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ABSTRACT  

Explanatory note to the qualification work “Intelligent system for detection and 

classification of anomalous objects”  

Keywords - hyperspectral imaging, classification of anomalous objects, artificial 

intelligence, image processing, drones.  

Object of research - hyperspectral images and their processing for detection and 

classification of anomalous objects.  

The subject of research is methods and algorithms for processing and analyzing 

hyperspectral data.  

The purpose of the qualification work is to develop an intelligent system for detecting 

and classifying anomalous objects based on hyperspectral images.  

The research methods are comparative analysis, processing of literature sources, 

digital modeling, and machine learning.  

The theoretical research consists of an in-depth analysis of hyperspectral imaging 

methods, data processing and classification algorithms, as well as integration with other 

sources of information.  

The research results showed that the use of hyperspectral data in combination with 

machine learning methods can significantly improve the accuracy of detecting and 

classifying anomalous objects. Integration with other sensors (radar, LiDAR) further 

increases the reliability of the system.  

The practical significance of the qualification work results can be used to create 

effective monitoring and analysis systems that provide accurate detection and 

classification of anomalous objects in various fields, such as environmental monitoring, 

agriculture, security, etc. This qualification work may be useful for specialists in the field 

of image processing, machine learning and data analysis, as well as for those involved in 

the development of monitoring and anomaly detection systems. 

 



   
 

   
 

РЕФЕРАТ 

Пояснювальна записка до кваліфікаційної роботи "Інтелектуальна система 

виявлення та класифікації аномальних об’єктів" 

Гіперспектральна зйомка, класифікація аномальних об’єктів, штучний інтелект, 

обробка зображень, дрони. 

Об'єкт дослідження - гіперспектральні зображення та їх обробка для виявлення 

та класифікації аномальних об’єктів. 

Предмет дослідження - методи та алгоритми обробки та аналізу 

гіперспектральних даних. 

Мета кваліфікаційної роботи - розробити інтелектуальну систему для виявлення 

та класифікації аномальних об’єктів на основі гіперспектральних зображень. 

Метод дослідження - порівняльний аналіз, обробка літературних джерел, 

цифрове моделювання, машинне навчання. 

Теоретичні дослідження полягають у глибокому аналізі методів 

гіперспектральної зйомки, алгоритмів обробки та класифікації даних, а також 

інтеграції з іншими джерелами інформації. 

 Результати досліджень показали, що використання гіперспектральних даних у 

поєднанні з методами машинного навчання дозволяє значно підвищити точність 

виявлення та класифікації аномальних об’єктів.  

Практичне значення результатів кваліфікаційної роботи можуть бути 

використані для створення ефективних систем моніторингу та аналізу, що 

забезпечують точне виявлення та класифікацію аномальних об’єктів у різних 

сферах, таких як екологічний моніторинг, сільське господарство, безпека та інше. 
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INTRODUCTION 

The current state of the art in security and environmental protection technologies 

requires continuous improvement of methods for detecting and classifying anomalous 

objects. Anomalies, such as environmental pollution, oil spills, illegal logging, or potential 

explosive devices, can have serious consequences for the environment and public safety. 

Traditional methods, such as metal detectors and X-ray scanners, have limited 

effectiveness in difficult environments. For example, they are often unable to detect 

sophisticated explosive devices that can be made of non-metallic materials or disguised as 

ordinary objects. Also, these methods are often ineffective in detecting environmental 

anomalies, such as oil spills or water pollution. 

One of the most promising areas in this field is the use of hyperspectral cameras, which 

allow analyzing objects in a wide range of electromagnetic radiation. Hyperspectral images 

contain much more information than traditional color or monochrome images, which opens 

up new opportunities for identifying and classifying materials based on their spectral 

characteristics. This is especially important for tasks requiring high identification accuracy, 

such as detecting environmental contamination or security threats. 

The relevance of this topic is due to the need to improve the efficiency of methods for 

detecting anomalies that are critical to environmental safety and public security. To date, 

research in this area has shown that the use of hyperspectral imagery can significantly 

improve the accuracy of anomaly identification. However, existing methods of 

hyperspectral image processing require further improvement, in particular in the direction 

of automating data analysis and using modern machine learning algorithms. 

The innovation of this work is the development of an intelligent system for detecting 

and classifying anomalous objects based on hyperspectral images, which will use advanced 

neural network methods for data processing and analysis. This will increase the speed and 

accuracy of detecting potentially hazardous objects, which is extremely important for 

preventing environmental disasters, terrorist attacks, and ensuring public safety. 

 The aim of this work is to develop an intelligent system for detecting and classifying 

anomalous objects based on hyperspectral images.  
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CHAPTER 1 

 ANOMALY DETECTION PROCESS AND ITS FEATURES 

1.1. Finding anomalies as a method of improving the environment  

An anomaly is a deviation from the normal state or functioning of a system that may 

indicate the presence of a problem that requires attention. In the context of the environment, 

anomaly detection can identify negative changes in ecosystems, pollution, illegal activities, 

and other issues that have a significant impact on the environmental situation[6]. 

Anomaly detection has become an important tool for environmental improvement due 

to its ability to quickly and accurately identify problem areas. This process involves 

collecting data, analyzing and interpreting the results to identify deviations from normal 

conditions. For example, a hyperspectral camera can be used to detect vegetation anomalies 

that may be caused by pollution, disease, or other stressors[1].   

A hyperspectral camera can capture light in a wide spectral range and obtain detailed 

information about the spectral characteristics of an object. This allows you to detect 

anomalies that cannot be seen by conventional observation methods. For example, the 

NDVI vegetation index (Normalized Difference Vegetation Index) is used to assess the 

condition of vegetation. The NDVI formula looks like this: 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
 

where NIR (near-infrared) and RED are the values of reflectivity in the near-infrared 

and red ranges, respectively. Using this formula, it is possible to detect anomalies in 

vegetation that may indicate the presence of pollution or other environmental problems 

(Fig. 1.1). 



   
 

15 
 

 

Fig. 1.1 Progression of potato blight over time. the red overlay shows the damaged parts 

detected during image processing 

The NDVI index helps to understand how plants grow and develop. If the index value 

is between medium and high (0.5-0.85), there are most likely no serious problems in this 

area of the field. If the index is low, there are probably some problems, such as a lack of 

moisture or nutrients. It is better to check this part of the field yourself.  

Another example of using a hyperspectral camera is water monitoring. Hyperspectral 

images allow you to determine the concentration of algae and other biological components 

in water, which is an important indicator of the ecological state of aquatic ecosystems. For 

example, areas of oil contamination in water can be detected due to their unique spectral 

characteristics (Fig. 1.2)[6].   

 

Fig. 1.2 Hyperspectral image of the AISA oil spill in the Patuxent River due to a ruptured oil 

pipeline 
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Machine learning algorithms are used to improve the effectiveness of anomaly 

detection, which can analyze large amounts of data and find patterns that indicate anomalies. 

These algorithms can adapt to new data and improve predictions over time. Neural networks 

can be used to classify spectral data and detect anomalies.   

The use of hyperspectral cameras and advanced data processing algorithms can 

significantly improve the accuracy and speed of environmental monitoring. This ensures the 

timely detection of environmental problems, facilitates their rapid resolution and, as a result, 

has a positive impact on the environment. For example, hyperspectral imaging can help 

identify illegal waste dumps, eliminate them, and take measures to mitigate the negative 

impact on ecosystems.  

Thus, studying anomalies is an important way to improve the environment. By 

integrating hyperspectral cameras with the latest spectroscopic analysis techniques, 

environmental problems can be detected at an early stage and contribute to effective natural 

resource management and environmental protection[1]. 

1.2. Block diagram of an intelligent search system  

This section describes the general block diagram of an intelligent search system for 

anomaly detection, using the DJI Matrice 600 drone equipped with a hyperspectral camera 

and other sensors as an example. The block diagram (fig 1.3) demonstrates the interaction 

between the various components of the system, which together provide an efficient process 

of data collection, processing, and analysis[15]. 
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Fig. 1.3 Block diagram of the DJI Matrice 600 

 

The main components of an intelligent search engine are:  

• Drone platform: The DJI Matrice 600 is a high-performance platform that 

provides stable operation in various conditions. The drone has a high payload 

capacity and long flight time, which allows for long missions with a large 

amount of equipment on board, and is the basis for the integration of other 

system components.  

