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ABSTRACT

Explanatory note to the qualification work “Intelligent system for detection and

classification of anomalous objects”

Keywords - hyperspectral imaging, classification of anomalous objects, artificial
intelligence, image processing, drones.

Object of research - hyperspectral images and their processing for detection and
classification of anomalous objects.

The subject of research is methods and algorithms for processing and analyzing
hyperspectral data.

The purpose of the qualification work is to develop an intelligent system for detecting
and classifying anomalous objects based on hyperspectral images.

The research methods are comparative analysis, processing of literature sources,
digital modeling, and machine learning.

The theoretical research consists of an in-depth analysis of hyperspectral imaging
methods, data processing and classification algorithms, as well as integration with other

sources of information.

The research results showed that the use of hyperspectral data in combination with
machine learning methods can significantly improve the accuracy of detecting and
classifying anomalous objects. Integration with other sensors (radar, LiDAR) further
increases the reliability of the system.

The practical significance of the qualification work results can be used to create
effective monitoring and analysis systems that provide accurate detection and
classification of anomalous objects in various fields, such as environmental monitoring,
agriculture, security, etc. This qualification work may be useful for specialists in the field
of image processing, machine learning and data analysis, as well as for those involved in
the development of monitoring and anomaly detection systems.



PE®EPAT

[TosicHrOBaNIbHA 3amucKa 10 KBamidikaiiiHoi poootu "[HTenekryanbHa cucTemMa
BUSIBJICHHS Ta Kiacuikailii aHoMaibHUX 00’ €KTiB"

INnepcnexTpaiibHa 3iioMKa, Kiacudikallis aHOMaIbHUX 00’ €KTIB, IITYYHUHN 1HTEIIEKT,

00poOKka 300pakeHb, TIPOHHU.

OO0'eXT DOCTIKEHHS - TIEPCIEKTPaIbHI 300paKeHHs Ta 1X 00pOOKa /sl BUSBICHHS

Ta Kiacudikailii aHOMaIbHUX 00’ EKTIB.

[TpenmMet nocaiaKeHHs - METOJU Ta aITOPUTMU OOPOOKH Ta aHaJi3y

rinepcreKTpaTbHUX JaHUX.

Mera kBanidikaiiitHoi poOOTH - po3pOOUTH IHTENEKTYaJIbHY CUCTEMY JJIsl BUSIBJICHHS

Ta Kiacugikalii aHoMaJibHUX 00’ €KTIB HA OCHOBI TIEPCIEKTPATHLHUX 300PAKEHb.

Meto q0CIIIKEHHS - MOPIBHSJIBHUN aHali3, 00po0Ka JIiTepaTypHUX JKeped,

nu(poBe MOJIETIOBAHHS, MAIIUHHE HABYAHHS.

TeopeTudH1 AOCIIHKEHHS TOJIATAI0Th y TIIMOOKOMY aHaIi31 METO/IIB
rinepcrnekTpaibHOI 3HOMKH, aITOPUTMIB 00OpOOKH Ta Kiacudikalii JaHUX, a TAKOXK

1HTerpaii 3 IHIKUMH JIKepenamMu 1HhopMallii.

PGBYJIBTEITH I[OCJIiI[)KGHB IIOKa3aJik, IO BUKOPHUCTAHHA FiHGpCHeKTpaJIBHI/IX JaHUX Yy
HOE,IIHaHHi 3 MCTOJaMH MAIlIMHHOT'O HABYAaHH JO3BOJISIE€ 3HAYHO HiI[BI/IHII/ITI/I TOYHICTh

BUSBIICHHS Ta KJacu(ikallli aHOMaJIbHUX 00’ €KTIB.

[IpakTuuHe 3HaYEHHS PE3yibTaTiB KBai(PiKaliitHOT poOOTH MOXKYTh OyTH
BUKOPHCTaHI JUI1 CTBOPEHHS €(DEKTUBHUX CUCTEM MOHITOPUHTY Ta aHaNi3y, 110
3a0€e3Meuyl0Th TOYHE BUSIBJICHHS Ta KJacu(]iKalilo aHOMaJIbHUX 00’ €KTIB Y P13HUX

cdepax, TaKUX K €KOJIOTTYHUN MOHITOPHHT, CLILChKE FOCIOIapPCTBO, O€3MeKa Ta 1HIIe.
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INTRODUCTION

The current state of the art in security and environmental protection technologies
requires continuous improvement of methods for detecting and classifying anomalous
objects. Anomalies, such as environmental pollution, oil spills, illegal logging, or potential
explosive devices, can have serious consequences for the environment and public safety.

Traditional methods, such as metal detectors and X-ray scanners, have limited
effectiveness in difficult environments. For example, they are often unable to detect
sophisticated explosive devices that can be made of non-metallic materials or disguised as
ordinary objects. Also, these methods are often ineffective in detecting environmental
anomalies, such as oil spills or water pollution.

One of the most promising areas in this field is the use of hyperspectral cameras, which
allow analyzing objects in a wide range of electromagnetic radiation. Hyperspectral images
contain much more information than traditional color or monochrome images, which opens
up new opportunities for identifying and classifying materials based on their spectral
characteristics. This is especially important for tasks requiring high identification accuracy,
such as detecting environmental contamination or security threats.

The relevance of this topic is due to the need to improve the efficiency of methods for
detecting anomalies that are critical to environmental safety and public security. To date,
research in this area has shown that the use of hyperspectral imagery can significantly
improve the accuracy of anomaly identification. However, existing methods of
hyperspectral image processing require further improvement, in particular in the direction
of automating data analysis and using modern machine learning algorithms.

The innovation of this work is the development of an intelligent system for detecting
and classifying anomalous objects based on hyperspectral images, which will use advanced
neural network methods for data processing and analysis. This will increase the speed and
accuracy of detecting potentially hazardous objects, which is extremely important for
preventing environmental disasters, terrorist attacks, and ensuring public safety.

The aim of this work is to develop an intelligent system for detecting and classifying
anomalous objects based on hyperspectral images.
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CHAPTER 1
ANOMALY DETECTION PROCESS AND ITS FEATURES
1.1. Finding anomalies as a method of improving the environment

An anomaly is a deviation from the normal state or functioning of a system that may

indicate the presence of a problem that requires attention. In the context of the environment,

anomaly detection can identify negative changes in ecosystems, pollution, illegal activities,

and other issues that have a significant impact on the environmental situation[6].

Anomaly detection has become an important tool for environmental improvement due

to its ability to quickly and accurately identify problem areas. This process involves

collecting data, analyzing and interpreting the results to identify deviations from normal

conditions. For example, a hyperspectral camera can be used to detect vegetation anomali
that may be caused by pollution, disease, or other stressors[1].

A hyperspectral camera can capture light in a wide spectral range and obtain detailed
information about the spectral characteristics of an object. This allows you to detect
anomalies that cannot be seen by conventional observation methods. For example, the
NDVI vegetation index (Normalized Difference Vegetation Index) is used to assess the
condition of vegetation. The NDVI formula looks like this:

NIR-RED
NDVI =
NIR+RED

where NIR (near-infrared) and RED are the values of reflectivity in the near-infrared

and red ranges, respectively. Using this formula, it is possible to detect anomalies in
vegetation that may indicate the presence of pollution or other environmental problems
(Fig. 1.1).

€s
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Fig. 1.1 Progression of potato blight over time. the red overlay shows the damaged parts
detected during image processing

The NDVI index helps to understand how plants grow and develop. If the index value
is between medium and high (0.5-0.85), there are most likely no serious problems in this
area of the field. If the index is low, there are probably some problems, such as a lack of
moisture or nutrients. It is better to check this part of the field yourself.

Another example of using a hyperspectral camera is water monitoring. Hyperspectral
images allow you to determine the concentration of algae and other biological components
in water, which is an important indicator of the ecological state of aquatic ecosystems. For
example, areas of oil contamination in water can be detected due to their unique spectral
characteristics (Fig. 1.2)[6].

Fig. 1.2 Hyperspectral image of the AISA oil spill in the Patuxent River due to a ruptured oil

pipeline
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Machine learning algorithms are used to improve the effectiveness of anomaly
detection, which can analyze large amounts of data and find patterns that indicate anomalies.
These algorithms can adapt to new data and improve predictions over time. Neural networks
can be used to classify spectral data and detect anomalies.

