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РЕФЕРАТ 

Пояснювальна записка до кваліфікаційної роботи «Інтелектуальна 

система обробки даних». Кваліфікаційна робота складається зі вступу, трьох 

розділів, загальних висновків, списку використаних джерел і має 75 сторінки, 

36 малюнки, 13 формул, 24 літературних джерел.  

Мета дипломного проекту: Дослідити та продемонструвати ефективні 

методи аналізу та прогнозування часових рядів за допомогою Python, 

зосередившись на погодних даних з 2013 по 2017 рік. Кваліфікаційна робота 

включатиме методи попередньої обробки даних, такі як нормалізація та 

зменшення шуму, а також буде використовувати перетворення Фур'є та 

градієнтний спуск для підгонки кривих. Метою є виявлення закономірностей і 

прогнозування майбутніх точок даних, використовуючи моделі машинного 

навчання, побудовані за допомогою TensorFlow і оцінені за допомогою 

візуалізації та метрик помилок. 

Постановка задачі: Прогнозування погоди має вирішальне значення для 

різних галузей, проте передбачення погодних умов залишається складним 

завданням через складність та мінливість кліматичних даних. Це завдання 

показує як можна вирішити цю проблему, використовуючи сучасні методи 

аналізу часових рядів та машинного навчання. Основна увага приділяється 

обробці погодних даних з 2013 по 2017 рік для виявлення закономірностей і 

розробки моделей прогнозування. Проблема полягає в ефективній обробці 

зашумлених даних, застосуванні відповідних методів нормалізації та 

трансформації, а також у виборі надійних алгоритмів для підвищення точності 

та надійності прогнозування.



 

SUMMARY 

Explanatory note to the qualification work “Intelligent data processing system”. 

The qualification work consists of an introduction, three chapters, general 

conclusions, a list of references and has 75 pages, 36 figures, 13 formulas, 24 literary 

sources.  

The purpose of the diploma project: To investigate and demonstrate effective 

methods for time series analysis and forecasting using Python, focusing on weather 

data from 2013 to 2017. The qualification work will include data preprocessing 

techniques such as normalization and noise reduction, and will use Fourier transform 

and gradient descent for curve fitting. The goal is to detect patterns and predict future 

data points using machine learning models built with TensorFlow and evaluated 

using visualization and error metrics. 

Problem statement: Weather forecasting is crucial for various industries, yet 

predicting weather conditions remains a challenging task due to the complexity and 

variability of climate data. This challenge shows how this problem can be solved 

using modern time series analysis and machine learning techniques. The focus is on 

processing weather data from 2013 to 2017 to identify patterns and develop 

forecasting models. The challenge is to efficiently process noisy data, apply 

appropriate normalization and transformation methods, and choose reliable 

algorithms to improve forecasting accuracy and reliability.



 

CONTENT 

INTRODUCTION ................................................................................................. 11 

SECTION 1 ............................................................................................................ 13 

THEORETICAL FOUNDATIONS OF INTELLIGENT DATA 

PROCESSING SYSTEMS ................................................................................... 13 

1.1 Overview of intelligent data analysis systems (regression analysis, neural 

networks) ............................................................................................................. 13 

1.2 Overview of Weather Data Analysis Methods .......................................... 19 

1.3 Description of the used regression analysis systems. Problem statement

 .............................................................................................................................. 24 

SECTION 2 ............................................................................................................ 28 

METHOD FOR SOLVING THE PROBLEM ................................................... 28 

2.1 Data preparation and preprocessing .......................................................... 28 

2.2 Development of the regression analysis algorithm ................................... 31 

SECTION 3 ............................................................................................................ 37 

EXAMPLE OF WEATHER DATA PROCESSING AND RESULTS ............ 37 

3.1 Description of the weather data calculation and analysis program ........ 37 

3.2 Example of Data Processing Using Regression Analysis .......................... 39 

3.3 Analysis of the Obtained Results ................................................................ 71 

CONCLUSIONS .................................................................................................... 72 

REFERENCES ...................................................................................................... 73 

 

  



10 
 

LIST OF ABBREVIATIONS 

IDPS – Intelligent data processing systems 

IDA – Intelligent data analysis 

MLP – Multilayer Perceptron 

RNN – Recurrent Neural Networks 

CNN – Convolutional Neural Networks 

GAN – Generative Adversarial Networks 

AR – Autoregressive models  

MA – Moving Average models 

ARIMA – Autoregressive Integrated Moving Average 

SARIMA – Seasonal Autoregressive Integrated Moving Average 

AIC – Akaike Information Criterion 

BIC – Bayesian Information Criterion 

PCA – Principal Component Analysis 

k-NN – K-Nearest Neighbors method 

MSE – Mean Squared Error 

MAE – Mean Absolute Error 

API – Application Programming Interface 

SGD – Stochastic Gradient Descent 

L1/L2 – L1 (Lasso), L2(Ridge) regularization 

R-squared – Coefficient of Determination 

 

 

 



11 
 

INTRODUCTION  

The modern world stands on the threshold of a new era, where information is 

becoming the most valuable resource. Every day, the volume of data generated in 

various fields of human activity is growing exponentially. In this context, the need 

for new approaches to the collection, storage, processing, and analysis of this data 

becomes evident. Intelligent data processing systems (IDPS) represent a set of 

technologies that use artificial intelligence methods and analytical algorithms for the 

effective management of large volumes of information. 

Intelligent data processing systems not only automate data processing 

processes but also allow for the acquisition of new knowledge, the identification of 

hidden patterns, and the making of informed decisions based on data. This opens up 

new opportunities to improve efficiency, innovation, and development in various 

fields: from business and medicine to finance and energy. IDPS are particularly 

significant in the field of aviation, where the accuracy and speed of information 

processing are critical for flight safety, effective air traffic management, and the 

development of aviation technologies. 

The relevance of using IDPS in the field of aviation is noted by a number of 

advantages and characteristics that contribute to improving safety, efficiency, and 

meeting passenger needs. These systems help identify potential threats and prevent 

accidents, optimize routes and fuel consumption to save costs, and maintain an 

optimal level of aircraft technical readiness. 

The aviation industry constantly generates huge amounts of data, including 

information on the technical condition of aircraft, weather conditions, flight routes, 

and other key indicators. The use of IDPS in aviation allows for predictive analytics, 

improves the efficiency of aircraft maintenance, optimizes routes, and ensures a high 

level of flight safety. Intelligent data processing systems can also contribute to the 

development of new aviation technologies, such as unmanned aerial vehicles and 

automatic air traffic management systems. 
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The work is an example of the considered systems underlying IDPS, as well 

as their practical application in the aviation industry. Particular attention will be paid 

to the analysis of modern big data processing technologies, machine learning and 

artificial intelligence methods, as well as the integration of IDPS into aviation 

computer systems. 

The purpose of this work is to identify patterns and predict future data points 

using machine learning models, analyze their effectiveness and influence on the 

development of modern technologies in aviation. Development of a model for 

forecasting temperature based on historical data and application of IDPS in the 

aviation industry, identification of the main challenges and prospects for the 

development of this industry. 

Thus, this work aims to contribute to the understanding of the role of 

intelligent data processing systems in the modern world of aviation and their 

potential to transform the aviation sector and society as a whole. 
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SECTION 1 

THEORETICAL FOUNDATIONS OF INTELLIGENT DATA 

PROCESSING SYSTEMS 

1.1 Overview of intelligent data analysis systems (regression analysis, neural 

networks) 

Intelligent data analysis (IDA) is a key component of intelligent data 

processing systems, which allows for the identification of hidden patterns, trends, 

and dependencies in large data sets. There is a wide range of IDA methods and 

algorithms that are used depending on the nature of the data and the objectives of 

the analysis. 

Below is an overview of the main methods of intelligent data analysis [1]. 

Regression analysis is one of the most important statistical analysis methods 

used for modeling the relationships between the dependent variable (target variable) 

and one or more independent variables (predictor variables). This method allows 

determining how changes in the independent variables affect the dependent variable, 

making it an indispensable tool for forecasting and data interpretation in various 

fields [2]. 

Linear regression (Pic. 1.1) is the simplest form of regression analysis, where 

the dependence between variables is modeled using a linear function [3]. The 

formula (1.1) of linear regression takes into account one independent variable, and 

more than one independent variables. 

 

 

(1.1) 

where: 

● Y - dependent variables , 

●  - independent variable ,  

● β0  - intercept (constant term),  
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●  regression coefficient ,  

● ϵ - model error. 

