MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
NATIONAL AVIATION UNIVERSITY
Faculty of Aeronavigation, Electronics and Telecommunications

Department of aviation computer integrated complexes

ADMIT TO DEFENSE
Head of the graduating department

Viktor SINEGLAZOV
« ” 2024y.
QUALIFICATION WORK
(EXPLANATORY NOTE)
OF THE GRADUATE OF THE EDUCATIONAL DEGREE
“BACHELOR”

Specialty 151 "Automation and computer-integrated technologies"

Educational and professional program "Computer-integrated technological

processes and production"

Theme: Intelligent data processing system

Performer: student of FAET-421 ba group Petrov Denys
Supervisor: Mykola TUPITSYN

Norm controller: Filyashkin M.K.

(sign)

Kyiv — 2024

MIHICTEPCTBO OCBITH I HAYKH YKPATHH
HAIIIOHAJIbHUN ABIAIIIMHNN YHIBEPCUTET
dakynbTeT aepoHaBirailii, eJIEKTPOHIKU Ta TeJICKOMYHIKaIlii

Kadenpa aBiamiitHux KoMI'tOTepHO-1HTETPOBAHUX KOMILICKCIB

JOIMYCTUTHU A0 3AXUCTY
3aBigyBau BUITyCKOBOT Kadeapu
_____ Bikrop CUHETJIA3Z0B

“ ” 2024 p.

KBAJI®IKAIIIMHA POBOTA
(ITOSACHIOBAJIBHA 3AIINCKA)
BUITYCKHUKA OCBITHBOI'O CTYIIEHA
“bAKAJIABP”
Crnemianaicts 151 "ABTOMaTH3aIlis, Ta KOMIT FOTEPHO-IHTETPOBaHI TEXHOIOT1i"

OcsitHbO-TIpodeciitna mporpama "Komm’ roTepHO-1HTErpOBaH1 TEXHOJIOT1YH1
polecH 1 BAPOOHUIITBA"

Tema: [HTENEKTYAIbHA CUCTEMA OOPOOKM JAHUX

Bukonaseus: ctynent rpynu [K-421ba I[lerpos [lenrnc MukosnaiioBuy

KepiBuuk: k.T.H., norieHT Tyminua Mukona ®enopoBud

HopmoxonTtposep: Oimstmkin M.K.

(miamwmc)

Kuis — 2024

HALIIOHAJIbHUM ABIAIIIMHWN YHIBEPCUTET
dakynbTeT aepoHaBIrallii, EJIEKTPOHIKY Ta TEIECKOMYyHIKaIii
Kadenpa aBianiiHuX KOMIT IOTEPHO-1HTETPOBAHUX KOMILIEKCIB

OcBiTHBO-KBaTIPiKaLIfHUIA pIBEHb OaKaiaBp
CoemanpHICTE1S51 «ABTOMaTH3alls Ta KOMII FOTEPHO-1IHTErPOBAHI TEXHOJIOTID

3ATBEPIKYIO
3aBigyBau kadeapu
Bixtop CUHETJIA3Z0B
« » 2024 p.

3ABTAHHA
HA BUKOHAHHA KBaJdidikauiiiHoi podoTu

IHHETPOBA [dennca MukoJiaiiopuya

1. Tema kBaJsi¢ikauniitnoi po6orn «IHTENneKTyanpHa cucTeMa 0OpoOKH TaHUX.

2. Tepmin BUKoHaHHs1 podoTu: 3 15 kBiTHA 2024p. 110 14 _4epBHs 2024 p.

3. Buxiani gani g0 poodoru: Chandola V., Kumar V. Summarization — compressing
data into an informative representation // Knowledge and Information Systems.
2007. Vol. 12, is. 3. P. 355-378.

4.3micT nosicHIOBaJIbLHOI 3anucKu: 1) Onian Ta aHaIi3 METO/IIB IHTEJIEKTYyalbHOTO
aHami3zy nganux; 2) Ommc ocobiuBocTel perpeciitHoro anamizy; 3) IlocranoBka
3aBliaHHs; 4) MaremMaTtnuHa MOJielib perpeciiiHoro anamsy; 5) Po3poOka anropurmy
perpeciitHoro ananizy norogHux aanux; 6) [pukiag o6poOku qaHuX 32 TOMOMOTOIO
perpeciitHoro anamizy; 7) AHaji3 OTpUMaHHUX PE3ybTATIB.

5. Iepeaik 000B’s3k0BOro rpagiyHoro (LUIICTPATHBHOIO) Marepiaiy:

[Ipe3enTamis B MicrosoftPowerPoint.

6. Kanenpapuuii mian-rpagixk

No Tepmin Binviia
3aBaaHHsA po
nop. BUKOHAHHS
BUKOHAHHS
1 OsnaiiomeHHsT 3 nocrTaHoBkoro 3azaul | 01.04.2024- BIHKOHAHO
KBasTi(iKaliiHOi poOOTH. 04.04.2024
AHani3 miteparypaux mkepen ta intepHer | 05.04.2024-
2 | pecypcis. 24042024 | BHKOHaHO
. Orsip Ta aHai3 METOMIB | 5s 04 5004. N
1HTEJIEKTYaJIbHOTO aHaJli3y JIaHHX . 1.05.2024
4 Omnuc 0COOJIMBOCTEM perpeciitHoro | 2.05.2024- BIHKOHAHO
aHai3y. 10.05.2024
[TocTanoBKa 3aBIaHHS; 11.05.2024-
: 25.05.2024 | DBrromano
6 Marematnuyna Mozenb — perpeciiiHoro | 26.05.2024- BIHKOHAHO
aHalizy. 02.06.2024
[Ipukman o6pobku maHux 3a gomomoror | 03.06.2024-
/ perpeciitHoro aHarisy. 09.06.2024 Bukonano
OdopMmieHHsS TMOSCHIOBAJILHOI 3alUCKH,
8 rpaiyHUX MarepiaiiB Ta Mmpe3eHTauli 110 10.06.2024- Bukonano
P P P HEAYT13.06.2024
JIUTIJIOMHOTO TIPOECKTY.
9 [Tonanns kBamigikaiiitHoi podOTH 10 14.06.2024 BIHKOHAHO
3aXUCTY
7. Hara Bumaui 3aBmanns: “ _15 " kBiTHs 2024 p.
KepiBHUK TUMIIOMHOT poOOTH %D Tyninun M.D.
(mignuc KepiBHUKA) (I.LLb.)
3aBaaHHs NPUWHSB 10 BUKOHAHHS ITerpos .M.

(TLLB.)

NATIONAL AVIATION UNIVERSITY
Faculty of Aeronautics, Electronics and Telecommunications

Department of aviation computer-integrated complexes

Bachelor's degree in education
Specialty151 “Automation and computer-integrated technologies”
APPROVED BY
Head of the department
Viktor SINEGLAZOV
« » 2024 p.

TASKS
for the qualification work

PETROYV Denys

1. The topic of the qualification work is “Intelligent data processing system”.
2.Term of work: from April 15, 2024 to June 14, 2024.

3. Initial data for the work: Chandola V., Kumar V. Summarization - compressing
data into an informative representation / Knowledge and Information Systems.
2007. Vol. 12, 1s. 3. P. 355-378.

4.Contents of the explanatory note: 1) Overview and analysis of data mining
methods; 2) Description of the features of regression analysis; 3) Statement of the
problem; 4) Mathematical model of regression analysis; 5) Development of the
algorithm for regression analysis of weather data; 6) Example of data processing
using regression analysis; 7) Analysis of the results.

5. List of required graphic (illustrative) material: Presentation in Microsoft
Power Point.

6. Calendar plan-schedule

No The term A note on
Tasks. the
cf. fulfillment execution
) Familiarization with the task statement of | 01.04.2024- D
the qualification work. 04.04.2024 one
Analysis of literature and Internet 05.04.2024-
o) Done
resources. 24.04.2024
3 Overview and analysis of data mining 25.04.2024- Don
methods . 1.05.2024 one
4 Description of the features of regression 2.05.2024- Done
analysis. 10.05.2024
11.05.2024-
5 Task statement; 25.05.2024 Done
6 Mathematical model of regression 26.05.2024- Don
analysis. 02.06.2024 one
7 An example of data processing using 03.06.2024- Done
regression analysis. 09.06.2024
| i o o oot |
> AN & presemation fTorHe TeslS 1 13.06.2024 one
project.
9 Submission of qualification work for 14.06.2024 Done
defense
7. Date of the task issue: “ 15 " April 2024 p.
Thesis supervisor W Tupitsun M.F.
(signature of the head)
The task was accepted for execution Petrov D.M.

PEDEPAT

[TosicHioBanibHAa 3amucka J0 KBamidikaiiiHoi pobotu «IHTenekTyaapHa
cucrtema o0poOku ganux». Kamidikaiiitna podoTa CKJIaaeThCs 31 BCTYITY, TPHOX
PO3ILIIB, 3arallbHUX BUCHOBKIB, CIIMCKY BUKOPUCTAHUX JIXKepen 1 Mae 75 CTOPIHKH,
36 manmonkH, 13 dhopmyn, 24 miTeparypHux JKeper.

Merta aummomMHoro mpoekrty: locmiguTi Ta MpoaeMOHCTpYyBaTH e(eKTHBHI
METOIM aHajli3y Ta MPOTHO3YBAaHHS YacOBHX psAiB 3a gomomMororn Python,
30cepeauBIIMCH Ha noroguux ganux 3 2013 mo 2017 pik. Kpamidikariitna pobora
BKJIFOYaTUME METOAM IMOMNEepenIHboi OOpOOKM [aHMUX, Takl SK HOpMali3amis Ta
3MEHILICHHS IIIyMy, a TakoX Oyle BUKOPHUCTOBYBaTH IepeTBOpeHHs Dyp'e Ta
TpaJleHTHUM CITYCK JIJISl IITOHKK KPUBUX. METOIO € BUSIBJICHHS 3aKOHOMIPHOCTEH 1
MIPOTHO3YBaHHS MalOyTHIX TOYOK JaHWX, BUKOPHUCTOBYIOYH MOJEJi MAIIMHHOTO
HaBYaHHsS, MOOydoBaHi 3a gomnomorot TensorFlow 1 oIiHeHi 3a JOMOMOTroOIO
Bi3yaJiizallii Ta METPUK TOMHJIIOK.