The use of hyperspectral cameras and advanced data processing algorithms can
significantly improve the accuracy and speed of environmental monitoring. This ensures the
timely detection of environmental problems, facilitates their rapid resolution and, as a result,
has a positive impact on the environment. For example, hyperspectral imaging can help
identify illegal waste dumps, eliminate them, and take measures to mitigate the negative
impact on ecosystems.

Thus, studying anomalies is an important way to improve the environment. By
integrating hyperspectral cameras with the latest spectroscopic analysis techniques,
environmental problems can be detected at an early stage and contribute to effective natural
resource management and environmental protection[1].

1.2. Block diagram of an intelligent search system

This section describes the general block diagram of an intelligent search system for
anomaly detection, using the DJI Matrice 600 drone equipped with a hyperspectral camera
and other sensors as an example. The block diagram (fig 1.3) demonstrates the interaction
between the various components of the system, which together provide an efficient process
of data collection, processing, and analysis[15].
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The main components of an intelligent search engine are:

Drone platform: The DJI Matrice 600 is a high-performance platform that
provides stable operation in various conditions. The drone has a high payload
capacity and long flight time, which allows for long missions with a large
amount of equipment on board, and is the basis for the integration of other
system components.

Sensor modules: The Headwall Micro Hyperspectral Sensor provides image
acquisition in a wide spectral range, capturing data with high spectral
resolution, which allows you to get detailed information about objects on the
ground. The hyperspectral sensor is connected to the data processing system
via the CameraLink interface, as shown in the diagram.

Inertial measurement unit (IMU) and GPS: The XSENS MTi-G sensor, which
includes IMU and GPS, is used to determine the spatial position and orientation

17



of the drone. This module ensures accurate positioning and image stabilization,
which is critical for further data analysis. The information from the IMU and
GPS is transmitted via USB 2.0 and SATA interfaces to the computing unit.

e Data pre-processing system. To reduce noise and improve image quality, a
special Custom Interface PCB is used to perform data pre-processing functions,
including noise reduction and interface of various sensors. This helps to ensure
the high quality of the collected data before it is transferred to the computing
unit.

e The computing unit is represented by an Intel NUC, which processes data in
real time. It is connected to various sensors via USB 2.0 and GigE interfaces,
providing high-speed data exchange. The computing unit performs
sophisticated data analysis algorithms, including machine learning algorithms
to detect anomalies.

e Video recording and data storage system: provided by the 10Industries Core
DVR unit, which stores video information and other collected data for long
periods of time. This allows for detailed analysis of the collected data after the
mission is completed.

e Ground Station and Controller: provides real-time drone control and mission
monitoring. The DJI controller allows the operator to control the drone and
receive a video stream and other data in real time. This is important for quick
decision making during the mission.

The block diagram of the DJI Matrice 600-based intelligent search engine demonstrates
a complex but efficient process of data collection, processing, and analysis. The integration
of various sensors and computing units provides highly accurate anomaly detection, which
contributes to timely response to environmental problems and improvement of the

environment.
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1.3. Measurement and result processing system

Effective anomaly detection requires the use of highly accurate and reliable
measurement and processing systems. This is a key step in ensuring the quality of the data
used for analysis and decision-making. Modern measurement systems include a variety of
sensors that allow for high accuracy data collection, as well as sophisticated algorithms for
pre-processing this data[5].

1.3.1. Classification of sensors

Remote sensing systems widely use different types of sensors. Optical sensors, such as
hyperspectral and multispectral cameras, operate in the visible and infrared spectral ranges.
Hyperspectral cameras, such as the Headwall Micro Hyperspec (Fig. 1.4), are capable of
capturing high-resolution spectral images, which allows for detailed spectral analysis of
objects on the ground. Multispectral cameras, in turn, capture data in several separate
spectral bands, which allows you to identify the main characteristics of objects.

Fig. 1.4 Micro-Hyperspec VNIR (400-1000nm) E-Series Imager
Inertial sensors, which include accelerometers, gyroscopes, and inertial measurement
units (IMUs), are used to determine the position and motion of the drone. For example, the
XSENS MTi-G (Fig. 1.5) is a combination sensor that includes IMU and GPS and provides
accurate positioning and stabilization.
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MTi-100 IMU
MTi-200 VRU
MTi-300 AHRS

MTi-G-710 GNSS/INS
Fig. 1.5 XSENS MTi-G -710
Thermographic sensors (Fig. 1.6) detect infrared radiation from objects, which allows
them to detect temperature anomalies. They are widely used to detect underground objects
or heat loss in buildings. Lidar systems, which use laser pulses to measure distances to
objects, create three-dimensional surface models and provide highly accurate mapping of
territories.

Fig. 1.6 AVelodyne HDL-64E, an HDL-32E, a Puck, and an Ultra Puck
1.3.2. Measurement results pre-processing system
After collecting data using various sensors, it is necessary to pre-process it to
improve the quality and accuracy of the final results. This process involves several
steps, each of which is aimed at eliminating noise, correcting geometric distortions,
and calibrating the data[13].
First, noise filtering and reduction are necessary. The data collected by sensors

often contains noise that needs to be eliminated to improve the quality of the analysis.
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Various filtering methods are used for this purpose, such as RMS smoothing,
Gaussian filtering, and other digital signal processing algorithms.

The formula for RMS smoothing is as follows:

N-1
y(n) = % ZA,_” z(n — k)

Where y(n) is the smoothed value, x(n-k) is the original signal, N is the number of
smoothing points

To ensure accurate correlation of data with real coordinates, geometric
distortions must be corrected. This stage includes coordinate transformation,
perspective distortion correction, and orthorectification. Geometric distortions can
significantly affect the accuracy of measurements, so their correction is critical.

Data calibration is necessary to eliminate systematic errors that can occur due to
the peculiarities of sensor operation. This includes temperature correction,
radiometric calibration, and other methods. The radiometric calibration formula helps
to normalize the signal and ensures comparability of data from different sensors. It

looks like this:

L | = L::n-;.s Lf];.r'.a
ca L\w]'.’.le" L(lal]‘]\

Lcal - calibrated signal, Lmeas — measured signal, Ldark — dark current signal,
Lwhite - signal from white calibrated object.
Spectral normalization is used to bring spectral data to a common standard,

allowing for comparisons between different data sets. This includes reflectance
normalization, spectral smoothing, and other processing techniques. These methods

allow for more accurate and comparable spectral analysis results.
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Noise Reduction Classification
in Hyperspectral Imagery Application
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Fig. 1.7

In the fig. 1.7 you can see a schematic representation of the data pre-processing process,
namely noise filtering.

Thus, an effective measurement and processing system includes the use of a variety of
sensors and comprehensive data pre-processing. This ensures high accuracy and reliability
of the results obtained, creating the basis for further analysis and informed decision-making
in the context of anomaly detection and environmental management.
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CHAPTER 2
HYPERSPECTRAL CAMERAS AND IMAGING

2.1.Physical basis of the work

Hyperspectral imaging (HSI) is a technology that allows for high spectral resolution
imaging by dividing light into numerous narrow contiguous spectral bands in the
electromagnetic (EM) spectrum, primarily between the visible and infrared wavelengths.
This is achieved because different materials on the Earth's surface reflect, absorb, scatter,
and emit light at specific wavelengths, creating unique spectral fingerprints that can be
identified using hyperspectral imagery (Figure 2.1). Thanks to this technology, our
perception of the Earth's surface, its features, other planets and outer space has improved
significantly compared to the use of multispectral images[21].
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Fig. 2.1 Diagram of the principles

Compared to multispectral cameras, which capture electromagnetic radiation in a

relatively small number (typically 4 to 36) of broad spectral bands, hyperspectral cameras

collect data from a much larger number of spectral bands (up to hundreds) that are

contiguous and cover narrow wavelength ranges (typically less than 10 nm). This makes it

possible to obtain spectral signatures without wavelength gaps, providing high spectral

resolution.
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The basis of hyperspectral imaging is spectroscopy, where light is decomposed into
spectral components. Diffraction gratings and prisms play an important role in this process.
Diffraction gratings are used to decompose light, and this process is described by the

equation:
dsinf = nA
Prisms, in their turn, use the dispersion of light to decompose it, as described by the
formula:
n(A) = 5

v(A)

Interference filters are used to select narrow spectral bands due to the

phenomenon of interference. The formula for interference is as follows:
2d cos ! = mA

The main components of hyperspectral cameras include an optical system, a
detector array, and a data acquisition system. The optical system consists of lenses,
prisms, or diffraction gratings that are responsible for focusing and decomposing
light. An example is the Headwall Photonics Micro-Hyperspec camera, which uses a

high-quality optical system to achieve high spectral resolution.

