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Study Unit 5 
 
 

INTERACTION OF ELECTROMAGNETIC  
WAVES WITH SUBSTANCE 

 
5.1. Dispersion of light 

 
We know that visible light consists of electromagnetic waves with 

the lengths band of 400–760 nm (corresponding frequency range 
15(0.39 0.75) 10ν = − ⋅  Hz). In vacuum, all light waves propagate with the 

same phase velocity 8103 ⋅=c  m/s. Light entering from vacuum to 
another optically transparent medium changes the phase velocity which 
in turn leads to the refraction of light in the case of slope falling to the 
border of separation of two optically different media. 

The dependence of the phase velocity on the wavelength (frequency) 
is called dispersion of light. Thus, for waves of different lengths the 
speed of light in a medium is different. This means that the absolute 
refractive index depends on the wave length (frequency). All 
environments are characterized by dispersion of light except vacuum. 

Newton experimentally found in 1672 that violet rays are refracted 
more than red ones in the glass prism. This means that the refractive 
index of the glass prism depends on the wavelength of the incident light 

0( )n f= λ , where 0λ  is the light wavelength in vacuum. 
Unfortunately, Maxwell's electromagnetic theory, which unites 

electromagnetic and optical phenomena, could not explain the 
phenomenon of dispersion. According to Maxwell’s theory, refractive 
index is determined by the dielectric constant 2nε = , which is constant 
for a given environment. Therefore, the refractive index would also be a 
constant. 

Remember some of the conclusions of the Maxwell theory. If a ray 
of light falls from vacuum (in practice from air) on an isotropic 
transparent dielectric, the light phase velocity in the dielectric c<v , 
then according to Snell's law of refraction we have: 

sin ,
sin

c nϑ = =
′′ϑ v

   ( ) ,′′ϑ > ϑ                             (5.1) 
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where ϑ  and ′′ϑ  are the angles between the directions of the incident 
and refracted rays and the normal to the surface vacuum-dielectric 
border; n is the absolute refractive index of the dielectric material.  
     Summarizing the law of refraction when light passes from one 
substance to another, we find an equation for the relative refractive 
index of the second medium with respect to the first: 

1 1 2 2
12

2 2 1 1

/sin ,
sin /

c nc n
c c n

ϑ = = = = =
′′ϑ

v v v
v v v

                  (5.2) 

where 1v  and 2v  are the phase velocities of light waves in the first and 
second media. 

When an electromagnetic wave propagates in a homogeneous 
medium with dielectric permittivity ε  and permeability μ , the theory of 
Maxwell states that 

0 0

1=
εε μμ

v .                                    (5.3) 

In vacuum 1ε = μ = , 
0 0

1c =
ε μ

; hence, the absolute refractive 

index of the medium can be written as: 

 cn = = εμ
v

.                                      (5.4) 

The permeability 1μ ≈  for majority of optically transparent 
dielectric media; so, the formula (5.4) is simplified: 

 2cn n= = ε ⇒ ε =
v

.                                   (5.5) 

The frequency of electromagnetic wave is unchanged when light 
passes from one medium to another. The phase velocity of wave 
propagation in the medium can be determined through the frequency 

/T= λ = λνv  ( 0c = λ ν  in vacuum). Then, taking into account the 
constant frequency, the equation for the relative refractive index takes 
the form: 

1 1
12

2 2

.n λ= =
λ

v
v

                                          (5.6) 
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If a ray of light goes into the environment from the vacuum, we 
obtain: 

0 0 ,n
n

λ λ= ⇒ λ =
λ

                                 (5.6а) 

where 0λ  is the light wavelength in the vacuum; λ  is the light 
wavelength in the medium; n  is the medium absolute refractive index. 

Dispersion of light can be explained by considering the interaction of 
light with matter. Electrons motion in an atom is described by the laws 
of quantum mechanics; in particular, the notion of a trajectory of an 
electron in an atom does not exist. However, as it is shown by Lorenz, 
the classical concepts are enough for the qualitative description of the 
dispersion of light; the concepts lead to the same results as the quantum 
theory. 

According to the classical electron theory, dispersion of light is 
caused by light waves interaction with the electrons in atoms of a 
dielectric material. Atoms can be represented as electric dipoles, which 
perform forced oscillations under the influence of the electromagnetic 
field of the light with the frequency of oscillation of the incident wave. 
Electromagnetic radiation caused by the dipoles oscillations excites the 
secondary waves, which propagate with the same speed as the primary 
light wave.  

Adding these secondary waves to the primary one gives a resultant 
wave which phase depends on the phase of the primary wave and the 
amplitudes and the phases of the secondary waves. The amplitude and 
the phase of each elementary secondary wave depends on the amplitude 
and the phase of the forced oscillations of the corresponding dipole. 
Since these dipoles have their natural (resonant) frequency 0ω , their 
amplitudes and phases strongly depend on the ratio of the primary wave 
frequency and the natural frequency. 