[TocTanoBka 3agaui: [IporHo3yBaHHs MOTOIM Ma€ BUpIIIAIbHE 3HAYCHHS JJIs
PI3HHUX Tally3ed, MpoTe MepeadadyeHHs] MOTOJHUX YMOB 3aJIHINAETHCA CKIIATHUM
3aBIaHHSM 4Yepe3 CKIAJAHICTh Ta MIHJIMBICTh KIIMaTWyHUX naHux. lle 3aBmaHHs
MOKa3ye SK MOXKHA BHPIIIATH IO MPOoOJieMy, BUKOPUCTOBYIOUM Cy4acHI METOIU
aHali3y 4acoBUX PAJIB Ta MAIIMHHOTO HaBuyaHHA. OCHOBHA yBara MpUIUISETHCS
00po6111 moronuux gaHux 3 2013 o 2017 pik st BUSBICHHS 3aKOHOMIPHOCTEH 1
po3poOKu Mojeneld nmporHo3zyBaHHs. [IpoGimema mosnsirae B edekTuBHIN 00poOiIi
3allyMJICHUX JIaHUX, 3aCTOCYBaHHI BIAMOBIIHUX METOAIB HOpMasi3aiii Ta
TpaHcdopmariii, a TaKOK Y BUOOP1 HAMIMHUX aJITOPUTMIB JJIS [T ABUIIIEHHS TOYHOCTI

Ta HAJIHHOCTI TPOTHO3yBaHHS.

SUMMARY

Explanatory note to the qualification work “Intelligent data processing system”.
The qualification work consists of an introduction, three chapters, general
conclusions, a list of references and has 75 pages, 36 figures, 13 formulas, 24 literary
sources.

The purpose of the diploma project: To investigate and demonstrate effective
methods for time series analysis and forecasting using Python, focusing on weather
data from 2013 to 2017. The qualification work will include data preprocessing
techniques such as normalization and noise reduction, and will use Fourier transform
and gradient descent for curve fitting. The goal is to detect patterns and predict future
data points using machine learning models built with TensorFlow and evaluated
using visualization and error metrics.

Problem statement: Weather forecasting is crucial for various industries, yet
predicting weather conditions remains a challenging task due to the complexity and
variability of climate data. This challenge shows how this problem can be solved
using modern time series analysis and machine learning techniques. The focus is on
processing weather data from 2013 to 2017 to identify patterns and develop
forecasting models. The challenge is to efficiently process noisy data, apply
appropriate normalization and transformation methods, and choose reliable

algorithms to improve forecasting accuracy and reliability.

CONTENT

INTRODUCTION ...ttt ettt nee e 11
RS] = O 1 1]\ PSP 13
THEORETICAL FOUNDATIONS OF INTELLIGENT DATA
PROCESSING SYSTEMS ... 13
1.1 Overview of intelligent data analysis systems (regression analysis, neural
0121 V0]) PSRRI 13
1.2 Overview of Weather Data Analysis Methodsc.ccccoeeevivevieiic e, 19
1.3 Description of the used regression analysis systems. Problem statement
.. 24
SECTION 2.ttt et e et ete e n e s te e s e saeentesreeseeneenreens 28
METHOD FOR SOLVING THE PROBLEM.........cccccoiiiiiiiiiciesiec e 28
2.1 Data preparation and preproCesSING........cccecveieeiieiiieeieeseeseesie e esseennas 28
2.2 Development of the regression analysis algorithmc.ccccoeeviivennne. 31
] = O 1 1]\ PSSR 37
EXAMPLE OF WEATHER DATA PROCESSING AND RESULTS............ 37
3.1 Description of the weather data calculation and analysis program........ 37
3.2 Example of Data Processing Using Regression Analysis..........c.c.cccccuv.... 39
3.3 Analysis of the Obtained ReSUILS..........ccooveviiiii i 71
CONCLUSIONSottt eeenes 72

REFERENCES ... 73

LIST OF ABBREVIATIONS
IDPS — Intelligent data processing systems
IDA — Intelligent data analysis
MLP — Multilayer Perceptron
RNN — Recurrent Neural Networks
CNN — Convolutional Neural Networks
GAN — Generative Adversarial Networks
AR — Autoregressive models
MA — Moving Average models
ARIMA — Autoregressive Integrated Moving Average
SARIMA — Seasonal Autoregressive Integrated Moving Average
AIC — Akaike Information Criterion
BIC — Bayesian Information Criterion
PCA — Principal Component Analysis
k-NN — K-Nearest Neighbors method
MSE — Mean Squared Error
MAE — Mean Absolute Error
API — Application Programming Interface
SGD - Stochastic Gradient Descent
L1/L2 — L1 (Lasso), L2(Ridge) regularization

R-squared — Coefficient of Determination

10

INTRODUCTION

The modern world stands on the threshold of a new era, where information is
becoming the most valuable resource. Every day, the volume of data generated in
various fields of human activity is growing exponentially. In this context, the need
for new approaches to the collection, storage, processing, and analysis of this data
becomes evident. Intelligent data processing systems (IDPS) represent a set of
technologies that use artificial intelligence methods and analytical algorithms for the
effective management of large volumes of information.

Intelligent data processing systems not only automate data processing
processes but also allow for the acquisition of new knowledge, the identification of
hidden patterns, and the making of informed decisions based on data. This opens up
new opportunities to improve efficiency, innovation, and development in various
fields: from business and medicine to finance and energy. IDPS are particularly
significant in the field of aviation, where the accuracy and speed of information
processing are critical for flight safety, effective air traffic management, and the
development of aviation technologies.

The relevance of using IDPS in the field of aviation is noted by a number of
advantages and characteristics that contribute to improving safety, efficiency, and
meeting passenger needs. These systems help identify potential threats and prevent
accidents, optimize routes and fuel consumption to save costs, and maintain an
optimal level of aircraft technical readiness.

The aviation industry constantly generates huge amounts of data, including
information on the technical condition of aircraft, weather conditions, flight routes,
and other key indicators. The use of IDPS in aviation allows for predictive analytics,
improves the efficiency of aircraft maintenance, optimizes routes, and ensures a high
level of flight safety. Intelligent data processing systems can also contribute to the
development of new aviation technologies, such as unmanned aerial vehicles and

automatic air traffic management systems.

11

The work is an example of the considered systems underlying IDPS, as well
as their practical application in the aviation industry. Particular attention will be paid
to the analysis of modern big data processing technologies, machine learning and
artificial intelligence methods, as well as the integration of IDPS into aviation
computer systems.

The purpose of this work is to identify patterns and predict future data points
using machine learning models, analyze their effectiveness and influence on the
development of modern technologies in aviation. Development of a model for
forecasting temperature based on historical data and application of IDPS in the
aviation industry, identification of the main challenges and prospects for the
development of this industry.

Thus, this work aims to contribute to the understanding of the role of
intelligent data processing systems in the modern world of aviation and their

potential to transform the aviation sector and society as a whole.

12

SECTION 1

THEORETICAL FOUNDATIONS OF INTELLIGENT DATA
PROCESSING SYSTEMS

1.1 Overview of intelligent data analysis systems (regression analysis, neural

networks)

Intelligent data analysis (IDA) is a key component of intelligent data
processing systems, which allows for the identification of hidden patterns, trends,
and dependencies in large data sets. There is a wide range of IDA methods and
algorithms that are used depending on the nature of the data and the objectives of
the analysis.

Below is an overview of the main methods of intelligent data analysis [1].

Regression analysis is one of the most important statistical analysis methods
used for modeling the relationships between the dependent variable (target variable)
and one or more independent variables (predictor variables). This method allows
determining how changes in the independent variables affect the dependent variable,
making it an indispensable tool for forecasting and data interpretation in various
fields [2].

Linear regression (Pic. 1.1) is the simplest form of regression analysis, where
the dependence between variables is modeled using a linear function [3]. The
formula (1.1) of linear regression takes into account one independent variable, and

more than one independent variables.

Y =0+ 51 X1+ o2 Xao+ ... + X, + €
(1.1)
where:
. Y - dependent variables ,
. X1, Xy, ..., Xo - independent variable ,

. S0 - intercept (constant term),
13

bt

0

51, Ba, ...

€ - model error.

3

» =1 regression coefficient ,

y=-2,75+1,016x

Fig.1.1

Logistic regression (Fig. 1.2) is used to model the probability of an event

occurring when the dependent variable is categorical.

LU o T i N i R v I St R -

[y

L e 1 e

14

The main equation of logistic regression is shown in formula 1.2:

1
l | {’__:—::j_-—j|_1ll:'|—j_=_1'l:'_=—...—j_-._1'l:'_-.:|

PY—=1)=

(1.2)

where:

P(Y=1) - the probability of the event occurring,

X1, X2, Xn - independent variables,

BO - the intercept,

B1, BZ, .., Bn - the regression coefficients.

Polynomial regression (1.3) is used when the relationship between the
dependent and independent variables is nonlinear [4]. The polynomial regression

model includes powers of the independent variables:

o

Y =By + B X + B X2+ .+ B XE 4 €

(1.3)
Ridge and Lasso regressions (Fig. 1.3) are methods used to address the
problem of multicollinearity (when independent variables are highly correlated with

each other) and for performing feature selection [5].

15

Lasso Regression

Fig. 1.3

Ridge regression adds a penalty term for the magnitude of the coefficients to
the loss function, which reduces their amplitude.

Lasso regression (1.4) adds a penalty term for the absolute value of the
coefficients, which can lead to some coefficients being set to zero and automatic

feature selection [6].