 

 

 

Fig.1.1 

 

Logistic regression (Fig. 1.2) is used to model the probability of an event 

occurring when the dependent variable is categorical. 

 

Fig. 1.2 
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The main equation of logistic regression is shown in formula 1.2: 

 

 

(1.2) 

where:  

● P(Y=1) - the probability of the event occurring, 

● X1, X2, Xn - independent variables, 

● BO - the intercept, 

●  B1, B2, ..., Bn - the regression coefficients. 

 

Polynomial regression (1.3) is used when the relationship between the 

dependent and independent variables is nonlinear [4]. The polynomial regression 

model includes powers of the independent variables: 

 

 

(1.3) 

Ridge and Lasso regressions (Fig. 1.3) are methods used to address the 

problem of multicollinearity (when independent variables are highly correlated with 

each other) and for performing feature selection [5]. 
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Fig. 1.3 

 

Ridge regression adds a penalty term for the magnitude of the coefficients to 

the loss function, which reduces their amplitude. 

Lasso regression (1.4) adds a penalty term for the absolute value of the 

coefficients, which can lead to some coefficients being set to zero and automatic 

feature selection [6]. 

 

 

(1.4) 

Regression analysis has widespread applications in various fields: 

- Forecasting market prices, cost and revenue analysis, risk assessment. 

- Identifying disease risk factors, analyzing treatment effectiveness. 

- Analyzing consumer behavior, forecasting product demand. 

- Modeling system characteristics, reliability analysis. 

Advantages and limitations of regression analysis: 

Advantages 

- Simplicity and interpretability of results. 
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- Ability to quantify the impact of each independent variable on the dependent 

variable. 

- Wide range of applications across various fields. 

Limitations 

- Linearity assumptions may be too simplistic for complex relationships. 

- Sensitivity to multicollinearity and outliers in the data. 

- Need for prior data analysis and preparation. 

Regression analysis is a powerful tool for modeling relationships between 

variables, allowing for forecasting and informed decision-making. Understanding its 

main methods and applications is crucial for effective data utilization in various 

scientific and business domains. 

Neural networks are one of the key technologies in the field of intelligent data 

analysis. 

They model the workings of the human brain by using artificial neurons 

interconnected through weights. Neural networks are capable of discovering 

complex patterns in data, making them extremely useful for various tasks, including 

classification, regression, clustering, and forecasting [7]. 

The main architecture of a neural network consists of three types of layers: 

1. Input layer, consisting of neurons that receive input data. 

2. Hidden layers, consisting of neurons that perform intermediate computations. 

Multiple hidden layers can be used, allowing the neural network to capture 

more complex patterns. 

3. Output layer, consisting of neurons that generate output data based on the 

computations of the previous layers. 

There are several main types of neural networks, each with its own characteristics 

and application areas: 

1. Perceptron - the simplest type of neural network, consisting of only a single 

layer of neurons. Used for simple classification tasks. 
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2. Multilayer Perceptron (MLP) - consists of one or more hidden layers. Used 

for tasks that require more complex data analysis. 

3. Recurrent Neural Networks (RNN) - characterized by the presence of 

feedback loops, allowing them to process sequential data, such as time series 

or text. 

4. Convolutional Neural Networks (CNN) - specialized in processing data with 

spatial structure, such as images. They use convolution operations to extract 

features at different levels of abstraction. 

5. Generative Adversarial Networks (GAN) - consist of two neural networks, a 

generator and a discriminator, that compete against each other. Used for 

generating new data that resembles the training examples. 

Training neural networks involves adjusting the connection weights between 

neurons to minimize the error [8]. The main steps in training include: 

1. Forward Pass: Input data propagates through all layers of the network, and an 

output prediction is obtained. 

2. Loss Calculation: Determining the difference between the prediction and the 

actual value using a loss function. 

3.  Backward Pass: The error is propagated back through the network, and the 

weights are adjusted using the backpropagation algorithm and gradient 

descent. 

Neural networks find applications in many fields, including: 

- Aviation, for predicting aircraft maintenance, optimizing flight routes, detecting 

anomalies in aircraft systems, and analyzing sensor data. 

- Medicine, for disease diagnosis, medical image analysis, and treatment outcome 

prediction. 

- Finance, for stock price forecasting, credit risk assessment, and fraud detection. 

- Automotive industry, for developing autonomous vehicles, analyzing sensor data, 

and predicting failures. 

Major challenges faced by neural networks include: 
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- High computational resource requirements. 

- Need for large training data volumes. 

- Difficulty in interpreting results (black box). 

         Despite these challenges, neural networks possess an immense potential for 

further advancement and refinement, thus unveiling novel prospects for 

sophisticated data analysis across diverse domains. 

 

 1.2 Overview of Weather Data Analysis Methods 

Weather data analysis is a crucial task in meteorology, involving the 

collection, processing, and interpretation of substantial data volumes to forecast 

weather conditions, investigate climate change, and facilitate informed decision-

making across various domains. In this section, we shall examine the fundamental 

algorithms employed in weather data analysis [14]. 

Statistical analysis serves as the foundation for numerous weather data 

analysis methods. 

 The primary techniques encompass: 

● Descriptive statistics. Utilized to summarize and describe the essential 

characteristics of weather data (mean, median, standard deviation). 

● Correlation analysis. Uncovers relationships between different weather 

variables (e.g., temperature and humidity). 

● Trend analysis. Employed to detect long-term tendencies in weather data, 

such as global warming. 

Regression analysis is applied to model and forecast dependencies between 

weather variables. The primary types of regression analysis employed are: 

● Linear regression. Model’s linear relationships between 

variables. For instance, forecasting temperature based on historical data. 

● Polynomial regression. Utilized when the relationship between 

variables is nonlinear. 
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● Logistic regression. Employed to predict the probability of 

events, such as precipitation or storms. 

Time series analysis is a pivotal method for weather data analysis, as weather 

patterns evolve over time.  

Time Series Analysis in Weather Data 

Time series analysis is a pivotal method for weather data analysis as weather 

patterns evolve over time. The primary methods include: 

• Data Collection 

o The initial stage in working with time series involves data collection. 

In hydrometeorology, time series represent chronological sequences of 

observations for various parameters (such as temperature, atmospheric 

pressure, precipitation, etc.). 

o Types of Time Series: Equidistant (data points are spaced at regular 

intervals) and non-equidistant (data points are spaced at irregular 

intervals). An example of an equidistant series could be daily collected 

air or water temperature data. 

o Interval and Moment Series: Interval series consist of data collected 

over specific periods (e.g., daily average temperatures), whereas 

moment series record data at specific points in time (e.g., noon 

temperature each day). 

• Preliminary Data Processing 

o This stage involves preparing the data for analysis: 

o Handling Missing Data and Anomalies: Time series often contain 

missing or outlier values which need to be identified and treated to 

avoid skewing the analysis. 

o Data Normalization: Bringing data to a common scale allows for the 

comparison of series with different units or scales. 

o Decomposition into Trend, Seasonal Component, and Noise: This helps 

in understanding the structure of the time series and preparing data for 
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further analysis. Decomposition includes isolating long-term trends, 

regular seasonal patterns, and random variations (noise). 

• Analysis of Stationarity 

o Checking time series for stationarity is a crucial step in analysis: 

o Stationarity: A time series is considered stationary if its statistical 

properties (such as mean and variance) remain constant over time. 

Stationary series are easier to model and forecast. 

o Methods for Testing Stationarity: Methods like the Dickey-Fuller test 

and the KPSS test help determine whether a series is stationary or 

requires transformations (e.g., differencing) to achieve stationarity. 

• Model Selection and Building 

o Choosing the appropriate model for the time series based on its 

characteristics: 

o Time Series Models: These include autoregressive models (AR), 

moving average models (MA), mixed ARMA models, and integrated 

autoregressive models (ARIMA). 

o Model Selection Criteria: Information-theoretic criteria such as the 

Akaike Information Criterion (AIC) or the Bayesian Information 

Criterion (BIC) assist in selecting the model that best describes the data. 