• Sensor modules: The Headwall Micro Hyperspectral Sensor provides image 

acquisition in a wide spectral range, capturing data with high spectral 

resolution, which allows you to get detailed information about objects on the 

ground. The hyperspectral sensor is connected to the data processing system 

via the CameraLink interface, as shown in the diagram.  

• Inertial measurement unit (IMU) and GPS: The XSENS MTi-G sensor, which 

includes IMU and GPS, is used to determine the spatial position and orientation 
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of the drone. This module ensures accurate positioning and image stabilization, 

which is critical for further data analysis. The information from the IMU and 

GPS is transmitted via USB 2.0 and SATA interfaces to the computing unit.  

• Data pre-processing system. To reduce noise and improve image quality, a 

special Custom Interface PCB is used to perform data pre-processing functions, 

including noise reduction and interface of various sensors. This helps to ensure 

the high quality of the collected data before it is transferred to the computing 

unit.  

• The computing unit is represented by an Intel NUC, which processes data in 

real time. It is connected to various sensors via USB 2.0 and GigE interfaces, 

providing high-speed data exchange. The computing unit performs 

sophisticated data analysis algorithms, including machine learning algorithms 

to detect anomalies.  

• Video recording and data storage system: provided by the IOIndustries Core 

DVR unit, which stores video information and other collected data for long 

periods of time. This allows for detailed analysis of the collected data after the 

mission is completed. 

• Ground Station and Controller: provides real-time drone control and mission 

monitoring. The DJI controller allows the operator to control the drone and 

receive a video stream and other data in real time. This is important for quick 

decision making during the mission. 

The block diagram of the DJI Matrice 600-based intelligent search engine demonstrates 

a complex but efficient process of data collection, processing, and analysis. The integration 

of various sensors and computing units provides highly accurate anomaly detection, which 

contributes to timely response to environmental problems and improvement of the 

environment.   
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1.3. Measurement and result processing system    

 Effective anomaly detection requires the use of highly accurate and reliable 

measurement and processing systems. This is a key step in ensuring the quality of the data 

used for analysis and decision-making. Modern measurement systems include a variety of 

sensors that allow for high accuracy data collection, as well as sophisticated algorithms for 

pre-processing this data[5].   

 1.3.1. Classification of sensors     

 Remote sensing systems widely use different types of sensors. Optical sensors, such as 

hyperspectral and multispectral cameras, operate in the visible and infrared spectral ranges. 

Hyperspectral cameras, such as the Headwall Micro Hyperspec (Fig. 1.4), are capable of 

capturing high-resolution spectral images, which allows for detailed spectral analysis of 

objects on the ground. Multispectral cameras, in turn, capture data in several separate 

spectral bands, which allows you to identify the main characteristics of objects. 

 

Fig. 1.4 Micro-Hyperspec VNIR (400-1000nm) E-Series Imager 

Inertial sensors, which include accelerometers, gyroscopes, and inertial measurement 

units (IMUs), are used to determine the position and motion of the drone. For example, the 

XSENS MTi-G (Fig. 1.5) is a combination sensor that includes IMU and GPS and provides 

accurate positioning and stabilization. 
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Fig. 1.5 XSENS MTi-G -710  

Thermographic sensors (Fig. 1.6) detect infrared radiation from objects, which allows 

them to detect temperature anomalies. They are widely used to detect underground objects 

or heat loss in buildings. Lidar systems, which use laser pulses to measure distances to 

objects, create three-dimensional surface models and provide highly accurate mapping of 

territories.   

 

Fig. 1.6 A Velodyne HDL-64E, an HDL-32E, a Puck, and an Ultra Puck 

1.3.2. Measurement results pre-processing system  

After collecting data using various sensors, it is necessary to pre-process it to 

improve the quality and accuracy of the final results. This process involves several 

steps, each of which is aimed at eliminating noise, correcting geometric distortions, 

and calibrating the data[13].  

First, noise filtering and reduction are necessary. The data collected by sensors 

often contains noise that needs to be eliminated to improve the quality of the analysis. 
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Various filtering methods are used for this purpose, such as RMS smoothing, 

Gaussian filtering, and other digital signal processing algorithms.  

The formula for RMS smoothing is as follows: 

 

Where y(n) is the smoothed value, x(n-k) is the original signal, N is the number of 

smoothing points   

To ensure accurate correlation of data with real coordinates, geometric 

distortions must be corrected. This stage includes coordinate transformation, 

perspective distortion correction, and orthorectification. Geometric distortions can 

significantly affect the accuracy of measurements, so their correction is critical.  

Data calibration is necessary to eliminate systematic errors that can occur due to 

the peculiarities of sensor operation. This includes temperature correction, 

radiometric calibration, and other methods. The radiometric calibration formula helps 

to normalize the signal and ensures comparability of data from different sensors. It 

looks like this: 

 
 

 Lcal – calibrated signal, Lmeas – measured signal, Ldark – dark current signal, 
Lwhite – signal from white calibrated object.   

Spectral normalization is used to bring spectral data to a common standard, 

allowing for comparisons between different data sets. This includes reflectance 

normalization, spectral smoothing, and other processing techniques. These methods 

allow for more accurate and comparable spectral analysis results. 
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Fig. 1.7   

In the fig. 1.7 you can see a schematic representation of the data pre-processing process, 

namely noise filtering.  

Thus, an effective measurement and processing system includes the use of a variety of 

sensors and comprehensive data pre-processing. This ensures high accuracy and reliability 

of the results obtained, creating the basis for further analysis and informed decision-making 

in the context of anomaly detection and environmental management. 
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CHAPTER 2 

HYPERSPECTRAL CAMERAS AND IMAGING 

2.1.Physical basis of the work   

Hyperspectral imaging (HSI) is a technology that allows for high spectral resolution 

imaging by dividing light into numerous narrow contiguous spectral bands in the 

electromagnetic (EM) spectrum, primarily between the visible and infrared wavelengths. 

This is achieved because different materials on the Earth's surface reflect, absorb, scatter, 

and emit light at specific wavelengths, creating unique spectral fingerprints that can be 

identified using hyperspectral imagery (Figure 2.1). Thanks to this technology, our 

perception of the Earth's surface, its features, other planets and outer space has improved 

significantly compared to the use of multispectral images[21]. 

 

Fig. 2.1 Diagram of the principles 

Compared to multispectral cameras, which capture electromagnetic radiation in a 

relatively small number (typically 4 to 36) of broad spectral bands, hyperspectral cameras 

collect data from a much larger number of spectral bands (up to hundreds) that are 

contiguous and cover narrow wavelength ranges (typically less than 10 nm). This makes it 

possible to obtain spectral signatures without wavelength gaps, providing high spectral 

resolution.  



   
 

24 
 

The basis of hyperspectral imaging is spectroscopy, where light is decomposed into 

spectral components. Diffraction gratings and prisms play an important role in this process. 

Diffraction gratings are used to decompose light, and this process is described by the 

equation: 

 

 Prisms, in their turn, use the dispersion of light to decompose it, as described by the 

formula: 

 

Interference filters are used to select narrow spectral bands due to the 

phenomenon of interference. The formula for interference is as follows: 

 

The main components of hyperspectral cameras include an optical system, a 

detector array, and a data acquisition system. The optical system consists of lenses, 

prisms, or diffraction gratings that are responsible for focusing and decomposing 

light. An example is the Headwall Photonics Micro-Hyperspec camera, which uses a 

high-quality optical system to achieve high spectral resolution.  

  

The detector matrix records light intensity in different spectral bands. Different 

types of detectors are used, such as CCD (Charge-Coupled Device) or CMOS 

(Complementary Metal-Oxide-Semiconductor), which have high sensitivity and 

resolution.  

The data acquisition system includes hardware and software for processing and 

storing the obtained spectral data. An important component is a detector cooling 

system that reduces noise and improves data quality.  

A hyperspectral image consists of a stack of images, each of which corresponds 

to one spectral band, represented as a three-dimensional “spectral cube” (Fig. 2.2). 

