the lack of development and testing standards
for software, resulting in an ambiguous situation in this field.

Additionally, a new approach to testing augmented reality applications was
proposed within the framework of the diploma project. This approach is based on
conducting testing using another AR application, effectively within the realm of mixed
reality. Possible implementation options for the interaction of these applications were
presented, along with the challenges associated with their implementation. Furthermore,
the steps of this methodology were outlined.

To conduct such testing, it was decided to create an augmented reality application
that could place objects in the real world, which could then be used for testing purposes.
In the second section of this work, the functional capabilities of this application were
presented, and its structure was depicted in the form of a class diagram.

The methodology was applied to test the Zappar application. Overall, its
functional and non-functional requirements were determined, as well as its target
audience and usage scenarios. The scope of testing was defined. During the testing
process, certain issues with this program were identified.

Additionally, during testing, it was discovered that many emulators do not
support the selection of a camera or a virtual camera, which further complicates the
testing process. It was also found that not all virtual machines support augmented reality
applications due to the inability to install the required service or due to outdated system
configurations or bugs. Furthermore, it was revealed that some applications either do
not work at all within an emulator or, although available, do not work properly.

In conclusion, as a result of completing the thesis, a methodology for testing
augmented reality software using a mixed environment created by other software has
been developed. This approach allows not only to test the program's functionality in a

conventional environment but also its operation within a mixed reality context with the

80

emergence of cloud-based augmented reality. This methodology transcends hardware
limitations and is becoming increasingly straightforward to use. Additionally, it
currently demonstrates the possibility of implementing mixed reality with at least one

augmented reality program.

81

REFERENCES

1. Systematic Systematic Mapping Studies in Software Engineering / P.Kai,
F. Robert, M. Shahid, M. Michael // Proceedings of the 12th international conference on
Evaluation and Assessment in Software Engineering / P.Kai, F. Robert, M. Shahid, M.
Michael. — Swindon, United Kingdom, 2008. — (BCS Learning & Development Ltd). —
C. 68-77.

2. Style guidelines for naming and labeling ontologies in the multilingual web
/ [E. Montiel-Ponso, D. Vila-Suero, B. Villazén-Terraz ra in.]. // Dublin Core Metadata
Initiative. — 2011. — Nel1. — C. 105-115.

3. Mobile Indoor Augmented Reality. Exploring applications in hospitality
environments. / [B. Barbolla, C. Corredera, J. Ramén Tta in.] // 1st International
Conference on Pervasive and Embedded Computing and Communication Systems / [B.
Barbolla, C. Corredera, J. Ramoén Ta in.]. — Algarve, Portugal, 2011. — (Science and
Technology Publications, Lda). — C. 232-236.

4, Embedded System Architecture for Mobile Augmented Reality. Sailor
Assistance Case Study. / [J. Diguet, N. Bergmann, J. Morgeére Ta in.] // 3rd International
Conference on Pervasive and Embedded Computing and Communication Systems / [J.
Diguet, N. Bergmann, J. Morgére Ta in.]. — Barcelona, Spain, 2018. — (Science and
Technology Publications, Lda). — C. 16-25.

5. A Practical Framework for the Development of Augmented Reality
Applications by using ArUco Marker / [D. Avola, L. Cinque, G. Foresti Ta in.] //
Proceedings of the 5th International Conference on Pattern Recognition Applications
and Methods / [D. Avola, L. Cinque, G. Foresti ta in.]. — Rome, Italy, 2016. — (Science
and Technology Publications, Lda.). — C. 645-654.

6. Liberatore M. Virtual, mixed, and augmented reality: a systematic review
for immersive systems research / M. Liberatore, W. Wagner. // Springer Science and
Business Media LLC. — 2021. — Ne3. — C. 773-799.

7. Augmented Reality Learning Experiences: Survey of Prototype Design and
Evaluation / [M. Santos, A. Chen, T. Taketomi Ta in.]. // IEEE Transactions on
Learning Technologies. — 2014. — Nel. — C. 38 — 56

8. Rafi T. PredART: Towards Automatic Oracle Prediction of Object
Placements in Augmented Reality Testing / T. Rafi, X. Zhang, X. Wang // 37th
IEEE/ACM International Conference on Automated Software Engineering / T. Rafi, X.
Zhang, X. Wang. — USA, 2011. — (Dublin Core Metadata Initiative). — C. 105-115.

Q. Wenkai L. A State-of-the-Art Review of Augmented Reality in
Engineering Analysis and Simulation / L. Wenkai, A. Nee. // MDPI AG. — 2017. — Ne3.
- C. 17.

10. Singh S. Analysis of Software Testing Techniques: Theory to Practical
Approach / S. Singh, S. Tanwar. // Indian Journal of Science & Technology. — 2016. —
Ne32. - C. 1-6

11. Software Testing: Survey of the Industry Practices / J.Kasurinen, A.
Knutas, O. Taipale, T. Hynninen // 41st International Convention on Information and

82

Communication Technology, Electronics and Microelectronics / J.Kasurinen, A.
Knutas, O. Taipale, T. Hynninen. — Opatija, Croatia, 2018. — (IEEE)

12. Guoning Y. Testing of mobile applications. A review of industry practices
[Enextponnmii pecype] / Y. Guoning, Z. Wenkai // Blekinge Tekniska Hogskola,
Institutionen for programvaruteknik. — 2019. — Pexum pgoctymy 10 pecypcey:
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17880.

13. Khan R. Agile approach for Software Testing process [Enexrponuuii
pecype] / R. Khan, A. Srivastava, D. Pandey // 2016 International Conference System
Modeling & Advancement in Research Trends (SMART). — 2016. — Pexxum goctyiy 10
pecypey-
https://www.researchgate.net/publication/315914633 Agile_approach_for_Software T
esting_process

14. Vukovic V. A Business Software Testing Process-Based Model Design /
V. Vukovic, J. Djurkovic, J. Trninic. // International Journal of Software Engineering &
Knowledge Engineering. — 2018. — Ne5. — C. 701-749.

