В.В. КАРАЧУН, Н.В. ЛАДОГУБЕЦЬ, В.М. МЕЛЬНИК

НАДЗВУКОВІ літальні апарати

Рекомендовано Вченою Радою Національного Авіаційного університету (Протокол № _____ від _____ 2014 р.) і Вченою Радою Аерокосмічного інституту (Протокол № ______ від _____ 2014 р.)

Київ "Корнійчук" 2014

УДК 629.1.05 (075.8) ББК 39.471.1

К 21

К 21 Карачун, В.В. Надзвукові літальні апарати [Текст]: моногр. / В.В. Карачун, Н.В. Ладогубець, В.М. Мельник; Нац. техн. ун-т України "КПІ"; Нац. авіац. ун-т. – Київ: "Корнійчук", 2014.– 240 с. *ISBN 978-966-7599-83-6*

Здійснюється аналіз сучасних темпів розвитку гіперзвукових технологій для засобів виведення космічних апаратів на навколоземні орбіти, а також для безпілотних систем озброєння, що уособлюють як ударні властивості, так і розвідувальні функції. З метою більш глибокого усвідомлення стратегічної важливості технологій на базі прямоточних повітряно-реактивних двигунів, фрагментарно висвітлений вражаючий уяву шлях досягнень авіаційно-космічної техніки з огляду на деякі визначні ознаки історії її становлення.

Будуються розрахункові схеми впливу ультразвукового променя на прилади інерціальної навігації, зокрема, у поплавковому виконанні. Розкривається небезпека виникнення локальних особливостей підвісу гіроскопа на резонансному рівні.

Книга розрахована на широке коло спеціалістів галузі.

ББК 39.471.1

К 21 Карачун, В.В. Сверхзвуковые летательные аппараты [Текст]: моногр. /В.В. Карачун, Н.В. Ладогубец, В.Н. Мельник; Нац. техн. ун-т Украины "КПИ"; Нац. авиац. ун-т. – Киев: "Корнейчук", 2014. – 240 с. *ISBN 978-966-7599-83-6*

Проводится анализ современных темпов развития гиперзвуковых технологий для средств выведения космических аппаратов на околоземные орбиты, а также для беспилотных систем вооружения, сочетающих в себе как ударные качества, так и разведывательные функции. С целью более глубокого осознания стратегической важности технологий на базе прямоточных воздушно-реактивных двигателей, фрагментарно освещается поражающий воображение путь достижений авиационно-космической техники с оглядкой на некоторые важные вехи истории ее становления.

Строятся расчетные схемы влияния ультразвукового луча на приборы инерциальной навигации, в частности, в поплавковом исполнении. Раскрывается опасность возникновения локальных особенностей подвеса гироскопа на резонансном уровне.

Книга рассчитана на широкий круг специалистов отрасли.

ББК 39.471.1

Рецензенти: Лауреат Державної Премії України в галузі науки і техніки, Заслужений діяч науки и техніки України, доктор техн. наук, професор

В. І. Гуляєв

В. В. Новицький

доктор. фіз.-мат. наук, професор

ISBN <u>978-966-7599-83-6</u>

© В.В. Карачун, Н.В. Ладогубець, В.М. Мельник, 2014

ВСТУП	••••••••••			5	
РОЗДІЛ 1.	ГЛОБАЛЬНІ І РЕГІОНАЛЬНІ НАВІГАЦІЙНІ СИСТЕМИ				
РОЗДІЛ 2.	БЕЗПІЛОТНІ АПАРАТИ. ПЛАНІРУЮЧІ ВОГНЕВІ Засоби				
РОЗДІЛ З.	ГІПЕРЗВУКОВІ ЗАСОБИ МОНІТОРИНГУ КОНТИНЕНТАЛЬНОЇ ЧАСТИНИ ТЕРИТОРІЇ ТА ПРИБЕРЕЖНОЇ АКВАТОРІЇ				
РОЗДІЛ 4.	ПОПЛАВКОВИЙ ГІРОСКОП В ПОЛІ УЛЬТРАЗВУКОВОГО ПРОМЕНЯ ГІПЕРЗВУКОВОГО ПОЛЬОТУ				
	§ 4.1.	Визначення відповідності паспортним вимогам		57	
		4.1.1.	Вплив ультразвукових хвиль на підвіс гіроскопа	60	
		4.1.2.	Хвильове співпадання і похибки приладу на резонансному рівні	107	
	§ 4.2.	Аналітичне обґрунтування резонансних явищ при			
		дифракції звукових хвиль		115	
		4.2.1.	Фокусування енергії ультразвукового променя. Поверхні каустики	115	
		4.2.2.	Наближена розрахункова модель. Великий хвильовий розмір корпуса приладу	119	
		4.2.3.	Уточнена розрахункова модель.		
			Низькочастотний і комбінований резонанси	133	
РОЗДІЛ 5 .	ТРИВІСНА ГІРОСТАБІЛІЗОВАНА ПЛАТФОРМА В АКУСТИЧНИХ ПОЛЯХ. ПОХИБКИ СТАБІЛІЗАЦІЇ ВНАСЛІЛОК ЛИФРАКШЙНИХ ЯВИШ 142				
	DHAU	лидок	дичталцинил лвищ	142	

	§ 5.1.	Природа виникнення додаткових похибок поплавкових чутливих елементів ГСП внаслідок дифракційних явищ на імпедансній поверхні їх підвісу	145		
	§ 5.2.	Рівняння збуреного руху поплавкового підвісу	151		
		5.2.1. Перше наближення	156		
		5.2.2. Друге наближення	165		
	§ 5.3.	Стохастична структура збурюючих чинників	180		
	§ 5.4.	Інтегруючий гіроскоп	187		
РОЗДІЛ 6.	НЕЛІНІЙНІ КОЛИВАННЯ РУХОМОЇ ЧАСТИНИ ГІРОСКОПА ВНАСЛІДОК РОЗВИВАЮЧОЇСЯ АНІЗОТРОПНОСТІ РІДИННОСТАТИЧНОЇ СКЛАДОВОЇ ПІДВІСУ				
РОЗДІЛ 7	АВТОКОМПЕНСАЦІЯ ВПЛИВУ ДИФРАКЦІЙНИХ ЯВИЩ				
	§ 7.1.	Диференціальні рівняння руху тривісного гіростабілізатора	212		
	§ 7.2.	Похибки стабілізації	216		
	§ 7.3.	Автокомпенсаційні методи зменшення впливу проникного акустичного випромінювання	223		

Аналітики і спеціалісти стверджують, що держава, яка в змозі першою в світі забезпечити серійне виробництво високоточних гіперзвукових ракет, створить тим самим для себе вирішальну перевагу в світі. Перш за все, в стратегічному масштабі. Пояснення цьому факту полягає в тому, що ракети, які рухаються із швидкістю 7 *М* практично невразливі для сучасних засобів ППО. Самі ж, в той же час, здатні знешкодити захищені за останнім словом техніки не тільки наземні, але і підводні об'єкти. За своїм потенціалом, гіперзвукову зброю можна порівняти тільки з тактичними ядерними боєприпасами.

Сполучені Штати Америки розроблюють гіперзвукові літальні апарати у вигляді крилатої ракети, тобто із власним двигуном, як правило, це гіперзвуковий прямоточний повітряно реактивний двигун, або у вигляді планіруючого снаряду, гіперзвукову швидкість якому надають маршеві ступені звичайних балістичних ракет.

Очевидно, що в недалекому майбутньому надійні гіперзвукові технології на основі ГППРД з часом посядуть своє місце не тільки в оборонній промисловості *США*, але і в інших країнах світу. Пентагон твердо дотримується позиції щодо перспективності розробки гіперзвукових систем зброї, здатності гіперзвукових технологій в забезпеченні воєнного домінування *США* при вирішенні загальнонаціональних задач у сфері безпеки.

Гіперзвуковий політ на швидкості 20 *М* дозволяє доставити корисний вантаж за одну годину в будь-яку точку планети.

Остаточною метою програми *IH* слугує доведення до придатного у серійному виробництві рівня технологій гіперзвукового польоту. Внаслідок цього, американські військові отримають зброю глобального удару з неймовірною дальністю стрільби – у 37 тисяч кілометрів. Це надасть можливість США наносити удари зі своєї території по об'єктам, які знаходяться в будь-якій точці Землі. При цьому слід зауважити, що ніякі засоби сучасних систем ППО не здатні уразити ракету, яка летить із швидкістю 20 М. За винятком лазерів на вільних електронах – FEL.

Окрім США, масштабну їх розробку на цей час ніхто не веде.

Коли, 21 липня 2011 року, була офіційно закрита програма *Space Shuttle*, разом з нею закінчилась не тільки ера *пілотуємих* орбітальних човників, але і, в певному сенсі, ціла епоха крилатої романтики, відома безліччю спроб обернути літак в дещо більше, ніж власне літак.

Перші спроби установки на крилату машину ракетного двигуна відносяться на кінець 20-х років попереднього століття. Ракетопланом був також і *X-1* (1947 рік) – перший в історії пілотуємий літальний апарат, який подолав швидкість звука. Його фюзеляж мав форму збільшеної кулеметної кулі калібра *12,7 мм*, а ракетний двигун спалював в своїй камері звичайний спирт за допомогою рідкого кисню.

Праматір'ю усіх крилатих ракет можна вважати ракету *V-1* з пульсуючим повітряно-реактивним двигуном. Ойген Зінгер мріяв про наддалекий антиподний ракетоплан-бомбардувальник. Вольф Тромсдорф – віддавав перевагу стратегічній крилатій ракеті з прямоточним двигуном. Після війни, по обидві сторони "залізної завіси", були скопійовані ракети *V-1 і V-2 Германської* розробки. Американцям завжди був більш любим авіаційний підхід, що у підсумку і стало однією з головних причин початкового відставання *Америки* у сфері балістичних технологій. І це незважаючи на присутність самого Вернера фон Брауна.

Саме з цієї причини, і саме в США, була побудована фактично перша, і єдина з прийнятих коли-небудь на озброєння, крилата ракета SM-62 Snark 3 міжконтинентальним радіусом дії у 10000 км. Будували її в стінах корпорації **NORTHROP**: фактично, вона була безпілотним літаком. Дещо раніше був похований SM-64 Navaho – другий проект, надзвукова крилата ракета міжконтинентального радіуса дії у 6500 км.

РОЗДІЛ 1. ГЛОБАЛЬНІ І РЕГІОНАЛЬНІ НАВІГАЦІЙНІ СИСТЕМИ

Стосовно радіо-навігаційних систем слід зауважити, що в останні роки має місце стрімкий розвиток світового ринку навігаторів. Вони знаходять застосування при вирішенні задач керування рухом в авіації та ракетобудуванні, на водному транспорті, у геодезії і картографії, при позиціонуванні сухопутних бойових засобів, а також транспорту, включаючи приватний автотранспорт.