These images have two spatial dimensions and one spectral dimension, shown as 
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stacked image layers. The dimensions of the cubes are based on the satellite 

bandwidth across the track, along the track, and the wavelength range[21]. 

 

Fig. 2.2 Hyperspectral image cube 

For each wavelength band measured in a hyperspectral image, a spectral reflectance 

image is created (Fig. 2.3). This means that an entire reflectance curve can be built for each 

pixel of the image. Reflectance curves allow for in-depth pixel-by-pixel analysis of a scene 

and are often combined with a spectral cube to analyze areas of interest. Reflectance curves 

can be thought of as a slice of the spectral cube along the (spectral) z-axis, isolating the 

reflectance information for a specific pixel or region of a 2D image[21]. 

 
Fig. 2.3 Reflection curves   
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Thus, the physical basis of hyperspectral cameras involves a complex process of 

decomposing light into spectral components and registering them, which allows obtaining 

detailed information about the objects of study. This opens up wide opportunities for the 

application of hyperspectral technology in various fields, including environmental 

monitoring, agriculture, medicine, and industry. 

2.2. Classification  

Hyperspectral cameras, due to their unique capabilities, are divided into several main 

types depending on their design, operating principle and purpose. The classification of 

hyperspectral cameras is an important step in understanding their capabilities and 

limitations, which allows to choose the optimal camera for specific tasks.  

2.2.1.Types of hyperspectral cameras by the principle of operation  

Let's consider the main types of hyperspectral cameras (Fig. 2.4), which differ in their 

operation and have their unique advantages and disadvantages.   

 First, let's pay attention to point scanning cameras, also known as whiskbroom cameras. 

They capture one pixel at a time, including all the spectral information for that pixel. Such 

cameras provide high spectral resolution, which allows for a detailed analysis of the spectral 

signatures of various objects. However, the time required to acquire a full image is long, 

which can be a disadvantage when shooting large areas or fast-moving scenes. An example 

of such cameras is the Hyperion on the EO1 satellite, which performs point scanning to 

obtain detailed spectral data.  

The next in line are line scan cameras, or pushbroom cameras. They capture one row of 

pixels of the scene at a time, which provides higher spectral resolution and shorter 

acquisition time compared to whiskbroom cameras. Due to their efficiency, these cameras 

are widely used in remote sensing. For example, the AVIRIS (Airborne Visible/Infrared 

Imaging Spectrometer) camera is a typical representative of pushbroom cameras, providing 

high resolution for environmental research and monitoring.  

 Spectral scanning cameras capture all the spatial information of the scene for each 

wavelength separately. They have high spatial resolution and fast acquisition times, but their 

spectral resolution is usually lower than that of whiskbroom and pushbroom cameras. These 

cameras are less suitable for capturing moving objects because of the time required for 
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spectral scanning. An example of such a camera is the Cubert UHD-185, which is used for 

a variety of scientific research due to its ability to capture high-quality images quickly. 

 The last are the “snapshot” cameras, which capture the entire scene in a single image, 

including both spectral and spatial information. They allow you to create hyperspectral 

video with the shortest shooting time, which is important for capturing moving objects 

without spatial or spectral scanning. The main disadvantage of such cameras is their 

relatively low spectral and spatial resolution compared to other types. An example of such 

cameras is the IMEC Snapscan, which is used for rapid data collection in time-sensitive 

environments.  

For a detailed comparison, the order of cameras in terms of spectral resolution from 

highest to lowest is as follows: line scanning (pushbroom), point scanning (whiskbroom), 

spectral scanning, and snapshot. In terms of spatial resolution, the order is as follows: 

spectral scanning, pushbroom, whiskbroom, and snapshot. In terms of shooting speed, the 

order is as follows: snapshot, spectral scan, pushbroom, whiskbroom of the camera[2].   

 

Fig. 2.4 Types of hyperspectral cameras 

2.2.2 Types of hyperspectral cameras by wavelength range  
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Hyperspectral cameras are distinguished by the wavelength ranges they are capable of 

capturing (Fig. 2.5). This allows you to solve various tasks depending on the spectral region 

in which the camera operates. In view of this, there are four main types of hyperspectral 

cameras, each of which has its own characteristics and applications[3].  

The first type is NUV (Near Ultraviolet) hyperspectral cameras, which operate in the 

350-800 nm wavelength range. These cameras have a high spatial resolution and are used 

for tasks where the detail of the ultraviolet spectrum is important. An example of such 

cameras is the Specim FX17, which provides detailed UV images thanks to high-

performance lenses optimized for this range. Their characteristics include enhanced 

response in the blue region of the spectrum and excellent temperature stability, making them 

indispensable in scientific and industrial research.  

  

The second type is short-wavelength infrared (SWIR) hyperspectral cameras, which 

cover the wavelength range of 450-950 nm. They are divided into three subtypes. The first 

sub-type is based on the latest optical technologies, such as Headwall Photonics Nano-

Hyperspec, which has a high spectral resolution of up to 3600 spectra/cube and 

interchangeable prisms for selecting the imaging ranges. The second sub-type includes 

frame-based, non-scanning spectrometers, such as Ocean Insight's NIRQuest512, which can 

operate in both laboratory and field environments, providing easy hyperspectral image 

acquisition and real-time processing. The third sub-type is the simplest and combines the 

accuracy and ease of use of conventional cameras. For example, Specim's SisuCHEMA 

allows for rapid data analysis during aerial photography by transmitting data to ground 

stations during the flight.  

The third type is hyperspectral mid-infrared (MWIR) cameras operating in the 600-1000 

nm wavelength range. They are based on the technology of a single-chip filtering system. 

The Telops Hyper-Cam is a typical representative of this type, shooting in sixteen or twenty-

five spectral channels. The data is saved to a memory card, and the built-in processor allows 

for automatic image processing. Such cameras can be installed on unmanned aerial vehicles 

for aerial photography.  

The last type is a hyperspectral long-wavelength infrared (LWIR) camera, which 

operates in the 900-1700 nm wavelength range. These cameras are used to take pictures in 
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the far infrared region of the spectrum and often have a high frame rate. For example, ITRES 

CASI-1500 provides high-quality infrared images, which is important for environmental 

and security monitoring. Their applications range from environmental protection to military 

tasks.  

 Thus, the type of hyperspectral camera that is chosen for a particular task depends on 

the spectral range in which it is necessary to operate, as well as on the requirements for 

spatial and spectral resolution, acquisition speed, and operating conditions. Each camera 

type has its own unique characteristics and capabilities that make them effective for different 

applications. 

 

Fig. 2.5 Wavelength ranges 

2.2.3 Types of hyperspectral cameras by their application   

Hyperspectral cameras are classified not only by the principle of operation and 

wavelength range, but also by their application. This classification helps to determine the 

most optimal models for performing specific tasks in various industries[3].  

Satellite hyperspectral cameras are used for remote sensing of the Earth from space. 

They provide a large territorial coverage and allow obtaining data on the state of the 

environment, agriculture, forests and other environmentally important objects. For example, 

the Sentinel-2 satellite (Fig. 2.6) from the European Space Agency (ESA) is equipped with 

a hyperspectral camera that can provide detailed images of the Earth's surface with a 
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resolution of up to 10 meters. Another example is NASA's Hyperion satellite, which 

provides high-quality spectral data with a resolution of 30 meters per pixel, covering 220 

spectral bands in the range from 400 to 2500 nm. These satellites are used to monitor 

environmental changes, identify natural resources, and control pollution. 

 

Fig. 2.6 Sentinel-2 satellites equipped with a hyperspectral camera 

Airborne hyperspectral cameras are mounted on airplanes or drones for detailed aerial 

surveys of specific areas. They are used to monitor crops, forests, water bodies, and 

industrial areas. For example, the Headwall Photonics Nano-Hyperspec camera(fig 2.7), 

which can be mounted on unmanned aerial vehicles, provides highly accurate spectral data 

with a resolution of up to 2 nm in the range from 400 to 1000 nm. It is widely used in 

agriculture for plant disease detection and yield estimation, as well as in environmental 

monitoring to detect 

 

Fig. 2.7 Headwall Photonics Nano-Hyperspec 

Ground-based hyperspectral cameras are used for scientific research, industrial control, 

medical diagnostics, and other applications. They provide high accuracy and allow obtaining 
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spectral data from objects at close range. An example of such a camera is the Specim IQ 

(Fig. 2.8), a portable hyperspectral device that can capture spectral data in the range of 400 

to 1000 nm with a resolution of 7 nm. This camera is used for material analysis in industry, 

product quality control, and medical research, such as diagnosing skin diseases.  