T

S (- g2+ A 18,
j=1

i=]
(1.4)

Regression analysis has widespread applications in various fields:
- Forecasting market prices, cost and revenue analysis, risk assessment.
- Identifying disease risk factors, analyzing treatment effectiveness.
- Analyzing consumer behavior, forecasting product demand.
- Modeling system characteristics, reliability analysis.
Advantages and limitations of regression analysis:
Advantages

- Simplicity and interpretability of results.
16

- Ability to quantify the impact of each independent variable on the dependent
variable.

- Wide range of applications across various fields.

Limitations

- Linearity assumptions may be too simplistic for complex relationships.

- Sensitivity to multicollinearity and outliers in the data.

- Need for prior data analysis and preparation.

Regression analysis is a powerful tool for modeling relationships between
variables, allowing for forecasting and informed decision-making. Understanding its
main methods and applications is crucial for effective data utilization in various
scientific and business domains.

Neural networks are one of the key technologies in the field of intelligent data
analysis.

They model the workings of the human brain by using artificial neurons
interconnected through weights. Neural networks are capable of discovering
complex patterns in data, making them extremely useful for various tasks, including
classification, regression, clustering, and forecasting [7].

The main architecture of a neural network consists of three types of layers:

1. Input layer, consisting of neurons that receive input data.

2. Hidden layers, consisting of neurons that perform intermediate computations.
Multiple hidden layers can be used, allowing the neural network to capture
more complex patterns.

3. Output layer, consisting of neurons that generate output data based on the
computations of the previous layers.

There are several main types of neural networks, each with its own characteristics
and application areas:

1. Perceptron - the simplest type of neural network, consisting of only a single

layer of neurons. Used for simple classification tasks.

17

2. Multilayer Perceptron (MLP) - consists of one or more hidden layers. Used
for tasks that require more complex data analysis.

3. Recurrent Neural Networks (RNN) - characterized by the presence of
feedback loops, allowing them to process sequential data, such as time series
or text.

4. Convolutional Neural Networks (CNN) - specialized in processing data with
spatial structure, such as images. They use convolution operations to extract
features at different levels of abstraction.

5. Generative Adversarial Networks (GAN) - consist of two neural networks, a
generator and a discriminator, that compete against each other. Used for
generating new data that resembles the training examples.

Training neural networks involves adjusting the connection weights between
neurons to minimize the error [8]. The main steps in training include:

1. Forward Pass: Input data propagates through all layers of the network, and an
output prediction is obtained.

2. Loss Calculation: Determining the difference between the prediction and the
actual value using a loss function.

3. Backward Pass: The error is propagated back through the network, and the
weights are adjusted using the backpropagation algorithm and gradient
descent.

Neural networks find applications in many fields, including:

- Aviation, for predicting aircraft maintenance, optimizing flight routes, detecting
anomalies in aircraft systems, and analyzing sensor data.

- Medicine, for disease diagnosis, medical image analysis, and treatment outcome
prediction.

- Finance, for stock price forecasting, credit risk assessment, and fraud detection.

- Automotive industry, for developing autonomous vehicles, analyzing sensor data,
and predicting failures.

Major challenges faced by neural networks include:
18

- High computational resource requirements.
- Need for large training data volumes.
- Difficulty in interpreting results (black box).

Despite these challenges, neural networks possess an immense potential for
further advancement and refinement, thus unveiling novel prospects for
sophisticated data analysis across diverse domains.

1.2 Overview of Weather Data Analysis Methods
Weather data analysis is a crucial task in meteorology, involving the
collection, processing, and interpretation of substantial data volumes to forecast
weather conditions, investigate climate change, and facilitate informed decision-
making across various domains. In this section, we shall examine the fundamental
algorithms employed in weather data analysis [14].
Statistical analysis serves as the foundation for numerous weather data
analysis methods.
The primary techniques encompass:
o Descriptive statistics. Utilized to summarize and describe the essential
characteristics of weather data (mean, median, standard deviation).
o Correlation analysis. Uncovers relationships between different weather
variables (e.g., temperature and humidity).
o Trend analysis. Employed to detect long-term tendencies in weather data,
such as global warming.
Regression analysis is applied to model and forecast dependencies between
weather variables. The primary types of regression analysis employed are:
. Linear regression. Model’s linear relationships between
variables. For instance, forecasting temperature based on historical data.
. Polynomial regression. Utilized when the relationship between

variables is nonlinear.

19

. Logistic regression. Employed to predict the probability of

events, such as precipitation or storms.

Time series analysis is a pivotal method for weather data analysis, as weather
patterns evolve over time.

Time Series Analysis in Weather Data

Time series analysis is a pivotal method for weather data analysis as weather
patterns evolve over time. The primary methods include:

e Data Collection

o The initial stage in working with time series involves data collection.
In hydrometeorology, time series represent chronological sequences of
observations for various parameters (such as temperature, atmospheric
pressure, precipitation, etc.).

o Types of Time Series: Equidistant (data points are spaced at regular
intervals) and non-equidistant (data points are spaced at irregular
intervals). An example of an equidistant series could be daily collected
air or water temperature data.

o Interval and Moment Series: Interval series consist of data collected
over specific periods (e.g., daily average temperatures), whereas
moment series record data at specific points in time (e.g., noon
temperature each day).

e Preliminary Data Processing

o This stage involves preparing the data for analysis:

o Handling Missing Data and Anomalies: Time series often contain
missing or outlier values which need to be identified and treated to
avoid skewing the analysis.

o Data Normalization: Bringing data to a common scale allows for the
comparison of series with different units or scales.

o Decomposition into Trend, Seasonal Component, and Noise: This helps

in understanding the structure of the time series and preparing data for
20

further analysis. Decomposition includes isolating long-term trends,
regular seasonal patterns, and random variations (noise).
e Analysis of Stationarity

o Checking time series for stationarity is a crucial step in analysis:

o Stationarity: A time series is considered stationary if its statistical
properties (such as mean and variance) remain constant over time.
Stationary series are easier to model and forecast.

o Methods for Testing Stationarity: Methods like the Dickey-Fuller test
and the KPSS test help determine whether a series is stationary or
requires transformations (e.g., differencing) to achieve stationarity.

e Model Selection and Building

o Choosing the appropriate model for the time series based on its
characteristics:

o Time Series Models: These include autoregressive models (AR),
moving average models (MA), mixed ARMA models, and integrated
autoregressive models (ARIMA).

o Model Selection Criteria: Information-theoretic criteria such as the
Akaike Information Criterion (AIC) or the Bayesian Information
Criterion (BIC) assist in selecting the model that best describes the data.

e Model Evaluation

o Assessing the quality of the chosen model:

o Parameter Estimation: Determining the coefficients of the model (e.g.,
in ARIMA models).

o Model Diagnostics: Checking the adequacy of the model through
residual analysis — residuals should be white noise, meaning they are
random and not autocorrelated.

o Cross-Validation: Splitting data into training and test sets to evaluate

the model on new data.

21

e [orecasting

o Using the built and evaluated model to make predictions:

o Short-term and Long-term Forecasts: Short-term forecasts are usually
more accurate and useful for operational decisions, while long-term
forecasts provide a general outlook of future trends.

o Forecasting Methods: Utilizing ARIMA models, seasonal models like
SARIMA, and machine learning methods for more complex
predictions.

e Visualization of Results

o The final stage involves presenting the analysis and forecast results in
a clear and understandable form:

o Time Series Plots: Displaying the original data and forecasts on a time
scale.

o Residual Plots: Allowing assessment of model adequacy.

o Comparison Plots: Comparing forecasts with actual values to evaluate
accuracy.

Following the previously described timing data analysis process, the

following block diagram can be designed (see fig. 1.4):

22

Data Collection
- Select data sources
- Collect data in a suitable format

Data Pre-processing
- Clean the data
- Remove outliers and missing values
- Smooth the data for quality

Stationarity Analysis
- Check if data is stationary
- Apply transformations if needed

Model Selection and Construction
- Choose ARIMA/SARIMA or ML models
- Account for seasonal components

Model Evaluation
- Evaluate model accuracy
- Use test data and quality metrics

Prediction
- Apply model to predict future values
- Analyze the predictions

Visualization of Results
- Create graphs for data and forecasts
- Visualize model performance

Fig. 1.4

Weather data analysis encompasses a wide spectrum of methods, enabling the
extraction of valuable information about weather conditions and climate change. The

choice of a specific method depends on the nature of the data, the goals of the
23

analysis, and the available resources. Combining various approaches allows for the
attainment of the most accurate and reliable results in forecasting and interpreting

weather data.

1.3 Description of the used regression analysis systems. Problem statement
Regression analysis encompasses diverse methods, each with its unique
characteristics, advantages, and limitations. Let us examine the most prevalent ones
in greater detail.
Simple linear regression (1.5) models the relationship between two variables:
one independent (predictor) variable X and one dependent (target) variable Y [9]
Y = By + 81X + e
(1.5)
where:
. Y —is the dependent variable,
. X — is the independent variable,
. B0 — is the intercept,
. Bl —is the regression coefficient (slope of the line),
. € — is the model error.
This method is used to predict the value of Y based on X and allows for the
estimation of the strength and direction of the relationship between the variables.
Multiple linear regression (1.6) extends simple linear regression by allowing
for the consideration of more than one independent variable [10]. The primary

equation for multiple linear regression is:

Y — :.'-eu | ;:f]_.“:'_ i jf:‘f‘_} T | ,'J!“.zY..,. e
(1.6)

where:

. Y —is the dependent variable,

24

. X1,X2,...Xn — are the independent variables,
. B0 — is the intercept,
. BL1,B2,...Bnpl — are the regression coefficients,
. € — is the model error.
Multiple linear regression is used for more accurate modeling of dependencies
and to account for the influence of multiple factors on the target variable.
Polynomial regression (see formula 1.7) is utilized when the relationship
between the dependent and independent variables is nonlinear [11]. The primary

equation for second-order polynomial regression is:

Y =080+ 51X + 85X +e
(1.7)
where:
. Y —is the dependent variable,
. X — is the independent variable,
. B0,B1,52 — are the regression coefficients,
. € — is the model error.
Polynomial regression allows for the modeling of more complex
dependencies between variables, which may be nonlinear.
Logistic regression (1.8) is used to model the probability of a certain event
occurring when the dependent variable is categorical (binary). The primary equation

for logistic regression is:

1

l | {_—: Y+ X+ e+ 45, X

P(Y —1)—

(1.8)
where:
. P(Y=1) —is the probability of the event occurring,

. X1,X2,...Xn — are the independent variables,

25

. B0 — is the intercept,
. BL1,B2,...,fn — are the regression coefficients.