• Model Evaluation 

o Assessing the quality of the chosen model: 

o Parameter Estimation: Determining the coefficients of the model (e.g., 

in ARIMA models). 

o Model Diagnostics: Checking the adequacy of the model through 

residual analysis — residuals should be white noise, meaning they are 

random and not autocorrelated. 

o Cross-Validation: Splitting data into training and test sets to evaluate 

the model on new data. 
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• Forecasting 

o Using the built and evaluated model to make predictions: 

o Short-term and Long-term Forecasts: Short-term forecasts are usually 

more accurate and useful for operational decisions, while long-term 

forecasts provide a general outlook of future trends. 

o Forecasting Methods: Utilizing ARIMA models, seasonal models like 

SARIMA, and machine learning methods for more complex 

predictions. 

• Visualization of Results 

o The final stage involves presenting the analysis and forecast results in 

a clear and understandable form: 

o Time Series Plots: Displaying the original data and forecasts on a time 

scale. 

o Residual Plots: Allowing assessment of model adequacy. 

o Comparison Plots: Comparing forecasts with actual values to evaluate 

accuracy. 

Following the previously described timing data analysis process, the 

following block diagram can be designed (see fig. 1.4): 
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Fig. 1.4 

 

Weather data analysis encompasses a wide spectrum of methods, enabling the 

extraction of valuable information about weather conditions and climate change. The 

choice of a specific method depends on the nature of the data, the goals of the 
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analysis, and the available resources. Combining various approaches allows for the 

attainment of the most accurate and reliable results in forecasting and interpreting 

weather data. 

 

1.3 Description of the used regression analysis systems. Problem statement 

Regression analysis encompasses diverse methods, each with its unique 

characteristics, advantages, and limitations. Let us examine the most prevalent ones 

in greater detail. 

Simple linear regression (1.5) models the relationship between two variables: 

one independent (predictor) variable X and one dependent (target) variable Y [9] 

 

(1.5) 

where: 

● Y – is the dependent variable, 

● 𝑋 – is the independent variable, 

● 𝛽0 – is the intercept, 

● 𝛽1 – is the regression coefficient (slope of the line), 

● 𝜖 – is the model error. 

This method is used to predict the value of Y based on X and allows for the 

estimation of the strength and direction of the relationship between the variables. 

Multiple linear regression (1.6) extends simple linear regression by allowing 

for the consideration of more than one independent variable [10]. The primary 

equation for multiple linear regression is: 

 

 

(1.6)  

where: 

● 𝑌 – is the dependent variable, 



25 
 

● 𝑋1,𝑋2,...,𝑋𝑛 – are the independent variables, 

● 𝛽0 – is the intercept, 

● 𝛽1,𝛽2,...,𝛽𝑛β1 – are the regression coefficients, 

● 𝜖 – is the model error. 

Multiple linear regression is used for more accurate modeling of dependencies 

and to account for the influence of multiple factors on the target variable. 

Polynomial regression (see formula 1.7) is utilized when the relationship 

between the dependent and independent variables is nonlinear [11]. The primary 

equation for second-order polynomial regression is: 

 

 

(1.7) 

where: 

● 𝑌 – is the dependent variable, 

● 𝑋 – is the independent variable, 

● 𝛽0,𝛽1,𝛽2 – are the regression coefficients, 

● 𝜖 – is the model error. 

Polynomial regression allows for the modeling of more complex 

dependencies between variables, which may be nonlinear. 

Logistic regression (1.8) is used to model the probability of a certain event 

occurring when the dependent variable is categorical (binary). The primary equation 

for logistic regression is: 

 

 

(1.8) 

where: 

● 𝑃(𝑌=1) – is the probability of the event occurring, 

● 𝑋1,𝑋2,...,𝑋𝑛 – are the independent variables, 
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● 𝛽0 – is the intercept, 

● 𝛽1,𝛽2,...,𝛽𝑛 – are the regression coefficients. 

Logistic regression is often used in classification tasks, for example, to 

determine the probability of disease or the probability of a customer making a 

purchase. 

Ridge regression is employed to address the issue of multicollinearity by 

adding a penalty term for the magnitude of the coefficients to the loss function (see 

formula 1.9) [12]: 

 

 

(1.9)  

where: 

● 𝑦𝑖 – are the observed values, 

● 𝑦𝑖 – are the predicted values, 

● 𝛽𝑗 – are the regression coefficients, 

● 𝜆 – is the regularization parameter that controls the degree of 

penalty. 

Ridge regression reduces the magnitude of the coefficients, which helps 

prevent overfitting of the model. 

Lasso regression (1.10) adds a penalty for the absolute value of the 

coefficients, which can lead to some coefficients being set to zero [13]: 

 

 

(1.10) 

where: 

● 𝑦𝑖 – are the observed values, 
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● 𝑦𝑖 – are the predicted values, 

● 𝛽𝑗 – are the regression coefficients, 

● 𝜆 – is the regularization parameter. 

Lasso regression performs automatic variable selection, making the model 

simpler and more interpretable. 

Regression analysis offers a diverse array of methods for modeling and 

analyzing data. The choice of a specific method depends on the nature of the data 

and the research objectives. Successful application of regression analysis requires 

an understanding of the theoretical foundations of each method and their proper 

utilization in practical tasks.  

 

Problem statement 

Weather forecasting is crucial for various industries, yet predicting weather 

conditions remains a challenging task due to the complexity and variability of 

climate data. This challenge shows how this problem can be solved using modern 

time series analysis and machine learning techniques. The focus is on processing 

weather data from 2013 to 2017 to identify patterns and develop forecasting models. 

The challenge is to efficiently process noisy data, apply appropriate normalization 

and transformation methods, and choose reliable algorithms to improve forecasting 

accuracy and reliability. 
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SECTION 2 

METHOD FOR SOLVING THE PROBLEM 

2.1 Data preparation and preprocessing 

To construct a forecasting model for any parameter, it is necessary to obtain a 

raw dataset comprising an array of parameters that describe a particular 

phenomenon. The data must be structured in the form of tables with defined fields, 

such as the observation date, air temperature, wind speed, and precipitation 

occurrence. 

Additionally, data can be collected from weather websites, including 

information about droughts, tsunamis, and other phenomena. 

The collected data exhibited diverse characteristics. Most of the company's 

internal data were structured, simplifying their processing and analysis. 

Web data and data from external sources could be both structured and 

unstructured, necessitating additional processing for use in analysis. 

After data collection, an essential step in processing is cleaning the data by 

removing errors and incomplete records. 

Checking for duplicate data is the first step in data cleaning. Duplicate records 

can distort analysis and lead to incorrect conclusions. Unique identifiers or 

combinations of fields can be used to detect duplicates by checking for identical 

records. 

Data often contain missing values that must be addressed before analysis. This 

can involve imputing values using means, medians, or modes, or employing other 

methods such as interpolation. 

Outliers or anomalies in the data can arise due to measurement errors, random 

events, or other causes. Detecting and removing outliers helps ensure the correctness 

of the analysis results. This can be accomplished using statistical methods, such as 

standard deviation or interquartile range. 

Sometimes, data may contain erroneous values that need to be corrected. This 

can include fixing typos, incorrect formats, or other types of errors. 
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After completing these cleaning steps, the data become ready for further 

analysis and modeling in intelligent data processing systems. 

During data analysis, it is crucial to consider that not all features present in 

the original dataset are useful and informative for model construction. It is essential 

to select the most informative features for further analysis and modeling. 

Conducting a correlation analysis between the features and the target variable 

helps identify the features that have the strongest relationship with the target 

variable. Features with high correlation may be more informative for modeling. 

Various statistical feature selection methods exist, such as feature importance 

analysis, principal component analysis (PCA), or feature selection based on 

statistical tests (e.g., t-test). 

Some machine learning models provide information about the importance of 

each feature in the constructed model. For instance, a decision tree can provide the 

importance of each feature based on its contribution to improving the node criterion. 

In some cases, expert knowledge or domain expertise may indicate which 

features are likely to be most important for the model. 

After selecting the most important features, the dataset is ready for further use 

in modeling. 

Some machine learning algorithms can be sensitive to the scale of features. 

For example, methods that use distance between points, such as the k-nearest 

neighbors (k-NN) method, can be significantly affected by the size and range of 

feature values. At this stage, data scaling is performed to ensure a consistent scale 

for all features. 

Normalization (min-max scaling). In this method, the values of each feature 

are transformed so that they fall within the range of 0 to 1. This is achieved by 

subtracting the minimum value of the feature and dividing by the difference between 

the maximum and minimum values. 
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Standardization. In this method, the values of each feature are transformed so 

that they have a mean of 0 and a standard deviation of 1. This is achieved by 

subtracting the mean value of the feature and dividing by the standard deviation. 