The detector matrix records light intensity in different spectral bands. Different
types of detectors are used, such as CCD (Charge-Coupled Device) or CMOS
(Complementary Metal-Oxide-Semiconductor), which have high sensitivity and
resolution.

The data acquisition system includes hardware and software for processing and
storing the obtained spectral data. An important component is a detector cooling
system that reduces noise and improves data quality.

A hyperspectral image consists of a stack of images, each of which corresponds
to one spectral band, represented as a three-dimensional “spectral cube” (Fig. 2.2).

These images have two spatial dimensions and one spectral dimension, shown as
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stacked image layers. The dimensions of the cubes are based on the satellite

bandwidth across the track, along the track, and the wavelength range[21].

Y
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Fig. 2.2 Hyperspectral image cube
For each wavelength band measured in a hyperspectral image, a spectral reflectance
image is created (Fig. 2.3). This means that an entire reflectance curve can be built for each
pixel of the image. Reflectance curves allow for in-depth pixel-by-pixel analysis of a scene
and are often combined with a spectral cube to analyze areas of interest. Reflectance curves
can be thought of as a slice of the spectral cube along the (spectral) z-axis, isolating the
reflectance information for a specific pixel or region of a 2D image[21].
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Fig. 2.3 Reflection curves
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Thus, the physical basis of hyperspectral cameras involves a complex process of
decomposing light into spectral components and registering them, which allows obtaining
detailed information about the objects of study. This opens up wide opportunities for the
application of hyperspectral technology in various fields, including environmental
monitoring, agriculture, medicine, and industry.

2.2. Classification

Hyperspectral cameras, due to their unique capabilities, are divided into several main
types depending on their design, operating principle and purpose. The classification of
hyperspectral cameras is an important step in understanding their capabilities and
limitations, which allows to choose the optimal camera for specific tasks.

2.2.1.Types of hyperspectral cameras by the principle of operation

Let's consider the main types of hyperspectral cameras (Fig. 2.4), which differ in their
operation and have their unique advantages and disadvantages.

First, let's pay attention to point scanning cameras, also known as whiskbroom cameras.
They capture one pixel at a time, including all the spectral information for that pixel. Such
cameras provide high spectral resolution, which allows for a detailed analysis of the spectral
signatures of various objects. However, the time required to acquire a full image is long,
which can be a disadvantage when shooting large areas or fast-moving scenes. An example
of such cameras is the Hyperion on the EOL1 satellite, which performs point scanning to
obtain detailed spectral data.

The next in line are line scan cameras, or pushbroom cameras. They capture one row of
pixels of the scene at a time, which provides higher spectral resolution and shorter
acquisition time compared to whiskbroom cameras. Due to their efficiency, these cameras
are widely used in remote sensing. For example, the AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) camera is a typical representative of pushbroom cameras, providing
high resolution for environmental research and monitoring.

Spectral scanning cameras capture all the spatial information of the scene for each
wavelength separately. They have high spatial resolution and fast acquisition times, but their
spectral resolution is usually lower than that of whiskbroom and pushbroom cameras. These
cameras are less suitable for capturing moving objects because of the time required for
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spectral scanning. An example of such a camera is the Cubert UHD-185, which is used for
a variety of scientific research due to its ability to capture high-quality images quickly.

The last are the “snapshot” cameras, which capture the entire scene in a single image,
including both spectral and spatial information. They allow you to create hyperspectral
video with the shortest shooting time, which is important for capturing moving objects
without spatial or spectral scanning. The main disadvantage of such cameras is their
relatively low spectral and spatial resolution compared to other types. An example of such
cameras is the IMEC Snapscan, which is used for rapid data collection in time-sensitive
environments.

For a detailed comparison, the order of cameras in terms of spectral resolution from
highest to lowest is as follows: line scanning (pushbroom), point scanning (whiskbroom),
spectral scanning, and snapshot. In terms of spatial resolution, the order is as follows:
spectral scanning, pushbroom, whiskbroom, and snapshot. In terms of shooting speed, the
order is as follows: snapshot, spectral scan, pushbroom, whiskbroom of the camera[2].
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Fig. 2.4 Types of hyperspectral cameras
2.2.2 Types of hyperspectral cameras by wavelength range
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Hyperspectral cameras are distinguished by the wavelength ranges they are capable of
capturing (Fig. 2.5). This allows you to solve various tasks depending on the spectral region
in which the camera operates. In view of this, there are four main types of hyperspectral
cameras, each of which has its own characteristics and applications[3].

The first type is NUV (Near Ultraviolet) hyperspectral cameras, which operate in the
350-800 nm wavelength range. These cameras have a high spatial resolution and are used
for tasks where the detail of the ultraviolet spectrum is important. An example of such
cameras is the Specim FX17, which provides detailed UV images thanks to high-
performance lenses optimized for this range. Their characteristics include enhanced
response in the blue region of the spectrum and excellent temperature stability, making them
indispensable in scientific and industrial research.

The second type is short-wavelength infrared (SWIR) hyperspectral cameras, which
cover the wavelength range of 450-950 nm. They are divided into three subtypes. The first
sub-type is based on the latest optical technologies, such as Headwall Photonics Nano-
Hyperspec, which has a high spectral resolution of up to 3600 spectra/cube and
interchangeable prisms for selecting the imaging ranges. The second sub-type includes
frame-based, non-scanning spectrometers, such as Ocean Insight's NIRQuest512, which can
operate in both laboratory and field environments, providing easy hyperspectral image
acquisition and real-time processing. The third sub-type is the simplest and combines the
accuracy and ease of use of conventional cameras. For example, Specim's SisuUCHEMA
allows for rapid data analysis during aerial photography by transmitting data to ground
stations during the flight.

The third type is hyperspectral mid-infrared (MWIR) cameras operating in the 600-1000
nm wavelength range. They are based on the technology of a single-chip filtering system.
The Telops Hyper-Cam is a typical representative of this type, shooting in sixteen or twenty-
five spectral channels. The data is saved to a memory card, and the built-in processor allows
for automatic image processing. Such cameras can be installed on unmanned aerial vehicles
for aerial photography.

The last type is a hyperspectral long-wavelength infrared (LWIR) camera, which

operates in the 900-1700 nm wavelength range. These cameras are used to take pictures in
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the far infrared region of the spectrum and often have a high frame rate. For example, ITRES
CASI-1500 provides high-quality infrared images, which is important for environmental
and security monitoring. Their applications range from environmental protection to military
tasks.

Thus, the type of hyperspectral camera that is chosen for a particular task depends on
the spectral range in which it is necessary to operate, as well as on the requirements for
spatial and spectral resolution, acquisition speed, and operating conditions. Each camera
type has its own unique characteristics and capabilities that make them effective for different
applications.
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Fig. 2.5 Wavelength ranges

2.2.3 Types of hyperspectral cameras by their application

Hyperspectral cameras are classified not only by the principle of operation and
wavelength range, but also by their application. This classification helps to determine the
most optimal models for performing specific tasks in various industries[3].

Satellite hyperspectral cameras are used for remote sensing of the Earth from space.
They provide a large territorial coverage and allow obtaining data on the state of the
environment, agriculture, forests and other environmentally important objects. For example,
the Sentinel-2 satellite (Fig. 2.6) from the European Space Agency (ESA) is equipped with
a hyperspectral camera that can provide detailed images of the Earth's surface with a
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resolution of up to 10 meters. Another example is NASA's Hyperion satellite, which
provides high-quality spectral data with a resolution of 30 meters per pixel, covering 220
spectral bands in the range from 400 to 2500 nm. These satellites are used to monitor
environmental changes, identify natural resources, and control pollution.

ity y
O PCTS

Fig. 2.6 Sentinel-2 satellites equipped with a hyperspectral camera

Airborne hyperspectral cameras are mounted on airplanes or drones for detailed aerial
surveys of specific areas. They are used to monitor crops, forests, water bodies, and
industrial areas. For example, the Headwall Photonics Nano-Hyperspec camera(fig 2.7),
which can be mounted on unmanned aerial vehicles, provides highly accurate spectral data
with a resolution of up to 2 nm in the range from 400 to 1000 nm. It is widely used in
agriculture for plant disease detection and yield estimation, as well as in environmental
monitoring to detect

Fig. 2.7 Headwall Photonics Nano-Hyperspec
Ground-based hyperspectral cameras are used for scientific research, industrial control,

medical diagnostics, and other applications. They provide high accuracy and allow obtaining
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spectral data from objects at close range. An example of such a camera is the Specim 1Q
(Fig. 2.8), a portable hyperspectral device that can capture spectral data in the range of 400
to 1000 nm with a resolution of 7 nm. This camera is used for material analysis in industry,
product quality control, and medical research, such as diagnosing skin diseases.