Радіо-навігаційні системи

На теперішній час існує декілька глобальних навігаційних систем – *GPS* (США), ГЛОНАСС (Росія), GALILEO (Свропа). В деяких країнах існують свої, *регіональні*, навігаційні розробки, але вони не мають глобального значення. Крім того, доступ до них обмежений. Це відноситься, зокрема, до навігаційної системи *BEIDOU* (Китай), яка містить 4 супутника на орбіті.

Система *GPS* (офіційна назва *NAVSTAR*) містить 29 супутників на орбіті, кількість яких планується збільшити до 48.

Військовій GPS надходить кінець? За останній час на ринку зброї з'являється все більше пристроїв, здатних глушити сигнал *GPS*. Подібні "глушилки" в *США* почали використовувати навіть злочинні угруповування.

Таким чином, американським військовим терміново потрібна нова інерціальна система навігації, яка була б здатна працювати в будь-яких умовах. У зв'язку з цим, оборонне наукове відомство *DARPA* оповістило про початок розробки програми із створення найновішої інерціальної системи навігації *C-SCAN*. Передбачається, що вона замінить *GPS* у тих регіонах, де сигнал супутникової навігації штучно глушиться, а також в районах, де він взагалі відсутній. Датчик *C-SCAN*

створюється на високоточному атомному годиннику, здатен швидко включатися й ефективно використовуватися у військовій техніці, у тому числі на керованих боєприпасах. Оскільки інерціальний *C-SCAN* не піддатен зовнішнім сигналам, отже, його неможливо "збити з пантелику" перешкодами (рис. 1.1).

Рис. 1.1. *C-SCAN*. Зовнішній вигляд

При виникненні GPS, порушень військові використовують потреб для навігації гіростабілізовані тривісні платформи, чутливими елементами яких слугують гіроскопи й акселерометри. Датчик *C-SCAN* повинен замінити в майбутньому гіроскопи більш громіздкі дешевим інерціальним вимірювальним пристроєм меншої маси і, при цьому, більш високої

точності позиціонування і зовнішнього цілевказування.

Інерціальний вимірювальний пристрій *C-SCAN* буде виготовлений з надійних твердотільних електронних компонентів і атомного годинника, здатних витримувати значні перевантаження. Все це планується об'єднати в одній мікросистемі з високим ступенем інтеграції [http://www.cnews.ru/news/top/index. shtml?2012/04/20/486539].

Невеликий чіп-навігатор можна буде використовувати у надточних бомбах і ракетах, які, завдяки цьому, стануть неуразливими для перешкод на частотах *GPS*. Масив таких чіпів здатен забезпечити досконале пілотування військової авіації і бойових машин.

Свропейська відповідь GPS: **GALILEO** готовий! Євросоюз у 2003 році прийняв рішення про створення Європейської супутникової системи *GALILEO*.

Ракета-носій *Союз СТ-Б*, яка являє собою подальший розвиток ракет класу *Союз – Фрегат*, дебютувала на Гвінейському космодромі *Куру* 21 жовтня 2011 року доставивши на орбіту першу пару супутників системи *GALILEO*, яку іменують також Європейською версією *GPS*. Супутники-близнюки, масою 700 кГ, зайняли свої робочі орбіти на висоті 23250 км. Здійснення навігації системою *GALILEO* у складі тільки двох супутників слід вважати стартовим режимом, бо наявність не менше чотирьох апаратів складає мінімум, необхідний для смартфонів і автомобільних пристроїв при визначенні свого місцезнаходження. І хоча в рамках багатомільярдного проекту *GALILEO* Європейське космічне агентство планує вивести на орбіти біля 30 супутників, все ж наявність 4 апаратів у космосі можна прийняти за ключову для усієї системи, бо дозволяє провести всебічне тестування системи і почати налагодження всіх її сервісів.

Навігаційна система *GALILEO* задумана була як альтернатива системам *GPS* та *ГЛОНАСС*. Разом з тим, спочатку, вона все ж буде працювати в тісному контакті з обома. Лише після того, як у космосі з'явиться достатня кількість її супутників і буде включеним її загальнодоступний навігаційний сигнал (орієнтовно в 2015 році), *GALILEO* почне працювати самостійно. По точності позиціонування Європейська система повинна, за підрахунками, перевершити *GPS*. Але це за умови, що усі тридцять супутників, 27 працюючих і три резервних, займуть свої місця на орбітах. Очікується, що це здійсниться в найближчі десять років.

Однак, ніяких ілюзій на цей кошт не слід планувати, тому що американці за ці десять років теж здійснять кардинальну модернізацію своєї *GPS* [http://www.cnews.ru/news/line/index.shtml?2012/10/16/506895].

На сьогодні, в Російській навігаційній системі ГЛОНАСС налічується 29 космічних апаратів, з яких 24 – знаходяться в оперативному використанні. Сама система початково була створена з дуже жорсткими чашечками в трьох площинах. Отже, якщо апарат вийде з ладу, або виникне необхідність його профілактики чи перезавантаження, тоді на його місце повинен швидко переміститися резервний апарат.

На Землі зараз налічується п'ять апаратів, які готові до запуску і три ракети – один "Протон" і два "Союза". Коли стане очевидним, що за два-три місяці почнуться негаразди на апаратах, тоді запустять новий апарат.

Декілька слів відносно точності виміру координат. Вона визначається закладкою ефемерид, поправок на космічний апарат: чим частіше закладаєш, тим вищою буде точність. Крім того, вона залежить від реальних вимірів. На теперішній час ситуація постає такою, що усі Російські вимірювальні засоби знаходяться тільки на території *Росії*. А з урахуванням траєкторії польоту космічних апаратів і нахилу орбіти, виявляється видимою лише 1/7 частина витка, а на решті – немає можливості для внесення поправок. І що головне, немає змоги точно визначити координати апарата. Для вирішення цієї задачі установлюють по всьому світу різні функціональні доповнення до цієї системи. Вони дозволять не тільки перевіряти суцільність навігаційного поля, але і точно виміряти дані по супутниках. Зараз завершується установка такої станції в *Бразилії*. А в цілому, планується розміщення станцій в *Південній* і *Західній* півкулях планети.

Уявляється також необхідним введення в штатну експлуатацію міжсупутникового лазерного зв'язку, який забезпечив би трансляцію з одного КА на інші необхідну поправку, не очікуючись його появи в зоні видимості наземної станції.

Головні розбіжності систем NAVSTAR і ГЛОНАСС полягають в наступному:

– системі ГЛОНАСС властиве повторення орбіт супутниками через кожні 8 діб, таким чином, кожен з них займає місце попереднього через кілька днів. *GPS* такий принцип не використовує;

– система GPS належить військовим, тому вони залишають за собою виняткове право на часткове *кодування, глушіння і зміну сигналу* у визначеному місці, наприклад, в зоні військового конфлікту, що не дозволяє використовувати її в повній мірі;

– система *GALILEO* призначена тільки для цивільних користувачів.

Важливим достоїнством системи ГЛОНАСС є частотний поділ каналів (FDMA) у супутників, що забезпечує кращу перешкодозахищеність, між у GPS та GALILEO, які працюють на одній частоті з кодовим поділом сигналу (CDMA). Таким чином, для глушіння сигналу із супутників GPS потрібна тільки одна частота. В той же час, для глушіння сигналів супутників ГЛОНАСС необхідно підбирати частоти до кожного супутника, що постає більш проблематичним.

Звідси висновок – використання навігаторів ГЛОНАСС/GPS є більш перспективним з позицій надійності роботи.

Радіо-інерціальні навігаційні системи

Декілька слів про *радіо-інерціальні* навігаційні системи. Вони являють собою комбінацію приладів радіокерування і інерціальних приладів, перш за все, гіроскопів і акселерометрів. Такі системи дозволяють належним чином коректувати траєкторію польоту літального апарату, підвищувати точність стрільби і її *кучність*, створюють технічні передумови для зменшення масогабаритних характеристик бортової апаратури, дозволяють установлювати бойовий заряд на бойовий взвод відразу після отримання інформації про відповідність траєкторії польоту.

Серед вад радіо-інерціальних систем можна зазначити неможливість одночасного запуску і керування польотом декількох літальних апаратів, наявну можливість їх виявлення і, нарешті, складність і велику вартість наземного забезпечення.

В ролі інерціальних навігаційних засобів знайшли широке використання гіроскопічні прилади, які вимірюють кінематичні параметри апаратів, а саме, кути повороту, кутову швидкість і кутове прискорення, лінійну швидкість. Оскільки їм усім потрібно надавати певну орієнтацію і з високою точністю її зберігати, були створені гіроскопічні стабілізовані платформи (ГСП), причому цікавим постає той факт, що функції чутливих елементів тут виконують також гіроскопи – диференційючі, або інтегруючі. Як правило, підвіс рухомої частини рідинностатичний.

Мікрочіп DARPA: навігація без GPS

На вимогу оборонного наукового агентства *DARPA* учені створили мініатюрний навігаційний чіп, який працює навіть за відсутності сигналу *GPS*.

Новий чіп, розроблений спеціалістами Мічиганського університету, перш за все призначений для використання у військовій техніці, яка повинна безвідмовно працювати навіть за відключення сигналу *GPS*. Невеличкий чіп, вільно

Рис. 1.2. Навігаційний чіп

розміщується на монеті і може бути задіяним у широкій номенклатурі виробів – від навігаційних систем стратегічних бомбардувальників до систем наведення авіаційних ракет і мініатюрних БПЛА (рис. 1.2).

Мікрочіп, об'ємом до 10 кубічних міліметрів, виготовляється з діоксиду кремнія і являє собою мініатюрний інерціальний пристрій

позиціонування, або скорочено ТІМU. Мікрочіп товщиною у декілька волосинок містить все необхідне для автономної навігації – гіроскопи, акселерометри і високоточні часи. Це дозволяє визначити траєкторію від заданого місця і встановити знаходження апарату з високою точністю (з якою конкретно, поки що не сповіщається).

На думку спеціалістів *DARPA*, новий мікрочіп інерціальної навігаційної системи повинен розв'язати проблему уразливості *GPS*.

Більше того, новий мікрочіп розрахований на підвищені нагрузки і дієздатен при використання у високоточному озброєнні, включаючи перспективні малогабаритні бомби, ракети і БПЛА-камікадзе. Скоріше за все, інерціальні навігаційні системи (*IHC*) на основі нового чіпа знайдуть використання і в передовому важкому озброєнні, такому як крилаті ракети *JASSM-ER* з дальністю стрільби до 900 км. Точність *IHC* на такій дистанції нижча, ніж у *GPS*, але сучасні технології візуального пізнавання *цілі* допоможуть вирішити цю проблему. Наприклад, ракета *JASSM*, або *BGM-109 Tomahawk*, на початковій та середній ділянках польоту може спиратися на комбінацію *IHC* та *GPS*, але на крайній ділянці, у випадку радіоелектронної протидії, або *GPS-спуфінга*, повинна переходити тільки на *IHC*. В цьому випадку, помилку наведення в десятки, або навіть у сотні метрів, можна компенсувати "*розумною*" системою наведення, яка порівняє поточну картинку телевізора чи радара ракети із закладеним у пам'ять зображенням *цілі*. Це дозволить автономно виконувати "*noшук цілі*", а на випадок її виявлення – оперативно проводити класифікацію, позиціонування об'єкта і переключення ракети в "*режим наведення*".