Thus, the phase of the resulting wave that propagates through matter 
is different from the initial phase of the propagating wave in the vacuum 
and depends on its frequency. Hence, waves with different wavelengths 
(frequencies) propagate in matter with the different phase speeds and 
have different refractive indexes. 

For simplicity, we assume that the atoms of the dielectric isotropic 
medium have only one optical electron (hydrogen atoms). An optical 
electron in an atom is considered as a harmonic oscillator; the oscillator 
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differential equation of motion is well known from the theory of 
oscillations; it is the equation of the forced oscillations: 

eEkxхrxm +−−= , 
where m is an electron mass; e is an electron charge; xr  is the resistance 
force; kx is the force that keeps the electron in equilibrium and has the 
character of elastic force, so, it is called quasielastic; E is the intensity of 
the alternating electric field of the incident wave along the x direction.  
     Divided by the mass the classical equation will look like: 

2
02 /x х x eE m+ β + ω = ,                              (5.7) 

where 2
0 /k mω =  is the natural frequency; / 2r mβ =  is the damping 

factor. 
It is known from the theory of oscillations that equation (5.7) is a 

differential equation of the forced oscillations. For these oscillations, the 
amplitude of the oscillator reaches maximum value (resonance) at the 
frequency 0ω ≈ ω  of the external electromagnetic field; so, natural 
frequency 0ω  is also called resonance frequency. 

It has been assumed that the intensity E is directed along x and, since 
electromagnetic waves are transverse, we can assume that the incident 
plane wave propagates along the direction z. The wave equation in the 
complex form is as following: 

 ( / ) ( / ) ( )
0 0 0( , ) i t z c i t z c i t k zE z t E e E e E eω − ω −ω ω −= = = ,             (5.8) 

where / c kω =  is the wave number . 
The solution of the equation (5.7) is well known from the theory of 

oscillations: 
( ) ,i tx t Ae ω=                                        (5.9) 

where A is the complex amplitude; ω  is the frequency of the incident 
electro-magnetic wave.  
     Differentiation of the equation (5.9) gives x i x= ω , 2x x= −ω . 
Substituting these equations in the equation (5.7), we obtain: 

2 2
0( 2 ) /i x eE m−ω + ω β + ω = ;                          (5.10) 

the solution of (5.10) is: 

2 2
0

/
2

e mx E
i

=
ω − ω + ω β

.                                (5.11) 
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The dipole moment of an atom, which electron has been shifted from 
the equilibrium point 0=x  in the point x is: 

2

2 2
0

/
2

e mp ex E
i

= =
ω − ω + ω β

.                          (5.12) 

If there are 0N  atoms that undergo polarization in the volume of unit 
of the medium, the electric moment of the volume unit, (polarization of 
the medium P) is: 

                           
2

0
0 2 2

0

/ .
2

N e mP N p E
i

= =
ω − ω + ω β

                           (5.13) 

Taking into account the equation for the electric field induction 

                                 0 0D E P E= ε + = ε ε ,                                (5.14) 

we can find an equation for the dielectric constant: 

 
2

0 0
2 2
0

/( )1
2

N e m
i

ε
ε = +

ω − ω + ω β
.                            (5.15) 

The equation (5.15) shows that the dielectric constant of the medium 
depends on the frequency ( )ε = ε ω  and in general it is a complex 
quantity. The dependence of the dielectric constant of the medium on a 
light frequency means that the phase velocity of light (5.3) in the 
medium also depends on the frequency, i.e., there is light dispersion. 

 
5.1.1. Normal and abnormal dispersion 

 
Using the equation (5.15), the refractive index can be represented as 

2
2 0 0

2 2
0

/( )1
2

N e mn
i

ε
= ε = +

ω − ω + ω β
,                          (5.16) 

or  
1/ 22

0 0
2 2
0

/( )1
2

N e mn
i

⎛ ⎞ε= ε = +⎜ ⎟ω − ω + ω β⎝ ⎠
,                    (5.16а) 

where n~  is a complex value. Submit it in the form  
n n i= − κ ,                                     (5.17) 
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where n  and κ  are the real and imaginary parts of n~ . Dimensionless 
quantity κ  is called the index of absorption or extinction; it 
characterizes the diminishing amplitude of a plane wave propagating 
along a certain direction. 