Fig. 2.8 Specim 1Q hyper-spectral camera

Therefore, the classification of hyperspectral cameras by application helps to better
understand their capabilities and choose the best solutions for specific tasks. This ensures
the effective use of hyperspectral technology in various fields of science and industry,
allowing to achieve high accuracy and detail in solving a wide variety of problems.

2.3. How hyperspectral cameras work

Hyperspectral cameras are sophisticated optical devices that provide high-precision
spectral images and are used in various fields such as environmental monitoring, agriculture,
geology, medicine, and many others. This section describes in detail the principles of
hyperspectral cameras, their main components, and real-life examples of their use.

2.3.1. Image acquisition process

The process of image acquisition by hyperspectral cameras is based on the
decomposition of light into narrow spectral bands using a dispersive element such as a prism
or diffraction grating. Each spectral band is detected by a separate detector, which allows
obtaining spectral data for each pixel of the image. This ensures high spectral resolution and

accuracy of the data obtained[4].
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The process begins when light from an object enters the camera lens. The light then
passes through a dispersive element, which breaks it down into its individual spectral
components. This can be achieved by using a prism, which refracts light at different angles
depending on the wavelength, or by using a diffraction grating, which decomposes light into
spectral bands through interference.

Each spectral band is then registered by a separate detector, which provides spectral data
for each pixel of the image. As a result, a three-dimensional data array is formed, where two
dimensions correspond to the spatial coordinates of the image, and the third to the spectral
bands.

Detectors used in hyperspectral cameras can be built on the basis of various
technologies, including CCD (Charge-Coupled Device) and CMOS (Complementary
Metal-Oxide-Semiconductor) sensors. These sensors provide high sensitivity and readout
speed, which is critical for obtaining high-quality hyperspectral images.

2.3.2. Data storage

Images captured by a hyperspectral camera are stored in the form of spectral cubes. Each
spectral cube contains a three-dimensional array of data, where two dimensions correspond
to the spatial coordinates of the image, and the third one corresponds to the spectral bands
(Fig. 2.9). The spectral cube can be represented in the ENVI format, which is widely used
for storing and processing hyperspectral data. The ENVI format consists of two files: .hdr
(header) and .dat (data). The .hdr file contains metadata about the image, such as cube size,
number of spectral bands, resolution, and other parameters. The .dat file contains the actual
spectral data in binary format[14].

X (spatial axis)

1(\ [\

S

Z?OO 500 600 700
wavelength [nm] Pixel Spectral image

0.5

(spectral
axis)

relative reflection

Fig. 2.9 Hyperspectral image data cube
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2.3.3 Transition between frequencies

The transition between spectral bands in hyperspectral cameras is a key aspect of their
functioning, as it allows obtaining detailed information about the spectral composition of
the scene. This process is carried out with the help of optical elements that decompose light
into its spectral components. The main methods of achieving this are the use of rotating
filters, dispersive elements such as prisms or diffraction gratings, and interference filters.
Each of these methods has its advantages and disadvantages, which are determined by the
requirements of a particular application[17].

Let's look at the methodologies Rotary filters, also known as Fabry-Perot filters, are
used to selectively transmit certain spectral bands of light. They consist of a set of
interchangeable filters that can be rotated to adjust to the desired wavelength (Figure 2.10).
This method allows you to quickly change spectral bands and provides high accuracy of
data collection. The principle of rotating filters is that the light from the object passes
through the camera lens and hits the rotating filter. Depending on the angle of rotation, the
filter transmits only a certain spectral band, which is then registered by the detector. By
rotating the filters sequentially, a complete spectral image of the scene can be obtained.
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Fig. 2.10 Filter wheel system

Prisms and diffraction gratings are other common elements for decomposing light into
spectral components. They use the phenomena of dispersion and diffraction to separate light
into individual wavelengths. Prisms refract light at different angles depending on the

wavelength, breaking it down into its spectral components. Prisms are commonly used in
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high-precision laboratory hyperspectral systems where high spectral resolution is important.
Diffraction gratings decompose light through interference, creating spectral bands. They
provide high spectral resolution and can be used in a variety of applications, including
satellite and aviation systems. The equation for the diffraction angle 6 in a diffraction grating
is defined as:

dsin(f) = nA

Another approach is interference filters (Fig. 2.11), which use the phenomenon of
interference to selectively transmit certain wavelengths. They consist of multilayer coatings
that create interference bands. These filters provide high accuracy and are often used in
portable hyperspectral cameras. For example, the Headwall Photonics Nano-Hyperspec
aviation hyperspectral camera uses interference filters to capture images in the visible and
near-infrared. The camera is installed on drones and airplanes for monitoring crops, forest
resources, and other objects.
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Fig. 2.11 Interference Optical Filters
2.3.4. Camera configuration
Hyperspectral cameras have a complex configuration that includes optical elements,
detectors, signal processing electronics, and other components. The camera configuration
determines its characteristics, such as spectral and spatial resolution, sensitivity, wavelength
range, and other parameters. The main components of a hyperspectral camera - the lens,
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dispersive element, detector, and data processing and storage electronics - work together to
provide an accurate and detailed image of a scene[14].

The first step in configuring a hyperspectral camera is to select a lens. The lens focuses
the light onto the detector and can be of different types, from simple lenses to complex
multiple lens systems (Figure 2.12) or mirror-lens systems. The type of lens is selected
depending on the spatial resolution requirements and the field of view of the camera.

Fig. 2.12 Hyperspectral lens 1.0 um-2.5 um SWIR
After the light has passed through the lens, it hits the dispersive element, which

decomposes it into spectral components. The most commonly used are prisms or diffraction
gratings. A prism uses the principle of light refraction, and a diffraction grating works by
diffraction (Figure 2.13). This element allows you to decompose light into narrow spectral
bands, which is critical for obtaining high-quality hyperspectral data.
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Fig. 2.13 Comparison of the spectra obtained from a diffraction grating by diffraction , and a
prism by refraction.

The decomposed light is transmitted to a detector that records the spectral data.
Detectors can be of different types, but the most commonly used are CCD or CMOS
detectors (Figure 2.14). They provide high sensitivity and resolution, which allows you to
record the intensity of light in each spectral band.

Fig. 2.14 CCD and CMOS detectors

Signal processing electronics play a key role in the configuration of hyperspectral
cameras. It provides digitization of analog signals from the detector, noise filtering, signal
amplification, and data transmission to an external device for storage and analysis. The main
electronics components include analog-to-digital converters (ADCs), amplifiers, filters, and
MICroprocessors.

Some hyperspectral cameras are equipped with cooling systems to reduce noise and
increase detector sensitivity. This is especially important for cameras operating in the
infrared range, where thermal noise can significantly affect image quality. Cooling can be
provided by thermoelectric coolers or liquid cooling.
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Software also plays an important role in the configuration of hyperspectral cameras. It
provides control over the imaging process, setting of imaging parameters, such as exposure,
number of spectral bands, resolution, etc., as well as processing of the data obtained. The
software allows you to perform initial data processing, including calibration, geometric
distortion and noise correction.

A stable power supply and communication interfaces are also an integral part of the
hyperspectral camera configuration. These can be USB, Ethernet or specialized high-speed
interfaces such as Camera Link. Reliable power supply and high-speed data transfer are
critical for the smooth operation of cameras in the field or when installed on unmanned
aerial vehicles.