Зрозуміло, що новий чіп не замінить цілком *GPS*, він здатен стати лише доповненням до існуючої супутникової системи навігації. Разом з тим, TIMU може учинити великий вплив на деякі аспекти військової справи. Перш за все, поліпшиться навігація у складних міських умовах, де супутниковому сигналу заважають безліч перешкод. Збільшиться також захищеність БПЛА, які будуть в змозі літати спираючись на автономну систему навігації, а не на сигнали *GPS*, які можна заглушити чи підмінити внаслідок, так званого, *GPS-спуфінга*.

З'являються також можливості створення дешевих боєприпасів з підвищеною точністю стрільби. Не виключено, що нові сенсори вдасться інтегрувати в артилерійські снаряди різного калібру, до малого (25-35 мм) включно. Це суттєво підвищить точність і ефективність артилерійського вогню на вкрай великих дистанціях.

Військові випробували "невразливу" альтернативу GPS

На американському ракетному полігоні *White Sands* почали установку експериментальної, повністю інтегрованої, навігаційної системи *NGBPS* корпорації **LOCATA**.

Контракт із інтегратором технологій *Locata Corporation* компанією **ТМС DESIGN** офіційно підписала 746-а випробувальна ескадрилья (746 TS) *ВПС США*, але тестування альтернативної навігаційної системи є глобальною ініціативою Пентагона. На думку американських військових, слід створити надійну перешкодозахищену навігаційну систему, яка забезпечить роботу всіх відповідних військових систем навіть на той випадок, коли *GPS* буде непрацездатна.

Технології *Locata* на теперішній час вже випробовували на полігоні *White* Sands. Але тепер буде змонтована фактично здатна до бойового використання

система. Спеціалісти *TMC Design* змонтують і випробують навігаційну систему *Locata* в умовах, максимально наближених до бойових і з використанням штатного озброєння і техніки. Виходячи з того, що навігаційну систему монтують на ракетному полігоні, спадає на думку, що за її допомогою планують наводити надточне озброєння (рис. 1.3).

Рис. 1.3. Випробування навігаційної системи *NGBPS* в жовтні 2011 року довели, що вона здатна замінити *GPS*

Система *Locata* надасть військовим можливість отримувати інформацію про місцезнаходження мобільних сил на *Землі* і в повітрі за відсутності сигналу *GPS*. Альтернативна навігаційна система *NGBPS* може працювати спільно з *GPS*, або повністю автономно, спираючись на сітку вузлів керування і трансиверів. Суть технології базується на порівнянні сигналів, що отримується, з сигналами, які генеруються трансивером. Система вимірює точну відстань між трансиверами, а потім визначає координати кожного трансивера виходячи з відомих даних про місцезнаходження одного, чи більшого числа, вузлів сітки. Навігаційна система *NGBPS* має сантиметрову точність позиціонування, причому як на відкритому просторі, так і в приміщенні. Остання властивість особливо важлива, наприклад, для керування роботами, на складнопересіченій місцевості та в міських умовах, де виникають проблеми із прийманням супутникового сигналу *GPS*. Навігаційну систему компанії **LOCATA** можна розвернути практично усюди – від окремої будівлі до великого регіону. На теперішній час, найбільш велика площадка, яка покрита цивільною навігаційною системою **LOCATA** має площу *3500 кв. км* – це більше ніж площа Києва у декілька разів.

Таким чином, потенційно, військова сітка *NGBPS* може покрити великі регіони, тим більше, що у військовому виконанні відстань між трансиверами не обмежується 5 км. Відповідно, військова версія використовує більш потужні передатчики і, скоріш за все, може залучати інші частоти, ніж цивільні 2,4 $c\Gamma u$ (частота Wi-Fi). На випробуваннях **LOCATA** в жовтні 2011 року на полігоні White Sands альтернативною навігаційною сіткою "накрили" площу 2000 кв. км, а відстань між трансиверами доходило до 35 км, хоча за необхідності може сягати і 50 км. При цьому потужність передатчиків військових трансиверів була у 100 разів вищою, ніж у цивільних, що дозволило забезпечити стійку навігацію навіть під час повного глушіння *GPS-сигналу* на площі більшої за 6500 кв. км.

Тепер на полігоні White Sands вперше буде випробувана цілком інтегрована на бойову техніку систему *NGBPS*. У 2013 році, армія *США* вже почала отримувати повністю працездатну навігаційну систему, яка здатна функціонувати у бойових умовах за відсутності *GPS*.

Сигнал GPS дозволяє виміряти швидкість вітру над поверхнею води

Вітри над океанами й озерами можна відслідкувати завдяки відбиттю сигналів *GPS*. Це допоможе метеорологам більш точніше прогнозувати погоду, а також, за необхідності, і такі катастрофічні явища як *торнадо*. У глобальному масштабі, експерти **NASA** сподіваються за допомогою нового метода виміру швидкості вітрів краще зрозуміти клімат нашої планети.

Для точного прогнозування погоди і моделювання клімату вкрай необхідно знати силу повітря на різних висотах, у крайньому випадку – у поверхні. На суші цю задачу виконують прості метеостанції, а от над океаном, над «кухнею» світового клімату, проводити виміри значно складніше. Зазвичай, для цього використовують одноразові зонди, які скидають з літаків. Однак ці зонди не тільки досить дорогі – по *\$750* за один зонд, за одну місію їх потрібно у кількості 20 штук.

Зрозуміло, що для побудови картини вітрів на значній площі, таких зондів обмаль. Для вирішення проблеми, спеціалісти NASA побудували технологію моніторингу, котра дозволяє виміряти швидкість повітря по відбитим від морських хвиль супутниковим сигналам *GPS*. Точність такого виміру у 10 разів нижча, ніж у скидаємих зондів, які помиляються лише на $0,5 \ m/c$. В той же час, аналіз відбиття *GPS-сигналів* від хвиль дозволяє вести моніторинг неперервно у часі і на значних просторах акваторії, причому вести його в реальному часі, що дуже важливо для прогнозування ураганів (рис. 1.4).

Рис. 1.4. Коли радіохвиля *GPS-супутника* потрапляє на поверхню великого водоймища, біля 60% радіовипромінювання відбивається назад, у небо

Поверхня океана дуже рідко буває спокійної і по викривленням відбитого сигналу можна гадати про силу вітру.

Завдяки *GPS* слідкувати за вітрами можна без скидаємих датчиків. Дані про вітри будуть збиратися на борту літака і супутників. Зокрема, у 2016 році **NASA** планує запустити систему малих супутників під загальною назвою *CYGNSS*, які налаштовані на вимір відбитих сигналів GPS з низької орбіти. Це дозволяє прогнозувати рух штормових фронтів. В майбутньому, окрім сигналів GPS, для моніторингу можна буде використовувати сигнали телемовлення потужних супутникових передатчиків, зокрема таких як DirecTV та Sirius XM. Таким чином, надзвичайно потужні супутники забезпечать вчених «безкоштовним» моніторингом океанів, що до цього часу було вкрай важкою задачею. Все що потрібне, це наявність GPS-приймача, декількох мікросхем і програмного Вартість такого обладнання складає усього-на-всього декілька забезпечення. сотень доларів [http://rnd.cnews.ru/tech/gisgps/news/line/index_science.shtml?2013/07/ 16/535554].

У 2011 році РФ здійснила знаковий прорив у супутникобудуванні, почавши запуски апаратів, які створені на основі найновішої платформи середнього класу *"Экспресс-1000"*. У 2013 році на орбіту був виведений самий потужний телекомунікаційний супутник *"Экспресс-АМБ*", створений на засадах перспективної платформи важкого класу *"Экспресс-2000"*.

На теперішній час проводиться виготовлення бортової антени з рефлектором діаметром 12 м, а також опрацьовуються рефлектори діаметром більше за 20 м на рівні кращих світових аналогів.

РОЗДІЛ 2. БЕЗПІЛОТНІ АПАРАТИ. ПЛАНІРУЮЧІ ВОГНЕВІ ЗАСОБИ

Для захисту територіальних рубежів держави і прилягаючої акваторії на сьогоднішній день слугують балістичні, міжконтинентальні та космічні ракети різного класу і засобів базування, атомний підводний флот, а також ракетні війська стратегічного призначення. Сучасні ракети-носії (РН), як відомо, здатні доставити засоби ураження в будь-яку точку земної кулі не тільки з великою точністю, але і за мінімально припустимий час.

Балістичні ракети

Балістичними ракетами (БР) під час польоту управляють інерціальні або радіоінерціальні системи. Найбільш надійними слід вважати перші, оскільки тільки вони володіють вирішальною перевагою – автономністю. Ця якість дозволяє реалізувати одночасний запуск великої кількості ракет, забезпечує достатню ступінь незалежності стартових позицій і, крім того, підтримує високу боєздатність і надійність апаратів, які знаходяться на бойовому чергуванні – тактична палубна авіація (ТПА), стратегічна бомбардувальна авіація (СБА), корабельні зенітні ракетні комплекси (наприклад, класу "Форт" з 64 ракетами С-300), крейсерів з газотурбінним двигуном ракетних установок класу "*Базальт*" з крилатими ракетами П-500 (надточна стрільба в радіусі 500 км), а також безпілотних літальних апаратів (автономних роботів), важкого, середнього і легкого класів, роботів-саперів (*Mini-Andros*), нарешті, дистанційно керованих апаратів. Для задач *військової розвідки*, розмінування акваторії, ураження живої сили в зоні воєнних конфліктів і таке інше, все більше застосування знаходять роботи.

Багатоцільові мобільні платформи

Однією з основних задач, що вирішує система управління багатоцільовою мобільною платформою, є вимагаєма точність позиціонування автономного апарату. Структура режиму позиціонування завбачає визначення трьох лінійних координат керованого об'єкту відносно *географічної області* його застосування і трьох кутових координат, за які відповідає система стабілізації з гіроскопів (gyro), або акселерометрів.

Безпілотні літаючі апарати

Особливе місце серед авіаційних автономних технічних засобів посідають багатороторні плоскі багатоцільові повітряні платформи (*iмпелери*) – безпілотні літальні апарати (БПЛА), які призначені для розташування на них спеціальної спостережної апаратури – радарів, лідарів, фотоапаратів, відеокамер тощо, або ж доставки негабаритних вантажів на велику відстань.

Не можна залишити без уваги також *новий тип* озброєння на основі БПЛА – це *безпілотники-камікадзе*. Компанія **MBDA** ознайомила зі зброєю, яка створена відповідно до концепції розвитку перспективних безпілотних систем озброєння, які поєднують у собі як ударні, так і розвідницькі функції. Ці зразки надійдуть в серійне виробництво на протязі найближчих 20 років. Як стверджують аналітики, *безпілотники-камікадзе* в певному сенсі сформують обличчя війн майбутнього.