 

Fig. 2.8 Specim IQ hyper-spectral camera 

Therefore, the classification of hyperspectral cameras by application helps to better 

understand their capabilities and choose the best solutions for specific tasks. This ensures 

the effective use of hyperspectral technology in various fields of science and industry, 

allowing to achieve high accuracy and detail in solving a wide variety of problems. 

 

 

2.3. How hyperspectral cameras work  

Hyperspectral cameras are sophisticated optical devices that provide high-precision 

spectral images and are used in various fields such as environmental monitoring, agriculture, 

geology, medicine, and many others. This section describes in detail the principles of 

hyperspectral cameras, their main components, and real-life examples of their use.  

2.3.1. Image acquisition process  

The process of image acquisition by hyperspectral cameras is based on the 

decomposition of light into narrow spectral bands using a dispersive element such as a prism 

or diffraction grating. Each spectral band is detected by a separate detector, which allows 

obtaining spectral data for each pixel of the image. This ensures high spectral resolution and 

accuracy of the data obtained[4].  
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 The process begins when light from an object enters the camera lens. The light then 

passes through a dispersive element, which breaks it down into its individual spectral 

components. This can be achieved by using a prism, which refracts light at different angles 

depending on the wavelength, or by using a diffraction grating, which decomposes light into 

spectral bands through interference.  

Each spectral band is then registered by a separate detector, which provides spectral data 

for each pixel of the image. As a result, a three-dimensional data array is formed, where two 

dimensions correspond to the spatial coordinates of the image, and the third to the spectral 

bands.  

Detectors used in hyperspectral cameras can be built on the basis of various 

technologies, including CCD (Charge-Coupled Device) and CMOS (Complementary 

Metal-Oxide-Semiconductor) sensors. These sensors provide high sensitivity and readout 

speed, which is critical for obtaining high-quality hyperspectral images.  

2.3.2. Data storage  

Images captured by a hyperspectral camera are stored in the form of spectral cubes. Each 

spectral cube contains a three-dimensional array of data, where two dimensions correspond 

to the spatial coordinates of the image, and the third one corresponds to the spectral bands 

(Fig. 2.9). The spectral cube can be represented in the ENVI format, which is widely used 

for storing and processing hyperspectral data. The ENVI format consists of two files: .hdr 

(header) and .dat (data). The .hdr file contains metadata about the image, such as cube size, 

number of spectral bands, resolution, and other parameters. The .dat file contains the actual 

spectral data in binary format[14]. 

 

Fig. 2.9 Hyperspectral image data cube 
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2.3.3 Transition between frequencies  

 The transition between spectral bands in hyperspectral cameras is a key aspect of their 

functioning, as it allows obtaining detailed information about the spectral composition of 

the scene. This process is carried out with the help of optical elements that decompose light 

into its spectral components. The main methods of achieving this are the use of rotating 

filters, dispersive elements such as prisms or diffraction gratings, and interference filters. 

Each of these methods has its advantages and disadvantages, which are determined by the 

requirements of a particular application[17].  

 Let's look at the methodologies Rotary filters, also known as Fabry-Perot filters, are 

used to selectively transmit certain spectral bands of light. They consist of a set of 

interchangeable filters that can be rotated to adjust to the desired wavelength (Figure 2.10). 

This method allows you to quickly change spectral bands and provides high accuracy of 

data collection. The principle of rotating filters is that the light from the object passes 

through the camera lens and hits the rotating filter. Depending on the angle of rotation, the 

filter transmits only a certain spectral band, which is then registered by the detector. By 

rotating the filters sequentially, a complete spectral image of the scene can be obtained. 

 

Fig. 2.10 Filter wheel system 

 

Prisms and diffraction gratings are other common elements for decomposing light into 

spectral components. They use the phenomena of dispersion and diffraction to separate light 

into individual wavelengths. Prisms refract light at different angles depending on the 

wavelength, breaking it down into its spectral components. Prisms are commonly used in 
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high-precision laboratory hyperspectral systems where high spectral resolution is important. 

Diffraction gratings decompose light through interference, creating spectral bands. They 

provide high spectral resolution and can be used in a variety of applications, including 

satellite and aviation systems. The equation for the diffraction angle 𝜃 in a diffraction grating 

is defined as: 

 

Another approach is interference filters (Fig. 2.11), which use the phenomenon of 

interference to selectively transmit certain wavelengths. They consist of multilayer coatings 

that create interference bands. These filters provide high accuracy and are often used in 

portable hyperspectral cameras. For example, the Headwall Photonics Nano-Hyperspec 

aviation hyperspectral camera uses interference filters to capture images in the visible and 

near-infrared. The camera is installed on drones and airplanes for monitoring crops, forest 

resources, and other objects. 

 

Fig. 2.11 Interference Optical Filters 

2.3.4. Camera configuration  

 Hyperspectral cameras have a complex configuration that includes optical elements, 

detectors, signal processing electronics, and other components. The camera configuration 

determines its characteristics, such as spectral and spatial resolution, sensitivity, wavelength 

range, and other parameters. The main components of a hyperspectral camera - the lens, 
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dispersive element, detector, and data processing and storage electronics - work together to 

provide an accurate and detailed image of a scene[14].  

 The first step in configuring a hyperspectral camera is to select a lens. The lens focuses 

the light onto the detector and can be of different types, from simple lenses to complex 

multiple lens systems (Figure 2.12) or mirror-lens systems. The type of lens is selected 

depending on the spatial resolution requirements and the field of view of the camera. 

 

 

Fig. 2.12 Hyperspectral lens 1.0 μm-2.5 μm SWIR 

After the light has passed through the lens, it hits the dispersive element, which 

decomposes it into spectral components. The most commonly used are prisms or diffraction 

gratings. A prism uses the principle of light refraction, and a diffraction grating works by 

diffraction (Figure 2.13). This element allows you to decompose light into narrow spectral 

bands, which is critical for obtaining high-quality hyperspectral data.   
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Fig. 2.13 Comparison of the spectra obtained from a diffraction grating by diffraction , and a 

prism by refraction. 

The decomposed light is transmitted to a detector that records the spectral data. 

Detectors can be of different types, but the most commonly used are CCD or CMOS 

detectors (Figure 2.14). They provide high sensitivity and resolution, which allows you to 

record the intensity of light in each spectral band.   

 

Fig. 2.14 CCD and CMOS detectors 

Signal processing electronics play a key role in the configuration of hyperspectral 

cameras. It provides digitization of analog signals from the detector, noise filtering, signal 

amplification, and data transmission to an external device for storage and analysis. The main 

electronics components include analog-to-digital converters (ADCs), amplifiers, filters, and 

microprocessors.    

 Some hyperspectral cameras are equipped with cooling systems to reduce noise and 

increase detector sensitivity. This is especially important for cameras operating in the 

infrared range, where thermal noise can significantly affect image quality. Cooling can be 

provided by thermoelectric coolers or liquid cooling.   
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 Software also plays an important role in the configuration of hyperspectral cameras. It 

provides control over the imaging process, setting of imaging parameters, such as exposure, 

number of spectral bands, resolution, etc., as well as processing of the data obtained. The 

software allows you to perform initial data processing, including calibration, geometric 

distortion and noise correction.   

A stable power supply and communication interfaces are also an integral part of the 

hyperspectral camera configuration. These can be USB, Ethernet or specialized high-speed 

interfaces such as Camera Link. Reliable power supply and high-speed data transfer are 

critical for the smooth operation of cameras in the field or when installed on unmanned 

aerial vehicles.   

 Finally, to ensure measurement accuracy, hyperspectral cameras are equipped with 

calibration mechanisms. They include systems for radiometric, geometric and spectral 

calibration. Calibration mechanisms allow taking into account various factors that can affect 

the accuracy of measurements, such as temperature changes, changes in the characteristics 

of the detector or optical elements.  