Let us consider a simplified case where the modulus of the refractive 
index n~  differs a little from one. This case is typical for many gases in 
visible light as well as for X-rays. In this case, the equation (5.16a) can 
be expanded in a Taylor series, being limited by the second term: 

2
0 0

2 2
0

/(2 )1
2

N e mn n i
i

ε= − = ε ≈ +
ω − ω + ω β

κ                      (5.18) 

(we have used the decomposition of functions nxx n +≈+ 1)1( , 
where 2/1=n ).  
     Multiplying and dividing the equation (5.18) by 2 2

0 2iω − ω − ω β  and 
dividing into real and imaginary parts, we obtain: 

2 2 2
0 0

2 2 2 2 2
0 0

1 ;
2 ( ) 4
N en

m
ω − ω= + ⋅

ε ω − ω + β ω
                     (5.19) 

2
0

2 2 2 2 2
0 0

2
2 ( ) 4
N e

m
βω= ⋅

ε ω − ω + β ω
κ .                       (5.20) 

The dependence of n  and κ  on the frequency ω  is shown in  
Fig. 5.1 a. The dependence ( )n f= ω  shows that the refractive index 
increases with the frequency increasing at both sides at some distance 
from the resonance frequency 0ω .  

  n 

1 

N 

ω0 ω

M n 
κ  

         

 

Red  Yellow  
Blue  

 
                          a                                                                    b 

Fig. 5.1 
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Frequency range / 0dn dω >  corresponds to normal dispersion. The 
refractive index decreases with the frequency increasing / 0dn dω <  on 
the zone MN of the curve. This frequency range corresponds to 
abnormal dispersion. The frequency range of abnormal dispersion 
coincides with the absorption band (dashed curve), which has a 
maximum value near the resonance frequency of the optical electron 
oscillations in an atom. 

The place of rupture of the curve corresponds to the total absorption 
of resonance wavelength of the yellow sodium D-line 589 nm. 

Fig. 5.1 shows that the index of absorption κ  tends to zero outside 
the absorption band. This means that the damping factor in the equation 
(5.20) tends to zero 0β → ; therefore, the imaginary part of the equation 
(5.15) can be neglected: 

2
2 0 0

2 2
0

/( )
1

( )
N e m

n
ε

ε = = +
ω − ω

.                             (5.21) 

Graphical dependence (5.21) 2n  = f ( ω ) is shown in Fig. 5.2; it 
shows that the normal dispersion is observed for the frequencies 

00 < ω < ω  and 0ω > ω . Assumption that 2n  → ∞±  is the result of 
neglecting of damping; hence, the dependence (5.21) near the resonance 
frequency has no real physical meaning. 

 n2 

ωω0

1 

  
Fig. 5.2 

 
5.1.2. Oscillator strength, static dielectric permittivity 

 
In general, atoms contain many electrons; so, it can be several 

natural oscillation frequencies may. Consider this fact. 
Suppose, there is the substance with the concentration of the atoms 

0N ; each atom has 1f  oscillators with the natural frequency 01ω  and the 
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damping factor 1β , 2f  oscillators with the natural frequency 02ω  and 
the damping factor 2β  and so on. Then the concentration of oscillators 
with frequency 0iω  and damping factor iβ  can be written as: 

ii fNN 0= . 
To consider the effectiveness of all oscillators in the equations 

(5.16), (5.19)–(5.21), we replace 0N , 0ω , β  with ifN0 , 0iω , iβ  and 
perform summing over all possible values of i (i.e., for all sorts of 
oscillators). Then, 

2
2 0

2 2
0 0

1
2

i

i i i

N e f
n

m i
= +

ε ω − ω + ω β∑ .                   (5.22) 

Outside the absorption bands in the equation (5.22), the imaginary 
part can be neglected: 

2
2 0

2 2
0 0

1 i

i i

N e f
n

m
= +

ε ω − ω∑ .                           (5.23) 

If a refractive index is close to one, we obtain from the equations 
(5.19) and (5.20):  

2 2 2
0 0

2 2 2 2 2
0 0

( )
1 ;

2 ( ) 4
i i

i i i

N e f
n

m
ω − ω

= +
ε ω − ω + β ω∑                    (5.24)  

2
0

2 2 2 2 2
0 0

2
2 ( ) 4

i i

i i i

N e f
m

β ωκ =
ε ω − ω + β ω∑ .                        (5.25) 

Where if  are constant coefficients that are called oscillator 
strengths.  

If there are several natural frequencies, the dispersion curves splits 
into several branches (Fig. 5.3). Each natural frequency has its own 
absorption band; the refractive index varies abnormally near the band. 

 n 

ωω01 ω02

1 

 
Fig. 5.3 
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In general, the dispersion in substance is created not only by the 
oscillation of electrons, but the ions oscillations. Because of the high 
mass, the ions natural oscillations frequency is much smaller than the 
frequency of the electrons natural oscillations. The ions natural 
frequencies are in the far infrared band and do not affect the dispersion 
curve in the visible spectrum.  

However, they play a major role in explaining the difference 
between the values of the static dielectric constant and the value of 
dielectric permeability in the visible spectrum. Indeed, if the frequencies 
are low ( 0ω → ), the static refractive index can be represented from 
equation (5.23) as: 

2
2 0

2
0 0

1 i i
st

i i i

N e fn
m

= +
ε ω∑ .                               (5.26) 

The equation (5.26) shows that stn is independent from the frequency 
ω  of the incident wave. Physically, this means that at the low 
frequencies the instantaneous polarization of the medium is almost the 
same as in the case of the static fields; so, the values ε  and n  do not 
depend on ω . 