In addition to normalization and standardization, other scaling methods exist, 

such as logarithmic scaling or rank-based scaling. 

Categorical features, which have a limited number of possible values, need to 

be encoded as numerical values before being used in a machine learning model. This 

is an important step because many machine learning algorithms work only with 

numerical data. 

In the One-Hot Encoding method, each unique value of a categorical feature 

is transformed into a new binary feature. For example, if wind was present, the 

feature receives a code of 1; if wind was absent, it receives a code of 0. In other 

words, for each unique value of the feature, a new column is created that takes the 

value 1 if that value is present for a given record or 0 if it is absent. This approach is 

particularly useful when the categorical feature has many unique values. 

In the Label Encoding method, each unique value of a categorical feature is 

encoded as an integer. Each unique value is assigned a unique identifier, typically 

starting from 0. This approach is suitable for categorical features with ordered values 

or when the number of unique values is relatively small. 

When choosing a method for encoding categorical features, it is important to 

consider the characteristics of the data and the requirements of the specific machine 

learning model. Proper encoding helps ensure the correctness and efficiency of the 

model when processing categorical data. 

Splitting the dataset into training and test sets is an important step in the 

process of developing a machine learning model. It allows for evaluating the model's 

effectiveness on independent data and avoiding overfitting. Here's how it can be 

done: 

• First, determine what portion of the data needs to be allocated for testing the 

model. Typically, between 10% and 30% of the total data volume is used. 
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• To ensure objectivity, randomly divide the data into training and test sets. 

Ensure that each record has an equal chance of being in either set. 

• If working on a classification task and dealing with different classes, ensure 

that both sets have approximately the same number of examples for each class. 

This will help avoid biases when evaluating the model. 

• After splitting, save the training and test data sets so that they can be reused 

and ensure consistency of results. 

Proper splitting of data into training and test sets helps ensure an objective evaluation 

of the model and its ability to generalize to new data. 

 

2.2 Development of the regression analysis algorithm 

Linear regression (fig. 2.1) is one of the simplest regression methods. 

 

 

Fig. 2.1 

 

It assumes a linear relationship between the independent and dependent 

variables. 

Linear regression is often used in cases where the relationship between 

variables is approximately linear. It is well-suited for simple tasks and cases where 

the number of features is small. 
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The linear regression model is computationally efficient and easy to interpret, 

but it may be ineffective in cases where the relationship between variables is 

complex or non-linear. 

Polynomial regression (fig. 2.2) extends the linear model by adding 

polynomial features to the model. 

It is used when the relationship between variables is not linear, but can be 

approximated by a polynomial of a certain degree. 

Polynomial regression can be more flexible than simple linear regression, but 

it can also lead to overfitting, especially when using high-degree polynomials. 

 

 

Fig. 2.2 

 

Decision tree (fig. 2.3) regression is used for predicting values based on a 

decision tree, where each node represents a condition, and each leaf value represents 

a predicted value. 

This method can be effective for non-linear dependencies between variables 

and has the inherent ability to automatically handle feature interactions. 

This data mining method is also known as decision rule trees, classification 

and regression trees. 
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Fig. 2.3 

 

If the dependent, or target, variable takes discrete values, the decision tree 

method solves a classification task. 

If the dependent variable takes continuous values, the decision tree establishes 

the relationship between this variable and the independent variables, solving a 

numerical forecasting task. Decision tree regression can become complex as the tree 

depth increases and may be prone to overfitting. 

Neural networks (fig. 2.4) are a set of interconnected artificial neurons that 

can perform complex computations and function approximations. 

 

 

Fig. 2.4 
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They are used in regression tasks when the relationship between variables is 

complex and does not have an explicit form. 

Neural networks can be very powerful in solving complex problems, but they 

can also be difficult to train and require large amounts of data to work effectively. 

Preparing a dataset for subsequent use with a linear regression model involves 

the following steps: 

• Data analysis for missing values. 

• Data scaling using normalization or standardization methods to ensure a 

consistent scale for all features. 

• Encoding of categorical features. For linear regression models, the "one-hot 

encoding" method is typically used, which transforms categorical features into 

binary variables, allowing their use in linear models. 

• The final step is splitting the data into training and test sets. The training set 

will be used to train the model, while the test set will be used to evaluate its 

effectiveness and avoid overfitting. 

After data preparation, the training phase of the linear regression model 

begins, during which the model "learns" the dependencies between the input and 

output variables. 

To create a linear regression model, it is necessary to establish initial values 

for the parameters and regression coefficients. 

After initialization, the model is fitted to the training dataset. This process 

involves finding the optimal values of the model parameters that best fit the 

relationship between the input and output variables. 

After completing the model fitting, its effectiveness must be evaluated. This 

can include analyzing various regression metrics, such as Mean Squared Error 

(MSE) or the coefficient of determination (R-squared), to assess how well the model 

fits the data. 
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After evaluating the model's effectiveness on the training dataset, it can also 

be tested on the test dataset, which was previously separated from the training set. 

This helps determine how well the model generalizes to new data, i.e., how it 

performs under real conditions. 

After completing these steps, the linear regression model is ready for use in 

predicting values of the dependent variable based on new input data. 

The obtained regression metrics are interpreted to determine the effectiveness 

of the model. For example, low values of MSE and MAE, and a high value of R-

squared indicate that the model performs well and accurately predicts the target 

variable. 

It is also important to compare the results with a baseline level (e.g., 

predictions obtained using simple methods such as predicting the mean value). This 

helps determine whether the model is indeed making a significant contribution to 

the forecasting. 

After evaluating the model, decisions can be made regarding its further use, 

tuning, or improvement, depending on the results and the requirements of the 

specific study. 

If necessary, the linear regression model can be tuned or optimized to improve 

its effectiveness. 

The model parameters, such as the regression coefficients, can be adjusted to 

achieve a better fit to the data. This may involve optimizing the coefficients using 

optimization methods, such as gradient descent, to minimize the loss function. 

To avoid overfitting and improve the overall generalization ability, 

regularization methods such as L1 (Lasso) or L2 (Ridge) regularization can be 

employed. These methods help control the magnitude of the regression coefficients 

by adding penalty terms for the parameter sizes to the loss function. 

Cross-validation can be applied to determine the optimal values of the model's 

hyperparameters. This process helps avoid overfitting and improve the model's 

robustness. 
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After tuning the model, it is necessary to analyze the results to verify its 

effectiveness. This includes evaluating the regression metrics on the test dataset and 

comparing them with the previous results. 

It is important to continuously monitor the model's effectiveness and make 

timely adjustments if necessary. Data can change over time, so the model must 

remain relevant. 

These steps help improve the effectiveness of the linear regression model 

and ensure its optimal performance under real-world application conditions.  
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SECTION 3 

EXAMPLE OF WEATHER DATA PROCESSING AND RESULTS 

3.1 Description of the weather data calculation and analysis program 

To conduct the analysis, a dataset of temperature measurements from January 

1, 2013 to April 24, 2017 was selected, containing 1575 records. The data was stored 

in CSV format and processed in the Python environment, including columns with 

dates in the YYYY-MM-DD format, average temperature, humidity, wind speed, 

and average pressure. An example of the data can be seen in Figure 3.1. 

 

 

Fig. 3.1 

 

Feature Description 

- Date: This feature indicates the date of weather condition measurement. 

- Temperature (Celsius): This feature shows the air temperature in degrees 

Celsius at the time of measurement.  

- Humidity (%): This feature indicates the air humidity as a percentage. 

- Wind Speed (km/h): This feature shows the wind speed in kilometers per 

hour. 

Usage 

This dataset can be used for: 

- Forecasting air temperature based on weather conditions. 
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- Understanding the impact of temperature, humidity, and wind speed. 

- Improving planning and management in the aviation, energy, and 

infrastructure sectors. 

The data analysis and processing methodology includes several stages: 

- Collecting the necessary data. 

- Preprocessing the data. 

- Developing and implementing the model, selecting the type of neural 

network and its parameters. 

- Testing on historical data. 

- Optimizing the parameters. 

By choosing Python for conducting the research, we made the right choice, as 

this language is interpreted, which simplifies debugging, and has a wide selection of 

modules in both the standard package and third-party ones. We can plan programs 

at a higher level, using ready-made elements that implement various functions. 

Python provides absolute portability of programs, and differences in behavior across 

different operating systems are easy to predict thanks to detailed documentation. 