На сьогодні, розроблені боєприпаси для БПЛА, які діють із середніх висот – *MALE*. Такі апарати, з часом, постануть основою вогневої підтримки сухопутних військ і будуть в змозі забезпечити блискавичне нанесення ударів, частково посунувши на задній план артилерію і важкі реактивні *пілотуємі* винищувачі. Перевагою такого озброєння слід вважати відсутність складного керування і необхідності поточного контролю. Військовослужбовцю досить вказати БПЛА *ціль* і *безпілотник-камікадзе* знищить її за допомогою багатоцільової БЧ (Бойової частини).

Так, зброя Vigilus містить пульт керування системою, боєкомплект і пускову установку Armatus, яка здатна поєднати різні комбінації малих, середніх і великих боєприпасів. Пускова установка оснащена бездротяною системою трансляції інформації, що суттєво розширює можливості використання системи Vigilus. Система Vigilus являє собою нове покоління зброї, яка забезпечує виявлення та ідентифікацію *цілі* за допомогою тільки однієї платформи і в найкоротший термін [http:www.cnews.ru/nevs/line/index.shtml?2012/07/12/496176]. Наприклад, малопримітний боєприпас *Caelus* (рис. 2.1). Цей безпілотний розвідник, масою до 100 кГ і довжиною 1,8 м, з розмахом крил до 2 м, забезпечений електродвигуном і може на протязі 2 годин таємно баражирувати (від франц. barrage) над *ціллю*. Наявність багаторежимного детонатора дозволяє уражати різні *цілі*, в тому числі бронетанкову техніку і живу силу супротивника.

Рис. 2.1. Боєприпас Caelus

Мініатюрний планніруючий боєприпас *GLADIUS* має масу всього у 7 $\kappa\Gamma$, а довжину 0,8 *м*. Його можна оснастити електронно-оптичною апаратурою, або БЧ, масою до 1 $\kappa\Gamma$.

Після пострілу з пускової установки, *GLADIUS* розгортає крила і здатен без допомоги двигуна планірувати на відстань до *30 км*. Пускова установка *Armatus* може нести до чотирьох боєприпасів *Gladius* та ще один *Caelus* (рис. 2.1), (рис. 2.3). Для керування пусковою установкою і боєприпасами, військовослужбовці

використовують стандартний пульт керування, який зв'язаний з перешкодостійкою навігаційною системою *GNSS* (рис. 2.2).

Рис. 2.2. Пульт керування системою Vigilus

Провідні російські розробники авіаційної техніки почали підготовку багатоцільового БПЛА, який придатен не тільки для зовнішньої розвідки і спостереження, але і в змозі наносити авіаудари. В 2007 році на авіасалоні "МАКС-2007" демонструвався перший російський безпілотник Скат РСК "МиГ". Скат, як і

Рис. 2.3. Мініатюрний планіруючий боєприпас Gladius

X-47В, являє собою яскравий приклад важкого ударного літака майбутнього (рис. 2.4). Всередині його фюзеляжу містяться два відсіки для важких керованих

ракет і високоточних бомб масою 250-500 кГ. Такі БПЛА візьмуть на себе важку і небезпечну роботу по знищенню особливо важливих *цілей* в *глибині оборони* супротивника, а також на *передньому краї* – систем ППО, промислових об'єктів, пускових установок балістичних ракет і таке інше. Довготривалість польоту, потужна зброя ураження і відсутність пілота забезпечують атаку не тільки з великої відстані, але і без ризику для атакуючого.

Рис. 2.4. Реактивний БПЛА Скат

І головне – безпілотники знаходяться у повітрі набагато довше, ніж будь-який *пілотуємий* літак (адже оператори можуть працювати змінюючи один одного). Це означає, що з точки зору тактики бою, над супротивником безперервно знаходиться і слідкує за ним "*недрімотне око*" безпілотної машини. Таким чином, за один тільки виліт MQ-9 Reaper в змозі уразити більше *цілей*, ніж, наприклад, A-10C. Особливо в умовах асиметричної війни, коли супротивника слід вистежувати на протязі багатьох годин. Ця машина добре зарекомендувала себе не тільки під час бойових дій в *Іраку* і *Афганістані*, але і в полюванні за терористами по усьому світу. Безпілотник за назвою Дозор-600 був уперше представлений на авіасалоні "MAKC-2009". Він дуже схожий на американський апарат *MQ-9 Predator – 720 кГ* та *512 кГ*. "*Сокол*" має схожий проект – БПЛА Данхем (маса *500 кГ*, корисний вантаж *100 кГ*, тривалість польоту – *15 годин*) (рис. 2.5).

Рис. 2.5. Безпілотники масою менш 1000 кГ, які схожі на Дозор-600

MQ-9 Predator виборов звання наднадійного БПЛА, відмінно проявив себе в Іракській і Афганській війнах. Разом з тим, слід констатувати, що на теперішній час він, все ж таки, морально постарішав і його можливості уявляються як недостатні для сучасного бою. Перш за все, це стосується боєкомплекта, який містить дві ракети AGM-114 Hellfire. Цього рішучим чином недостатньо при тривалості польоту у 40 годин. В ході бойових дій, Predators неприпустимо часто втрачали важливі иілі зважаючи на незначний боєкомплект, тому оператори або намагалися "притримати" ракети для більш важливої иілі, або витрачали свій боєприпас ще задовго до закінчення часу патрулювання. Новий російський БПЛА, скоріш за все, буде схожим на більш великий американський БПЛА MQ-9 Reaper (рис. 2.6). Ця машина має відносно простий і дешевий турбогвинтовий двигун і може без дозаправки знаходитись в повітрі всі 24 години. Здатна нести протитанкові ракети Hellfire, 250-кілограмові бомби GBU-12, GBU-38 i ракети класу повітря-повітря АІМ-9. Використання таких літаків, завдяки їх дешевизни, повністю виправдане. Незважаючи на відносно невисоку швидкість,

Reaper здатен виконувати запит на вогневу підтримку все ж набагато швидше реактивного винищувача. Пояснення цьому, на перший погляд дуже протиречивій, тезі полягає в тому, що *Reaper* висить над полем бою цілу добу.

Рис. 2.6. Американський MQ-9 Reaper I

Немає сумніву в тому, що армії ударний БПЛА, безумовно, потрібен. І, перш за все, для реалізації заходів контртерористичої ідеології. Нарешті, в конфліктах невисокої інтенсивності, де безпілотники стають головним засобом боротьби з мінуванням доріг, засідками і таке інше. Майбутнє вимальовується у створенні цілковито автоматизованих військових систем, як набагато швидкодіючих і більш надійних, ніж живий солдат.

Прийнято вважати, що під час "дійсної", а не партизанської війни, безпілотники посиплються на землю після натиснення на "чарівну" кнопку станції радіоелектронної боротьби РЕБ. Насправді ж, бойові БПЛА лише частково страждають від перешкод сигналам *GPS*. Зв'язок з БПЛА здійснюється через супутниковий канал, а його заглушити складно. Нарешті, у тому випадку, коли сигнал *GPS* згаяний, безпілотник буде продовжувати виконання своєї місії, або повернеться на базу, але тільки під безпосереднім управлінням оператора.

Таким чином, великі і середні БПЛА все гостріше і наполегліше вимагають сучасних технологій супутникового зв'язку (рис. 2.7).

Для цього, безпілотники підключаються до систем автоматизованого планування і підтримки місій ВПС (AFMSS) шляхом підключення до тактичної лінії зв'язку, наприклад, *L-3*, а на майбутнє – до єдиної автоматизованої мережі *Heterogeneous Air borne Reconnaissance Team* (HART). Всі ці технології зроблять БПЛА досить стійким проти електронних засобів боротьби.

До того ж, паралельно здійснюється розробка сучасних інерціальних навігаційних систем. В першу чергу, на мікрогіроскопах, які в змозі частково, або цілком, замінити супутникові датчики *GPS Ки-діапазону*, які підвладні штучним перешкодам [http://www.cnews.ru/reviews/index.shtml?2012/06/09/492754].

Рис. 2.7. Великі і середні БПЛА

Побудові автономних навігаційних систем, які б не залежали від сигналів супутників, починає приділятися все більша увага.

Пентагон працює над низкою проектів по створенню мікросупутників. Наприклад, в проекті *See Me* передбачається оперативне виведення на орбіту цілого рою дешевих наносупутників, які в змозі забезпечити зв'язок з БПЛА і наземними військами. Для цього, до речі, можна залучити і безпілотний *шаттл X-57B*.

Турбогвинтові БПЛА, як відомо, недостатньо захищені від засобів ППО та винищувачів – це загальновизнаний факт. Частково цю проблему, зокрема, захист від зенітних ракет, вирішують системи РЕБ і *пастки* – ракети-приманки класу *MALD* та буксируємі апарати класу *ALE-50*. Останні досить добре себе виявили під час операції НАТО на *Балканах*. Пілотуємі літаки американських ВПС спільно з *ALE-50*, за словами американських військових, з успіхом відвертали на себе десятки зенітних ракет.

Стосовно захисту від винищувачів, так перевага *пілотуємих* реактивних літаків над незграбними гвинтовими БПЛА окреслює проблему не так однозначно, як хотілось би. Не всім відомо, але БПЛА вже приймали участь у повітряних боях. Мова йде про MQ-1 Predator, який американці використовували ще в 2002 році, тобто ще до другої Іракської війни, для нагляду за територією *Іраку*. Іракські льотчики деколи уражали безпілотники, саме тоді, коли патрульні літаки залишали шпаринку в охороняємій зоні. Так, іракський льотчик на $Mu\Gamma-25$ уразив MQ-1 Predator. Наступного разу, в такій же ситуації, у відповідь на атаку $Mu\Gamma-25$ безпілотник запустив свою ракету Stinger класу "Повітря-Повітря". І тільки завдяки більш потужним двигунам, $Mu\Gamma-25$ вдалося уникнути неприємностей, але Predator все ж було уражено.

На теперішній час, БПЛА *MQ-9 Reaper* штатно озброєні ракетами класу "AIR to AIR" ATM-9, які призначені не тільки для оборони, але також для знищення гелікоптерів. За необхідності, важкі БПЛА, наприклад, *X-47B*, можуть бути озброєні потужними ракетами. Зокрема, AIM-120.

Перші прототипи російських ударних безпілотників надійдуть на озброєння армії вже у 2020 році.

Небесні шпигуни

Командування військово-повітряними силами США опрацювало Концепцію розвитку безпілотних літальних апаратів на наступні 25 років [1]. Вона, як зазначається, в американських засобах масової інформації, окреслює шляхи розвитку і інтеграції технології формування цього сектору авіації. Докладна назва Програми – *The U.S. Air Force Remotely Piloted Aircraft and Unmanned Aerial Vehicle Strategic Viston* ("Перспективи розвитку дистанційно керованих і безпілотних літальних апаратів з точки зору ВПС США"). Ця Програма окреслює головні напрямки науково-дослідних і дослідницько-конструкторських робіт в даній сфері.