 
5.1.3. Lorentz–Lorenz Formula 

 
In the calculations above, the external electric field with intensity E 

is considered instead of the internal field E ′ . Thus, the difference 
between these fields was ignored EE ≈′ , it can do for rarefied gases. 
But, let us find out what the consequence of taking into account the 
interaction of molecules polarized by the electric field of the incident 
light would be. 

For the most optically transparent materials (gases, liquids), natural 
frequencies of electrons oscillations correspond to the ultraviolet light. 
These frequencies are much higher than the visible light frequencies so 
the visible frequency range is far from the absorption band. Therefore, 
we can neglect absorption and think that 0β = . So, the equation (5.13) is 
simplified and it takes the form for each natural frequency: 

2
0

0 2 2
0

/N f e m
P N p E= =

ω − ω
.                              (5.27) 
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Lorentz has shown that for an isotropic medium: 

03
PE E′ = +
ε

.                                      (5.28) 

Substituting E  by E ′  in equation (5.27) gives an equation for the 
electric moment per unit volume: 

2
0

2 2 2
0 0 0

/
( ) /(3 )

N f e m
P E

N fe m
=

ω − ω − ε
.                   (5.29) 

Taking into account the relation (5.14), we obtain the equation for 
the dielectric constant: 

 
2

0 0
2 2 2
0 0 0

/( )
1

( ) /(3 )
N f e m

N f e m
ε

ε = +
ω − ω − ε

.                      (5.30) 

Performing mathematical transformation of (5.30), we obtain:  
22

0
02 2 2

0 0

1 1 1
2 2 3 ( ) 3

N f en N
n m

ε − −= = = α
ε + + ε ω − ω

,                 (5.31) 

where 
2

2 2
0 0( )

fe
m

α =
ε ω − ω

 is the polarizability of the atom (molecule), 

which dimension is [m3]. 
For rarefied gases, n is close to one, i.e. 322 ≈+n . Then, the 

formula (5.31) turns to formula (5.21): 
2

2 0
2 2

0 0

1
( )
N e

n
m

− =
ε ω − ω

. 

The equation (5.21) was simultaneously received by Dutch physicist 
Lorenz and Danish physicist L. Lorenz; so, it is called Lorentz-Lorentz 
formula. 

Lorentz-Lorenz formula shows that for a given substance ( e , m , 
0ω ) at the constant frequency ( constω = ), the relation is true: 

 
2

2
0

1 1 const
2 3

nr
n m

− α= ⋅ = =
+ ρ

,                      (5.32) 

where 0 0N mρ =  is density; 0m  is the mass of one atom (molecule) of a 
substance.  
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     The value of r is called the specific refraction, and, according to the 
relation (5.32), it should not change when you change the density of the 
transparent material ρ. 

The product of specific refraction and the molar mass M is called 
molar refraction R: 

 
2

0
0 02

0 0

1 1 1 1
2 3 3 3

A
A

m Nn M MR Mr N N N
n m N

−= = ⋅ = α = α = α
+ ρ ρ

,   (5.33) 

where AN  is Avogadro constant. 
Since the polarizability of the molecule has the dimension [m3], then 

we write it in the form 34 rα = π , where r is the radius of an atom 
(molecule). Then, the equation (5.33) takes the form: 

3

0
4

3 A A
rR N Nπ= = v ,                          (5.34) 

where 0v  is the volume of a single molecule.  
     Thus, the molar refraction R is equal to the volume of all the 
molecules in one mole of a substance.  

If the substance does not consist of one type of molecules, the molar 
refraction of the mixture is the sum of the ingredients refractions.  

Let the volume unit of the mixture contains 1N  molecules with 
polarizability 1α , 2N  molecules with polarizability 2α , etc. 
Experiments show that the mixture refraction is the sum of the 
refractions of the components: 

        
2

1 1 2 22

1 1 ( ...).
2 3

n N N
n

− = α + α +
+

                   (5.35) 

Multiplying equation (5.35) by 0/ NN A  ( 0N  is the total amount of 
molecules in m3, i.e. concentration), we obtain: 

 
2

1 2
1 22

0 0 0

1 1 ...
2 3

A
A

N N Nn N
n N N N

⎛ ⎞− = α + α + =⎜ ⎟+ ⎝ ⎠
 

( )1 1 2 2 1 1 2 2
1 ... ...
3 AN g g g R g R= α + α + = + + ,            (5.35a) 

where 0/ NNg ii =  characterizes the molar concentration of i-th 
component of the mixture; 1R , 2R , … nR , are the molar refractions of 
the mixture components. 
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Since the density of the mixture is: 

0 01 1 2 2 1 1 2 2

0

... ...