Finally, to ensure measurement accuracy, hyperspectral cameras are equipped with
calibration mechanisms. They include systems for radiometric, geometric and spectral
calibration. Calibration mechanisms allow taking into account various factors that can affect
the accuracy of measurements, such as temperature changes, changes in the characteristics
of the detector or optical elements.

Thus, the configuration of hyperspectral cameras is a complex process involving the
selection and adjustment of various components to achieve high measurement accuracy and
sensitivity. These components work together to provide detailed and accurate information
about a scene, which is critical for many scientific and industrial applications.

2.4. Carriers

Carriers for hyperspectral cameras are key elements that provide mobility and the ability
to cover large areas for spectral analysis. The most common carriers are satellites, airplanes,
and unmanned aerial vehicles (drones). This section will discuss the use of unmanned aerial
vehicles, in particular drones, as carriers for hyperspectral cameras, which allows for high-
precision aerial surveys.

Drones are the most flexible and cost-effective carriers for hyperspectral imaging. They
allow to obtain high-quality data from low altitudes, providing high spatial and spectral
resolution. Drones can be quickly deployed to survey localized areas, making them
indispensable for operational research and monitoring tasks. Modern drones, such as the DJI
Matrice 600, have a large payload and long flight time, which allows them to mount heavy
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scientific instruments and conduct long-term research. The main limitations of drones are

their limited flight time and dependence on weather conditions, including wind and

precipitation.

2.4.1 Classification of drones

Quadcopters can be classified according to various criteria such as size, payload, flight

time, purpose, and design features. Here are some of the main types of quadcopters[6]:

Micro quadcopters are the smallest quadcopters, usually measuring less than 20 cm.
They are lightweight, maneuverable, and cheap, making them popular for beginners
and for indoor use. They are equipped with small batteries that provide a short flight
time of 5 to 10 minutes. An example of a micro-quadcopter is the Cheerson CX-10
(Figure 2.15), which has a flight time of up to 8 minutes and weighs only 12 grams.
Although their payload capacity is very limited, these drones are great for training

and entertainment.

Fig. 2.15 Cheerson CX-10
Compact quadcopters are slightly larger devices, up to 40 cm in size. They can carry
a small load, for example, a camera for amateur filming. The flight time of these
quadcopters can be from 10 to 20 minutes, depending on the battery capacity. The
DJI Spark (Figure 2.16) is an example of a compact quadcopter that has a flight time
of up to 16 minutes and can carry a small camera for HD filming. These quadcopters
offer better stability and longer flight times than micro quadcopters.
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Fig. 2.16 DJI Spark

Medium-sized quadcopters are 40 to 70 cm in size and are capable of carrying heavier
loads, including professional cameras. They are commonly used for commercial and
industrial applications. The flight time of medium-sized quadcopters can reach 30
minutes or more. For example, the DJI Phantom 4 Pro (Fig. 2.17) has a payload of up
to 500 grams and a flight time of up to 30 minutes. It is equipped with a 20-megapixel
camera with the ability to shoot 4K video. This quadcopter is a great choice for

professional photography and videography.
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Fig. 2.17 DJI Phantom 4 Pro
Large quadcopters are the largest and most powerful devices, measuring more than
70 cm. They can carry heavy loads, such as hyperspectral cameras, and are used in
professional and industrial applications. Flight time can reach 60 minutes or more,
depending on battery capacity and design features. The DJI Matrice 600 (Figure 2.18)
is an example of a large quadcopter that can carry up to 6 kg of cargo and has a flight
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time of up to 35 minutes with a maximum payload. Its modular design allows for the
use of a variety of equipment, making it ideal for complex industrial applications.
2.4.2 Characteristics of the DJI Matrice 600 drone
The DJI Matrice 600 is one of the most popular drones used for professional aerial
photography and hyperspectral imaging. This drone has high technical characteristics that
ensure flight stability and high quality data.

Fig. 2.18 DJI Matrice 600
Main features of DJI Matrice 600:

e Maximum takeoff weight: 15.5 kg

e Payload capacity: up to 6 kg

e Flight duration: up to 35 minutes (with a load of 6 kg)

e Maximum speed: 18 m/s

e Control system: A3 Pro

e GPS: support for dual GPS/GLONASS

e Video transmission system: Lightbridge 2

e Operating temperature range: -10°C to +40°C

These features make the DJI Matrice 600 an ideal choice for heavy hyperspectral camera
installations that require stable and long flight times.
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2.4.3. Installing the hyperspectral camera on the DJI Matrice 600

Mounting the hyperspectral camera on the drone is an important step that affects the
quality of the image and flight stability. The DJI Matrice 600 uses special gimbals to
stabilize and minimize vibrations during flight[19].

The process of installing a hyperspectral camera:

1. Selecting a gimbal: To install a hyperspectral camera, choose a gimbal that is
compatible with the drone model and camera weight. For example, the Gremsy T3 gimbal
(Fig. 2.19), which supports a load of up to 3.5 kg and provides three-axis stabilization.

Fig. 2.19 Gremsy T3
2. Mounting the gimbal: The gimbal is attached to the bottom of the drone using special

mounting Kits. It is important to ensure a secure mount to avoid shifting or losing the camera
during flight.

3. Calibration: Once the gimbal and camera are installed, the stabilization system is
calibrated. This is necessary for optimal performance of the gimbal and to obtain clear, blur-
free images.

4. Connecting the camera: The hyperspectral camera is connected to the drone's power
system and control system to ensure that the camera is synchronized with the drone. This
may include power and data transmission through dedicated cables.

5. Test flight: Before performing the main tasks, a test flight is conducted to verify the
operation of the gimbal and camera. It is important to check flight stability and image

quality.
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Installing a hyperspectral camera on the DJI Matrice 600 allows you to obtain high-
quality spectral data necessary for a variety of research and monitoring tasks.

2.4.4. Flight and route specifications for hyperspectral imagery

Effective flight and route planning are key factors in obtaining accurate and detailed
hyperspectral imagery. Below are the technical aspects of flight and route planning for
hyperspectral imaging with the DJI Matrice 600[6].

Flight planning:

1. Flight altitude: The choice of flight altitude depends on the required spatial resolution
and coverage area. For hyperspectral imaging, an altitude of 100-150 meters is usually used,
which provides an optimal ratio between image detail and coverage area.

2. Overlapping images: To ensure full coverage of the territory, the overlap of images
IS set at 60-80% in the transverse and longitudinal directions. This avoids gaps in the data
and provides the ability to create mosaic images.

3. Flight route: The flight route is planned in such a way that the drone moves along
parallel lanes, covering the entire area of the surveyed territory. Special software tools for
automatic route planning are used, such as DJI Ground Station Pro or Pix4Dcapture.

An example of route calculation:

Let's take an example of surveying an agricultural field of 50 hectares. For this purpose,
a DJI Matrice 600 drone with a hyperspectral camera will be used.

e Flight altitude: 120 meters

e Width of the shooting band: 30 meters

e Overlap of images: 70%

e Strip length: 500 meters

To cover 50 hectares (500,000 m?), 34 swaths (500,000 m2 / (30 m * 500 m)) are
required.

Flight trajectory:
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1. The drone starts from a starting point at the edge of the field.

2. It flies along the first lane at an altitude of 120 meters, capturing images with 70%
overlap.

3. After reaching the end of the lane, it turns and moves to the next lane, moving in the
opposite direction.

4. The procedure is repeated for all 34 lanes until the field is completely covered.

Time to complete the task:

With a flight duration of 35 minutes and an average flight speed of 5 m/s, the time
required to complete the task is calculated as:

500 metpiB

Yac momnboty Ha OIHY CMyTY = —

= 100 cexynz

3arampHuil ac 3iioMkn = 100 cexyrx x 34 emyrn = 3400 cexynzn = 56.7 XBILTIH

Thus, the drone will be able to survey the entire field in two flights, which ensures
efficiency and high quality of the data obtained.
In summary, proper flight planning and installation of a hyperspectral camera on the
DJI Matrice 600 drone allows you to efficiently perform hyperspectral imaging of large
areas with high accuracy and quality of the data obtained.
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CHAPTER 3
PROCESSING OF HYPERSPECTRAL IMAGES

3.1. Preliminary processing of hyperspectral images

Pre-processing of hyperspectral images is an important stage that ensures high-quality
further data analysis and interpretation. It includes several main steps: calibration correction,
atmospheric correction and geometric distortion correction.