Народження цього документа, як прийнято вважати в Пентагоні, вже давно назрівало. Дійсно, тільки в небі над *Іраком*, за даними газети "*The New York Times*", діють близько 700 БПЛА різних конструкцій. Як висловився журналіст цієї газети, небо над *Іраком* буквально переповнене літаючими роботами. Найбільш поширеними безпілотниками, як сповіщає газета, є "*Global Hawk*", "*Predator*", "*Hunter*", "*Pioneer*", "*Shadow*", "*Dragon Eye*", "*Raven*". Всі вони, без винятку, використовуються для збирання розвідданих. Найбільший політний час набрав "*Predator*"(рис. 2.8). Цей БПЛА має змогу знаходитися в повітрі на протязі 24 годин. Висота польоту становить *3-4,5 км*, крейсерська швидкість досягає *120 км/год*. За необхідності, його можна укомплектувати ракетами "*Hellfire*", що створить умови для знищення будов, укріплень, автомобілів та живої сили по наказу оператора.

Характерно, що Пентагон прийняв рішення збільшити у п'ять разів флот БПЛА "*Predator*" виробництва компанії **GENERAL ATOMICS AERONAUTICAL SYSTEMS** і довести наявний склад до 12 ескадрилій. До речі, на сьогодні у ВПС *США* нараховується тільки три таких підрозділи. Кожний військовий підрозділ цих апаратів містить наземні комплекси управління, супутникові системи та інше коштовне обладнання, без якого БПЛА не в змозі з успіхом вирішувати тактичні задачі на марші.

Рис. 2.8. Безпілотний літальний апарат "Predator", USA

Висота польоту апаратів класу "Global Hawk" досягає 18 км. Це важкий розвідник. укомплектований сучасним обладнанням, зокрема, радаром, інфрачервоною електронно-оптичною та має широкосмуговий камерами, супутниковий канал зв'язку, а також канал зв'язку в зоні прямої видимості. Хоча в Іраку використовується всього один БПЛА такого класу, "The New York Times" упевнена, що цього досить, бо апарат орієнтований на стратегічну розвідку.

Інші безпілотники, які знаходяться на службі морських піхотинців і армії, мають більш скромні характеристики. Це невеликі машини, які літають на висоті від декількох сотень метрів до двох кілометрів, а стартують з аеродромів чи з площадок мобільного базування. Самий маленький з існуючих "іракських" безпілотників має в довжину не більше одного метра. І все ж, американці переконані, що він надто помітний над полем бою. Тому вже декілька компаній приступили до побудови надмалих БПЛА. Один з них, "*Wasp*", почали випробовувати у відкритому морі неподалік від акваторії каліфорнійського узбережжя. Тридцятитрьох-сантиметровий апарат важить усього $0,2 \ \kappa\Gamma$, його можна запускати з руки людини. Його оснащеність забезпечується двома

мініатюрними відеокамерами, які збирають інформацію і транслюють її оператору в реальному часі. Літаючий робот "*Wasp*" є продукцією компанії **AEROVIRONMENT**. Але це не перший мініатюрний *літак-розвідник*, який створено в *США*. Агентство передових досліджень Пентагона (*DARPA*) розпочало реалізацію Програми створення подібних апаратів ще в середині 90-х років минулого століття. В рамках цієї Програми фірма **AEROVIRONMENT** побудувала 15-сантиметровий літак "*Black Widow*".

Компанія **AEROVIRONMENT** повідомила про успішні випробування важкого броньованого ударного безпілотника для боїв на території населених пунктів. Його озброєння складає ПТКР класу "*AGM-114K Hellfire*", "*Hidra-70*", а також кулемет M 134 калібру *7,62 мм*.

Одним з нових напрямків подальшого розвитку БПЛА править створення *літаків-виницувачів*. На сьогодні, у 32 державах світу розроблюють більше 250 безпілотних літаків, причому найбільш активним тут є *Китай*. Приймаючи до уваги небезпеку такої армади літаючих роботів, Агентство передових досліджень Пентагону почало створення зброї протидії таким апаратам. Робоча назва проекту – "**Peregrine UAV Killer**". Основу системи оборони проти БПЛА становить дешевий, невеликого розміру, літальний апарат. Його достоїнство полягає в здатності ліквідувати будь-який безпілотний апарат супротивника.

Агентство також курирує роботи з реалізації безпілотного гелікоптера в рамках масштабного проекту "Unmanned Combat Armed Rotocraft". Із своїми концепціями ознайомили спеціалістів американські авіакорпорації LOCKHEED MARTIN, NORTHROOP GRUMMAN. В рамках Програми створення робокоптера "Vigilante" зовсім недавно здійснені пробні пуски ракет.

Ще одним проектом безпілотного гелікоптера є найновіша розробка корпорації **BOEING** на основі модернізації існуючого *AH-6J "Little Birci"* до безпілотного варіанта. Аналогічний проект по перетворенню пілотуємої машини в робокоптер "*UH-1 Huey*" близький до стадії пробних ракетних пусків. Він, як і сподівалося, оснащений управляємими ракетами "*Advanced Precision Kill Weapon System*".

Нарешті, на стадії завершення цілком екзотичний літальний апарат. Компанія **TRITON SYSTEMS** розробила концепцію безпілотних літальних апаратів форми і розмірів звичайної літаючої тарілки. Слід відзначити, що перша бойова "*mapiлкa*" була винайдена ще у 1948 році конструктором Уолтером Моррисоном. Сучасна бойова "*mapiлкa*" поки що іменується Модулярним дискокрилим озброєнням для дії у міських умовах. Передбачається, що завдяки своїй формі, цей БПЛА буде в змозі проникати у підвальні приміщення, а також у щілини, де ховається супротивник, і атакувати його за допомогою мікробомб. Аеродромом цих "*mapiлok*" може слугувати пристрій для запуска, наприклад, мішеней при спортивній стрільбі.

Відзначивши безумовні достоїнства безпілотників, слід звернути увагу на одну їх суттєву ваду – літаючі апарати в руках терористів можуть обернутися на *"роботів-камікадзе"*.

Разом з тим, заходи по запобіганню цієї небезпеки в змозі забезпечити вимагаєму санкціонованість.

Бойові роботи. Літаючий підводно-наземний робот-скакун.

Функціональна оснащеність багатоцільового бойового робота майбутнього передбачає його рух у повітрі, під водою, по морському дну, по суші, плюс

Рис. 2.9. Плигаючий робот Sand Flea розробки компанії **BOSTON DYNAMICS**

подолання різних перешкод. Він в змозі ефективно виконувати бойову задачу в різних природних і кліматичних умовах.

Ha спеціалістів SANDIA думку **NATIONAL** LABORATORIES. багатоцільові роботи, здатні літати, плавати, рухатися по землі і навіть плигати, будуть в повній мірі необхідними в армії і порятункових службах. В **SANDIA** NATIONAL LABORATORIES вже розроблена безліч подібних систем, наприклад, плигаючого робота. (рис. 2.9).

Малопомітний БПЛА здатен подолати великі відстані повітрям, потай підбиратися до берегової лінії супротивника під водою, наближатися до наземних об'єктів на колесах і, до того ж, плигати через огорожі та у вікна будівель.

Нова безпілотна система, яка виконується в рамках концепції **Multi-Modal Vehicle Concept**, буде володіти широкими можливостями з точки зору її мобільності. Типова місія такого робота, наприклад, з метою зовнішньої розвідки на узбережжі, буде виглядати наступним чином. З борту корабля, літака, БПЛА чи з аеродрому, запускається безпілотний літальний апарат (рис. 2.10). На підльоті до

Рис. 2.10. Літак-носій з бойовим роботом на борту

означеної в польотному завданні частині акваторії, де БПЛА може бути вже виявленим, робот пірнає під воду (рис. 2.11). Крила разом з рушієм, виконавши

Рис. 2.11. Пересування робота під водою

свою задачу, відділяються, вивільняючи герметичний обтікаємий корпус з "ластами" для безшумного руху під водою. Робот підпливає до берегової лінії упритул, за необхідності збираючи інформацію про рельєф морського дна, мінних загороджень і т.п. На глибині кількох десятків сантиметрів робот скидає "ласти" і вивільняє колеса для руху по будь-якому профілю поверхні, в тому числі і по піску і суходолу (рис. 2.12). Робот оснащений також спеціальним пристроєм, яке дозволяє подолати у прижку перешкоду висотою до *10 метрів*, перескакувати через паркани, автомобілі та інші перешкоди. Вся місія може виконуватися автономно в програмному режимі, або в напівавтоматичному чи ручному режимі, під безпосереднім управлінням оператора. Перевага концепції **Multi-Modal Vehicle** окреслена відсутністю необхідності координації підрозділів безпілотних літальних, підводних і сухопутних роботів різних виробників з несхожими системами зв'язку і засобами доставки. Очевидно, що подібна координація потребує значних засобів, старанного планування та ювелірної точності виконання.

Рис. 2.12. Рух робота по грунту і по суходолу

I, все ж таки, залишається неприпустимо високою вірогідність порушення стикування і виникнення позаштатних ситуацій.

Універсальний робот здатен виконати місію від початку до кінця, спираючись на можливості адаптації до зміни зовнішніх умов. Подібний робот ідеально підходить для виконання розвідувальної та диверсійної акцій в умовах суворої таємниці. Одноразове використання робота є головним недоліком наведеної концепції. Робот буде відкидати непотрібні компоненти своєї конструкції під час виконання бойової задачі у такий спосіб, який виключає не тільки їх виявлення, але і поновлення.

В SANDIA NATIONAL LABORATORIES виконане обмежене тестування концептуального обладнання нового робота. Однак, вже на цей час, спеціалісти стверджують, що концепція зріла і може бути реалізована із залученням сучасних технологій [http://www.cnews.ru/news/top/index.shtml?2013/11/15/549784].

Література до розділу 2

 Тимошенко, В. И. Использование гиперзвуковых технологий при создании перспективных транспортных систем [Текст] / В. И. Тимошенко, В. П. Гусынин // Космічна наука і технологія. – 1999. – Т. 5, № 1. – С. 78 – 89.

РОЗДІЛ З. ГІПЕРЗВУКОВІ ЗАСОБИ МОНІТОРИНГУ КОНТИНЕНТАЛЬНОЇ ЧАСТИНИ ТЕРИТОРІЇ ТА ПРИБЕРЕЖНОЇ ЗОНИ

Літальні апарати, такі як Тактична Палубна Авіація (ТПА), Стратегічна Бомбардувальна Авіація (СБА), ракети класу "*AIR TO AIR*", ракети класу "*WATER TO AIR*", зенітні керовані ракети, які рухаються на знижених траєкторіях із надзвуковою швидкістю, а також інші реактивні апарати, створюють аеродинамічний потік, який формує звуковий *удар* (рис. 3.1).