A A A

N NM N M N M N M N M
N N N N

+ + + +
ρ = = = , 

where 1M , 2M , … nM  are the components molar masses; M  is the 
average molar mass. Finally, 

2

1 1 2 22

1 ...
2

n MR g R g R
n

−= = + +
+ ρ

,                  (5.35b) 

where R  is the average molar refraction or molar refraction of the 
mixture. 

Determination of refraction (refractive index) is an important analy-
tical method of study of the chemical nature of the molecules; refrac-
tometric methods are widely used in modern physics-chemical studies. 

 
5.1.4. Dispersion of plasma 

 
Plasma is an ionized gas; it has nearly equal concentrations of 

negative electrons and positive ions. Electrons in plasma are free; so, 
dielectric constant of plasma is mainly determined by the electrons. 
Their natural frequency can be regarded as zero. Putting in (5.15) 

0 0ω =  and neglecting damping, we obtain: 
2

2
2

0

1 eN e
n

m
= ε = −

ε ω
,                              (5.36) 

or 
2
p2
21n

ω
= ε = −

ω
.                                  (5.37) 

eN  is the free electrons concentration in plasma; 2 2
p 0/eN e mω = ε  is the 

natural frequency of plasma. 
If p>ω ω , it follows from the formula (5.37) that the value ε  (and the 

refractive index n = ε ) is positive but less than one. If the 
electromagnetic wave frequency is less than the plasma frequency 

pω < ω , the permittivity is negative 0ε < ; hence, the refractive index for 
these frequencies becomes imaginary n i= − κ . Let us find out what it 
means. 
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The electromagnetic wave equation in the complex form according 
to equation (5.8) is: 

0 0( , ) exp( ) i tE z t E k z e ω= − κ ,                 (5.38) 

where 2 /k = π λ , 0 / nλ = λ  is the wavelength in the medium, 0λ  is the 
wavelength in vacuum, 0 02 /k = π λ ,  and  n i= − κ.  

The standing wave amplitude decreases by the exponential law. 
Physically, this means that an electromagnetic wave cannot penetrate 
through plasma. In fact, the wave penetrates only in a thin surface layer 
of plasma and undergoes complete reflection on it. 

Dispersion of plasma explains ability of the long-range radio 
communications in the earth's atmosphere. There is a spherical ionized 
layer called the ionosphere, which begins approximately 60 km altitude 
and extends to about 20,000 km. The main source of ionization of the 
ionosphere is the Sun ultraviolet radiation and soft X-ray emission of 
the solar corona.  

The only way to reach the receiver is a reflection of radio waves 
from the ionosphere. It allows to transmit radio signals over long 
distances, up to thousands kilometers. The most stable long-range radio 
communication is realized using long radio waves. 

With the frequency increase 810 Hzω ≥ , the refractive index 
increases too and when 1≈n , waves pass freely through the ionosphere 
without refraction and reflection. This limits their use for radio 
broadcasting but provides an opportunity to make radio contact with the 
cosmos, to execute radar of the Moon and planets. 

 
5.2. Group velocity 

 
The value of the refractive index less than one ( 1<n ) means that the 

phase velocity of the wave in the substance is greater than the speed of 
light in vacuum. An excess of phase velocity relatively to the speed of 
light does not contradict the theory of relativity. 

According to the math Fourier theorem, any real wave can be 
represented as a superposition of monochromatic waves with the 
different amplitudes and frequencies inside of a frequency interval Δω . 
Superposition of waves with a small difference of frequencies 
( Δω << ω ) is called wave packet. Inside of the limits, the 
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monochromatic components mutually reinforce each other; outside the 
package, they almost extinguish each other (Fig. 5.4).  

Х0 

Ех 

 
Fig. 5.4 

 
In a vacuum, all monochromatic waves create a wave packet with 

the same phase velocity c=v .  
If a medium dispersion is small (air), the wave packet deforms very 

slowly and it can be described by a velocity of its maximum u. Let us 
suppose two waves with the equal amplitudes but slightly different 
frequencies (Fig. 5.5, a). The result of their superposition is shown on 
Fig. 5.5, b. 

 

a

b

Х

Х

 
Fig. 5.5 

 
If the number of components in the wave packet is increased, the 

width of the wave packet decreases. In the case of superposition of an 
infinite number of similar frequencies, a wave packet is converted into a 
pulse. Mathematically, this means that the impulse can be represented as 
a Fourier integral. Calculations show that the more components in the 
wave packet (the larger the frequencies Δω  and wavenumbers kΔ  
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intervals), the smaller the width of the wave packet xΔ , and the more it 
is similar in shape to a narrow pulse: 

2k xΔ Δ ≈ π . 
Let us consider the simplest case of a superposition of two waves 

(initial phases are equal to zero): 

1 cos( );E A t kx= ω −  

2 cos[( ) ( ) ]E A d t k dk x= ω + ω − + . 