15. Augmented Reality Issues — What You Need to Know [Enexrponuwuii
pecype] /I The app solutions. — 2023. — Pexum poctymy J0O pecypey:
https://theappsolutions.com/blog/development/augmented-reality-challenges/.

16. 3 Challenges Of Augmented Reality Development [Enektponuuii pecypc]
/Il ImagineAR. — 2021. — Pexxum goctymy a0 pecypey: https://imaginear.com/blog/ar-
development-challenges.

17. 12 Augmented Reality Challenges [Enexrponnuii pecypc] // XR. — 2023. —
Pexum JOCTYITy 70 pecypcy: https://www.xrealityl.com/artificial-
intelligence/augmented-reality-challenges/.

18. What are the Challenges Faced by AR App Developers? [Enexkrponnuii
pecypc] // Paraminfo. - 2019. - Pexum goctymy 0 pecypcy:
https://paraminfo.com/what-are-the-challenges-faced-by-ar-app-developers/.

19. Explore The Challenges and Opportunities of Developing AR/VR
Solutions [Enextponnuii pecypc] // A3logics logo. — 2023. — Pexum goctymy 0
pecypcy: https://lwww.a3logics.com/blog/explore-the-challenges-and-opportunities-of-
developing-ar-vr-solutions.

20. Dafnis C. Applications Analyses, Challenges and Development of
Augmented Reality in Education, Industry, Marketing, Medicine, and Entertainment
[Enextponnnii pecypc] / C. Dafnis, L. David, P. Luis // mdpi. — 2023. — Pexum
noctymy a0 pecypey: https://mww.mdpi.com/2076-3417/13/5/2766.

21. Watson T. SPECIFICS AND CHALLENGES OF AUGMENTED
REALITY TESTING [Enexrponnunii pecypc] / Tracy Watson // Skywell Software. —
2019. — Pexum poctymy no pecypey. https://skywell.software/blog/specifics-and-
challenges-of-augmented-reality-testing/.

22. Martis B. The 7 QA Software Testing Principles [Enexrponnuii pecypc] /
Beniamin Martis // Linkedin. — 2022. - Pexum goctynmy 10 pecypcy:
https://www.linkedin.com/pulse/7-ga-software-testing-principles-beniamin-martis.

23. Quality Assurance, Quality Control and Testing — the Basics of Software
Quality Management [Enexrponnuii pecypc] // Altexsoft. — 2018. — Pexxum goctymy 10

83

pecypey: https://www.altexsoft.com/whitepapers/quality-assurance-quality-control-and-
testing-the-basics-of-software-quality-management/.

24. Venkatesh V. 7 Principles of Software Testing [Enexrponnuii pecypc] /
Vasu Venkatesh // Linkedin. — 2023. — Pexum goctymy [0 pecypey:
https://www.linkedin.com/pulse/7-principles-software-testing-vasu-venkatesh.

25. Shah H. The Key Principles of Software Testing Every QA Must Consider
[Enexrponnmii pecypc] / Hardik Shah // Able.bio. — 2021. — Pexum poctymy mo
pecypcy: https://able.bio/hardikshah/the-key-principles-of-software-testing-every-ga-
must-consider--02b0618d.

26. How do you measure and improve the performance and reliability of AR
and VR applications? [Enektponnuii pecypc] // Linkedin — Pexxum moctymy mo
pecypcy: https://www.linkedin.com/advice/0/how-do-you-measure-improve-
performance-reliability#testing-metrics.

27. Minor S. Test automation for augmented reality applications: a
development process model and case study [Enextponnuii pecypc] / Sascha Minor //
Degruyter. — 2023. — Pexum JTOCTYIy 110 pecypcy:
https://www.degruyter.com/document/doi/10.1515/icom-2023-0029/html.

28. How do you create effective AR test cases? [Enektponunuii pecypc] //
Linkedin. — 2023. — Pexum JOCTYITY 10 pecypcy:
https://www.linkedin.com/advice/3/how-do-you-create-effective-ar-test-cases-skills-
augmented-reality.

29. Uddin A. Importance of Software Testing in the Process of Software
Development [Enexrponnnii pecype] / A. Uddin, A. Anand // International Journal for
Scientific Research & Development. — 2019. — Pexum pmoctymy a0 pecypcy:
https://www.researchgate.net/publication/331223692 Importance_of Software_Testing
_in_the Process_of Software Development.

30. Dynamic Testing Techniques of Non-functional Requirements in Mobile
Apps: A Systematic Mapping Study / [M. Janior, D. Amalfitano, L. Garcés ta in.] //
ACM Computing Surveys / [M. Janior, D. Amalfitano, L. Garcés Ta in.]. — New York,
United States, 2022. — (Association for Computing Machinery New York, NY, United
States). — C. 1-38.

31. Okezie A. A Critical Analysis of Software Testing Tools / A. Okezie, I.
Odun-Ayo, B. Sherrene. // Journal of Physics Conference Series. — 2019. — Ne4, — C. 1—
11.

32. Augmented Reality: Survey [Enexrponnuii pecypce] / [E. Carlos, J. Carlos,
L. Santos Tta im.] // Mdpi. — 2023. - Pexum goctymy g0 pecypcy:
https://www.mdpi.com/2076-3417/13/18/10491.

33. What is Quality Assurance (QA) in Software Testing? [EnexkrponHuit
pecypc] // Testsigma — Pexum JOCTYITY 10 pecypcy:
https://testsigma.com/guides/quality-assurance/.

84