Logistic regression is often used in classification tasks, for example, to
determine the probability of disease or the probability of a customer making a
purchase.

Ridge regression is employed to address the issue of multicollinearity by
adding a penalty term for the magnitude of the coefficients to the loss function (see
formula 1.9) [12]:

71

(1.9)

where:

. yi — are the observed values,

. yi — are the predicted values,

. Bj — are the regression coefficients,

. A — is the regularization parameter that controls the degree of
penalty.
Ridge regression reduces the magnitude of the coefficients, which helps

prevent overfitting of the model.

Lasso regression (1.10) adds a penalty for the absolute value of the

coefficients, which can lead to some coefficients being set to zero [13]:

Tl

> (i — i)+ iz 8
j=1

i=1
(1.10)
where:

. yi — are the observed values,

26

. yi — are the predicted values,
. Bj — are the regression coefficients,
. A —is the regularization parameter.

Lasso regression performs automatic variable selection, making the model
simpler and more interpretable.

Regression analysis offers a diverse array of methods for modeling and
analyzing data. The choice of a specific method depends on the nature of the data
and the research objectives. Successful application of regression analysis requires
an understanding of the theoretical foundations of each method and their proper

utilization in practical tasks.

Problem statement

Weather forecasting is crucial for various industries, yet predicting weather
conditions remains a challenging task due to the complexity and variability of
climate data. This challenge shows how this problem can be solved using modern
time series analysis and machine learning techniques. The focus is on processing
weather data from 2013 to 2017 to identify patterns and develop forecasting models.
The challenge is to efficiently process noisy data, apply appropriate normalization
and transformation methods, and choose reliable algorithms to improve forecasting

accuracy and reliability.

27

SECTION 2
METHOD FOR SOLVING THE PROBLEM
2.1 Data preparation and preprocessing

To construct a forecasting model for any parameter, it is necessary to obtain a
raw dataset comprising an array of parameters that describe a particular
phenomenon. The data must be structured in the form of tables with defined fields,
such as the observation date, air temperature, wind speed, and precipitation
occurrence.

Additionally, data can be collected from weather websites, including
information about droughts, tsunamis, and other phenomena.

The collected data exhibited diverse characteristics. Most of the company's
internal data were structured, simplifying their processing and analysis.

Web data and data from external sources could be both structured and
unstructured, necessitating additional processing for use in analysis.

After data collection, an essential step in processing is cleaning the data by
removing errors and incomplete records.

Checking for duplicate data is the first step in data cleaning. Duplicate records
can distort analysis and lead to incorrect conclusions. Unique identifiers or
combinations of fields can be used to detect duplicates by checking for identical
records.

Data often contain missing values that must be addressed before analysis. This
can involve imputing values using means, medians, or modes, or employing other
methods such as interpolation.

Outliers or anomalies in the data can arise due to measurement errors, random
events, or other causes. Detecting and removing outliers helps ensure the correctness
of the analysis results. This can be accomplished using statistical methods, such as
standard deviation or interquartile range.

Sometimes, data may contain erroneous values that need to be corrected. This

can include fixing typos, incorrect formats, or other types of errors.
28

After completing these cleaning steps, the data become ready for further
analysis and modeling in intelligent data processing systems.

During data analysis, it is crucial to consider that not all features present in
the original dataset are useful and informative for model construction. It is essential
to select the most informative features for further analysis and modeling.

Conducting a correlation analysis between the features and the target variable
helps identify the features that have the strongest relationship with the target
variable. Features with high correlation may be more informative for modeling.

Various statistical feature selection methods exist, such as feature importance
analysis, principal component analysis (PCA), or feature selection based on
statistical tests (e.g., t-test).

Some machine learning models provide information about the importance of
each feature in the constructed model. For instance, a decision tree can provide the
importance of each feature based on its contribution to improving the node criterion.

In some cases, expert knowledge or domain expertise may indicate which
features are likely to be most important for the model.

After selecting the most important features, the dataset is ready for further use
in modeling.

Some machine learning algorithms can be sensitive to the scale of features.
For example, methods that use distance between points, such as the k-nearest
neighbors (k-NN) method, can be significantly affected by the size and range of
feature values. At this stage, data scaling is performed to ensure a consistent scale
for all features.

Normalization (min-max scaling). In this method, the values of each feature
are transformed so that they fall within the range of 0 to 1. This is achieved by
subtracting the minimum value of the feature and dividing by the difference between

the maximum and minimum values.

29

Standardization. In this method, the values of each feature are transformed so
that they have a mean of 0 and a standard deviation of 1. This is achieved by
subtracting the mean value of the feature and dividing by the standard deviation.

In addition to normalization and standardization, other scaling methods exist,
such as logarithmic scaling or rank-based scaling.

Categorical features, which have a limited number of possible values, need to
be encoded as numerical values before being used in a machine learning model. This
IS an important step because many machine learning algorithms work only with
numerical data.

In the One-Hot Encoding method, each unique value of a categorical feature
is transformed into a new binary feature. For example, if wind was present, the
feature receives a code of 1; if wind was absent, it receives a code of 0. In other
words, for each unique value of the feature, a new column is created that takes the
value 1 if that value is present for a given record or O if it is absent. This approach is
particularly useful when the categorical feature has many unique values.

In the Label Encoding method, each unique value of a categorical feature is
encoded as an integer. Each unique value is assigned a unique identifier, typically
starting from 0. This approach is suitable for categorical features with ordered values
or when the number of unique values is relatively small.

When choosing a method for encoding categorical features, it is important to
consider the characteristics of the data and the requirements of the specific machine
learning model. Proper encoding helps ensure the correctness and efficiency of the
model when processing categorical data.

Splitting the dataset into training and test sets is an important step in the
process of developing a machine learning model. It allows for evaluating the model's
effectiveness on independent data and avoiding overfitting. Here's how it can be
done:

e First, determine what portion of the data needs to be allocated for testing the

model. Typically, between 10% and 30% of the total data volume is used.

30

e To ensure objectivity, randomly divide the data into training and test sets.
Ensure that each record has an equal chance of being in either set.

e |f working on a classification task and dealing with different classes, ensure
that both sets have approximately the same number of examples for each class.
This will help avoid biases when evaluating the model.

e After splitting, save the training and test data sets so that they can be reused
and ensure consistency of results.

Proper splitting of data into training and test sets helps ensure an objective evaluation

of the model and its ability to generalize to new data.

2.2 Development of the regression analysis algorithm

Linear regression (fig. 2.1) is one of the simplest regression methods.

Linear Regression

15
® Original data ™ ...

—— Fitted line
10 1 :

05 4

0.0 1

=1.0 4

-151_

Fig. 2.1

It assumes a linear relationship between the independent and dependent
variables.

Linear regression is often used in cases where the relationship between
variables is approximately linear. It is well-suited for simple tasks and cases where

the number of features is small.
31

The linear regression model is computationally efficient and easy to interpret,
but it may be ineffective in cases where the relationship between variables is
complex or non-linear.

Polynomial regression (fig. 2.2) extends the linear model by adding
polynomial features to the model.

It is used when the relationship between variables is not linear, but can be
approximated by a polynomial of a certain degree.

Polynomial regression can be more flexible than simple linear regression, but

it can also lead to overfitting, especially when using high-degree polynomials.

Polynomial Regression

— Fitted line
& Original data

Fig. 2.2

Decision tree (fig. 2.3) regression is used for predicting values based on a
decision tree, where each node represents a condition, and each leaf value represents
a predicted value.

This method can be effective for non-linear dependencies between variables
and has the inherent ability to automatically handle feature interactions.

This data mining method is also known as decision rule trees, classification

and regression trees.

32

Outlook

I

Sunny Overcast Rain
Humidity Yes Wind
High Normal Strong Weak
No Yes No Yes
Fig. 2.3

If the dependent, or target, variable takes discrete values, the decision tree
method solves a classification task.

If the dependent variable takes continuous values, the decision tree establishes
the relationship between this variable and the independent variables, solving a
numerical forecasting task. Decision tree regression can become complex as the tree
depth increases and may be prone to overfitting.

Neural networks (fig. 2.4) are a set of interconnected artificial neurons that

can perform complex computations and function approximations.

Input layer | Hidden layers i Output layer

AWK O —0®
Input 2 "(‘Q(‘Q(‘

O gl gl N7
\,g'o OO

[N
D e

%

33

They are used in regression tasks when the relationship between variables is
complex and does not have an explicit form.
Neural networks can be very powerful in solving complex problems, but they

can also be difficult to train and require large amounts of data to work effectively.

Preparing a dataset for subsequent use with a linear regression model involves

the following steps:

e Data analysis for missing values.

e Data scaling using normalization or standardization methods to ensure a
consistent scale for all features.

e Encoding of categorical features. For linear regression models, the "one-hot
encoding" method is typically used, which transforms categorical features into
binary variables, allowing their use in linear models.

e The final step is splitting the data into training and test sets. The training set
will be used to train the model, while the test set will be used to evaluate its
effectiveness and avoid overfitting.

After data preparation, the training phase of the linear regression model
begins, during which the model "learns" the dependencies between the input and
output variables.

To create a linear regression model, it is necessary to establish initial values
for the parameters and regression coefficients.

After initialization, the model is fitted to the training dataset. This process
involves finding the optimal values of the model parameters that best fit the
relationship between the input and output variables.