3.1.1. Calibration correction

Calibration correction is the primary step required to bring hyperspectral data to a
standardized form. This process involves the correction of systematic errors that may occur
due to the peculiarities of the sensor or the camera optical system[1].

One of the main tasks of calibration is to convert the raw data into a reflectance. This
is done by normalizing the measured signal to the corresponding radiometric response of
the camera. The formula for this is as follows:

3.1.2. Atmospheric correction

Atmospheric correction is necessary to take into account the influence of the
atmosphere on hyperspectral data, as light passing through the atmosphere undergoes
scattering and absorption. This process can significantly distort the data obtained, so it is
important to correct it to accurately reflect the properties of objects on the Earth's surface
(Fig. 3.1).

For atmospheric correction, models such as MODTRAN (MODerate resolution
atmospheric TRANsmission) are often used, which allow to simulate atmospheric
conditions and take into account their effect on spectral data[13].
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Fig. 3.1 An example of atmospheric correction processing for hyperspectral imaging sensors,
showing several pixel spectra of the sensor (top) and their corresponding atmospherically
corrected surface reflectance spectra (bottom).

3.2. Reducing the dimensionality of hyperspectral data

Hyperspectral images contain a huge amount of spectral and spatial data, which can
make them difficult to process and analyze. Reducing the dimensionality of hyperspectral
data allows for easier processing while retaining important information. The main methods
of dimensionality reduction include principal component analysis (PCA), linear
discriminant analysis (LDA), and negative matrix factorization (NMF).

PCA: LDA:
component axes that maximizing the component
maximize the variance axes for class-separation
bad projection xx xxx xx xxx
A1 Xx,\;x X xx XXX XX

good projection: separates classes well

Fig. 3.2 Comparison of PCA and LDA methods
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3.2.1. Principal component analysis (PCA) methods

Principal component analysis (PCA) is one of the most common dimensionality
reduction methods used to analyze hyperspectral data. PCA transforms the original variables
into a new set of variables called principal components that are orthogonal and contain the
largest part of the variance in the data[17].

The formula for finding the principal components:

Z = XW

3.2.2. Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is used to reduce the dimensionality of a
classification problem. LDA projects the data into a lower dimensional space, maximizing
the difference between classes and minimizing the scatter within classes.

The main goal of LDA is to find linear combinations of variables that maximize the

ratio of between-class variance to within-class variance:
WIS, W
W,,; = arg maxw m

3.3 Classification and segmentation of hyperspectral images

Classification and segmentation of hyperspectral images are important steps in data
analysis, as they allow to identify different materials and objects in the images. There are
two main approaches to classification: supervised and unsupervised methods.

3.3.1. Supervised classification methods

Supervised classification methods use pre-labeled data to train a model. These methods
include support vector machines (SVMs), decision trees, random forests, neural networks,
and deep learning.

3.3.1.2. Decision trees and random forests

Decision trees use a hierarchical structure to make decisions by dividing data into
subsets based on the values of their attributes. Random forests (Figure 3.2) consist of a large
number of decision trees and use the ensemble method to improve classification
accuracy[15].

Formula for entropy in a decision tree:
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Fig. 3.3 Schematic of a random forest
3.3.1.3. Neural networks and deep learning
Neural networks and deep learning use multi-layer models to learn complex patterns in
data. Deep neural networks, such as convolutional neural networks (CNNSs), are particularly
effective for hyperspectral image classification due to their ability to automatically extract
features from the data (Figure 3.4)[19].

Deep Neural Network
NCSis Yes (1)
| eeeep
e
e
R No (0)
Hyperspectral image (Patch)
(Input layer) (Hidden layers) (Output layer)
Hybrid feature extractor

Fig. 3.4 Hyperspectral image processing using a deep neural network
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3.4 Detecting and extracting objects in hyperspectral images

Detecting and extracting objects in hyperspectral images is an important processing
step that allows you to identify specific materials and changes in the environment. This
process involves the use of spectral indices, detection of anomalies, changes, and extraction
of information using templates.

3.4.1 Spectral indices and indicators

Spectral indices are used to enhance certain characteristics in hyperspectral images.
They allow you to highlight specific objects or phenomena, such as vegetation, water, or
minerals, based on their spectral signatures. For example, the Normalized Difference
Vegetation Index (NDVI) is widely used for vegetation detection and monitoring[7].

3.4.2 Anomaly and change detection

Anomaly detection is the identification of pixels or areas that are significantly different
from the surrounding data. This can be useful for identifying changes in the environment,
such as water pollution, plant disease detection, or man-made changes. Anomaly detection
methods can include thresholding methods, statistical models, and machine learning[11].

The formula for statistical anomaly detection methods can be represented as follows:

3.4.3. Information extraction using templates

Template-based information extraction from hyperspectral images involves the use of
predefined spectral signatures to identify specific materials or objects. This can be done
using correlation analysis techniques, where spectral signatures are compared to a database
of templates[10].

Formula for correlation analysis:
> (zi—x)(y:i—y)

V2 (i) Y (v 9)*

These object detection and extraction techniques greatly facilitate the analysis of
hyperspectral data, allowing the identification of important environmental, agricultural, and
industrial features in images.
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3.5. Visualization and interpretation of hyperspectral data

Visualization and interpretation of hyperspectral data are important steps for
understanding and analyzing the information contained in hyperspectral images. They allow
for a more convenient representation of multidimensional data and qualitative and
quantitative analysis of spectral signatures.

3.5.1. Pseudo-color mapping methods

Pseudo-color display methods are used to present hyperspectral data in a human-
readable format. Since hyperspectral data contain information from numerous spectral
channels, it is impossible to display them directly on the monitor screen. Therefore, various
visualization techniques are used to display multichannel data in the form of color
images[14].

One popular method is to stack RGB channels from three selected spectral bands
(Figure 3.6), which allows you to create a color image. The choice of spectral bands depends
on the task under study.

Fig. 3.6 Schematic of the process of selecting spectral bands for RGB channel compilation

3.5.2. Visualization in three-dimensional space

Visualization in three-dimensional space allows you to display spectral data in the form
of three-dimensional models, where two dimensions represent spatial coordinates, and the
third is the intensity of light reflection at different wavelengths (Fig. 3.7). This helps to better

understand the structure and distribution of spectral characteristics in the image.
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Three-dimensional visualization methods include the use of volume renderings and

isosurfaces. Iso-surfaces allow you to display levels of reflectance intensity for different

2-D Spectral Band g

spectral bands[16].

<_IIIIIIIIIIIO
R
11

1-D Spectral Response Vectors
(pixelwise)

3-D Spectral Cube

Fig. 3.7 Three-dimensional model of hyperspectral data

3.5.3. Interpretation of spectral signatures

Spectral signature interpretation is the detection and analysis of unique spectral
characteristics that allow the identification of materials and objects in hyperspectral images.
Spectral signatures reflect the reflectivity of materials at different wavelengths and can be
used to recognize types of vegetation, minerals, water resources, and other objects[16].

To interpret spectral signatures, we use correlation analysis and spectral signature
libraries. Correlation analysis allows comparing the obtained spectral signatures with known
reference values contained in libraries.

Methods of visualization and interpretation of hyperspectral data allow to effectively
use hyperspectral information for solving a wide range of problems in science and industry.

3.6. Integration of hyperspectral data with other sources of information

Integration of hyperspectral data with other sources of information allows to expand
the possibilities of analysis and improve the accuracy and reliability of the results obtained.
Interaction of hyperspectral images with multispectral data, geographic information systems
(GIS), as well as data from other sensors, such as radar and LiDAR, opens up new horizons
for research in various fields of science and industry.

3.6.1. Combining hyperspectral and multispectral data

50



Hyperspectral and multispectral data are complementary, as each type of data has its
own advantages. Multispectral data provides wider spectral bands and can cover larger areas
at a time, while hyperspectral data provides high spectral resolution. Combining these data
allows the strengths of both technologies to be used for more accurate and detailed analysis
(Figure 3.8).

Fusion techniques include the use of image fusion algorithms such as PCA (Principal
Component Analysis) and other approaches that preserve the spatial resolution of
multispectral data while adding spectral information from hyperspectral imagery[11].