The main library for our tasks will be Keras, which provides a simple API for 

creating neural networks. With Keras, we can quickly build a neural network using 

just a few lines of code. Keras is built on top of the TensorFlow framework, which 

provides the ability to express computations as data flows through a state graph. 

In the process of working with data and data structures, we will use the NumPy 

and Pandas libraries. NumPy provides the ability to work with arrays, matrices, and 

functions related to these structures, while Pandas allows for manipulating and 

processing numerical tables and strings. 

It is worth emphasizing that the use of clean input data is of great importance 

for achieving accurate forecasting. Data normalization helps make the model more 

efficient. For plotting, we will use the Matplotlib library, which offers a convenient 

object-oriented approach for embedding plots in applications.  



39 
 

 

3.2 Example of Data Processing Using Regression Analysis 

Data Processing: 

Before using the data to train a model, the following processing steps are 

required: 

- Removal of missing values or filling them in using interpolation or 

averaging methods. 

- Feature scaling to ensure homogeneity. 

- Splitting the data into training and test sets for model evaluation. 

Let's assume we have a temperature dataset with two columns: "Date" and 

"Temperature". For convenience of analysis, we will only use the temperature data 

as shown in Fig. 3.2. 

The first step will be to convert the "Date" column into integers to work with 

the data in a numerical format. We can replace each date with the corresponding 

number of days elapsed since a certain initial date. 

We will choose the initial date as "2013-01-01", so we will replace the date 

"2013-01-01" with 0, "2013-01-02" with 1, and so on. In this way, we will convert 

the "Date" column into integers representing the number of days from the initial 

date, as shown in Fig. 3.2. 

 

 

Fig. 3.2 
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After this, time series analysis can be performed using these numerical data. 

Additionally, visualizations can be used to observe trends and patterns in the data, 

decomposition into components to identify trends and seasonality, and forecasting 

models to predict future temperature values. This approach allows for effective 

analysis of time series data by converting dates into numbers and using various 

analysis methods to obtain useful information. 

The function shown in Fig. 3.3 is intended to convert a string containing a date 

into the number of days elapsed since a certain initial date, specifically 2013-01-01. 

 

 

Fig. 3.3 

 

The steps performed by this function are: 

1. Defining the date format. The date format to be used for converting the string 

into a datetime object is specified. In this case, the format "%Y-%m-%d" 

means that the date should be in the "Year-Month-Day" format. 

2. Converting the string into a datetime object. The input string with the date is 

converted into the corresponding datetime object using the specified format. 

3. Defining the initial date. The initial date (in this case, 2013-01-01) is set, from 

which the number of days will be calculated. 
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4. Calculating the difference in days. The difference between the input date and 

the initial date is calculated, and the number of days is extracted from this 

difference using the .days attribute. 

5. Returning the result. The function returns the number of days elapsed since 

the initial date to the input date. 

Using the conversion function (see Fig. 3.3), it can be applied to all dates in 

the dataset, and the result (Fig. 3.4) shows that all dates have been converted to days. 

 

 

Fig. 3.4  

 

The order of execution of the code (Fig. 3.5) for the result of converting the 

date to days was as follows: 

1. Applying the function to all dates in the dataset. 

The previously defined days_since_zero_date function is called using np.vectorize, 

which allows the function to be applied to each element in the train_data[:, 0] and 

test_data[:, 0] arrays. 

The function converts each date to the number of days elapsed since the initial date 

(2013-01-01). 

The conversion results are written back into the corresponding columns of the 

datasets. 

2. Converting the data to the "float" type. 

After converting the dates to the number of days, we convert all data in the train_data 

and test_data sets to the "float" type to ensure compatibility with any data operations 

or analysis that may be required. 

3. Printing the first values from train_data 

This line of code prints the first values of the converted train_data set for result 

verification. 
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Fig. 3.5 

 

The main purpose of this code block is to convert dates to the number of days 

and convert the data to the "float" type, preparing them for further analysis. The 

results are printed for verification. 

Using the Z-normalization method (see formula 3.1), we transform each 

sample value into a new value with a mean of 0 and a standard deviation of 1. 

 

𝑥𝑖
′ =

𝑥𝑖 − 𝑋

𝜎𝑥
 

(3.1) 

where:  

1. 𝑋 – Sample mean (Mean). 

𝑋=1𝑛∑𝑖=1𝑛𝑥𝑖xˉ=n1∑i=1nxi, 

where, n - is the number of values in the sample, 𝑥𝑖 - is each sample value 

2. 𝜎𝑥 −Sample standard deviation (Standard Deviation).  

𝜎=1𝑛∑𝑖=1𝑛(𝑥𝑖−𝑥ˉ)2σ=n1∑i=1n(xi−xˉ)2 

where, xˉ - is the sample mean 

 

Normalized Value. The result of the previous step is a normalized value with 

a mean of 0 and a standard deviation of 1. 
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Fig. 3.6  

 

Thus, as shown in Fig. 3.6, the Z-normalization process involves calculating 

the mean and standard deviation of the sample, and then applying the formula to 

normalize each value in the sample to obtain new, standardized values. 

The main steps in this process were: 

1. Creating the Normalize class: 

- In the __init__ constructor, saving a copy of the input data and calculating the 

mean and standard deviation of each column. 

- The normalizeData method uses the calculated mean and standard deviation 

values to normalize the input data. 

- The DeNormalizeData method denormalizes the normalized data using the 

stored mean and standard deviation values. 

2. Normalizing the data: 
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- Creating an instance of the Normalize class, passing it the data to be 

normalized. 

- Calling the normalizeData method, which returns the normalized data. 

- Applying the normalized data to the original train_data dataset. 

 

To obtain a visual result, it is necessary to plot the normalized data and, for 

comparison, the actual dataset data. For this, the Matplotlib library can be used, 

which offers a convenient object-oriented approach for embedding plots. Therefore, 

the following actions and code (see Fig. 3.7) need to be performed: 

1. Import the library. Import the matplotlib.pyplot library for plotting. 

2. Create the plot area. Using plt.subplots, create a plot area with one row and two 

columns to accommodate two plots. 

3. Set the plot parameters. 

4.  Display data on the plots: 

• The first subplot will display the normalized temperature data. 

• The second subplot will display the denormalized temperature data using 

the DeNormalizeData method from the Normalize class. 

5. Display the plots. Finish the code by displaying the plot on the screen using 

plt.show(). 

   

import matplotlib.pyplot as plt 

 

# Create a graph field with one row and two columns 

fig, ax = plt.subplots(1, 2) 

 

# Setting limits on the y-axis for both subcharts 

ax[0].set_ylim([-10, 40]) 

ax[1].set_ylim([-10, 40]) 
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# Axis signatures 

ax[0].set_ylabel("Temperature") 

ax[0].set_xlabel("Day") 

ax[1].set_xlabel("Day") 

 

# Setting titles for subgraphs 

ax[0].set_title("Normalized temperature ") 

ax[1].set_title("Real temperature") 

 

# Turn on the grid on the axes for both subgraphs 

ax[0].grid() 

ax[1].grid() 

 

# Display normalized and non-normalized data on graphs 

# Graph of normalized temperature 

ax[0].plot(train_data[:, 1], c="b", linewidth=1) 

 

# Graph of real temperature (denormalized) 

ax[1].plot( 

    train_normalize_class.DeNormalizeData(train_data[:, 1], axes=[0]), 

    c="r", 

    linewidth=1, 

) 

 

# Displaying a graph 

plt.show() 

Fig. 3.7  
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We obtain the result (see Fig. 3.8) of comparing two plots, from which it can 

be seen that the normalized data did not lose their informational value, are easily 

restored to real data (second plot), and are more convenient for analysis using 

machine learning models. 

 

Fig. 3.8  

After obtaining the data plot, it is necessary to reduce the influence of noise 

on its visualization and analysis. One effective method for this is noise smoothing 

using the moving average method. 

The moving average method (see Fig. 3.9) involves moving a window of a 

certain size across the entire plot. For each window shift, the average value of all 

points within this window is calculated. The obtained average value is used as the 

value at a certain point on our smoothed plot. 
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The main idea is that the noise present in the data is pushed away from the 

average value of the data within the window. Since noise is random, it is 

compensated for by the average value calculated at each point. This helps to smooth 

out fluctuations and makes the plot more homogeneous. 

 

 

Fig. 3.9 

 

For some tasks, smoothing can be useful, but for others, it may lead to the loss 

of important information or interference with the nature of the data. 