 Thus, the configuration of hyperspectral cameras is a complex process involving the 

selection and adjustment of various components to achieve high measurement accuracy and 

sensitivity. These components work together to provide detailed and accurate information 

about a scene, which is critical for many scientific and industrial applications. 

2.4. Carriers    

Carriers for hyperspectral cameras are key elements that provide mobility and the ability 

to cover large areas for spectral analysis. The most common carriers are satellites, airplanes, 

and unmanned aerial vehicles (drones). This section will discuss the use of unmanned aerial 

vehicles, in particular drones, as carriers for hyperspectral cameras, which allows for high-

precision aerial surveys.  

Drones are the most flexible and cost-effective carriers for hyperspectral imaging. They 

allow to obtain high-quality data from low altitudes, providing high spatial and spectral 

resolution. Drones can be quickly deployed to survey localized areas, making them 

indispensable for operational research and monitoring tasks. Modern drones, such as the DJI 

Matrice 600, have a large payload and long flight time, which allows them to mount heavy 
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scientific instruments and conduct long-term research. The main limitations of drones are 

their limited flight time and dependence on weather conditions, including wind and 

precipitation. 

 

2.4.1 Classification of drones  

Quadcopters can be classified according to various criteria such as size, payload, flight 

time, purpose, and design features. Here are some of the main types of quadcopters[6]: 

• Micro quadcopters are the smallest quadcopters, usually measuring less than 20 cm. 

They are lightweight, maneuverable, and cheap, making them popular for beginners 

and for indoor use. They are equipped with small batteries that provide a short flight 

time of 5 to 10 minutes. An example of a micro-quadcopter is the Cheerson CX-10 

(Figure 2.15), which has a flight time of up to 8 minutes and weighs only 12 grams. 

Although their payload capacity is very limited, these drones are great for training 

and entertainment. 

 

Fig. 2.15 Cheerson CX-10 

• Compact quadcopters are slightly larger devices, up to 40 cm in size. They can carry 

a small load, for example, a camera for amateur filming. The flight time of these 

quadcopters can be from 10 to 20 minutes, depending on the battery capacity. The 

DJI Spark (Figure 2.16) is an example of a compact quadcopter that has a flight time 

of up to 16 minutes and can carry a small camera for HD filming. These quadcopters 

offer better stability and longer flight times than micro quadcopters. 
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Fig. 2.16 DJI Spark 

• Medium-sized quadcopters are 40 to 70 cm in size and are capable of carrying heavier 

loads, including professional cameras. They are commonly used for commercial and 

industrial applications. The flight time of medium-sized quadcopters can reach 30 

minutes or more. For example, the DJI Phantom 4 Pro (Fig. 2.17) has a payload of up 

to 500 grams and a flight time of up to 30 minutes. It is equipped with a 20-megapixel 

camera with the ability to shoot 4K video. This quadcopter is a great choice for 

professional photography and videography. 

 

Fig. 2.17 DJI Phantom 4 Pro 

• Large quadcopters are the largest and most powerful devices, measuring more than 

70 cm. They can carry heavy loads, such as hyperspectral cameras, and are used in 

professional and industrial applications. Flight time can reach 60 minutes or more, 

depending on battery capacity and design features. The DJI Matrice 600 (Figure 2.18) 

is an example of a large quadcopter that can carry up to 6 kg of cargo and has a flight 
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time of up to 35 minutes with a maximum payload. Its modular design allows for the 

use of a variety of equipment, making it ideal for complex industrial applications. 

2.4.2 Characteristics of the DJI Matrice 600 drone  

The DJI Matrice 600 is one of the most popular drones used for professional aerial 

photography and hyperspectral imaging. This drone has high technical characteristics that 

ensure flight stability and high quality data. 

 

Fig. 2.18 DJI Matrice 600 

Main features of DJI Matrice 600:  

• Maximum takeoff weight: 15.5 kg  

•  Payload capacity: up to 6 kg  

•  Flight duration: up to 35 minutes (with a load of 6 kg)  

•  Maximum speed: 18 m/s  

•  Control system: A3 Pro  

•  GPS: support for dual GPS/GLONASS  

•  Video transmission system: Lightbridge 2  

•  Operating temperature range: -10°C to +40°C  

These features make the DJI Matrice 600 an ideal choice for heavy hyperspectral camera 

installations that require stable and long flight times. 
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2.4.3. Installing the hyperspectral camera on the DJI Matrice 600  

Mounting the hyperspectral camera on the drone is an important step that affects the 

quality of the image and flight stability. The DJI Matrice 600 uses special gimbals to 

stabilize and minimize vibrations during flight[19].  

The process of installing a hyperspectral camera:  

  

1. Selecting a gimbal: To install a hyperspectral camera, choose a gimbal that is 

compatible with the drone model and camera weight. For example, the Gremsy T3 gimbal 

(Fig. 2.19), which supports a load of up to 3.5 kg and provides three-axis stabilization. 

 

Fig. 2.19 Gremsy T3 

2. Mounting the gimbal: The gimbal is attached to the bottom of the drone using special 

mounting kits. It is important to ensure a secure mount to avoid shifting or losing the camera 

during flight.  

 3. Calibration: Once the gimbal and camera are installed, the stabilization system is 

calibrated. This is necessary for optimal performance of the gimbal and to obtain clear, blur-

free images.  

 4. Connecting the camera: The hyperspectral camera is connected to the drone's power 

system and control system to ensure that the camera is synchronized with the drone. This 

may include power and data transmission through dedicated cables.  

 5. Test flight: Before performing the main tasks, a test flight is conducted to verify the 

operation of the gimbal and camera. It is important to check flight stability and image 

quality.  
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 Installing a hyperspectral camera on the DJI Matrice 600 allows you to obtain high-

quality spectral data necessary for a variety of research and monitoring tasks. 

 

 

 

2.4.4. Flight and route specifications for hyperspectral imagery  

  

Effective flight and route planning are key factors in obtaining accurate and detailed 

hyperspectral imagery. Below are the technical aspects of flight and route planning for 

hyperspectral imaging with the DJI Matrice 600[6].  

 Flight planning:  

 1. Flight altitude: The choice of flight altitude depends on the required spatial resolution 

and coverage area. For hyperspectral imaging, an altitude of 100-150 meters is usually used, 

which provides an optimal ratio between image detail and coverage area.  

 2. Overlapping images: To ensure full coverage of the territory, the overlap of images 

is set at 60-80% in the transverse and longitudinal directions. This avoids gaps in the data 

and provides the ability to create mosaic images.  

 3. Flight route: The flight route is planned in such a way that the drone moves along 

parallel lanes, covering the entire area of the surveyed territory. Special software tools for 

automatic route planning are used, such as DJI Ground Station Pro or Pix4Dcapture.  

 An example of route calculation:  

 Let's take an example of surveying an agricultural field of 50 hectares. For this purpose, 

a DJI Matrice 600 drone with a hyperspectral camera will be used. 

• Flight altitude: 120 meters  

• Width of the shooting band: 30 meters  

• Overlap of images: 70%  

• Strip length: 500 meters  

To cover 50 hectares (500,000 m²), 34 swaths (500,000 m² / (30 m * 500 m)) are 

required.   

Flight trajectory:  
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 1. The drone starts from a starting point at the edge of the field.  

 2. It flies along the first lane at an altitude of 120 meters, capturing images with 70% 

overlap.  

 3. After reaching the end of the lane, it turns and moves to the next lane, moving in the 

opposite direction.  

4. The procedure is repeated for all 34 lanes until the field is completely covered.  

Time to complete the task:  

With a flight duration of 35 minutes and an average flight speed of 5 m/s, the time 

required to complete the task is calculated as: 

 

 Thus, the drone will be able to survey the entire field in two flights, which ensures 

efficiency and high quality of the data obtained.  

 In summary, proper flight planning and installation of a hyperspectral camera on the 

DJI Matrice 600 drone allows you to efficiently perform hyperspectral imaging of large 

areas with high accuracy and quality of the data obtained. 
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CHAPTER 3 

PROCESSING OF HYPERSPECTRAL IMAGES 

3.1. Preliminary processing of hyperspectral images  

 Pre-processing of hyperspectral images is an important stage that ensures high-quality 

further data analysis and interpretation. It includes several main steps: calibration correction, 

atmospheric correction and geometric distortion correction.  