Рис. 3.1. Реактивні апарати, які породжують звуковий удар: *а)* гіперзвукові літаки на основі ГППРД; *б)* балістичні ракети

Цей потік утворюється, в основному, *хвилями стиснення*, які відходять від передніх і задніх частин фюзеляжу, а також хвиль, які розходяться "*віялом*" (*хвиль розширення*) і розташовуються між ними. Із збільшенням відстані до літального апарату, *хвилі стиснення* накладаються одна на одну, що призводить до різкого стрибка тиску на початку і наприкінці цієї сукупності. Такі стрибки щільності іменують ударними хвилями, або *N–хвилями*.

Ударну хвилю можна розглядати як тонку перехідну ділянку, що розповсюджується із надзвуковою швидкістю, і в якій має місце різке збільшення щільності середовища, тиску і температури (рис. 3.2).

Рис. 3.2. Схематичне зображення N-*хвилі*: ΔP – надлишковий тиск; Δt – тривалість звукового удару; τ – час наростання тиску; ΔP_{max} – максимальний надлишковий тиск

Час наростання тиску τ для різного класу літальних апаратів несхожий і знаходиться в інтервалі 1–30 *мс*. Середню його величину можна прийняти рівною 10 *мс*. Тривалість звукового удару Δt становить від 100 до 400 *мс* і пропорційна довжині *ЛА*. Від висоти польоту, як правило, залежить мало. Звуковий удар в деяких випадках може сприйматися як подвійний.

За горизонтального польоту з крейсерською швидкістю, величина ΔP_{max} залежить від висоти польоту, геометрії фюзеляжу та числа *Маха М*. Так, для літака *Конкорд* $\Delta P_{\text{max}} = 180 \ Hm^{-2}$ на зльоті, при польоті на сталій висоті складає $\Delta P_{\text{max}} = 120 \ Hm^{-2}$, при посадці $\Delta P_{\text{max}} = 100 \ Hm^{-2}$. Наявність фокусування збільшує

величину ΔP_{max} до 300 – 750 Hm^{-2} . Наприклад, бомбардувальник *B2707-300 (USA)* з максимальною з льотною масою у 341000 $\kappa\Gamma$, породжує звуковий удар у 150 Hm^{-2} , 100 Hm^{-2} та 60 Hm^{-2} відповідно на зльоті, польоті на сталій висоті і посадці. Якщо має місце фокусування, тоді величина ΔP_{max} може сягати 300 – 750 Hm^{-2} .

Для літальних апаратів різного класу зазначені характеристики носять орієнтовний характер, бо на теперішній час не існує більш-менш задовільної методики їх визначення. Певно, пояснення цьому факту полягає у відсутності в розрахункових моделях більшості суттєвих фізико-механічних характеристик середовища, зокрема, таких як зріст щільності повітря при виникненні стрибка, характеру розповсюдження стрибка щільності, наявної турбулентності у нижніх шарах атмосфери, ефекту фокусування внаслідок перепаду температур і швидкості вітру, а також деяких інших другорядних чинників.

Найбільш достатнє уявлення про звуковий удар у вигляді *N*– *подібної* хвилі дає спектральна щільність розподілу середньої енергії *W* процесу (рис. 3.3). Частотна характеристика, як видно, досягає свого максимуму на відносно низьких частотах – $\frac{0,55}{\Delta t}$. Характер розподілу енергії на високих частотах окреслений часом наростання тиску τ .

Рис. 3.3. Спектральна щільність розподілу середньої енергії процесу під час звукового удару $\Delta t = 350 \, mc, \ \tau = 8 \, mc$
Для оцінки дії звукового удару досить часто користуються показником *характерного надлишкового тиску*

$$\Delta P_c = \frac{\int\limits_{0}^{t} P \partial t}{\Delta t}.$$

Для *N*-*хвилі* при $\tau = 0$

$$\Delta P_{\rm max} = \Delta P_c \,.$$

Акустичне випромінювання високого рівня – вище за 160 ∂E – має місце, як правило, за двох режимів льотної експлуатації ЛА. *Перший режим* – це старт апарату з відкритих стартових позицій (рис. 3.4, *a*, *б*, *в*), або старт з платформи мобільного базування (рис. 3.4, ∂).

Другий режим – подолання звукового бар'єру. *N-хвиля* у цьому випадку може перевищувати в десять разів рівень акустичного тиску під час старту.

Аналізуючи динамічну взаємодію ударної хвилі з пружною конструкцією, слід осягнути природу явища починаючи із спрощеної розрахункової моделі, а саме, будувати її у вигляді сукупності абсолютно твердих тіл. Якщо має місце поліагрегатна система, являє інтерес не тільки, і не стільки, поступальний рух, а його межа у час закінчення перехідних процесів. Такі процеси мають місце не тільки в режимі подолання звукового бар'єру, вони спостерігаються, наприклад, при вивченні задач бомбометання на ураження підводної *цілі*.

Друга частина вивчення явища полягає в переводі розрахункових моделей в розряд пружно-податливих. Тут слід, перш за все, визначити яка складова звукового удару найбільш небезпечна у світі вирішуємих задач, а вже потім формувати аналітичне забезпечення. Нарешті, складаючи диференціальні рівняння динаміки комплектуючих ЛА, необхідно обов'язково вводити в розрахункові моделі Ейлерові сили інерції. Особливо актуальною ця теза стає за наявності носія кінетичного моменту.

Рис. 3.4. Відкриті стартові позиції: *а*) міжконтинентальна балістична ракета *SS-18, Сатана*, наземний старт; *б*) РН Зеніт – 3 SL, наземний старт; *в*) морський старт, платформа *Одисей*, *Алкантара*, *Бразилія*; *д*) зенітна керована ракета (*ANTI-AIRCRAFT GUIDED MISSILE*)

Досліди доводять, що пружно-напружений стан елементної бази з швидкообертовими маховиками приводить до виникнення збурюючих моментів, які сприймаються за корисний сигнал. Це породжує особливості динаміки при льотній експлуатації з усіма негативними наслідками позаштатного прояву *девіації* (*deviatio*), а в деяких випадках навіть дрейфу осі фігури гіроскопа.

Надзвукові крилаті ракети. Гіперзвукова зброя. Держава, яка зможе першою в світі вийти на серійне виробництво високоточних гіперзвукових ракет, створить для себе безумовну військову перевагу. Йдеться, перш за все, про стратегічний масштаб.

Для сучасних засобів ППО ракети, що рухаються із швидкістю 7 *M*, практично неуразливі. В свою чергу, вони здатні знищувати захищені за останнім словом техніки не тільки наземні, але і підводні об'єкти і комунікації (рис. 3.5).

Росія й *Індія* почали тестування спільно створеної надзвукової крилатої ракети *Брамос*, яка рухається зі швидкістю у два рази більшою за швидкість звуку (рис. 3.6). У заключній фазі знаходиться також нова її модифікація - *Брамос-2*, яка буде гіперзвуковою і досягне швидкості у 7 *М*.

MBDA CVS PERSEUS (Франція). Перспективна надзвукова крилата ракета. Швидкість – *3 М.* Довжина – *5 м*, маса бойової частини – *200 кГ*. Запуск з морських та повітряних платформ. Має відокремлюючу БЧ. Дальність до *300 км*

Гіперзвуковий апарат X-43. Рання подоба крилатої ракети X-51. Був третьою ступенню системи *Бомбардувальник В-52 – розгінна крилата ракета – X-43*. Оснащений двигуном ГППРД. В 2004 році встановив рекорд швидкості – 9,8 М

в)

Ракета X-51 використовує у своєму ГППРД паливо JP-7, яке відрізняється високою температурою запалення і термічною стійкістю, це паливо було винайдене спеціально для надзвукової авіації і використовувалося в двигунах Lockheed SR-71

д)

North American XB-70, Valkyrie – один із найекзотичних проектів американського авіапрому. Цей висотний бомбардувальник, розрахований на політ із швидкістю 3 *M*, вперше піднявся в повітря у 1964 р. Валькірія, як і експериментальна ракета X-51, має властивості хвилельоту. Опускаючи вниз закінцівки крила, бомбардувальник використовує компресійну *підйомну силу ударних хвиль*

Рис. 3.5. Надзвукові літальні апарати: а, б, в – ракети; д – висотний бомбардувальник

Подібного озброєння ще немає в інших державах світу. Ця ракета здатна стартувати з морської, наземної і повітряної платформ. Льотні випробування планується провести у 2017 році.

Західні спеціалісти відносяться до російської розробки скептично, вказуючи на неминучі проблеми, які пов'язані із створенням серійного гіперзвукового прямоточного повітряно-реактивного двигуна – ГППРД. Разом з тим, за даними американської зовнішньої розвідки, *Росія* успішно випробувала гіперзвуковий прямоточний повітряно-реактивний двигун на водневому паливі ще у 1983 році. Під час тестування дослідного зразка в *Казахстані*, швидкість польоту ракети сягала *6,4 М*. Слід пам'ятати, між іншим, що гіперзвукова зброя на базі ГППРД коренями своїми простягається в недалеке минуле феноменальних досягнень радянських КБ у сфері гіперзвукового руху.

Американцям, на своїй експериментальній ракеті ГППРД X-51 Waverider, вдалося ці проблеми з успіхом вирішити. Таким чином, ракета X-51 без клопоту дісталася швидкості у 6 М. Дослідний гіперзвуковий апарат X-43 навіть перевищив цей показник. Його швидкість склала 10 М.

Рис. 3.6. Надзвукова протикорабельна ракета Брамос

Найперше в світі випробування ГППРД відбулося в останні дні існування СРСР. Першість у створенні діючої моделі двигуна цього типу також належить СРСР. Головну частину робіт у цій сфері виконав ЦИАМ ім. Л.И. Баранова. Літаюча лабораторія для дослідів ГППРД створювалася на основі зенітної ракети 5B28 ЗРК С-200 і отримала назву Холод. Замість бойової частини в ракету поміщалася ємність для рідинного водню, системи управління і сам двигун Э-57. Перше випробування відбулося 28 листопада 1991 року на полігоні Сары – Шаган у Казахстані. Під час випробувань була досягнута швидкість 1855 mc^{-1} . В 1998 році випробування льотної лабораторії здійснювалися за контрактом з **NASA** [Новости космонавтики: 6-12 июня 2012 г. О. 489].

Про плани створення гіперзвукових крилатих ракет повідомило Російське Оборонне відомство. НПО "Загального машинобудування" спільно з індійськими спеціалістами розробило протикорабельную надзвукову ракету Brahmos, яка вважається самою швидкісною на сьогоднішній день крилатою ракетою з числа прийнятих на озброєння. Державне МКБ "Padyra" (Дубна) почало роботи по створенню гіперзвукової ракети. Не зайвим буде звернути увагу на природно виникаючу за гіперзвукового руху проблему – надмірне нагрівання ракети, що створює складності в управлінні її рухом.