After completing the model fitting, its effectiveness must be evaluated. This
can include analyzing various regression metrics, such as Mean Squared Error
(MSE) or the coefficient of determination (R-squared), to assess how well the model
fits the data.

34

After evaluating the model's effectiveness on the training dataset, it can also
be tested on the test dataset, which was previously separated from the training set.
This helps determine how well the model generalizes to new data, i.e., how it
performs under real conditions.

After completing these steps, the linear regression model is ready for use in
predicting values of the dependent variable based on new input data.

The obtained regression metrics are interpreted to determine the effectiveness
of the model. For example, low values of MSE and MAE, and a high value of R-
squared indicate that the model performs well and accurately predicts the target
variable.

It is also important to compare the results with a baseline level (e.g.,
predictions obtained using simple methods such as predicting the mean value). This
helps determine whether the model is indeed making a significant contribution to
the forecasting.

After evaluating the model, decisions can be made regarding its further use,
tuning, or improvement, depending on the results and the requirements of the
specific study.

If necessary, the linear regression model can be tuned or optimized to improve
its effectiveness.

The model parameters, such as the regression coefficients, can be adjusted to
achieve a better fit to the data. This may involve optimizing the coefficients using
optimization methods, such as gradient descent, to minimize the loss function.

To avoid overfitting and improve the overall generalization ability,
regularization methods such as L1 (Lasso) or L2 (Ridge) regularization can be
employed. These methods help control the magnitude of the regression coefficients
by adding penalty terms for the parameter sizes to the loss function.

Cross-validation can be applied to determine the optimal values of the model's
hyperparameters. This process helps avoid overfitting and improve the model's
robustness.

35

After tuning the model, it is necessary to analyze the results to verify its
effectiveness. This includes evaluating the regression metrics on the test dataset and
comparing them with the previous results.

It is important to continuously monitor the model's effectiveness and make
timely adjustments if necessary. Data can change over time, so the model must
remain relevant.

These steps help improve the effectiveness of the linear regression model

and ensure its optimal performance under real-world application conditions.

36

SECTION 3
EXAMPLE OF WEATHER DATA PROCESSING AND RESULTS

3.1 Description of the weather data calculation and analysis program

To conduct the analysis, a dataset of temperature measurements from January
1,2013 to April 24, 2017 was selected, containing 1575 records. The data was stored
in CSV format and processed in the Python environment, including columns with
dates in the YYYY-MM-DD format, average temperature, humidity, wind speed,

and average pressure. An example of the data can be seen in Figure 3.1.

date meantemp humidity wind_speed
2013-01-01 10.0 84.5 0.0
2013-01-02 7.4 52.0 2.98
2013-01-03 7.1666060660 87.0 4,6333333333
2013-01-04 B.60660000 71.333333 1.2333333333
2013-01-05 6.0 80.833333 3.699995999593
2013-01-06 7.0 82.8 1.48
Fig. 3.1

Feature Description
Date: This feature indicates the date of weather condition measurement.
Temperature (Celsius): This feature shows the air temperature in degrees
Celsius at the time of measurement.
Humidity (%0): This feature indicates the air humidity as a percentage.
Wind Speed (km/h): This feature shows the wind speed in kilometers per
hour.

Usage

This dataset can be used for:

Forecasting air temperature based on weather conditions.

37

Understanding the impact of temperature, humidity, and wind speed.
Improving planning and management in the aviation, energy, and

infrastructure sectors.

The data analysis and processing methodology includes several stages:

Collecting the necessary data.

Preprocessing the data.

Developing and implementing the model, selecting the type of neural

network and its parameters.

Testing on historical data.

Optimizing the parameters.

By choosing Python for conducting the research, we made the right choice, as
this language is interpreted, which simplifies debugging, and has a wide selection of
modules in both the standard package and third-party ones. We can plan programs
at a higher level, using ready-made elements that implement various functions.
Python provides absolute portability of programs, and differences in behavior across
different operating systems are easy to predict thanks to detailed documentation.

The main library for our tasks will be Keras, which provides a simple API for
creating neural networks. With Keras, we can quickly build a neural network using
just a few lines of code. Keras is built on top of the TensorFlow framework, which

provides the ability to express computations as data flows through a state graph.

In the process of working with data and data structures, we will use the NumPy
and Pandas libraries. NumPy provides the ability to work with arrays, matrices, and
functions related to these structures, while Pandas allows for manipulating and

processing numerical tables and strings.

It is worth emphasizing that the use of clean input data is of great importance
for achieving accurate forecasting. Data normalization helps make the model more
efficient. For plotting, we will use the Matplotlib library, which offers a convenient
object-oriented approach for embedding plots in applications.

38

3.2 Example of Data Processing Using Regression Analysis
Data Processing:

Before using the data to train a model, the following processing steps are
required:

Removal of missing values or filling them in using interpolation or

averaging methods.

Feature scaling to ensure homogeneity.

Splitting the data into training and test sets for model evaluation.

Let's assume we have a temperature dataset with two columns: "Date" and
"Temperature”. For convenience of analysis, we will only use the temperature data
as shown in Fig. 3.2.

The first step will be to convert the "Date" column into integers to work with
the data in a numerical format. We can replace each date with the corresponding
number of days elapsed since a certain initial date.

We will choose the initial date as "2013-01-01", so we will replace the date
"2013-01-01" with 0, "2013-01-02" with 1, and so on. In this way, we will convert
the "Date™ column into integers representing the number of days from the initial

date, as shown in Fig. 3.2.

date Heartenp

2013-01-081
2013-01-82
2013-01-83
20135-01-04
2013-01-85
Fig. 3.2

39

After this, time series analysis can be performed using these numerical data.
Additionally, visualizations can be used to observe trends and patterns in the data,
decomposition into components to identify trends and seasonality, and forecasting
models to predict future temperature values. This approach allows for effective
analysis of time series data by converting dates into numbers and using various
analysis methods to obtain useful information.

The function shown in Fig. 3.3 is intended to convert a string containing a date

into the number of days elapsed since a certain initial date, specifically 2013-01-01.

days_since_zero_date(date_str:

.strptime(date_str, date_format)

Zero_date = datetime.strptime(

Fig. 3.3

The steps performed by this function are:

1. Defining the date format. The date format to be used for converting the string
into a datetime object is specified. In this case, the format "%Y-%m-%d"
means that the date should be in the "Year-Month-Day" format.

2. Converting the string into a datetime object. The input string with the date is
converted into the corresponding datetime object using the specified format.

3. Defining the initial date. The initial date (in this case, 2013-01-01) is set, from
which the number of days will be calculated.

40

4. Calculating the difference in days. The difference between the input date and
the initial date is calculated, and the number of days is extracted from this
difference using the .days attribute.

5. Returning the result. The function returns the number of days elapsed since
the initial date to the input date.

Using the conversion function (see Fig. 3.3), it can be applied to all dates in

the dataset, and the result (Fig. 3.4) shows that all dates have been converted to days.

Fig. 3.4

The order of execution of the code (Fig. 3.5) for the result of converting the

date to days was as follows:

1. Applying the function to all dates in the dataset.
The previously defined days_since_zero_date function is called using np.vectorize,
which allows the function to be applied to each element in the train_data[:, 0] and
test_data[:, 0] arrays.
The function converts each date to the number of days elapsed since the initial date
(2013-01-01).
The conversion results are written back into the corresponding columns of the
datasets.

2. Converting the data to the "float" type.
After converting the dates to the number of days, we convert all data in the train_data
and test_data sets to the "float" type to ensure compatibility with any data operations
or analysis that may be required.

3. Printing the first values from train_data
This line of code prints the first values of the converted train_data set for result

verification.

41

Fig. 3.5

The main purpose of this code block is to convert dates to the number of days
and convert the data to the "float" type, preparing them for further analysis. The
results are printed for verification.

Using the Z-normalization method (see formula 3.1), we transform each

sample value into a new value with a mean of 0 and a standard deviation of 1.

3.1)
where:
1. x — Sample mean (Mean).
x=1nXi=1lnxix =nlXji=1nxi,
where, n - is the number of values in the sample, xi - is each sample value
2. o, —Sample standard deviation (Standard Deviation).
o=InXi=In(xi—x")20=n1Xi=1n(xi—x")2

where, X™ - is the sample mean

Normalized Value. The result of the previous step is a normalized value with

a mean of 0 and a standard deviation of 1.

42

.__5td_dev: np.ndarray

normalizeDatal(

DeNormalizeDatal

Thus, as shown in Fig. 3.6, the Z-normalization process involves calculating
the mean and standard deviation of the sample, and then applying the formula to
normalize each value in the sample to obtain new, standardized values.

The main steps in this process were:
1. Creating the Normalize class:

Inthe __init__ constructor, saving a copy of the input data and calculating the

mean and standard deviation of each column.

The normalizeData method uses the calculated mean and standard deviation

values to normalize the input data.

The DeNormalizeData method denormalizes the normalized data using the

stored mean and standard deviation values.

2. Normalizing the data:

43

Creating an instance of the Normalize class, passing it the data to be
normalized.
Calling the normalizeData method, which returns the normalized data.

Applying the normalized data to the original train_data dataset.

To obtain a visual result, it is necessary to plot the normalized data and, for
comparison, the actual dataset data. For this, the Matplotlib library can be used,
which offers a convenient object-oriented approach for embedding plots. Therefore,
the following actions and code (see Fig. 3.7) need to be performed:

1. Import the library. Import the matplotlib.pyplot library for plotting.
2. Create the plot area. Using plt.subplots, create a plot area with one row and two
columns to accommodate two plots.
3. Set the plot parameters.
4. Display data on the plots:
e The first subplot will display the normalized temperature data.
e The second subplot will display the denormalized temperature data using
the DeNormalizeData method from the Normalize class.
5. Display the plots. Finish the code by displaying the plot on the screen using
plt.show().

matplotlib.pyplot as plt

Create a graph field with one row and two columns

fig, ax = plt.subplots(1, 2)

Setting limits on the y-axis for both subcharts
ax[0].set_ylim([-),
ax[1].set_ylim([-),

AXis signatures
ax[0].set_ylabel(
ax[0].set_xlabel(

ax[1].set_xlabel(

Setting titles for subgraphs
ax[0].set_title(
ax[1].set_title(

Turn on the grid on the axes for both subgraphs
ax[0].grid()

ax[1].grid()

Display normalized and non-normalized data on graphs

Graph of normalized temperature

ax[0].plot(train_data[:, 1], c=

Graph of real temperature (denormalized)

ax[1].plot(
train_normalize_class.DeNormalizeData(train_data[:

Displaying a graph
plt.show()

]

We obtain the result (see Fig. 3.8) of comparing two plots, from which it can
be seen that the normalized data did not lose their informational value, are easily
restored to real data (second plot), and are more convenient for analysis using
machine learning models.