 3.1.1. Calibration correction  

 Calibration correction is the primary step required to bring hyperspectral data to a 

standardized form. This process involves the correction of systematic errors that may occur 

due to the peculiarities of the sensor or the camera optical system[1].  

 One of the main tasks of calibration is to convert the raw data into a reflectance. This 

is done by normalizing the measured signal to the corresponding radiometric response of 

the camera. The formula for this is as follows: 

 

3.1.2. Atmospheric correction  

 Atmospheric correction is necessary to take into account the influence of the 

atmosphere on hyperspectral data, as light passing through the atmosphere undergoes 

scattering and absorption. This process can significantly distort the data obtained, so it is 

important to correct it to accurately reflect the properties of objects on the Earth's surface 

(Fig. 3.1).   

For atmospheric correction, models such as MODTRAN (MODerate resolution 

atmospheric TRANsmission) are often used, which allow to simulate atmospheric 

conditions and take into account their effect on spectral data[13].   
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Fig. 3.1 An example of atmospheric correction processing for hyperspectral imaging sensors, 

showing several pixel spectra of the sensor (top) and their corresponding atmospherically 

corrected surface reflectance spectra (bottom). 

3.2. Reducing the dimensionality of hyperspectral data  

Hyperspectral images contain a huge amount of spectral and spatial data, which can 

make them difficult to process and analyze. Reducing the dimensionality of hyperspectral 

data allows for easier processing while retaining important information. The main methods 

of dimensionality reduction include principal component analysis (PCA), linear 

discriminant analysis (LDA), and negative matrix factorization (NMF). 

 

Fig. 3.2 Comparison of PCA and LDA methods 
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3.2.1. Principal component analysis (PCA) methods  

 Principal component analysis (PCA) is one of the most common dimensionality 

reduction methods used to analyze hyperspectral data. PCA transforms the original variables 

into a new set of variables called principal components that are orthogonal and contain the 

largest part of the variance in the data[17].   

 The formula for finding the principal components: 

 

3.2.2. Linear discriminant analysis (LDA)  

 Linear discriminant analysis (LDA) is used to reduce the dimensionality of a 

classification problem. LDA projects the data into a lower dimensional space, maximizing 

the difference between classes and minimizing the scatter within classes.  

The main goal of LDA is to find linear combinations of variables that maximize the 

ratio of between-class variance to within-class variance: 

 

3.3 Classification and segmentation of hyperspectral images  

Classification and segmentation of hyperspectral images are important steps in data 

analysis, as they allow to identify different materials and objects in the images. There are 

two main approaches to classification: supervised and unsupervised methods.  

 3.3.1. Supervised classification methods  

Supervised classification methods use pre-labeled data to train a model. These methods 

include support vector machines (SVMs), decision trees, random forests, neural networks, 

and deep learning.  

 3.3.1.2. Decision trees and random forests  

 Decision trees use a hierarchical structure to make decisions by dividing data into 

subsets based on the values of their attributes. Random forests (Figure 3.2) consist of a large 

number of decision trees and use the ensemble method to improve classification 

accuracy[15].  

 Formula for entropy in a decision tree: 
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Fig. 3.3 Schematic of a random forest 

3.3.1.3. Neural networks and deep learning  

 Neural networks and deep learning use multi-layer models to learn complex patterns in 

data. Deep neural networks, such as convolutional neural networks (CNNs), are particularly 

effective for hyperspectral image classification due to their ability to automatically extract 

features from the data (Figure 3.4)[19]. 

 

Fig. 3.4 Hyperspectral image processing using a deep neural network 
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3.4 Detecting and extracting objects in hyperspectral images  

 Detecting and extracting objects in hyperspectral images is an important processing 

step that allows you to identify specific materials and changes in the environment. This 

process involves the use of spectral indices, detection of anomalies, changes, and extraction 

of information using templates.  

 3.4.1 Spectral indices and indicators  

 Spectral indices are used to enhance certain characteristics in hyperspectral images. 

They allow you to highlight specific objects or phenomena, such as vegetation, water, or 

minerals, based on their spectral signatures. For example, the Normalized Difference 

Vegetation Index (NDVI) is widely used for vegetation detection and monitoring[7].   

 3.4.2 Anomaly and change detection  

 Anomaly detection is the identification of pixels or areas that are significantly different 

from the surrounding data. This can be useful for identifying changes in the environment, 

such as water pollution, plant disease detection, or man-made changes. Anomaly detection 

methods can include thresholding methods, statistical models, and machine learning[11].   

 The formula for statistical anomaly detection methods can be represented as follows: 

 

3.4.3. Information extraction using templates  

 Template-based information extraction from hyperspectral images involves the use of 

predefined spectral signatures to identify specific materials or objects. This can be done 

using correlation analysis techniques, where spectral signatures are compared to a database 

of templates[10].  

 Formula for correlation analysis: 

 

These object detection and extraction techniques greatly facilitate the analysis of 

hyperspectral data, allowing the identification of important environmental, agricultural, and 

industrial features in images. 
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3.5. Visualization and interpretation of hyperspectral data  

 Visualization and interpretation of hyperspectral data are important steps for 

understanding and analyzing the information contained in hyperspectral images. They allow 

for a more convenient representation of multidimensional data and qualitative and 

quantitative analysis of spectral signatures.  

 3.5.1. Pseudo-color mapping methods  

 Pseudo-color display methods are used to present hyperspectral data in a human-

readable format. Since hyperspectral data contain information from numerous spectral 

channels, it is impossible to display them directly on the monitor screen. Therefore, various 

visualization techniques are used to display multichannel data in the form of color 

images[14].  

 One popular method is to stack RGB channels from three selected spectral bands 

(Figure 3.6), which allows you to create a color image. The choice of spectral bands depends 

on the task under study. 

 

Fig. 3.6 Schematic of the process of selecting spectral bands for RGB channel compilation 

3.5.2. Visualization in three-dimensional space  

Visualization in three-dimensional space allows you to display spectral data in the form 

of three-dimensional models, where two dimensions represent spatial coordinates, and the 

third is the intensity of light reflection at different wavelengths (Fig. 3.7). This helps to better 

understand the structure and distribution of spectral characteristics in the image.  
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Three-dimensional visualization methods include the use of volume renderings and 

isosurfaces. Iso-surfaces allow you to display levels of reflectance intensity for different 

spectral bands[16]. 

 

Fig. 3.7 Three-dimensional model of hyperspectral data 

3.5.3. Interpretation of spectral signatures  

 Spectral signature interpretation is the detection and analysis of unique spectral 

characteristics that allow the identification of materials and objects in hyperspectral images. 

Spectral signatures reflect the reflectivity of materials at different wavelengths and can be 

used to recognize types of vegetation, minerals, water resources, and other objects[16].  

 To interpret spectral signatures, we use correlation analysis and spectral signature 

libraries. Correlation analysis allows comparing the obtained spectral signatures with known 

reference values contained in libraries.  

Methods of visualization and interpretation of hyperspectral data allow to effectively 

use hyperspectral information for solving a wide range of problems in science and industry.  

3.6. Integration of hyperspectral data with other sources of information  

 Integration of hyperspectral data with other sources of information allows to expand 

the possibilities of analysis and improve the accuracy and reliability of the results obtained. 

Interaction of hyperspectral images with multispectral data, geographic information systems 

(GIS), as well as data from other sensors, such as radar and LiDAR, opens up new horizons 

for research in various fields of science and industry. 

3.6.1. Combining hyperspectral and multispectral data  
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 Hyperspectral and multispectral data are complementary, as each type of data has its 

own advantages. Multispectral data provides wider spectral bands and can cover larger areas 

at a time, while hyperspectral data provides high spectral resolution. Combining these data 

allows the strengths of both technologies to be used for more accurate and detailed analysis 

(Figure 3.8).  

 Fusion techniques include the use of image fusion algorithms such as PCA (Principal 

Component Analysis) and other approaches that preserve the spatial resolution of 

multispectral data while adding spectral information from hyperspectral imagery[11]. 