Their addition gives: 

              1 2 2 cos cos( )
2

td xdkE E A t kxω −+ = ω −                (5.39) 

( dω  neglected compared to ω , dk neglected compared to k). 
     The speed of the maximum amplitude of the resultant wave is the 
speed of the wave packet, i.e. the group velocity. The equation (5.39) 
can be regarded as the equation of a plane monochromatic wave with 
the amplitude: 

0 2 cos
2

td xdkA A ω −= . 

We have several amplitude maxima, defined by 

cos 1
2 2

td xdk td xdk mω − ω −= ± ⇒ = ± π    ( 0,1, 2 ....m = ). 

Each of these maxima can be considered as a maximum (or center) 
of the group of waves. Since the maxima are exactly the same, any of 
them can be selected as the initial. Then, 0td xdkω − = , and the 
equation for the group velocity is: 

x du
t dk

ω= = .                                        (5.40) 

Thus, the phase velocity is defined by /k= ωv  and the group 
velocity by /u d dk= ω . 

Let us find the connection between the group and phase velocities 
(remember that ω  = kv ): 

( ) vv v= = +d du k k
dk dk

.                                (5.41) 
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As 2 /k = π λ , 2(2 / )dk d= − π λ λ , where λ  is wavelength in the 
medium; the equation (5.41) turns into 

vv= − λ
λ

du
d

.                                        (5.42) 

This is Rayleigh formula, which indicates that the group velocity u 
can be either smaller or larger than the phase velocity v. If the dispersion 
is normal ( 0/ 0dn dλ < ), the group velocity is less than the phase 
velocity; if dispersion is abnormal ( 0/ 0dn dλ > ), the group velocity is 
more than the phase velocity.  

 
5.3. Absorption of light 

 
The passage of light through a substance causes the appearance of 

the oscillations of the electrons under the influence of the 
electromagnetic field of the incident wave and is accompanied by a loss 
of energy of the wave, which is spent to excitation of the electrons 
oscillations.  

This phenomenon is called absorption of light. The absorbed energy 
can be converted into the energy of the secondary radiation that has a 
different spectral composition and other directions of radiation 
(photoluminescence). Absorption of light can cause heating the 
substance, excitation and ionization of atoms or molecules, 
photochemical reactions and so on. 

The propagating wave equation along z in a complex form is: 
 ( )

0( , ) .i t k zE z t E e ′ω −=  

If we use the equation (5.5), the wave number / v′ = ωk  ( v  is the 
phase velocity of light in the substance) can be given as: 

/ / .k c′ = ω = ω εv                                  (5.43) 

Replacing the equation ε  by n iε = − κ  gives: 

                                 / / ,k n c i c′ = ω − ωκ                                 (5.44) 

after substitution of (5.44) in (5.8), we obtain: 
( ) / ( / )

0 0( , ) .i t k z z c i t n z cE z t E e E e e′ω − −ω ω −ω= = κ               (5.45) 
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The formula (5.45) contains the wave amplitude /
0

z cE e−ωκ  with 
exponential factor with the rate of absorption κ.  This means that the 
wave propagation in a dielectric medium is accompanied by a decrease 
of its amplitude. Thus, the phenomenon of absorption is explained by 
the electrons damping oscillations in an atom, i.e. the imaginary part of 
the refractive index describes the damping of a plane wave during its 
propagation in the dielectric. 

According to the equation (5.19), where the frequency of the 
incident wave approaches the resonance frequency 0ω → ω , then 1→n  
and the rate of absorption κ  (5.20) takes the maximum value (see  
Fig. 5.1). Thus, absorption is the main cause of the damping of the 
electromagnetic waves in the region of the resonant frequency. 

For example, the light emitted by the Sun passes through the solar 
atmosphere (as well as through the Earth's atmosphere), and the 
frequencies that coincide with the resonance frequency of the atoms in 
the solar atmosphere are strongly absorbed. Due to this, dark lines 
(absorption lines) are observed in the solar spectrum.  

The observation of the similar spectral lines allows to discover the 
resonance frequencies of the atoms and, hence, the chemical 
composition of the solar atmosphere. Similarly, the absorption spectra 
of stars give information about the composition of stellar matter. We 
now know that the chemical elements in the Sun and the stars are the 
same as on the Earth. 

 
5.3.1. Bouguer law  

 
According to the equation (5.45), the amplitude of the damped 

waves is: 

                   0

22
/

0 0 0

zzz c cE E e E e E e
ππν − κ− κ λ−ωκ= = =                 (5.46) 

( 0 /cλ = ν  is the wavelength in vacuum).  
     The second power of (5.46) gives the intensity of the wave after 
passing a distance z: 

0

4

0

z
I I e

π− κ
λ= .                                    (5.47) 

The equation (5.47) is equivalent to Bouguer’s law, which was 
originally established empirically and theoretically grounded by 
Bouguer (1729). 
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Let us take an infinitely thin flat layer of thickness dx  in a 
substance. Obviously, the relative change in intensity is proportional to 
dx : 

 dI dx
I

= −μ ,                                     (5.48) 

where μ is a coefficient of proportionality.  
     The sign «minus» shows that the intensity of light passed through the 
substance decreases with the increase of thickness of the layer of the 
absorbing substance. 