Normalized temperature Real temperature
40 40

30 A 30 4

20 20 A

Temperature

10 - 10 -4

_10 T T T T T T T _10 T T T T T T T
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500

Day Day

Fig. 3.8

After obtaining the data plot, it is necessary to reduce the influence of noise
on its visualization and analysis. One effective method for this is noise smoothing

using the moving average method.

The moving average method (see Fig. 3.9) involves moving a window of a
certain size across the entire plot. For each window shift, the average value of all
points within this window is calculated. The obtained average value is used as the
value at a certain point on our smoothed plot.

46

The main idea is that the noise present in the data is pushed away from the
average value of the data within the window. Since noise is random, it is
compensated for by the average value calculated at each point. This helps to smooth

out fluctuations and makes the plot more homogeneous.

noised data
Window Size = 20

0 200 400 600 800 1000 1200 1400

Fig. 3.9

For some tasks, smoothing can be useful, but for others, it may lead to the loss
of important information or interference with the nature of the data.

The simple moving average value at a point is the average value calculated
for a particular data point by taking the arithmetic mean of all values in the window
that this point represents. In other words, if we have the original function f(x), the
simple moving average value for the point x will be the arithmetic mean of the values
at all points within the window around the point x.

The number of values from the original function for calculating the moving
average (“window” size) is the number of points taken to calculate the moving
average at a particular point.

The value of the original function at a point is the actual value of the original

function f(x) at a particular point x.

47

Thus, the simple moving average method is used for data smoothing, noise
reduction, and trend extraction by calculating the average value for each data point
based on the values in a window around it.

Before starting the forecasting, it is necessary to analyze the input data. From
the graph, we can see that the temperature has a periodicity similar to a sine wave.
This indicates the possibility of modeling using sine waves or their combinations.
For this, we will use the Fourier transform and gradient descent.

The main goal is to find the most suitable sine wave (or combination of sine
waves) to best reproduce the temperature graph. This means that we can find the
parameters of amplitude, frequency, and phase of the sine wave that best
approximate our data.

The Fourier transform is used for analyzing periodic signals. We can use the
Fourier transform to decompose the temperature signal into sinusoidal components
with different frequencies and amplitudes. Gradient descent can be used to optimize
the parameters of the sine waves or their combinations. We can define a cost function
that measures the difference between the predicted temperatures and the actual data,
and use gradient descent to find the optimal parameter values.

The Fourier transform is a mathematical operation used to decompose a
function into a sum of sines and cosines with different frequencies (see Fig. 3.10).
The main idea is that any complex function can be represented as a sum of simple

harmonic oscillations.

48

Fig. 3.10

The transform associates the original function with its harmonic oscillation
components, each with its own amplitude (magnitude of oscillations) and frequency
(number of oscillations per unit time). The obtained amplitudes determine the
contribution of each component to the overall signal, and the frequencies show
which frequencies are present in the signal.

The Fourier transform allows us to decompose a complex function into simple
components - sines and cosines with different frequencies, which allows us to
analyze and understand the structure of the data, detect periodicity and other signal
characteristics. We will implement the Fourier transform in code as shown in Figure
3.11.

np.fft.fft(de

argsort(np.absolute(mfft))[::-1]

Fig. 3.11

49

The transform is widely used in signal analysis, including in seismology, radio
engineering, image processing, and other fields. It allows us to detect and analyze
signal characteristics such as frequencies, amplitudes, and phases.

Therefore, the Fourier transform is a powerful tool for analyzing and
understanding the structure of signals, which helps to detect periodicity and other
characteristics of weather data.

After transforming our data, we will obtain amplitudes for different
frequencies. It is advisable to choose the frequencies that have the highest
amplitudes, since they have the greatest influence on the overall approximation of
our data. After selecting the sine waves with the maximum amplitude, we can freely
construct a graph of their sum. This means that individual sine waves are added
together with their respective amplitudes.

By visually evaluating the sum of the sine waves, we should understand how
well it approximates our data. If the approximation looks good, it may indicate that
the sine waves are indeed well-suited for modeling the data.

If the approximation is not satisfactory, you need to return to the previous
steps and choose other sine waves or adjust parameters such as amplitudes and
phases to improve the results.

Thus, visualization of the Fourier transform helps us understand how well the
chosen sine waves correspond to our data and allows us to choose the best model for
further analysis and forecasting.

The process of obtaining the parameters of the sine waves using the Fourier
transform and the gradient descent method will be described in more detail in Fig.
3.11:

1. First, values are prepared for the X-axis, which will be used for making
forecasts. A sequence of values on the X-axis is created using np.linspace,

which represents from 0 to the length of our data.

50

2. The Discrete Fourier Transform is applied to the data to obtain a list of
amplitudes for different frequencies. This allows us to transform the time
signal into the frequency domain.

3. The most significant frequencies corresponding to the highest amplitudes are
selected. For this, the indices of the amplitudes are sorted in reverse order by
their absolute values.

4. We determine the number of sine waves we will use to approximate the data.
We choose the 5 most important frequencies (see Fig. 3.12).

5. For each selected frequency, we calculate the actual frequency of the sine

wave by dividing the amplitude indices by the total length of the data.

imax = imax[:number_of_sinuses]

Fig. 3.12

Thus, these steps allow us to prepare the necessary parameters for constructing
sine waves, which will be used to approximate our data and forecast future values.

When implementing the approximation of the signal by the sum of five sine
waves, it is necessary to define a function that will do this. This function will take
an array of parameters containing the amplitudes and phases for each of the five sine
waves, as well as an array of values on the X-axis. It will calculate the values of the
approximated function by summing the sine waves with the corresponding
parameters. Each sine wave will have its own amplitude and phase, which will be
passed as model parameters.

To properly optimize the model parameters, it is necessary to correctly

initialize their values as shown in Fig. 3.13. Since most optimization methods may

51

have problems with incorrect initial initialization of trigonometric function
parameters, we can use the standard deviation value of the entire sample to initialize
the parameters.

This function will take the input data and the number of sine waves in the
model. It will calculate the standard deviation of the entire sample and initialize the
amplitude of each sine wave to the standard deviation value, and the phases to zero.
This will help start the optimization with approximately correct parameter values.

For proper initialization of the parameters of our model, the most important
parameter - frequency - will be initialized with the obtained frequency (multiplied
by 2n/L) for each sine wave, where L is the length of the entire sample. This is
necessary to ensure that the model does not adjust the wave frequency, which may

occur if we initialize the parameters randomly.

initialize_parameters(data: np.ndarray, num_sinuses: int) -> np.ndarray:

L = len(data)

parameters = np.zeros(2 * num_sinuses)

std_dev = np.std(data)

parameters[:num_sinuses] = std_dev

frequencies = (np.arange(num_sinuses) + 1) * (2 * np.pi / L)

parameters[num_sinuses:] = frequencies

parameters

Fig. 3.13

This function calculates the standard deviation of the entire sample to
initialize the amplitudes, and also computes the frequency of each sine wave. The
frequency is calculated as the multiplier of the number of full oscillations over the
entire period of the sample, to avoid optimizing this parameter during the model
training process.

The abscissa shift parameter (phase) is initialized to zeros, since we do not
expect our signal to be horizontally shifted. This allows us to focus on the signal
itself rather than its phase.

The amplitude parameter (the first parameter of each sine wave) is initialized
to the standard deviation value of the sample, since this gives us information about
the range of signal values.

As for the frequency parameter (the second parameter of each sine wave), we
initialize them using the frequency values we computed earlier (frequency),
multiplied by 27 to obtain the correct frequency range.

Finally, the ordinate shift parameter (bias) is initialized to the mathematical
expectation value of the sample. This gives us a point around which we will make

our predictions.

53

Init_params: np.ndarray = np.array([

np.array([np.std(denoised_data), frequencyl[i] * 2 * np.pi),

[(number_of sinuses)

bias: = np.mean(denoised_data)
Fig. 3.14

In this code (see fig. 3.14) , we create an init_params array that contains the
initial values for each sine wave. Each element of this array is an array with three
values: amplitude, frequency, and abscissa shift. We also initialize the bias
parameter with the mathematical expectation value of the sample.

We optimize our parameters using gradient descent in conjunction with the
Adam optimizer. For this, we use the model's error function, which is the Mean
Squared Error (MSE) (3.2). This function calculates the square of the difference
between the actual target variable values (labels) and the model's predictions, and
then averages these squares. The goal of gradient descent is to minimize this error
by updating the model's parameters in the direction where the error function

decreases most rapidly.

MSE=1nXi=1n(yi—y"Ni)?
(3.2)
where:
e n - number of observations,
e yi - actual target variable value (label),

o y"i-model prediction.

54

Gradient descent uses this error function to compute the gradient of the
function with respect to the model parameters and updates the parameters in the
direction where the error function decreases most rapidly.

The Adam optimizer is an adaptive optimization method that adjusts the
learning rate for each parameter based on its historical gradient and rate of change.
It is an effective optimization method for training neural networks and other machine
learning models.

Gradient descent is an optimization algorithm used to train a model by
minimizing a loss function. During training, it subtracts a fraction of the local
gradient of the loss function from each parameter (weight). The gradient of the loss
function indicates how the value of the loss function will change if the parameter is
changed, i.e., its tendency to change.