Fusion

Sm
‘_nc. Yool .’T*u )
Multispectral image
- P # l »5m
‘ Wavedength
Pure Puel (Tree)

%
Fig. 3.8 Scheme of combining hyperspectral and multispectral images

Hyperspectral image

Fused image

3.6.2. Integration with GIS (geographic information systems)

Integration of hyperspectral data with GIS allows to effectively combine spectral
information with spatial information about objects and territories. This greatly expands the
possibilities for analyzing, monitoring and managing resources.

GIS is used to store, analyze and visualize geospatial data. By integrating hyperspectral
imagery with GIS, it is possible to conduct more accurate spatial analysis, create maps of
the distribution of various materials or vegetation conditions, and monitor environmental
changes[10].

3.6.3. Using data from other sensors (radar, LIDAR)
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Data from other sensors, such as radar and LIiDAR, can be integrated with hyperspectral
data to achieve a more comprehensive analysis. LIDAR (Light Detection and Ranging)
provides three-dimensional information about the surface structure and height of objects,
while radar data provides information about surface properties and moisture (Figure 3.9).

Combining these data with hyperspectral imagery allows for a more complete picture
of the area under study. For example, LIDAR can help determine the structure of vegetation,
while hyperspectral data reveals its chemical and physiological properties[9].

Oblique aerial image example hyperspectral + LIiDAR LIDAR only hyperspectral only
o foaid il —— S
3 // \__\\ o / N // ~ ~ &
J \ !/ \ //‘ . \
f \ X e ™
l ; k [ : |
. | | ' 25N &
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Fig. 3.9 Examples of integrated images of hyperspectral data with LIDAR and radar data
The integration of hyperspectral data with other sources of information greatly expands
the possibilities for analyzing and applying this technology in various fields, from
environmental monitoring to precision agriculture and natural resource management.
3.7. Practical cases of hyperspectral image processing
Hyperspectral images open up wide opportunities for detailed analysis and monitoring
in various fields. They provide highly accurate data about objects and processes, which is
important for making informed decisions. This section discusses several practical cases of
using hyperspectral images.
3.7.1. Crop analysis
Hyperspectral cameras are widely used to analyze the condition of agricultural crops
(Fig. 3.10). They help to determine the content of chlorophyll, nitrogen and other elements
in plants, which allows agronomists to effectively manage fertilizers, plan irrigation and
detect diseases or pests in time[8].
The main stages of crop analysis using hyperspectral images include:
e Data collection: A hyperspectral camera mounted on a drone or airplane takes pictures
of the field.
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e Pre-processing: Noise correction, signal normalization, and other methods to improve
image quality.

e Analysis: Using machine learning algorithms and spectral indices to assess the
condition of plants.

Fig. 3.10 An example of a field image taken by a hyperspectral camera

3.7.2. Environmental monitoring
Hyperspectral imagery is effective for monitoring various aspects of the environment,
such as water quality, air pollution, forest health, etc. Due to its high spectral resolution, it
is possible to identify and classify different types of vegetation, detect harmful impurities in
water, and study ecosystems[11].
The process of environmental monitoring includes:
e Data collection: The use of satellite or airborne platforms to survey areas.
o Data processing: Applying spectral analysis and classification techniques to extract
the necessary features.
e Interpretation of results: Analyzing the data to make decisions about environmental
protection.
3.7.3. Medical and biological research
Hyperspectral images are used in medical and biological research to study tissues,
diagnose diseases, and investigate biological processes (Figure 3.11). They allow detecting
changes in tissues that may not be visible with conventional visual diagnostics[1].
Key steps in the use of hyperspectral images in medicine and biology:
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e Image acquisition: A hyperspectral camera takes pictures of biological samples or
organs.

e Image analysis: Using spectral methods to detect abnormalities and pathological
changes.

e Interpretation of results: Using the data for diagnosis, treatment planning, and
research.

(a) —_— e ———

Fig. 3.11 Tissue images taken with a hyperspectral camera

Hyperspectral images provide unique opportunities for detailed analysis and
monitoring in various industries. They provide highly accurate information that can be used
to make informed decisions in agriculture, environmental protection, medicine and many

other areas.
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CHAPTER 4
PRACTICAL IMPLEMENTATION OF ANEURAL NETWORK FOR
ANOMALY CLASSIFICATION

4.1 Architecture of a neural network

This subsection discusses the details of the neural network architecture that was
developed for the detection and classification of offshore oil spills. The use of convolutional
neural networks (CNNs) allows to effectively analyze the spatial and spectral characteristics
of hyperspectral images, which ensures high accuracy of anomaly detection.

4.1.1. Model structure

Our model consists of two main branches: spatial and spectral. This architecture allows
for deep data analysis and integration of different types of features, which improves
classification accuracy.

The spatial branch consists of several convolutional layers that process the spatial
features of images. The spectral branch uses 1x1 convolution to process spectral features.

Softmax

Fig. 4.1 Architecture of the Model

4.1.2. Building the model

Below is the code for building a model in Python using the TensorFlow library:
import tensorflow as tf

from tensorflow.keras import layers, models

def build_model(input_shape):
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inputs = layers.Input(shape=input_shape)

# Spatial branch

x = layers.Conv2D(32, (3, 3), activation="relu’, padding="same")(inputs)
x = layers.MaxPooling2D((2, 2))(x)

x = layers.Conv2D(64, (3, 3), activation="relu’, padding='same")(x)

x = layers.MaxPooling2D((2, 2))(x)

x = layers.Conv2D(128, (3, 3), activation="relu’, padding="same")(x)

spatial_features = layers.Flatten()(x)

# Spectral branch

y = layers.Conv2D(32, (1, 1), activation="relu’, padding="same’)(inputs)
y = layers.MaxPooling2D((2, 2))(y)

y = layers.Conv2D(64, (1, 1), activation="relu’, padding="same’)(y)

y = layers.MaxPooling2D((2, 2))(y)

y = layers.Conv2D(128, (1, 1), activation="relu’, padding="same’)(y)

spectral_features = layers.Flatten()(y)

# Integration of spatial and spectral features

combined_features = layers.concatenate([spatial _features, spectral features])

# Classification layer

z = layers.Dense(256, activation="relu’)(combined_features)
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z = layers.Dropout(0.5)(z)

outputs = layers.Dense(1, activation='sigmoid’)(z)

model = models.Model(inputs, outputs)

return model

input_shape = (128, 128, 30) # npukian po3mipy rinepcrneKTpaIbHUX JaHUX
model = build_model(input_shape)

model.compile(optimizer="adam’, loss="binary_crossentropy', metrics=['accuracy'])

This code creates a CNN model with two branches: the spatial branch processes spatial
features and the spectral branch processes spectral features. The combined features are used
to classify anomalies.

4.2. Data preparation

Data preparation is a critical step in creating an effective neural network. In this
subsection, we discuss the processes of data collection, preprocessing, and augmentation for
model training. We used hyperspectral imagery to detect offshore oil spills, providing the
model with a sufficient amount of high-quality data.

4.2.1. Description of the datasets

Hyperspectral images with labeled anomalies were used to train and test our model.
Hyperspectral data provides the ability to analyze objects in many spectral bands, which
greatly improves the ability to distinguish between different materials.

Fig. 4.2 shows a hyperspectral image with labeled oil spills. It illustrates how the data
was collected and what anomalies we are trying to detect.
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(a) (b)

Fig. 4.2 Hyperspectral oil spill image and corresponding ground truth image

4.2.3 Pre-processing
Data preprocessing includes several steps such as normalization, noise removal, and
augmentation. This helps to improve the quality of the data used to train the model.

Data normalization:

e The hyperspectral data was normalized to reduce the differences in pixel values and
facilitate the model training process.