Integrating equation (5.48) from 0I  to I  and from 0=x  to lx = , 
we obtain: 0ln( / )I I l= −μ , then  

 0
lI I e−μ= .                                      (5.49) 

The coefficient of proportionality is called the linear absorption 
coefficient (or extinction) and has the dimension of the inverse length 
[ 1m− ]. 

Comparing the equations (5.47) and (5.49), we find the relationship 
between the absorption coefficient μ  and the index of absorption κ : 

   
0

4πμ = κ
λ

,    ( lz = ).                              (5.50) 

The index of absorption and the absorption coefficient depend on the 
wavelength (frequency). This means that absorption is selective in 
nature for all substances, which is due to the presence of the resonant 
frequencies. This explains the coloration of absorbing media. 

An interesting effect is observed during selective absorption and 
reflection of light by gold. Gold is yellow.  

However, if you make a very thin film of gold and observe light 
through the film, it will be blue. In the first case, the color of gold is due 
to selective reflection; in the second one, the color is due to selective 
absorption. 

If atoms (molecules) do not interact with each other (gases and 
metals vapor at low pressures, where the atoms or molecules can be 
considered free), absorption coefficients for the most of the wavelengths 
are close to zero; only for very narrow spectral bands (width of several 
hundredths of angstrom), there are observed clear maxima.  
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As an example, Fig. 5.6 schematically shows some doublets of 
sodium vapor absorption. These peaks correspond to the resonance 
frequencies of oscillations of electrons in atoms.  
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Fig. 5.6 

 
High pressure gases, liquids, and solids are characterized by the 

broad absorption bands (Fig. 5.7). A high pressure gas absorption 
spectrum is close to the absorption spectra of liquids. This suggests that 
the expansion of narrow absorption bands is the result of the interaction 
of atoms with each other. 

 

λ, Ǻ

μ 
2.0 

1.0 

0 
4000 5000 6000 7000 8000

 
Fig. 5.7 

 
Metals are almost opaque to visible light. The absorption coefficient 

μ  for them is 6 110 m−  (a glass absorption coefficient 11 m−μ ≈ ). This is 
due to the fact that metals have free electrons.  

The electric field of the light wave causes the free electrons motion. 
As a result, microcurrents appear in the metal; it is accompanied by the 
release of Joule heat. So, the energy of the light is quickly transformed 
in the metal internal heat. 
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5.3.2. Bouguer-Beer law 
 
Bouguer concluded that light can undergo similar changes when 

faced with the same number of particles that can delay or scatter the 
rays. So, absorption depends on the masses of substances contained in 
these thicknesses.  

This fact is of great practical importance. Experiments show that the 
absorption coefficient is proportional to the number of absorbing 
molecules per the length unit of the light wave path or per the volume 
unit that is proportional to the concentration c. In this case, the 
absorption coefficient is: 

0a cμ = ,                                       (5.51) 

where 0a  is a new factor, which is independent from concentration and 
is characteristic for the absorption material molecules.  
     Then, the generalized Bouguer law takes the form: 

 lcaeII 0
0

−= .                                   (5.52) 

The statement that 0a  is an independent value from the 
concentration constant is often called the law of Beer; he reached this 
conclusion after measurements of light absorption by colored fluids 
(1852). Therefore, the law (5.52) is called the Bouguer-Beer law. 

The analysis of the molecular composition of complex mixtures 
based on measuring the absorption of ultraviolet and infrared parts of 
the spectrum is especially important. Spectra of many organic molecules 
are very characteristic. These allow determining both the molecular 
composition and the quantitative content of individual components in 
the mixture. 

 
5.4. Scattering of light 

 
The emission of the secondary waves by the electrons causes 

scattering of light. Because of light scattering in the sideways directions, 
intensity of a primary wave is reduced. It should be noted that the 
coherent secondary waves completely extinguish one another in all 
sideways directions except the direction of propagation of the primary 
wave in a completely homogeneous medium. So, scattering of light does 
not occur in a completely homogeneous medium.  
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If a substance is characterized by certain heterogeneity, the primary 
light waves are diffracted by the small in comparison to the wavelength 
inhomogeneities ( 0 ~ 0,1r λ ) and create relatively uniform distribution of 
the light intensity in all directions. This is called diffuse scattering of 
light. 