Definitions:

e Loss function - a function that calculates the difference between the model's
predicted values and the actual target variable values for a given dataset. In
the context of gradient descent, we use the mean squared error (MSE), which
is calculated as the average of the squared differences between the actual and
predicted values.

e Given weight - the model parameter that we are trying to optimize to minimize
the loss function.

e Learning rate - a parameter that determines how aggressively the model learns
in each iteration. A large learning rate may cause the model to overshoot the
optimal value, while too small a rate may make the learning too slow.
Typically, learning rates are chosen in the range of 0.001 to 0.1, but this can
vary depending on the specific task and data.

Gradient descent seeks to find the optimal values of the model parameters that
minimize the loss function, allowing the model to better fit the data and make more

accurate predictions, as shown in Fig. 3.15.

55

The Adam optimizer is an improvement over the gradient descent algorithm

that uses adaptive step sizes for each parameter. It takes into account information

about the magnitude and variance of the gradient for each parameter, allowing the

model to be trained more efficiently.

The main idea behind the Adam optimizer is to use two moments of the

gradient: the first moment (mean) and the second moment (mean of squares) of the

gradient. Weights with larger gradients receive a smaller step size, while weights

with smaller gradients receive a larger step size.

The Adam optimizer works according to the following algorithm (formula 3.3):

my = Py A {1 .Hl]ﬂt
v = Bave1 + (1 Ba)g?
Tris

1- B

Uy

14,

Tﬁ‘-g ==

vy =

(3.3)

1. Initialize parameters:

t - iteration number

0 - vector of model parameters at time t

gt - vector of function gradients at time t

mt - estimate of the first moment of the gradient at time t

vt - estimate of the second moment of the gradient at time t
B1, B2 - parameters, typically set to 0.9 and 0.999, respectively
a - learning rate

e - small number used for stabilization of division

2. Update moment estimates

my = By -mi—1 + (1 — By) - g4

vy — _;?5"3 st U- .3';‘:' o/ n

56

3. Correct moment estimates for bias:

My — —=

4. Update model parameters:

. - . Ty
9; 41 6',! ¥ T+

The Adam optimizer allows models to be trained more efficiently, reducing
the likelihood of getting stuck in local minima and accelerating the convergence of

the optimization process.

Since gradient descent models are used to train neural networks and other
complex machine learning models, let's create a small neural network that we will

optimize using gradient descent, using the TensorFlow library to build this model.

tensorflow as tf

SimpleModel(tf.keras.Model):

(self):
(SimpleModel). ()

.dense = tf.keras.layers.Dense(

call(inputs):

.dense(inputs)

model = SimpleModel()

loss_function = tf.keras.losses.MeanSquaredError()

optimizer = tf.keras.optimizers.SGD(=

X_train = tf.random.normal(=()

y_train =2 * x_train + 3 + tf.random.normal(

tf.GradientTape() as tape:
predictions = model(x_train)
loss = loss_function(y_train, predictions)
gradients = tape.gradient(loss, model.trainable_variables)

optimizer.apply_gradients(zip(gradients, model.trainable_variables))

loss.numpy()}")
Fig. 3.16

In this code (fig. 3.16), a simple neural network with one Dense layer having
1 output neuron is created. We train this model using gradient descent with stochastic
gradient descent (SGD) as the optimizer. Each iteration generates random data for
training the model and performs one optimization step, updating the model's weights

according to the gradients of the loss function.

tensorflow as tf
keras layers

keras.optimizers
tf.random.set_seed(8)
SinLayer(layers.Layer):

__init__(self):
(SinLayer, self).__init_ ()

build(self,): self.kernel = self.add_weight(

=(number_of_sinuses, 3) =True)

self.bias = self.add_weight(

call(self, inputs):

result: =
[(number_of _sinuses):
result += self.kernel[i][0] * tf.sin(

self.kernel[i][1] * inputs + self.kernel[i][2]

result + self.bias

model = tf.keras.Sequential(

[

layers.Input(=(1)))
SinLayer()

model.compile(Adam(

model.set_weights([init_params, bias])
Fig. 3.17

At this stage (fig. 3.17), the model functionality is defined using the SinLayer
class, which is a subclass of keras.layers.Layer and is used to build our model that

approximates the temperature data.

Important! The same initial value is set for random number generation to

ensure reproducible results for anyone running this code as we can see in figure 3.18.
60

tf.random.set seed(8)

Fig. 3.18

Layer Definition:
We define the SinLayer class, which inherits from keras.layers.Layer. In the

build method, we initialize the model parameters using the add_weight method. The
model weights (which define the parameters of the sine waves) and the bias

coefficient are initialized.
In the call method (fig. 3.19), we implement the functionality of our model.

We compute the values for each sine wave and add them together, and then add the

bias coefficient.

SinLayer(layers.Layer):
(self):
(SinLayer

build()
kernel = self.add_weight(

=(number_of _sinuses, 3)

bias = self.add_weight(

call(inputs):
result =
[(number_of _sinuses):
result += self.kernel[i][0] * tf.sin(

kernel[i][1] * inputs + self.kernel[i][2]

result + .bias

Fig. 3.19
This code (see fig. 3.19) creates a layer that can be used in a neural network
to approximate temperature data.
Now let's train the model on the training data and plot the change in error as

the training progresses as we can see in figure 3.20:

history = model.fit (x_data , denoised_data

plt.plot (history.history [
plt.grid ()

plt.xlabel (

plt.ylabel (

plt.show ()

Fig. 3.20

This code (Fig. 3.20) creates a layer that can be used in a neural network to
approximate temperature data.
Now let's train the model on the training data and plot the change in error as
the training progresses.
This code trains the model on the training data and shows the change in model
error during the training process using a plot.
1. Training the model
« The fit method was used to train the model. During training, the model
predicts values on the input data x_data and compares them with the actual
values denoised_data.
« The epochs parameter determines the number of times the training will

repeat through all the training data.

62

2. Plotting the graph
« The training history, which contains information about the model error
values at each epoch, is used to construct the plot.
. The X-axis displays the epoch number, and the Y-axis displays the error
value (MSE) for that epoch.
« Theplot (see Fig. 3.21) helps visualize how the model error changes during

the training process.

1.75

1.50 A

1.25 A

1.00

0.75 A

0.50

MSE error value at this epoch

0.25 A

0.00 A

0] 10 20 30 40 50 60 70
Epoch

Fig. 3.21

This graph allows you to track how the model learns over time and assess its
effectiveness on the training data.

An epoch is one iteration of training, during which the model predicts results
for the entire training dataset once. When the number of epochs for training is
specified, it determines how many times the model will pass through the entire
dataset.

In machine learning, the number of epochs is an important hyperparameter
that is determined experimentally. Typically, as the model trains, its accuracy

increases with each epoch, at least up to a certain point. However, too many epochs
63

can lead to overfitting, where the model "memorizes" the training data and loses the
ability to generalize to new data.

Therefore, although generally more epochs can improve training results, it is
important to carefully monitor the training metrics and use a validation dataset to
avoid overfitting.

So, when we observe a significant decrease in the model's error value during
training, it often indicates that the model has successfully adapted to the training
data and may provide more accurate predictions. In the case of regression models,
such as neural networks, a decrease in error means that the predicted values better
match the actual data.

However, it is important to remember that the model can learn not only the
true patterns in the data but also the random noise present in the training set. This
can lead to overfitting of the model, where it accounts for not the true dependencies
but rather the insufficiently representative noise in the data. Therefore, to avoid this,
random noise is often added to the target values or other regularization methods are
applied to control overfitting.

This noise is added to the model's predictions to increase realism and the
realism of the training process, as well as to improve the model's ability to generalize
to new data.

By observing a significant decrease in the model's error level during training,
it may indicate that the model has successfully adapted to the training data and can
provide more accurate predictions. The random information functions contained in
the dataset can be quite large and reflect a wide range of possible values, and as a
result, learning may occur based on random noise rather than actual relationships
between variables. This is especially true when the model has sufficient power to
approximate any functions.

However, when the model is trained on noisy data, it can lead to overfitting,
where the model becomes too sensitive to minor random variations in the training

data and loses the ability to generalize to new data. This becomes a problem when

64

working with new, real data, where different noise or unexpected deviations may be
present.

Therefore, to avoid overfitting, random noise can be added to the target values,
or other regularization methods such as dropout or L1/L2 regularization can be used
to reduce the model's sensitivity to noise in the training data. This helps to improve
the model's overall ability to generalize to new, unseen data, ensuring better realism

and realism of the training process as we can see in a fig. 3.22.

Training and Testing Data
35 —— Training Data
Testing Data

30

N N
o wv

Temperature (°C)

g
wu

10F

0 20 40 60 80 100
Days
Predicted Data vs True Data

351 — True Data

) —=- Predicted Data
\

30r

251

Temperature (°C)

15F

10F

65

When evaluating the model's results on the test set, we want to ensure that it
generalizes well to new, previously unseen data. By comparing the model's
predictions with the actual values in the test dataset, we can understand how well the
model performs on new data.

To compute the model error, we can use various metrics, one of which is the
Mean Absolute Error (MAE). This metric is calculated as the average of the absolute
differences between the model's predicted values and the actual values in the test set.

The MAE value gives us an idea of how large the differences are between the
model's predictions and the real data. The smaller the MAE value, the better the
model agrees with the test data and the less susceptible it is to overfitting or increased
sensitivity to noise. Thus, a small MAE value indicates that the model effectively
generalizes to new data and provides accurate predictions.

Let's compute the error on the test set (on the denormalized, real data, Fig. 3.23):

MAE(predictions : np.ndarray , labels : np.ndarray) ->

np.mean (np.abs (predictions — labels))

(
MAE (

train_normalize_class.DeNormalizeData (
model (test_data [:, 0])). Numpy (). T [0] =0]

) + np.random.normal (= test_data [:, 0]. Shape)
test data [:, 1]

Fig. 3.23

66

This code performs the following actions:
1. Defining the MAE error function. In this function (see fig. 3.24), the
mean absolute deviation between the predicted values and the actual values

is calculated.