 

Fig. 3.8 Scheme of combining hyperspectral and multispectral images 

 

3.6.2. Integration with GIS (geographic information systems)  

 Integration of hyperspectral data with GIS allows to effectively combine spectral 

information with spatial information about objects and territories. This greatly expands the 

possibilities for analyzing, monitoring and managing resources.  

 GIS is used to store, analyze and visualize geospatial data. By integrating hyperspectral 

imagery with GIS, it is possible to conduct more accurate spatial analysis, create maps of 

the distribution of various materials or vegetation conditions, and monitor environmental 

changes[10].  

3.6.3. Using data from other sensors (radar, LiDAR)  



   
 

52 
 

 Data from other sensors, such as radar and LiDAR, can be integrated with hyperspectral 

data to achieve a more comprehensive analysis. LiDAR (Light Detection and Ranging) 

provides three-dimensional information about the surface structure and height of objects, 

while radar data provides information about surface properties and moisture (Figure 3.9).  

 Combining these data with hyperspectral imagery allows for a more complete picture 

of the area under study. For example, LiDAR can help determine the structure of vegetation, 

while hyperspectral data reveals its chemical and physiological properties[9]. 

 

Fig. 3.9 Examples of integrated images of hyperspectral data with LiDAR and radar data   

The integration of hyperspectral data with other sources of information greatly expands 

the possibilities for analyzing and applying this technology in various fields, from 

environmental monitoring to precision agriculture and natural resource management. 

3.7. Practical cases of hyperspectral image processing  

Hyperspectral images open up wide opportunities for detailed analysis and monitoring 

in various fields. They provide highly accurate data about objects and processes, which is 

important for making informed decisions. This section discusses several practical cases of 

using hyperspectral images.  

 3.7.1. Crop analysis  

Hyperspectral cameras are widely used to analyze the condition of agricultural crops 

(Fig. 3.10). They help to determine the content of chlorophyll, nitrogen and other elements 

in plants, which allows agronomists to effectively manage fertilizers, plan irrigation and 

detect diseases or pests in time[8].  

 The main stages of crop analysis using hyperspectral images include: 

• Data collection: A hyperspectral camera mounted on a drone or airplane takes pictures 

of the field.  
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• Pre-processing: Noise correction, signal normalization, and other methods to improve 

image quality.  

• Analysis: Using machine learning algorithms and spectral indices to assess the 

condition of plants. 

 

Fig. 3.10 An example of a field image taken by a hyperspectral camera   

3.7.2. Environmental monitoring  

 Hyperspectral imagery is effective for monitoring various aspects of the environment, 

such as water quality, air pollution, forest health, etc. Due to its high spectral resolution, it 

is possible to identify and classify different types of vegetation, detect harmful impurities in 

water, and study ecosystems[11].  

 The process of environmental monitoring includes:  

•  Data collection: The use of satellite or airborne platforms to survey areas.  

•  Data processing: Applying spectral analysis and classification techniques to extract 

the necessary features.  

•  Interpretation of results: Analyzing the data to make decisions about environmental 

protection.   

3.7.3. Medical and biological research  

 Hyperspectral images are used in medical and biological research to study tissues, 

diagnose diseases, and investigate biological processes (Figure 3.11). They allow detecting 

changes in tissues that may not be visible with conventional visual diagnostics[1].  

 Key steps in the use of hyperspectral images in medicine and biology:  
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•  Image acquisition: A hyperspectral camera takes pictures of biological samples or 

organs.  

•  Image analysis: Using spectral methods to detect abnormalities and pathological 

changes.  

•  Interpretation of results: Using the data for diagnosis, treatment planning, and 

research. 

 

Fig. 3.11 Tissue images taken with a hyperspectral camera 

 

 Hyperspectral images provide unique opportunities for detailed analysis and 

monitoring in various industries. They provide highly accurate information that can be used 

to make informed decisions in agriculture, environmental protection, medicine and many 

other areas. 
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CHAPTER 4 

 PRACTICAL IMPLEMENTATION OF A NEURAL NETWORK FOR 

ANOMALY CLASSIFICATION 

4.1 Architecture of a neural network 

This subsection discusses the details of the neural network architecture that was 

developed for the detection and classification of offshore oil spills. The use of convolutional 

neural networks (CNNs) allows to effectively analyze the spatial and spectral characteristics 

of hyperspectral images, which ensures high accuracy of anomaly detection. 

4.1.1. Model structure 

Our model consists of two main branches: spatial and spectral. This architecture allows 

for deep data analysis and integration of different types of features, which improves 

classification accuracy. 

The spatial branch consists of several convolutional layers that process the spatial 

features of images. The spectral branch uses 1x1 convolution to process spectral features. 

Fig. 4.1 Architecture of the Model 

4.1.2. Building the model 

Below is the code for building a model in Python using the TensorFlow library: 

import tensorflow as tf 

from tensorflow.keras import layers, models 

  

def build_model(input_shape): 
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    inputs = layers.Input(shape=input_shape) 

     

    # Spatial branch 

    x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(inputs) 

    x = layers.MaxPooling2D((2, 2))(x) 

    x = layers.Conv2D(64, (3, 3), activation='relu', padding='same')(x) 

    x = layers.MaxPooling2D((2, 2))(x) 

    x = layers.Conv2D(128, (3, 3), activation='relu', padding='same')(x) 

    spatial_features = layers.Flatten()(x) 

     

    # Spectral branch 

    y = layers.Conv2D(32, (1, 1), activation='relu', padding='same')(inputs) 

    y = layers.MaxPooling2D((2, 2))(y) 

    y = layers.Conv2D(64, (1, 1), activation='relu', padding='same')(y) 

    y = layers.MaxPooling2D((2, 2))(y) 

    y = layers.Conv2D(128, (1, 1), activation='relu', padding='same')(y) 

    spectral_features = layers.Flatten()(y) 

     

    # Integration of spatial and spectral features 

    combined_features = layers.concatenate([spatial_features, spectral_features]) 

     

    # Classification layer 

    z = layers.Dense(256, activation='relu')(combined_features) 
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    z = layers.Dropout(0.5)(z) 

    outputs = layers.Dense(1, activation='sigmoid')(z) 

     

    model = models.Model(inputs, outputs) 

    return model 

  

input_shape = (128, 128, 30)  # приклад розміру гіперспектральних даних 

model = build_model(input_shape) 

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

 

This code creates a CNN model with two branches: the spatial branch processes spatial 

features and the spectral branch processes spectral features. The combined features are used 

to classify anomalies. 

4.2. Data preparation 

Data preparation is a critical step in creating an effective neural network. In this 

subsection, we discuss the processes of data collection, preprocessing, and augmentation for 

model training. We used hyperspectral imagery to detect offshore oil spills, providing the 

model with a sufficient amount of high-quality data. 

4.2.1. Description of the datasets 

Hyperspectral images with labeled anomalies were used to train and test our model. 

Hyperspectral data provides the ability to analyze objects in many spectral bands, which 

greatly improves the ability to distinguish between different materials. 

Fig. 4.2 shows a hyperspectral image with labeled oil spills. It illustrates how the data 

was collected and what anomalies we are trying to detect. 
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Fig. 4.2 Hyperspectral oil spill image and corresponding ground truth image  

4.2.3 Pre-processing 

Data preprocessing includes several steps such as normalization, noise removal, and 

augmentation. This helps to improve the quality of the data used to train the model. 

Data normalization: 

• The hyperspectral data was normalized to reduce the differences in pixel values and 

facilitate the model training process. 

Noise removal: 

•  Filtering was applied to reduce noise in the hyperspectral images. 

Data augmentation: 

• To increase the amount of training data, augmentation techniques such as rotation, 

displacement, and zooming of the images were used. 