The simple moving average value at a point is the average value calculated 

for a particular data point by taking the arithmetic mean of all values in the window 

that this point represents. In other words, if we have the original function f(x), the 

simple moving average value for the point x will be the arithmetic mean of the values 

at all points within the window around the point x. 

The number of values from the original function for calculating the moving 

average (“window” size) is the number of points taken to calculate the moving 

average at a particular point. 

The value of the original function at a point is the actual value of the original 

function f(x) at a particular point x. 
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Thus, the simple moving average method is used for data smoothing, noise 

reduction, and trend extraction by calculating the average value for each data point 

based on the values in a window around it. 

Before starting the forecasting, it is necessary to analyze the input data. From 

the graph, we can see that the temperature has a periodicity similar to a sine wave. 

This indicates the possibility of modeling using sine waves or their combinations. 

For this, we will use the Fourier transform and gradient descent. 

The main goal is to find the most suitable sine wave (or combination of sine 

waves) to best reproduce the temperature graph. This means that we can find the 

parameters of amplitude, frequency, and phase of the sine wave that best 

approximate our data. 

The Fourier transform is used for analyzing periodic signals. We can use the 

Fourier transform to decompose the temperature signal into sinusoidal components 

with different frequencies and amplitudes. Gradient descent can be used to optimize 

the parameters of the sine waves or their combinations. We can define a cost function 

that measures the difference between the predicted temperatures and the actual data, 

and use gradient descent to find the optimal parameter values. 

The Fourier transform is a mathematical operation used to decompose a 

function into a sum of sines and cosines with different frequencies (see Fig. 3.10). 

The main idea is that any complex function can be represented as a sum of simple 

harmonic oscillations. 
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Fig. 3.10 

 

The transform associates the original function with its harmonic oscillation 

components, each with its own amplitude (magnitude of oscillations) and frequency 

(number of oscillations per unit time). The obtained amplitudes determine the 

contribution of each component to the overall signal, and the frequencies show 

which frequencies are present in the signal. 

The Fourier transform allows us to decompose a complex function into simple 

components - sines and cosines with different frequencies, which allows us to 

analyze and understand the structure of the data, detect periodicity and other signal 

characteristics. We will implement the Fourier transform in code as shown in Figure 

3.11. 

 

 

Fig. 3.11  



50 
 

 

The transform is widely used in signal analysis, including in seismology, radio 

engineering, image processing, and other fields. It allows us to detect and analyze 

signal characteristics such as frequencies, amplitudes, and phases. 

Therefore, the Fourier transform is a powerful tool for analyzing and 

understanding the structure of signals, which helps to detect periodicity and other 

characteristics of weather data. 

After transforming our data, we will obtain amplitudes for different 

frequencies. It is advisable to choose the frequencies that have the highest 

amplitudes, since they have the greatest influence on the overall approximation of 

our data. After selecting the sine waves with the maximum amplitude, we can freely 

construct a graph of their sum. This means that individual sine waves are added 

together with their respective amplitudes. 

By visually evaluating the sum of the sine waves, we should understand how 

well it approximates our data. If the approximation looks good, it may indicate that 

the sine waves are indeed well-suited for modeling the data. 

If the approximation is not satisfactory, you need to return to the previous 

steps and choose other sine waves or adjust parameters such as amplitudes and 

phases to improve the results. 

Thus, visualization of the Fourier transform helps us understand how well the 

chosen sine waves correspond to our data and allows us to choose the best model for 

further analysis and forecasting. 

The process of obtaining the parameters of the sine waves using the Fourier 

transform and the gradient descent method will be described in more detail in Fig. 

3.11: 

1. First, values are prepared for the X-axis, which will be used for making 

forecasts. A sequence of values on the X-axis is created using np.linspace, 

which represents from 0 to the length of our data. 



51 
 

2. The Discrete Fourier Transform is applied to the data to obtain a list of 

amplitudes for different frequencies. This allows us to transform the time 

signal into the frequency domain. 

3. The most significant frequencies corresponding to the highest amplitudes are 

selected. For this, the indices of the amplitudes are sorted in reverse order by 

their absolute values. 

4. We determine the number of sine waves we will use to approximate the data. 

We choose the 5 most important frequencies (see Fig. 3.12). 

5. For each selected frequency, we calculate the actual frequency of the sine 

wave by dividing the amplitude indices by the total length of the data. 

 

 

Fig. 3.12 

 

Thus, these steps allow us to prepare the necessary parameters for constructing 

sine waves, which will be used to approximate our data and forecast future values. 

When implementing the approximation of the signal by the sum of five sine 

waves, it is necessary to define a function that will do this. This function will take 

an array of parameters containing the amplitudes and phases for each of the five sine 

waves, as well as an array of values on the X-axis. It will calculate the values of the 

approximated function by summing the sine waves with the corresponding 

parameters. Each sine wave will have its own amplitude and phase, which will be 

passed as model parameters. 

To properly optimize the model parameters, it is necessary to correctly 

initialize their values as shown in Fig. 3.13. Since most optimization methods may 
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have problems with incorrect initial initialization of trigonometric function 

parameters, we can use the standard deviation value of the entire sample to initialize 

the parameters. 

This function will take the input data and the number of sine waves in the 

model. It will calculate the standard deviation of the entire sample and initialize the 

amplitude of each sine wave to the standard deviation value, and the phases to zero. 

This will help start the optimization with approximately correct parameter values. 

For proper initialization of the parameters of our model, the most important 

parameter - frequency - will be initialized with the obtained frequency (multiplied 

by 2π/L) for each sine wave, where L is the length of the entire sample. This is 

necessary to ensure that the model does not adjust the wave frequency, which may 

occur if we initialize the parameters randomly. 

 

def initialize_parameters(data: np.ndarray, num_sinuses: int) -> np.ndarray: 

    """ 

    Initialize the model parameters with the obtained frequencies for each sinusoid. 

 

    Parameters: 

    data (np.ndarray): Input data for initialization. 

    num_sinuses (int): The number of sinusoids in the model. 

 

    Returns: 

    np.ndarray: An array of parameters with initialized values.    """ 

    L = len(data) 

    parameters = np.zeros(2 * num_sinuses) 

 

    # Initialize the amplitudes of each sinusoid with the value of the standard 

deviation 

    std_dev = np.std(data) 
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    parameters[:num_sinuses] = std_dev  # Амплітуди 

 

    # Initialize the frequencies of each sine wave 

    frequencies = (np.arange(num_sinuses) + 1) * (2 * np.pi / L) 

    parameters[num_sinuses:] = frequencies  # Frequencies 

 

    return parameters 

Fig. 3.13 

 

This function calculates the standard deviation of the entire sample to 

initialize the amplitudes, and also computes the frequency of each sine wave. The 

frequency is calculated as the multiplier of the number of full oscillations over the 

entire period of the sample, to avoid optimizing this parameter during the model 

training process. 

The abscissa shift parameter (phase) is initialized to zeros, since we do not 

expect our signal to be horizontally shifted. This allows us to focus on the signal 

itself rather than its phase. 

The amplitude parameter (the first parameter of each sine wave) is initialized 

to the standard deviation value of the sample, since this gives us information about 

the range of signal values. 

As for the frequency parameter (the second parameter of each sine wave), we 

initialize them using the frequency values we computed earlier (frequency), 

multiplied by 2π to obtain the correct frequency range. 

Finally, the ordinate shift parameter (bias) is initialized to the mathematical 

expectation value of the sample. This gives us a point around which we will make 

our predictions. 

 

# Initial parameters 
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init_params: np.ndarray = np.array([ 

    np.array([np.std(denoised_data), frequency[i] * 2 * np.pi, 0.0])  

    for i in range(number_of_sinuses) 

]) 

 

bias: float = np.mean(denoised_data) 

Fig. 3.14 

 

In this code (see fig. 3.14) , we create an init_params array that contains the 

initial values for each sine wave. Each element of this array is an array with three 

values: amplitude, frequency, and abscissa shift. We also initialize the bias 

parameter with the mathematical expectation value of the sample. 

We optimize our parameters using gradient descent in conjunction with the 

Adam optimizer. For this, we use the model's error function, which is the Mean 

Squared Error (MSE) (3.2). This function calculates the square of the difference 

between the actual target variable values (labels) and the model's predictions, and 

then averages these squares. The goal of gradient descent is to minimize this error 

by updating the model's parameters in the direction where the error function 

decreases most rapidly. 