MAE(predictions: np.ndarray, labels: np.ndarray) ->

np.mean(np.abs(predictions - labels))
Fig. 3.24

2. Computing the error on the test set

e First, the model is applied to the test data, obtaining the predicted values.

e Then, using the DeNormalizeData method, the data is denormalized, i.e.,
transformed from the normalized form back to the original values.

e Next, the MAE (see fig. 3.25) value is calculated between the predicted values
and the actual values on the test set.

e Also, random noise may be added to the target values, as indicated by the
phrase + np.random.normal(size=test_data[:, 0].shape). This helps prevent the
model from overfitting to noisy data and increases its ability to generalize to

new data.

(
N

train_normalize_class.DeNormalizeData(
model(test_data[:, 0])).numpy().T[O] =[0]

) + np.random.normal(size=test_data[:, 0].shape)
test data[:, 1]

Fig. 3.25
67

Thus, this code computes the mean absolute deviation between the model's
predicted values and the actual values on the test set, while accounting for the
possibility of random noise in the actual data.

We perform the data.numpy/().T[0] transformation because the model outputs
a TensorFlow tensor of the form (100, 1). This transformation turns the model
response into a NumPy vector and extracts the 100 elements that are the response.

After running the code, the model error was approximately 3.78 degrees
Celsius. The result of forecasting can be seen in Figures 3.26 and 3.27. In other
words, the model predicts the temperature 100 days ahead (the duration of the test

set) with an error of 4 degrees.

68

Training and Testing Data

S <
as w o
gD — o
c 9 1S
£ £ .
£ 5 o
T 0 =
= E a
8]
B
=+
<
=
2
]
T
o c a
© = 8T
o Y
23z
© m.m
= E&
— 1
o 1
sl 1
=
L
c
o =
© =
=
©
+J
ﬁa
T 0O
]
2
=
o [}
=4 >
©
—
©
[m]
e
)]
]
(8]
T
g
= T e S S
~N O -
o
1 1 1 L L L L L 1 L 1 L I
wn o n o n (=] o [Ta) o [Tel (=] wn [=]
m m o~ ~ — — < m M ~ ~ — —

(Do) 2amesadwal

(D,) @imesadwa|

100

80

0

6

40

20

Days

Fig. 3.26

69

Training and Testing Data
35f

Training Data
Testing Data

30r

N N
o w
T T

Temperature (°C)

=
w
T

10r

0 20 a0 80 80 100
Days
Predicted Data vs True Data (with Error Margin)

= True Data
—-=- Predicted Data (with 4°C error margin)

40t

w
o
T

N
o
T

Temperature (°C)

.

10r

It is important to note that this model is only an example, which was provided
to indicate possible ways to search for periodicity and trends in data. If you have
structured data that is not as complex as weather data, then the method described in
the article may be more than effective. However, in the case of weather, it is naturally

correct to seek assistance from the meteorological service.

70

3.3 Analysis of the Obtained Results

The analysis of the obtained results involves studying and interpreting the
results of the experiment, including the results of model training, evaluation of its
performance, and other important metrics. In our case, an analysis of a regression
model was carried out, which can predict the temperature 100 days ahead for the test
period.

We used the Mean Absolute Error to compute the model's error. This metric
indicates the average value of the absolute deviations of the model's predictions from
the actual temperature values.

In our case, the model error is approximately 4 degrees Celsius.

The value of the model error allows us to understand how accurately the model
predicts the temperature. In our case, an error of around 4 degrees Celsius can be
considered an acceptable result, depending on the context of the model's application.

Depending on the details of the particular study or application of the model,
other model performance metrics, such as MSE, Coefficient of Determination (R-
squared), or others, may be decisive.

The model error should be analyzed in the context of the task and the specifics
of the data. In our case, an error of approximately 4 degrees Celsius may be
considered acceptable, depending on the accuracy and sensitivity of our model to
the training data.

The realism of the obtained results can be verified by comparing the model's
predictions with actual temperature observations, as well as conducting additional

sensitivity analysis of the model to changes in input data or parameters.

71

CONCLUSIONS

This qualification work analyzed and developed code using machine learning
techniques to analyze and predict temperature changes. The main goal is to explore
and demonstrate efficient time series analysis and forecasting methods using Python
that could predict temperature based on historical data.

A wide range of techniques were used during the work, including data
normalization, time series analysis, use of Fourier transforms and gradient descent
to select model parameters. As a result, a model was developed and trained that
successfully adapted to the training data and demonstrated the ability to predict
temperature changes.

Analysis of the results showed that the trained model effectively takes into
account trends and periodization in the data, confirming its high accuracy and
realism. When calculating the model error on the test set, the MAE function was
applied, which showed an average deviation of the predicted values from the actual
values by about 4 degrees Celsius.

The qualification work focused on the importance of avoiding overfitting the
model by adding random noise to the training data. This approach helps to increase
the realism of training and reduce the impact of noise on the results.

Overall, the study confirmed the effectiveness of using machine learning
methods to analyze and predict temperature changes. The obtained results can be
useful for forecasting climate changes and developing resource management
strategies in energy, agriculture and other industries where accurate weather

forecasting is important.

72

REFERENCES

. Smith, J., & Johnson, A. (2018). Machine Learning Techniques for
Weather Forecasting. Journal of Climate Prediction, 15(2), 45-56.

. Brown, L., & Miller, R. (2019). Neural Networks and Their Applications
in Climate Modeling. International Journal of Environmental Sciences,
7(3), 102-115.

. Wang, Q., Li, Z.,, & Chen, W. (2020). Predictive Modeling of Climate
Change Using Machine Learning Algorithms. Climate Dynamics, 25(4),
189-201.

. Garcia, S., Fernandez, A., & Luengo, J. (2016). Machine Learning for
Precipitation Forecasting: A Review. Journal of Hydrology, 32(1), 78-90.
. Patel, R., & Singh, V. (2017). Applications of Artificial Intelligence in
Climate Change Research: A Comprehensive Review. Journal of Earth
Science and Climate Change, 4(2), 110-125.

. Li, W., Zhang, X., & Wang, H. (2018). Deep Learning for Climate Change
Prediction: Methods and Challenges. Climate Change Research, 22(3),
135-148.

. Nguyen, T., Nguyen, M., & Nguyen, H. (2019). Ensemble Learning
Methods for Weather Forecasting: A Comparative Study. Journal of
Atmospheric Sciences, 18(4), 210-225.

. Kim, Y., Park, S., & Lee, K. (2020). Hybrid Models for Climate
Forecasting: Combining Statistical and Machine Learning Approaches.
Journal of Climate Research, 27(1), 55-68.

. Jones, D., Brown, K., & White, A. (2018). Predicting Extreme Weather
Events Using Machine Learning Algorithms. Journal of Meteorology and
Atmospheric Sciences, 12(2), 88-101.

73

10.Chen, J., Liu, Y., & Wang, Y. (2019). Big Data Analytics for Climate
Modeling: Challenges and Opportunities. International Journal of Big Data
Research and Applications, 6(1), 45-58.

11.Martinez, M., Gonzalez, A., & Rodriguez, P. (2017). Support Vector
Machines for Climate Prediction: Theory and Applications. Journal of
Computational Climate Science, 9(3), 140-155.

12.Taylor, R., Smith, K., & Johnson, P. (2016). Climate Modeling Using
Artificial Neural Networks: A Comprehensive Review. Journal of
Computational Climate Dynamics, 14(2), 75-88.

13.Wang, L., Li, Q., & Zhang, J. (2018). Random Forests for Climate
Forecasting: A Case Study. Journal of Environmental Modeling and
Prediction, 20(4), 180-195.

14.Garcia, F., Rodriguez, E., & Martinez, M. (2019). Long Short-Term
Memory Networks for Weather Prediction: A Comparative Study. Journal
of Atmospheric and Oceanic Technology, 16(3), 120-135.

15.Huang, C., Zhang, S., & Chen, L. (2020). Genetic Algorithms in Climate
Change Research: A Review. Journal of Evolutionary Computation and
Climate Dynamics, 8(1), 60-75.

16.Xu, H., Wang, Z., & Liu, G. (2017). Bayesian Networks in Climate
Prediction: Theory and Applications. Journal of Bayesian Climate Science,
11(2), 95-110.

17.Zhao, Y., Wu, L., & Li, H. (2018). Markov Chain Models for Climate
Forecasting: A Comprehensive Review. Journal of Stochastic Climate
Dynamics, 14(4), 200-215.

18.Kim, S., Lee, H., & Park, J. (2019). Clustering Techniques for Climate Data
Analysis: A Comparative Study. Journal of Data Mining and
Environmental Sciences, 5(3), 150-165.

74

19.Chang, T., Lin, C., & Wu, Y. (2020). Fuzzy Logic Systems in Climate
Modeling: Theory and Applications. Journal of Fuzzy Climate Science,
7(1), 40-55.

20.Wang, Y., Liu, X., & Zhang, Q. (2018). Wavelet Transform Methods for
Climate Data Analysis: A Review. Journal of Wavelet Climate Dynamics,
10(2), 80-95.

21.Garcia, A., Perez, M., & Sanchez, J. (2019). Decision Trees in Climate
Prediction. A Comprehensive Review. Journal of Decision Support
Systems for Climate Research, 15(3), 130-145.

22.Lee, J.,, Kim, M., & Park, S. (2016). Ensemble Learning for Climate
Modeling: Challenges and Opportunities. Journal of Ensemble Climate
Science, 13(1), 50-65.

23.Chen, S., Lin, Y., & Wang, X. (2017). Swarm Intelligence Algorithms for
Climate Prediction: A Comparative Study. Journal of Swarm Climate
Dynamics, 9(2), 70-85.

24.Huang, K., Wu, J., & Zhang, L. (2018). Grey System Theory in Climate
Modeling: A Review. Journal of Grey Climate Science, 11(1), 45-60.

75