Як альтернативу балістичним ракетам, *США* розроблюють гіперзвукові літальні апарати (ГЗЛА) у вигляді крилатої ракети, тобто з власним двигуном, зазвичай ГППРД, або у вигляді планіруючого снаряду, гіперзвукову швидкість якому надають маршеві ступені звичайних балістичних ракет. Так, протиракета *SM-3 Block IIA* дуже часто згадується у зв'язку з модернізацією американської ПРО. Вона, подібно до попередніх модифікації *SM-3* буде прийнятою на озброєння системи *ПРО* морського базування *Aegis*. Особливістю *Block IIA* є заявлена здатність перехвату на визначеній ділянці траєкторії міжконтинентальних балістичних ракет, що постане обгрунтуванням для внесення системи *Aegis* до складу стратегічної протиракетної оборони *США*.

Американські військові заявили в 2010 році, що на базі *SM-3 Block IIA* буде також створена ударна система великої дальності під кодовою назвою *Are Light*. Припускається, що маршеві ступені протиракети виведуть на гіперзвукову швидкість *планіруюий апарат*, який здатен пролетіти до *600 км* і доставити до *цілі* боєголовку масою *50-100 кГ*. Загальна дальність польоту всієї системи складе *3800 км*, причому на відрізку самостійного руху гіперзвуковий планер буде летіти не за балістичною траєкторією. Це створить можливість маневру з метою забезпечення точного наведення на об'єкт ураження. Дійсною родзинкою проекту можна вважати ту особливість, що завдяки уніфікації з *SM-3*, ракетна система *Are Light* в змозі розміщатися у тих же вертикальних пускових установках, що призначені для протиракет. Таких *"гнізд*" в розпорядженні *BMC США* біля *8500*. Причому, ніхто, окрім американських військовослужбовців, не обізнаний точно – чи розміщені на даному кораблі *протиракети*, чи зосереджена зброя *"глобального миттевого удару"*.

Гіперзвуковий прорив: DARPA замахнулася на 20 М. Гіперзвуковий планер. Ще у 2003 році головний "мозковий центр" американської оборонної промисловості – агентство *DARPA*, спільно із *BПС США*, сповістили про програму *FALCON*. В перекладі з англійської, це слово означає "*сокіл*" і, до того ж, є абревіатурою самої назви програми, яка буквально розшифровується як "*Прикладення сили при запуску з континентальної території США*".

Програма має на меті розробку не тільки розгонних ступеней, але також і розробку гіперзвукового планера в інтересах *GLOBAL PROMPT STRIKE*. Частиною цієї програми було створення безпілотного літака *HTV-3X* на гіперзвукових прямоточних двигунах.

Планер *Hypersonic Technology Vehicle-2 (HTV-2)*, що має вигляд розрізаного по довжині конуса, у квітні 2010 року пройшов льотні випробування за допомогою носія *Minotaur IV* і досяг балістичної швидкості у 20 *M*.

Апарат Advanced Hypersonic Weapon (AHW), у 2011 році, чимось схожий з HTV-2, успішно стартував у складі триступеневої розгонної системи з пускової площадки на острові *Кауаї Гавайського архіпелагу* і досяг випробувального полігону ім. Рейгана на атоллі *Кваджелейн*.

Американські конструктори паралельно ідеології гіперзвукового планера почали здійснювати розробку гіперзвукових крилатих ракет – саморушних апаратів. Створена корпорацією **BOEING**, ракета *X-51* під назвою *WAVERIDER* (*"осідлавша хвилю"*), завдяки своїй конструкції може користуватися енергією ударних хвиль гіперзвукового польоту для одержання додаткової підйомної сили. Планується прийняття цієї ракети на озброєння у 2017 році.

Немає сумніву, що в найближчому майбутньому надійні гіперзвукові технології на основі ГППРД з часом займуть своє місце не тільки в оборонній промисловості США, але і в інших країнах світу.

Гіперзвуковий літак. Оборонне наукове агентство DARPA (США) прийняло рішення щодо прискорення розробки гіперзвукових літальних апаратів в ході виконання програми *IH*, яка покликана вирішити технічні проблеми гіперзвукового польоту. Пентагон твердо дотримується позиції перспективності розробки гіперзвукової зброї, незаперечної здатності гіперзвукових технологій в

забезпеченні військового домінування США при вирішенні загальнонаціональних питань у сфері безпеки.

Перші повномасштабні випробування гіперзвукового літака *X-plane (HX)* плануються на 2016 рік. Літак буде запускатися ракетою-носієм, а після виконання польотного завдання – знижуватися на поверхню *Землі* за допомогою парашута (рис. 3.7). Це дозволить знизити технологічні ризики розробки, з одного боку, підвищити інтенсивність тестування перспективних систем, з іншого [http://www.cnews.ru/news/top/print.shtml?2012/07/12/496232].

Гіперзвуковий літак на швидкості 20 *М* в змозі доставити корисний вантаж за одну годину куди завгодно.

Гіперзвукові засоби нападу і зовнішньої розвідки мають більш положисту траєкторію руху, а також здатні з'являтися у повітряному просторі супротивника неочікувано, що дозволяє ефективно перебороти будь-яку систему ППО. В рамках програми *IH* накреслені масштабні дослідження гіперзвукових технологій за п'ятьма магістральними напрямами:

- системи теплозахисту;

-аеродинаміка;

–наведення;

-навігація і управління рухом;

-обладнання і двигуни.

На швидкості 20 M літак HX нагріється до температури, що більше за 2000 C. Це відповідає температурі в доменній печі. Таким чином, проблеми з перегрівом і наступаючим за ним руйнуванням обшивки напрочуд актуальні і стають причиною багатьох негараздів випробувань гіперзвукової ракети X-51 і гіперзвукового бомбардувальника HTV-2.

На сьогодні, ефективним засобом боротьби з перегрівом конструкції в космонавтиці, ракетобудуванні і навігації постає АБЛЯЦІЯ (від лат. *Ablation* – віднімання). Це спосіб ефективного зниження перегріву конструкційних елементів фюзеляжу, обтікачів або двигунів набігаючим потоком чи реактивним (тепловим)

факелом за рахунок відбору тепла на плавлення (чи випаровування), а може і на пряму сублімацію шару спеціального захисного матеріалу.

Рис. 3.7. Плануєма схема польоту експериментального гіперзвукового літака *X*plane (HX). Найбільший підйом траєкторії над поверхнею Землі складає 76 км

Головною метою програми *IH* є доведення до придатного к серійному виробництву рівня технологій гіперзвукового польоту. Внаслідок цього, американські військові отримають зброю глобального удару з неймовірною дальністю стрільби – *37 тисяч кілометрів*. Це дозволить *США* наносити удари зі своєї території по об'єктам, що знаходяться будь-де. При цьому слід зауважити, що ніякі сучасні засоби ППО не здатні знешкодити ракету, яка рухається зі швидкістю *20 М*. Виняток, складають лише лазери на вільних електронах – *FEL* – потужністю вище за *1 Мвт*. Однак, окрім *США*, масштабну їх розробку на теперішній час ніхто не проводить.

За півстоліття раніше, у розпал холодної війни, крилаті ракети вчисту програли балістичним на полі стратегічної зброї дальнього радіуса дії. І все ж, мабуть, в прийдешніх конфліктах головним аргументом стане не балістичний "*дрюк*", а стрімкий і підступний "*крилатий ніж*".

Коли, 21 липня 2011 року, була офіційно закрита програма *Space Shuttle*, тоді, разом з нею, скінчилася не тільки ера *пілотуємих* орбітальних човнів, але і, певною

мірою, вся епоха крилатої романтики, відомою безліччю спроб обернути літак на дещо більше, ніж просто літак. Давнішні спроби з установкою на крилату машину ракетного двигуна відносяться на кінець 20-х років попереднього століття. Ракетопланом був також і *X-1* (1947 рік) – перший в історії пілотуємий літальний апарат, який подолав швидкість звуку. Його фюзеляж мав форму збільшеної кулеметної кулі калібру 12,7 *мм*, а ракетний двигун спалював у своїй камері звичайний спирт за допомогою рідкого кисню.

Праматір'ю усіх крилатих ракет можна вважати ракету V-1 з пульсуючим повітряно-реактивним двигуном. Ойген Зінгер мріяв про наддальній антиподний ракетоплан-бомбардувальник. Вольф Троммсдорф віддавав перевагу стратегічній крилатій ракеті з прямоточним двигуном. Після війни, по обидві сторони "залізної завіси", були скопійовані Німецької розробки ракета V-1 і балістична ракета V-2. Американцям завжди був ближче "авіаційний" підхід, що, в кінці кінців, стало однією з основних причин початкового відставання Америки у сфері балістичних технологій. І це незважаючи на присутність самого Вернера фон Брауна.

Саме тому, і саме в США, була побудована фактично перша, і єдина з колинебудь прийнятих озброєння, ракета *SM-62* Snark на крилата 3 міжконтинентальним радіусом дії у 10000 км. Створювали її в стінах корпорації **NORTHROP** і фактично вона була безпілотним літаком. Цей "літак" можна було, за необхідності, навіть повернути із завдання, звичайно, якщо ще не відбувся відстріл БЧ, і посадити на аеродром. Потім використовувати повторно. Snark стартував за допомогою ракетних прискорювачів, потім включався авіаційний турбореактивний двигун і ракета починала свій шлях до мети. За 80 км до неї, на висоті 18 км, від снаряду, за допомогою піропатронів, відстрілювалася БЧ зі штатним 4-мегатонним термоядерним боєприпасом. Далі боєголовка рухалася до цілі по балістичній траєкторії, а та частина ракети, що залишилася, руйнувалась і оберталася на хмарку уламків, які здатні були зіграти роль хибних цілей для ППО.

Самостійний рух снаряду забезпечувала, новаторська для того часу, астрокорекція за допомогою трьох телескопів, що націлені на різні зірки. В 1961

році, ледве ставши на бойове чергування, *Снарки* були зняті з озброєння як морально застарілі. Військових не влаштовували ані досягаєма радянською системою ППО стеля у *17000 км*, ані, зрозуміло, швидкість, яка не перевищувала середньої швидкості сучасного лайнера. За цих умов, шлях до далекої *цілі* займав би довгі часи.

Дещо раніше був похований інший проект, який навіть не дожив до прийняття на озброєння. Мова йде про проект **NORTH AMERICAN** *SM-64 Navaho* – надзвукову крилату ракету міжконтинентальної дальності у *6500 км*. Вона користувалася стартовими ракетними прискорювачами і прямоточним повітрянореактивним двигуном для досягнення швидкості у 3700 *км/год*. Снаряд проектувався під термоядерну БЧ.

