Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://er.nau.edu.ua/handle/NAU/64892
Назва: Метод застосування Random Forest для розпізнавання кібератак
Автори: Бурлака, Кіріл Русланович
Ключові слова: дипломна робота
метод
розпізнавання кібератак
машинне навчання
random forest
датасет
система розпізнавання
Дата публікації: гру-2023
Видавництво: Національний авіаційний університет
Бібліографічний опис: Бурлака К.Р. Метод застосування Random Forest для розпізнавання кібератак. - Дипломна робота на здобуття ступеня магістра спеціальності «Кібербезпека», «Безпека інформаційних і комунікаційних систем». - Київ, 2023. – 115 с.
Короткий огляд (реферат): Сучасний світ невперше зіткнувся з кіберзагрозами, але з кожним роком їхні обсяги та складність продовжують зростати. Кібератаки, що впливають на комп'ютерні системи, мережі та дані, стали невід'ємною частиною нашого цифрового життя. Вони можуть завдати серйозної шкоди індивідам, компаніям, урядам та загалом суспільству. Щоб захистити цифрові ресурси та інфраструктуру, необхідно не тільки виявляти кібератаки, але і розпізнавати їх у реальному часі. У цьому контексті методи машинного навчання стають все більш важливими, оскільки вони можуть забезпечити ефективну оборону від кіберзагроз. Один з таких методів - алгоритм Random Forest, який відзначається високою точністю та здатністю працювати зі складними наборами даних. Використання Random Forest для розпізнавання кібератак стає актуальною задачею у сфері кібербезпеки. Для боротьби з кібератаками було розроблено різні підходи та методи, такі як сигнатурний аналіз, виявлення аномалій, та машинне навчання. Однак, метод Random Forest, що базується на ансамблю дерев рішень, надає нові можливості для розпізнавання кібератак та підвищення ефективності захисту.
Опис: Робота публікується згідно наказу Ректора НАУ від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії університету". Керівник проекту: д.т.н., доцент, Терейковська Людмила Олексіївна.
URI (Уніфікований ідентифікатор ресурсу): https://er.nau.edu.ua/handle/NAU/64892
Розташовується у зібраннях:Кваліфікаційні роботи здобувачів вищої освіти кафедри комп’ютеризованих систем захисту інформації

Файли цього матеріалу:
Файл Опис РозмірФормат 
ФКПІ_2023_125_Бурлака_К.Р.pdfДипломна робота магістра2.09 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.