 

import numpy as np 

from sklearn.model_selection import train_test_split 

  

# Downloading data (example) 
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data = np.load('hyperspectral_data.npy')  # Гіперспектральні зображення 

labels = np.load('labels.npy')  # Мітки розливів нафти 

  

# Data normalization 

data = data / np.max(data) 

  

# Remove noise (example of using a filter) 

from scipy.ndimage import gaussian_filter 

data = gaussian_filter(data, sigma=1) 

  

# Separation into training and validation sets 

train_data, val_data, train_labels, val_labels = train_test_split(data, labels, 

test_size=0.2, random_state=42) 

  

# Data augmentation (example) 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

  

datagen = ImageDataGenerator(rotation_range=20, width_shift_range=0.2, 

height_shift_range=0.2, zoom_range=0.2) 

datagen.fit(train_data) 

 

 

4.2.4. Preparation of hyperspectral images 
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To prepare hyperspectral images, several important steps were performed, such as 

artifact removal, geometric distortion correction, and spectral channel calibration. 

 Radiometric Calibration Formula: 

 

 

Data preparation is an important step in building a neural network for anomaly 

detection. Proper preprocessing and augmentation of hyperspectral data significantly 

improves model performance. Using different methods for normalization, noise removal, 

and augmentation allows you to create a more reliable dataset for training and testing a 

neural network. 

4.3. Training and validation of the model 

Model training and validation are critical steps in achieving high accuracy and reliability 

of a neural network. In this section, we discuss model training methods, hyperparameter 

selection, and validation approaches. We will also discuss training results and evaluation of 

model performance. 

4.3.1. Training parameters 

The following main parameters were used to train the model: 

• Optimizer: Adam 

• Loss function: Binary cross-entropy 

• Batch size: 32 

• Number of epochs: 20 

# Training parameters 
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optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) 

loss_function = 'binary_crossentropy' 

batch_size = 32 

epochs = 20 

  

model.compile(optimizer=optimizer, loss=loss_function, metrics=['accuracy']) 

4.3.2. Training process 

The training process includes several steps, such as initializing the model, defining 

metrics, and running a training cycle. During training, the model optimizes its weights to 

reduce the loss function on the training data. 

# Model training 

history = model.fit(datagen.flow(train_data, train_labels, batch_size=batch_size), 

                    epochs=epochs, 

                    validation_data=(val_data, val_labels)) 

Oil spill detection accuracy of  algorithm based on the Dalian Xingang dataset shown 

in (fig 4.3) 

 

Fig. 4.3 Detection accuracy of  algorithm 

4.3.3 Evaluation of training results  
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 After the training is completed, the results are evaluated on the validation set. The main 

metrics are accuracy and the value of the loss function. It is also important to analyze the 

learning curve to identify possible problems, such as overtraining or undertraining.  

 

Fig. 4.4 “Training and Validation Loss” 

Figure 4.4: “Training and Validation Loss” is a graph that shows the change in the loss 

function on training and validation on different datasets, compared to other metods. 

 

import matplotlib.pyplot as plt 

  

# Visualization of results 

plt.figure(figsize=(12, 4)) 

  

# Accuracy chart 

plt.subplot(1, 2, 1) 

plt.plot(history.history['accuracy'], label='Training Accuracy') 

plt.plot(history.history['val_accuracy'], label='Validation Accuracy') 
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plt.title('Training and Validation Accuracy') 

plt.xlabel('Epochs') 

plt.ylabel('Accuracy') 

plt.legend() 

  

# Graph of losses 

plt.subplot(1, 2, 2) 

plt.plot(history.history['loss'], label='Training Loss') 

plt.plot(history.history['val_loss'], label='Validation Loss') 

plt.title('Training and Validation Loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.show() 

4.4. Experimental results 

4.4.1. Model accuracy 

After the model training was completed, we evaluated its performance on the validation 

dataset. The main metrics used for the evaluation were accuracy, loss function values, and 

other metrics such as precision, recall, and F1-measure. 

from sklearn.metrics import confusion_matrix, classification_report 

  

# Prediction on the validation set 

val_predictions = (model.predict(val_data) > 0.5).astype("int32") 
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# Mixing matrix 

conf_matrix = confusion_matrix(val_labels, val_predictions) 

print(conf_matrix) 

  

# Classification report 

class_report = classification_report(val_labels, val_predictions) 

print(class_report) 

4.4.2. Visualization of results 

To better understand the model's performance, we visualized the results on test images. 

This allows us to visually assess the model's ability to detect and classify anomalies in 

hyperspectral images. 

import matplotlib.pyplot as plt 

  

# Visualization of forecast examples 

plt.figure(figsize=(15, 10)) 

for i in range(6): 

    plt.subplot(2, 3, i+1) 

    plt.imshow(val_data[i]) 

    plt.title(f"Actual: {val_labels[i]}, Predicted: {val_predictions[i][0]}") 

    plt.axis('off') 

plt.show() 

4.4.3. Analysis of results 

The model has shown high accuracy in detecting offshore oil spills, as evidenced by the 

high values of the accuracy and completeness metrics. However, there are some challenges 

and limitations that need to be considered: 
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Overfitting: The model may perform well on training data, but poorly on new data. This 

may indicate overfitting. 

Need for additional data: More diverse data is needed to improve the generalizability of 

the model. 

from sklearn.metrics import roc_curve, auc 

  

# Calculating the ROC curve 

fpr, tpr, thresholds = roc_curve(val_labels, val_predictions) 

roc_auc = auc(fpr, tpr) 

  

# Visualization of the ROC curve 

plt.figure() 

plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (area = {roc_auc:.2f})') 

plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') 

plt.xlim([0.0, 1.0]) 

plt.ylim([0.0, 1.05]) 

plt.xlabel('False Positive Rate') 

plt.ylabel('True Positive Rate') 

plt.title('Receiver Operating Characteristic (ROC) Curve') 

plt.legend(loc="lower right") 

plt.show() 

The results of image processing can be seen on (fig 4.5) The experiments have shown 

that the proposed neural network architecture is capable of effectively detecting and 
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classifying offshore oil spills in hyperspectral images. The model demonstrates high 

accuracy, but further improvements are recommended: 

  

• Expand the dataset with new examples. 

• Optimize the model hyperparameters. 

• Use data augmentation techniques to reduce overfitting. 

 

 

Fig. 4.5 Hyperspectral oil spill images and corresponding ground truth images: (a) 

Hyperion spaceborne image in Liaodong Bay (R: 31, G: 20, B: 11); (b) AISA+ airborne 

image in Penglai 19-3 oilfield (R: 107, G: 68, B: 28); (c,d) the corresponding ground truth 

images. 
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Conclusions 

In this thesis, a comprehensive study was conducted aimed at developing an intelligent 

system for detecting and classifying anomalous objects using hyperspectral images. The 

main goal of the work was to develop an effective methodology and software for automatic 

anomaly detection in images with high spectral resolution. 

 In the course of the study, the existing methods and technologies for detecting 

anomalous objects were analyzed, which allowed us to select the most promising approaches 

for further application. The choice of neural networks as the main tool for processing 

hyperspectral data was substantiated. In particular, a neural network architecture adapted to 

work with multidimensional data obtained from hyperspectral images was developed. 

 One of the key parts of the work was data preparation, which included normalization, 

noise removal, and image augmentation. This allowed us to improve the accuracy and 

reliability of the model by reducing the impact of noise and other interference. The use of 

augmentation also improved the model's ability to generalize to new data, which is critical 

for practical applications. 

 The modeling results showed the high efficiency of the developed system in detecting 

and classifying anomalous objects. The testing demonstrated the model's ability to 

accurately identify anomalies in various conditions, which confirms its potential for use in 

real-world scenarios. Visualization of the results allowed us to better understand the model's 

behavior and identify areas for further improvement. 

 However, some problems with overfitting were identified, which highlighted the need 

to expand the training dataset and optimize the model's hyperparameters. Further research 

could include the use of more sophisticated augmentation methods, as well as the 

development of new approaches to hyperspectral image processing. 

 Overall, the study results confirmed the effectiveness of the proposed intelligent system 

for automated detection and classification of anomalous objects. This opens up new 

opportunities for the implementation of such systems in various fields, including 
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environmental monitoring, security, healthcare, and other areas where anomalies need to be 

detected quickly and accurately. 

 This work creates a basis for further research and improvement of existing methods, 

contributing to the development of innovative technologies in the field of data processing 

and analysis. It also shows the potential of using hyperspectral images in combination with 

neural networks to solve complex problems in various application areas. 
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