Substances with a strong optical inhomogeneity are called turbid 
media. They are smokes (suspensions of tiny solid particles in gases), 
mists (suspensions of small droplets of liquid in gases), and emulsions 
(suspensions of small droplets of one liquid in another). For example, an 
emulsion is normal milk where fat droplets float in water. 

Light scattering in turbid media with the particles size 
0 ~ (0.1 0.2)r − λ  is called the Tyndall phenomenon. A typical example of 

dispersion is shown on Fig. 5.8.  
Natural light creates a parallel beam of rays that pass through the cell 

with water. If the water is thoroughly cleaned of any contaminants, the 
beam is barely visible when observing the side. This means that the 
primary beam is not scattered in the sideways areas. If we drop milk into 
the cell, the beam of light becomes clearly visible from all sides. If the 
thickness of the cell is sufficient, almost all of the light is scattered in all 
directions and the primary beam is not observed clearly. 

ВS 
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N

 
Fig. 5.8 

Observation of the scattered at the right angle to the primary beam 
light through the polaroid N shows that the scattered light is completely 
polarized (line A, Fig. 5.8), while the primary light (direction B) is 
natural.  
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If we estimate the intensity of light scattered in different directions, 
it is symmetrical with respect to the primary beam and relative to the 
line that is perpendicular to it. The curve that graphically shows the 
intensity distribution of scattered light in different directions is called 
the scattering indicatrix. If the incident light is natural, the scattering 
indicatrix in the plane has the form shown in Fig. 5.9, and is given by: 

2
/ 2 (1 cos )I Iϑ π= + ϑ ,                              (5.53) 

where / 2Iπ  is the intensity of light scattered at the right angle to the 
incident (primary) beam ( / 2ϑ = π ). Spatial indicatrix can be obtained 
by the rotation of Fig. 5.9 around the axis BB. 
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Fig. 5.9 
 
As a result of the light scattering in the sideways directions, the light 

intensity in the primary direction decreases faster than in the case of 
only absorption. Therefore, besides the absorption factor κ  the 
additional scattering factor ′κ  should be in the equation (5.50) for the 
linear absorption coefficient for a turbid medium: 

π ′μ = κ κ = τ + σ
λ0

4 ( + ) ,                              (5.54) 

where τ  is the linear coefficient of absorption; σ  is the linear 
coefficient of dispersion. Taking into account (5.54), Bouguer law can 
be written as: 

( )
0 0

l lI I e I e−μ − τ+σ= = .                              (5.55) 
 

5.4.1. Rayleigh law 
 
If a light wave falls onto a particle of 0 ~ 0.1r λ  size, it 

simultaneously excites oscillations of all the electrons in the particle, i.e. 
they oscillate together as a unit with the same phase. Since the 
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oscillations of all electrons are in phase, then the particle can be 
considered as a «great» dipole.  

This dipole oscillates with the frequency of the incident light wave 
and emits light in all directions with the average power 

4 20
012

P p
c

μ
< >= ω

π
, where 0p  is the dipole moment.  

Dividing this equation by the area of a spherical surface 24 Rπ , we 
obtain an equation for the intensity at a distance R: 

4 20
02 248

I p
R c

μ
= ω

π
. 

Thus, the intensity of the dipole radiation is proportional to the 
fourth power of the frequency and inversely proportional to the fourth 
power of the wavelength: 

4
4

1~ ~I ω
λ

.                                      (5.56) 

This dependence is called the Rayleigh law, which indicates that the 
short-wave part of the spectrum is dissipated more rapidly than the long-
wave part.  

The ratio of the wavelength of the red light (
o

6500 Aλ = ) to the 

wavelength of the blue light (
o

4500 Aλ = ) is equal to 1.44. The fourth 
power of the ratio is 4.3.  

Thus, the blue light is scattered four times more intense than the red 
one.  

Smoluchowski (1908) theoretically proved that the cause of optical 
inhomogeneities in a completely clean substance is the density 
fluctuations.  

That is statistical deviations within the small volumes of the 
substance density due to the chaotic thermal motion of molecules. This 
means that the density fluctuations cause the occurrence of the 
fluctuations of the refractive index, which makes environment muddy. 

Light scattering caused by fluctuations of density is called molecular 
scattering. This explains the blue color of the sky and the reddish light 
of the Sun. 
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1. Give a definition of light dispersion. 
2. What is the cause of the phenomenon of dispersion? 
3. What is the difference between normal and abnormal dispersion of 

light? 
4. What is the essence of the Lorentz-Lorenz formula? 
5. What are the X-rays dispersion specifics? 
6. What is a wave packet? 
7. Give a definition of the group velocity. 
8. Write the formula for the Rayleigh connection of the group and phase 

speeds of light. 
9. How can we explain the absorption of light? 

10. Explain the law of Bouguer. 
11. Explain the law of Bouguer-Beer. 
12. What is the nature of the light scattering? 
13. What is called the scattering indicatrix? 
14. What is the Rayleigh scattering of light? 

Test Questions ? 