Noise removal:
o Filtering was applied to reduce noise in the hyperspectral images.
Data augmentation:

e To increase the amount of training data, augmentation techniques such as rotation,
displacement, and zooming of the images were used.

import numpy as np

from sklearn.model_selection import train_test_split

# Downloading data (example)
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data = np.load('hyperspectral data.npy') # ['inepcrnexTpaiibHi 300pakeHHS

labels = np.load('labels.npy') # Mitku po3nuBiB HadTH

# Data normalization

data = data / np.max(data)

# Remove noise (example of using a filter)
from scipy.ndimage import gaussian_filter

data = gaussian_filter(data, sigma=1)

# Separation into training and validation sets

train_data, val data, train_labels, wval labels = train_test split(data, labels,
test_size=0.2, random_state=42)

# Data augmentation (example)

from tensorflow.keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(rotation_range=20, width_shift_range=0.2,
height_shift_range=0.2, zoom_range=0.2)

datagen.fit(train_data)

4.2.4. Preparation of hyperspectral images
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To prepare hyperspectral images, several important steps were performed, such as
artifact removal, geometric distortion correction, and spectral channel calibration.
Radiometric Calibration Formula:

P [:‘[‘lllil). L]:]J:l ]
L(.‘al m (D — Dmin) ne Lmin

ae:

o L., — pasioMeTpuuHo KanibpoBaHe 3HAUEHHS,
®  Linax 1@ Lyyin — MakcmanoHe Ta MiHiManbHe 3HaueHHsA OCBITNEHOCTI,
*  Dax 1a Dy, — MakcManbHe Ta MiHiManbHe 3HaueHHA UMbpoBOoro curHany,

* ) — noTouHe 3HaueHHA UMGPOBOro cUrHany.

Data preparation is an important step in building a neural network for anomaly
detection. Proper preprocessing and augmentation of hyperspectral data significantly
improves model performance. Using different methods for normalization, noise removal,
and augmentation allows you to create a more reliable dataset for training and testing a
neural network.

4.3. Training and validation of the model

Model training and validation are critical steps in achieving high accuracy and reliability
of a neural network. In this section, we discuss model training methods, hyperparameter
selection, and validation approaches. We will also discuss training results and evaluation of
model performance.

4.3.1. Training parameters

The following main parameters were used to train the model:

e Optimizer: Adam

e Loss function: Binary cross-entropy

e Batch size: 32

e Number of epochs: 20

# Training parameters
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optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)
loss_function = 'binary_crossentropy"
batch_size = 32

epochs = 20

model.compile(optimizer=optimizer, loss=loss_function, metrics=['accuracy'])

4.3.2. Training process

The training process includes several steps, such as initializing the model, defining

metrics, and running a training cycle. During training, the model optimizes its weights to

reduce the loss function on the training data.
# Model training

history = model.fit(datagen.flow(train_data, train_labels, batch_size=batch_size),

epochs=epochs,

validation_data=(val_data, val_labels))

Oil spill detection accuracy of algorithm based on the Dalian Xingang dataset shown

in (fig 4.3)
Dataset Class
Oil slick 98 34
Seawater 98.26
AlSA+ data in Dalian Overall Accuracy (%) 98.30
Average Accuracy (%) 898.30
Kappa Coefficient 0.9659

Fig. 4.3 Detection accuracy of algorithm

4.3.3 Evaluation of training results
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After the training is completed, the results are evaluated on the validation set. The main
metrics are accuracy and the value of the loss function. It is also important to analyze the
learning curve to identify possible problems, such as overtraining or undertraining.
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Fig. 4.4 “Training and Validation Loss”

Figure 4.4: “Training and Validation Loss” is a graph that shows the change in the loss

function on training and validation on different datasets, compared to other metods.

import matplotlib.pyplot as plt

# Visualization of results

plt.figure(figsize=(12, 4))

# Accuracy chart
plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label="Training Accuracy')

plt.plot(history.history['val_accuracy'], label="Validation Accuracy")
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plt.title("Training and Validation Accuracy")
plt.xlabel("Epochs’)
plt.ylabel('Accuracy’)

plt.legend()

# Graph of losses

plt.subplot(l, 2, 2)

plt.plot(history.history['loss'], label="Training Loss’)
plt.plot(history.history['val _loss'], label="Validation Loss")
plt.title('Training and Validation Loss')
plt.xlabel("Epochs’)

plt.ylabel('Loss")

plt.legend()

plt.show()

4.4, Experimental results

4.4.1. Model accuracy

After the model training was completed, we evaluated its performance on the validation
dataset. The main metrics used for the evaluation were accuracy, loss function values, and
other metrics such as precision, recall, and F1-measure.

from sklearn.metrics import confusion_matrix, classification_report

# Prediction on the validation set

val_predictions = (model.predict(val _data) > 0.5).astype("int32")
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# Mixing matrix
conf_matrix = confusion_matrix(val labels, val predictions)

print(conf_matrix)

# Classification report
class_report = classification_report(val_labels, val predictions)
print(class_report)

4.4.2. Visualization of results

To better understand the model's performance, we visualized the results on test images.
This allows us to visually assess the model's ability to detect and classify anomalies in
hyperspectral images.

import matplotlib.pyplot as plt

# Visualization of forecast examples
plt.figure(figsize=(15, 10))
for i in range(6):
plt.subplot(2, 3, i+1)
plt.imshow(val_data[i])
plt.title(f"Actual: {val _labels[i]}, Predicted: {val_predictions[i][0]}")
plt.axis('off")
plt.show()

4.4.3. Analysis of results
The model has shown high accuracy in detecting offshore oil spills, as evidenced by the
high values of the accuracy and completeness metrics. However, there are some challenges

and limitations that need to be considered:
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Overfitting: The model may perform well on training data, but poorly on new data. This
may indicate overfitting.

Need for additional data: More diverse data is needed to improve the generalizability of
the model.

from sklearn.metrics import roc_curve, auc

# Calculating the ROC curve
fpr, tpr, thresholds = roc_curve(val_labels, val _predictions)

roc_auc = auc(fpr, tpr)

# Visualization of the ROC curve

plt.figure()

plt.plot(fpr, tpr, color="darkorange’, lw=2, label=f'ROC curve (area = {roc_auc:.2f})")
plt.plot([0, 1], [0, 1], color="navy', lw=2, linestyle="--)
plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate’)

plt.ylabel("True Positive Rate")

plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")

plt.show()

The results of image processing can be seen on (fig 4.5) The experiments have shown

that the proposed neural network architecture is capable of effectively detecting and
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classifying offshore oil spills in hyperspectral images. The model demonstrates high
accuracy, but further improvements are recommended:

e Expand the dataset with new examples.
e Optimize the model hyperparameters.

e Use data augmentation techniques to reduce overfitting.

(©) )
- oil slick - seawater [— platform and ships | J background
Fig. 4.5 Hyperspectral oil spill images and corresponding ground truth images: (a)
Hyperion spaceborne image in Liaodong Bay (R: 31, G: 20, B: 11); (b) AISA+ airborne
image in Penglai 19-3 oilfield (R: 107, G: 68, B: 28); (c,d) the corresponding ground truth

images.

66



Conclusions

In this thesis, a comprehensive study was conducted aimed at developing an intelligent
system for detecting and classifying anomalous objects using hyperspectral images. The
main goal of the work was to develop an effective methodology and software for automatic
anomaly detection in images with high spectral resolution.

In the course of the study, the existing methods and technologies for detecting
anomalous objects were analyzed, which allowed us to select the most promising approaches
for further application. The choice of neural networks as the main tool for processing
hyperspectral data was substantiated. In particular, a neural network architecture adapted to
work with multidimensional data obtained from hyperspectral images was developed.

One of the key parts of the work was data preparation, which included normalization,
noise removal, and image augmentation. This allowed us to improve the accuracy and
reliability of the model by reducing the impact of noise and other interference. The use of
augmentation also improved the model's ability to generalize to new data, which is critical

for practical applications.

The modeling results showed the high efficiency of the developed system in detecting
and classifying anomalous objects. The testing demonstrated the model's ability to
accurately identify anomalies in various conditions, which confirms its potential for use in
real-world scenarios. Visualization of the results allowed us to better understand the model's
behavior and identify areas for further improvement.

However, some problems with overfitting were identified, which highlighted the need
to expand the training dataset and optimize the model's hyperparameters. Further research
could include the use of more sophisticated augmentation methods, as well as the
development of new approaches to hyperspectral image processing.

Overall, the study results confirmed the effectiveness of the proposed intelligent system
for automated detection and classification of anomalous objects. This opens up new
opportunities for the implementation of such systems in various fields, including
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environmental monitoring, security, healthcare, and other areas where anomalies need to be

detected quickly and accurately.

This work creates a basis for further research and improvement of existing methods,
contributing to the development of innovative technologies in the field of data processing
and analysis. It also shows the potential of using hyperspectral images in combination with
neural networks to solve complex problems in various application areas.
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