 

𝑀𝑆𝐸=1𝑛∑𝑖=1𝑛(𝑦𝑖−𝑦^𝑖)2 

(3.2) 

where: 

● 𝑛 - number of observations, 

● 𝑦𝑖 - actual target variable value (label), 

● 𝑦^𝑖 - model prediction. 
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Gradient descent uses this error function to compute the gradient of the 

function with respect to the model parameters and updates the parameters in the 

direction where the error function decreases most rapidly. 

The Adam optimizer is an adaptive optimization method that adjusts the 

learning rate for each parameter based on its historical gradient and rate of change. 

It is an effective optimization method for training neural networks and other machine 

learning models. 

Gradient descent is an optimization algorithm used to train a model by 

minimizing a loss function. During training, it subtracts a fraction of the local 

gradient of the loss function from each parameter (weight). The gradient of the loss 

function indicates how the value of the loss function will change if the parameter is 

changed, i.e., its tendency to change. 

Definitions: 

• Loss function - a function that calculates the difference between the model's 

predicted values and the actual target variable values for a given dataset. In 

the context of gradient descent, we use the mean squared error (MSE), which 

is calculated as the average of the squared differences between the actual and 

predicted values. 

• Given weight - the model parameter that we are trying to optimize to minimize 

the loss function. 

• Learning rate - a parameter that determines how aggressively the model learns 

in each iteration. A large learning rate may cause the model to overshoot the 

optimal value, while too small a rate may make the learning too slow. 

Typically, learning rates are chosen in the range of 0.001 to 0.1, but this can 

vary depending on the specific task and data. 

Gradient descent seeks to find the optimal values of the model parameters that 

minimize the loss function, allowing the model to better fit the data and make more 

accurate predictions, as shown in Fig. 3.15. 
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The Adam optimizer is an improvement over the gradient descent algorithm 

that uses adaptive step sizes for each parameter. It takes into account information 

about the magnitude and variance of the gradient for each parameter, allowing the 

model to be trained more efficiently. 

The main idea behind the Adam optimizer is to use two moments of the 

gradient: the first moment (mean) and the second moment (mean of squares) of the 

gradient. Weights with larger gradients receive a smaller step size, while weights 

with smaller gradients receive a larger step size. 

The Adam optimizer works according to the following algorithm (formula 3.3): 

 

 

(3.3) 

1. Initialize parameters:  

• t - iteration number 

• θ - vector of model parameters at time t 

• gt - vector of function gradients at time t 

• mt - estimate of the first moment of the gradient at time t 

• vt - estimate of the second moment of the gradient at time t 

• β1, β2 - parameters, typically set to 0.9 and 0.999, respectively 

• α - learning rate 

• ϵ - small number used for stabilization of division 

 

2. Update moment estimates 
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3. Correct moment estimates for bias:  

 

 

4. Update model parameters: 

 

The Adam optimizer allows models to be trained more efficiently, reducing 

the likelihood of getting stuck in local minima and accelerating the convergence of 

the optimization process. 

 

Fig. 3.15  

 

Since gradient descent models are used to train neural networks and other 

complex machine learning models, let's create a small neural network that we will 

optimize using gradient descent, using the TensorFlow library to build this model. 

 

import tensorflow as tf 

 

# Creating a simple neural network 

class SimpleModel(tf.keras.Model): 
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    def __init__(self): 

        super(SimpleModel, self).__init__() 

        self.dense = tf.keras.layers.Dense(1, input_shape=(1,)) 

 

    def call(self, inputs): 

        return self.dense(inputs) 

 

# Create a model instance 

model = SimpleModel() 

 

# Defining the loss function and optimizer 

loss_function = tf.keras.losses.MeanSquaredError() 

optimizer = tf.keras.optimizers.SGD(learning_rate=0.01) 

 

# Optimization iteration 

for i in range(100): 

    # Generating random data for model training (example) 

    x_train = tf.random.normal(shape=(100, 1)) 

    y_train = 2 * x_train + 3 + tf.random.normal(shape=(100, 1), stddev=0.1) 

 

    # One step of optimization 

    with tf.GradientTape() as tape: 

        predictions = model(x_train) 

        loss = loss_function(y_train, predictions) 

    gradients = tape.gradient(loss, model.trainable_variables) 

    optimizer.apply_gradients(zip(gradients, model.trainable_variables)) 

 

    # Output every 10 iterations 
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    if i % 10 == 0: 

        print(f"Iteration {i}, Loss: {loss.numpy()}") 

Fig. 3.16 

 

In this code (fig. 3.16), a simple neural network with one Dense layer having 

1 output neuron is created. We train this model using gradient descent with stochastic 

gradient descent (SGD) as the optimizer. Each iteration generates random data for 

training the model and performs one optimization step, updating the model's weights 

according to the gradients of the loss function. 

 

# Import modules 

import tensorflow as tf 

from keras import layers 

from keras.optimizers import Adam 

 

tf.random.set_seed(8) 

 

# Define the layer 

class SinLayer(layers.Layer): 

    def __ init__(self):  # Initialize methods and attributes of the parent class 

    super(SinLayer, self).__init__() 

 

# Set the initial parameters 

def build(self, _): self.kernel = self.add_weight( " kernel ", 

shape=(number_of_sinuses, 3), trainable=True )  # Model weights 

    # Free coefficient 

    self.bias = self.add_weight(name=" bias ", shape=(), trainable=True) 
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def call(self, inputs):  # Implementation of the functionality of our model 

    result: float = 0 

    for i in range(number_of_sinuses): 

        result += self.kernel[i][0] * tf.sin( 

            self.kernel[i][1] * inputs + self.kernel[i][2] 

        ) 

    return result + self.bias  # Result of the model 

  

# Definition of the model 

model = tf.keras.Sequential( 

    [ 

        layers.Input(shape=(1,)), 

        SinLayer(), 

    ] 

) 

 

# We compile the model with the Adam optimizer (with the most appropriate 

parameters) # and the MSE error 

model.compile(Adam(0.001, 0.8, 0.9), " mean_squared_error ") 

 

# Setting predefined weights for the model to optimize weights correctly 

model.set_weights([init_params, bias]) 

Fig. 3.17 

 

At this stage (fig. 3.17), the model functionality is defined using the SinLayer 

class, which is a subclass of keras.layers.Layer and is used to build our model that 

approximates the temperature data. 

Important! The same initial value is set for random number generation to 

ensure reproducible results for anyone running this code as we can see in figure 3.18. 
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tf.random.set_seed(8) 

Fig. 3.18 

Layer Definition: 

We define the SinLayer class, which inherits from keras.layers.Layer. In the 

build method, we initialize the model parameters using the add_weight method. The 

model weights (which define the parameters of the sine waves) and the bias 

coefficient are initialized. 

In the call method (fig. 3.19), we implement the functionality of our model. 

We compute the values for each sine wave and add them together, and then add the 

bias coefficient. 

 

class SinLayer(layers.Layer): 

    def __init__(self): 

        super(SinLayer, self).__init__() 

 

    def build(self, _): 

        self.kernel = self.add_weight( 

            "kernel", shape=(number_of_sinuses, 3), trainable=True 

        ) 

        self.bias = self.add_weight(name="bias", shape=(), trainable=True) 

 

    def call(self, inputs): 

        result = 0 

        for i in range(number_of_sinuses): 

            result += self.kernel[i][0] * tf.sin( 

                self.kernel[i][1] * inputs + self.kernel[i][2] 

            ) 

        return result + self.bias 
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Fig. 3.19 

This code (see fig. 3.19) creates a layer that can be used in a neural network 

to approximate temperature data. 

Now let's train the model on the training data and plot the change in error as 

the training progresses as we can see in figure 3.20: 

 

# Get the error history of the model 

history = model.fit ( x_data , denoised_data , epochs =70)  

 

# Display it on a graph 

plt.plot ( history.history [" loss "])  

plt.grid ()  

plt.xlabel ("Epoch ")  

plt.ylabel ("MSE error value at this epoch ")  

plt.show () 

Fig. 3.20 

 

This code (Fig. 3.20) creates a layer that can be used in a neural network to 

approximate temperature data. 

Now let's train the model on the training data and plot the change in error as 

the training progresses. 

This code trains the model on the training data and shows the change in model 

error during the training process using a plot. 

1. Training the model  

• The fit method was used to train the model. During training, the model 

predicts values on the input data x_data and compares them with the actual 

values denoised_data. 

• The epochs parameter determines the number of times the training will 

repeat through all the training data. 
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2. Plotting the graph  

• The training history, which contains information about the model error 

values at each epoch, is used to construct the plot. 

• The X-axis displays the epoch number, and the Y-axis displays the error 

value (MSE) for that epoch. 

• The plot (see Fig. 3.21) helps visualize how the model error changes during 

the training process. 

 

 

Fig. 3.21  

 

This graph allows you to track how the model learns over time and assess its 

effectiveness on the training data. 

An epoch is one iteration of training, during which the model predicts results 

for the entire training dataset once. When the number of epochs for training is 

specified, it determines how many times the model will pass through the entire 

dataset. 

In machine learning, the number of epochs is an important hyperparameter 

that is determined experimentally. Typically, as the model trains, its accuracy 

increases with each epoch, at least up to a certain point. However, too many epochs 
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can lead to overfitting, where the model "memorizes" the training data and loses the 

ability to generalize to new data. 

Therefore, although generally more epochs can improve training results, it is 

important to carefully monitor the training metrics and use a validation dataset to 

avoid overfitting. 

So, when we observe a significant decrease in the model's error value during 

training, it often indicates that the model has successfully adapted to the training 

data and may provide more accurate predictions. In the case of regression models, 

such as neural networks, a decrease in error means that the predicted values better 

match the actual data. 

However, it is important to remember that the model can learn not only the 

true patterns in the data but also the random noise present in the training set. This 

can lead to overfitting of the model, where it accounts for not the true dependencies 

but rather the insufficiently representative noise in the data. Therefore, to avoid this, 

random noise is often added to the target values or other regularization methods are 

applied to control overfitting. 

This noise is added to the model's predictions to increase realism and the 

realism of the training process, as well as to improve the model's ability to generalize 

to new data. 

By observing a significant decrease in the model's error level during training, 

it may indicate that the model has successfully adapted to the training data and can 

provide more accurate predictions. The random information functions contained in 

the dataset can be quite large and reflect a wide range of possible values, and as a 

result, learning may occur based on random noise rather than actual relationships 

between variables. This is especially true when the model has sufficient power to 

approximate any functions. 

However, when the model is trained on noisy data, it can lead to overfitting, 

where the model becomes too sensitive to minor random variations in the training 

data and loses the ability to generalize to new data. This becomes a problem when 
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working with new, real data, where different noise or unexpected deviations may be 

present. 

Therefore, to avoid overfitting, random noise can be added to the target values, 

or other regularization methods such as dropout or L1/L2 regularization can be used 

to reduce the model's sensitivity to noise in the training data. This helps to improve 

the model's overall ability to generalize to new, unseen data, ensuring better realism 

and realism of the training process as we can see in a fig. 3.22. 

 

 

Fig. 3.22 
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When evaluating the model's results on the test set, we want to ensure that it 

generalizes well to new, previously unseen data. By comparing the model's 

predictions with the actual values in the test dataset, we can understand how well the 

model performs on new data. 

To compute the model error, we can use various metrics, one of which is the 

Mean Absolute Error (MAE). This metric is calculated as the average of the absolute 

differences between the model's predicted values and the actual values in the test set. 

The MAE value gives us an idea of how large the differences are between the 

model's predictions and the real data. The smaller the MAE value, the better the 

model agrees with the test data and the less susceptible it is to overfitting or increased 

sensitivity to noise. Thus, a small MAE value indicates that the model effectively 

generalizes to new data and provides accurate predictions. 

Let's compute the error on the test set (on the denormalized, real data, Fig. 3.23): 

 

# Determine the error function 

def MAE( predictions : np.ndarray , labels : np.ndarray ) -> float :  

    return np.mean ( np.abs ( predictions – labels ))  

 

# Print the error value  

print (  

    MAE (  

       train_normalize_class.DeNormalizeData (  

          model ( test_data [:, 0])). Numpy (). T [0], axis = [0]  

       ) + np.random.normal ( size = test_data [:, 0]. Shape ),  

       test_data [:, 1],  

    )  

) 

Fig. 3.23 
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This code performs the following actions: 

1. Defining the MAE error function. In this function (see fig. 3.24), the 

mean absolute deviation between the predicted values and the actual values 

is calculated. 

 

 

def MAE(predictions: np.ndarray, labels: np.ndarray) -> float: return 

np.mean(np.abs(predictions - labels))  

Fig. 3.24 

 

2. Computing the error on the test set  

• First, the model is applied to the test data, obtaining the predicted values. 

• Then, using the DeNormalizeData method, the data is denormalized, i.e., 

transformed from the normalized form back to the original values. 

• Next, the MAE (see fig. 3.25) value is calculated between the predicted values 

and the actual values on the test set. 

• Also, random noise may be added to the target values, as indicated by the 

phrase + np.random.normal(size=test_data[:, 0].shape). This helps prevent the 

model from overfitting to noisy data and increases its ability to generalize to 

new data. 

 

print( 

    MAE( 

        train_normalize_class.DeNormalizeData( 

            model(test_data[:, 0])).numpy().T[0], axis=[0] 

        ) + np.random.normal(size=test_data[:, 0].shape), 

    test_data[:, 1], 

) 

Fig. 3.25 
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Thus, this code computes the mean absolute deviation between the model's 

predicted values and the actual values on the test set, while accounting for the 

possibility of random noise in the actual data. 

We perform the data.numpy().T[0] transformation because the model outputs 

a TensorFlow tensor of the form (100, 1). This transformation turns the model 

response into a NumPy vector and extracts the 100 elements that are the response. 

After running the code, the model error was approximately 3.78 degrees 

Celsius. The result of forecasting can be seen in Figures 3.26 and 3.27. In other 

words, the model predicts the temperature 100 days ahead (the duration of the test 

set) with an error of 4 degrees. 
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Fig. 3.26 
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Fig. 3.27 

 

It is important to note that this model is only an example, which was provided 

to indicate possible ways to search for periodicity and trends in data. If you have 

structured data that is not as complex as weather data, then the method described in 

the article may be more than effective. However, in the case of weather, it is naturally 

correct to seek assistance from the meteorological service.  
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3.3 Analysis of the Obtained Results 

The analysis of the obtained results involves studying and interpreting the 

results of the experiment, including the results of model training, evaluation of its 

performance, and other important metrics. In our case, an analysis of a regression 

model was carried out, which can predict the temperature 100 days ahead for the test 

period. 

We used the Mean Absolute Error to compute the model's error. This metric 

indicates the average value of the absolute deviations of the model's predictions from 

the actual temperature values. 

In our case, the model error is approximately 4 degrees Celsius. 

The value of the model error allows us to understand how accurately the model 

predicts the temperature. In our case, an error of around 4 degrees Celsius can be 

considered an acceptable result, depending on the context of the model's application. 

Depending on the details of the particular study or application of the model, 

other model performance metrics, such as MSE, Coefficient of Determination (R-

squared), or others, may be decisive. 

The model error should be analyzed in the context of the task and the specifics 

of the data. In our case, an error of approximately 4 degrees Celsius may be 

considered acceptable, depending on the accuracy and sensitivity of our model to 

the training data. 

The realism of the obtained results can be verified by comparing the model's 

predictions with actual temperature observations, as well as conducting additional 

sensitivity analysis of the model to changes in input data or parameters. 
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CONCLUSIONS 

This qualification work analyzed and developed code using machine learning 

techniques to analyze and predict temperature changes. The main goal is to explore 

and demonstrate efficient time series analysis and forecasting methods using Python 

that could predict temperature based on historical data. 

A wide range of techniques were used during the work, including data 

normalization, time series analysis, use of Fourier transforms and gradient descent 

to select model parameters. As a result, a model was developed and trained that 

successfully adapted to the training data and demonstrated the ability to predict 

temperature changes. 

Analysis of the results showed that the trained model effectively takes into 

account trends and periodization in the data, confirming its high accuracy and 

realism. When calculating the model error on the test set, the MAE function was 

applied, which showed an average deviation of the predicted values from the actual 

values by about 4 degrees Celsius. 

The qualification work focused on the importance of avoiding overfitting the 

model by adding random noise to the training data. This approach helps to increase 

the realism of training and reduce the impact of noise on the results. 

Overall, the study confirmed the effectiveness of using machine learning 

methods to analyze and predict temperature changes. The obtained results can be 

useful for forecasting climate changes and developing resource management 

strategies in energy, agriculture and other industries where accurate weather 

forecasting is important. 
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