Відповіддю *СРСР* на *Navaho* стали розробки 1950-х років – проекти "Буря" (КБ Лавочкина) та "Буран" (КБ Мясищева). Засновані на спільній ідеології – ракетний прискорювач плюс *ППРД* – ці проекти відрізнялися тільки масою БЧ. *Буран* будувався як важкий носій, разом з тим, він так ані разу і не піднявся в повітря. *Буря* мала успішні пуски.

І радянські, і американські міжконтинентальні "*крилаті*" проекти канули в небуття з однієї і тієї ж причини – у другій половині 1950-х років означився серйозний прогрес в балістичних технологіях. Усім стало зрозуміло, що як міжконтинентальний носій ядерних зарядів, а також для освоєння космосу, простіше, ефективніше і, головне, дешевше використовувати балістичні ракети.

Поступово зійшла тема пілотуємих *орбітальних* і *суборбітальних* ракетопланів, представлених у американців проектами *Dyna Soar* та X-15, а в *СРСР* – розробками КБ Мясищева, Челомея і Туполева, включаючи славнозвісну "*Спираль*".

Але все, рано чи пізно, повертається на *"круги своя*". Інтерес до небалістичної ракетної зброї міжконтинентального радіуса дії став з новою силою проявлятися знову, вже у наші дні.

Декілька слів про наземні випробувальні комплекси гіперзвукових ЛА.

Приймаючи до уваги екстремальні експлуатаційні умови за гіперзвукового руху, необхідно створити наземні стенди, які б максимально точно відображали натурні умови. А саме, ударну хвилю, вібрацію фюзеляжу, стрибки градієнту тепла, *N-хвилю*, нарешті, параметри повітряного потоку на виході повітрозабірника *ГППРД* та деякі інші.

XS-1 – новий безпілотний шаттл DARPA. Оборонне наукове агентство *DARPA* планує витратити біля *\$800 млн* з 2015 року по 2018 рік на створення багаторазового космічного човника з унікальними можливостями. Про підготовку нового човника зробили заяву ще у 2013 році, але перспективи проекту до цього часу ще лишалися мінливими. Нарешті, призначені кошти і почалася практична реалізація проекту (рис. 3.8).

XS-1 зможе злітати в космос 10 разів за 10 днів, тобто один раз на добу на протязі не менше 10 днів. При цьому вартість запуска складає менше за *\$5 млн*, тобто, як мінімум, у 10 разів дешевше, ніж за допомогою звичайних ракет-носіїв. XS-1 в змозі вивести на орбіту невеличкий вантаж у 1,5-2 *T*, наприклад, у вигляді сузір'я *нано*- або *мікросупутників*. При цьому легкий композитний човник повинен розвинути швидкість до 10 *M* і вище, тобто це буде *гіперзвуковий апарат з великим* військовим потенціалом.

За заявою DARPA, технології, одержані завдяки програмі XS-1, дозволять перекласти задачу виведення невеличких супутників з ракет на багаторазові човники. Ці технології також будуть використані для проектування комерційних та урядових літальних апаратів різного призначення, включаючи гіперзвукові і суборбітальні літаки (рис. 3.9).

Спеціалісти *DARPA* плекають надію знайти підрядчика для розробки і побудови *XS-1* вже у 2015 році. Перший орбітальний політ прототипу заплановано на 2018 рік.

Рис. 3.8. По розміру, багаторазовий човник XS-1 буде порівнянний з винищувачем і зможе виводити на навколоземну орбіту 1,5-2 Т корисного вантажу

Програма XS-1, на відміну від багатьох аналогічних проектів, пропонує приватним компаніям самим скласти перелік перспективних технологій і конструкцій, котрі дозволять виконати лише тільки чотири вимоги замовника – *частота польотів, вартість запуска, вантажопідйомність, швидкість*. Тому, поки що, достеменно невідомо, яким же чином буде здійснюватися запуск XS-1 – за

Рис. 3.9. Технології, що розроблені для проекту XS-1, дозволять створювати надійні, відносно дешеві в експлуатації, космічні, суборбітальні та атмосферні гіперзвукові літальні апарати

допомогою ракети, за допомогою літака-носія або ж з дозаправкою у повітрі (як літак) [http://www.cnews.ru/news/line/index.shtml?2014/03/24/565441].

РОЗДІЛ 4. ПОПЛАВКОВИЙ ГІРОСКОП В ПОЛІ УЛЬТРАЗВУКОВОГО ПРОМЕНЯ ГІПЕРЗВУКОВОГО ПОЛЬОТУ

В системах керування гіперзвуковими ЛА, ракетами-носіями (РН), крилатими ракетами, широке застосування знайшли, так звані, поплавкові гіроскопи, конструктивно позбавлені основних вад «*сухих*» приладів – значних (і, головне, змінних) моментів сил сухого тертя на вихідній осі, а також неприпустимо високої чутливості до ударів та вібрації, особливо небажаних для інтегруючих гіроскопів. Головною відміною поплавкових модифікацій стала наявність зануреної у важку фторорганічну (питома вага $1,9\cdot10^3$ *Hм*⁻³) або хлорорганічну (питома вага $2,7\cdot10^3$ *Hм*⁻³) рідину рухомої частини приладу. Гіромотор розміщувався в герметичному, заповненому гелієм, або воднем, циліндричному поплавку, який поздовжніми цапфами встановлюється у зовнішньому, також герметичному, коаксіальному коловому циліндрі, який виконує функції корпуса приладу. Опори рухомої частини в деяких випадках виконуються на каменях.

Таке технічне рішення характерне для цілого ряду конструкцій. *Плаваючі* прилади, на відміну від *поплавкових*, не мають залишкової маси.

Зазор між бічною поверхнею поплавка і корпусом надто малий і складає приблизно 0,2 *мм* у радіальному напрямку. Велика в'язкість рідини і мала величина робочого зазору дозволяють забезпечити необхідний коефіцієнт демпфірування в інтегруючому гіроскопі.

Усі наступні висновки будемо робити орієнтуючись на конкретну технічну реалізацію серійно випускаємого авіаційною промисловістю поплавкового приладу. Наприклад, на гіроскопічний датчик кутових швидкостей, уніфікований, класу ДУСУ2-30В, який призначений для використання в літальних апаратах тривалої дії. За принципом дії прилад являється інерціальним, тобто не потребує зв'язку із зовнішнім середовищем. Динамічні властивості датчика описуються коливальною

ланкою. Технічне виконання ДУСУ являє собою поліагрегатну структуру. За своїм цільовим призначенням ДУСУ підпорядкований виміру кутової швидкості гіперзвукового ЛА. Зовнішній вид приладу наведений на рис. 4.1. Діапазон виміру кутових швидкостей складає ± 30 град с⁻¹. Поріг чутливості датчика ДУСУ2-30B – близько 0,45 град с⁻¹.

Рис. 4.1. Зовнішній вид промислового зразкаа гіроскопічного датчика кутових швидкостей класу ДУСУ2-30В

Стислі технічні характеристики гіроскопічного датчика кутових швидкостей уніфікованого

а) Датчик нормально працює від джерел живлення: 3-х фазним змінним струмом напругою *36 В* частотою *400 Гц* (на гіромотор) та постійним струмом напругою *5÷30 B* (на потенціометр).

Допускається живлення потенціометра змінним струмом напругою 5÷30 В (діюче значення) частотою до 2000 Гц.

б) Час готовності датчика до роботи не більш 50 секунд. При 10-секундному форсованому живлені 54±3 В (для датчиків з живленням гіромоторів 36 В 1000 Гц) час готовності не перевищує 20 секунд.

в) Споживаємий змінний струм на фазу не перевищує 0,3 А.

г) Поріг чутливості датчика не більше 0,45 град c^{-1} .

d) Діапазон виміру кутових швидкостей ± 30 град c^{-1} .

е) Залежність вихідного сигналу від кутової швидкості при живленні потенціометра напругою 27 В зазначена в Паспорті на вироб.

При живленні потенціометра іншою, ніж 27 В, напругою в межах 5÷30 В, вихідний сигнал перераховується за формулою –

$$U_{BUX1} = \frac{U_{\mathcal{K}1}}{U_{\mathcal{K}}} U_{BUX}$$

де $U_{\mathcal{K}}$ – напруга живлення потенціометра 27 *B*; $U_{\mathcal{K}1}$ – напруга живлення, відмінна від 27 *B* в межах 5÷30 *B*; U_{BUX} – вихідний сигнал при живленні потенціометра напругою 27 *B*.

 \mathscr{K}) Датчик працює в діапазоні температур від $-60^{\circ}C$ до $+60^{\circ}C$.

з) Датчик вібростійкий в діапазоні частот від 5 Ги до 2000 Ги з перевантаженням до 30 g.

і) Датчик стійкий до дії перевантажень до 35 g.

к) Частота власних недемпфірованих коливань знаходиться в межах 14 – 21 Гц.

л) Опір потенціометра 800 Ом $\pm 20\%$.

м) Відношення амплітуд через половину періоду в діапазоні температур від $-60^{\circ}C$ до $+60^{\circ}C$ дорівнює $0,05\div0,5$.

н) Припустимий струм в колі навантаження потенціометра не перевищує 0,03 А.

о) Маса датчика не більше 4,2 Н.

Електрична схема датчика класу ДУСУ

При підключенні до моментного датчика (контакти 9 та 8) постійного струму = 27 *B*, полярність "–" на контакті 9 та "+" на контакті 8 еквівалентна дії на датчик кутової швидкості в напрямку " *за стрілкою годинника*".

Вихідний сигнал датчика за живлення потенціометра постійним струмом = 27 В (дані ТУ)

Таблиця 4.1

град с ⁻¹	0	5	10	15	20	30	90
Вихідний	$0\pm 0,2$ тільки за						
сигнал при	діапазону вимірів						
виготовленні	$+6$ and c^{-1}	$2,25\pm 0,25$	$4,5\pm 0,3$	$6,75\pm0,4$	$9 \pm 0, 4$	13, 5-0, 7	13, 5-0, 7
та прийманні	±0 cpube						
за нормальної	$0\pm 0,15$ інші						
температури	діапазони						

Таблиця 4.2

град с-1	0	5	10	15	20	30	90
Вихідний сигнал за температури -60 ⁰ та +60 ⁰ за весь термін експлуатації	0±0,3	2,25±0,4	4,5±0,6	6,75±0,65	9±0,8	13,5±1,0	13,5±1,0

Технічні характеристики ДУСУ за нормальної температури

Таблиця 4.3

					3ac	по	Залежи тенціс	ність в эметра	ихідн напр	ного с угою шви	игна 27 Е дкіс	алу () 8 від ть <i>гр</i>	у вол кутс ад с	пьтах)вої ш -1) при цвидн	при живленні идкості, кутова ходу стрілки одинника 15 20 30 90 15 27 57 50 90		ва
зревірки на перевірки цпрац. годин овности		ливості сий спожив		За стрілкою годинника					0		Прот	ги хо, годи	ду ст нник	рілки а]			
Дата пере	Причина	Кіл. відпј	Час готов	Поріг чу	Струм, ян ripoмотој	90	30	20	15	10	5	U	5	10	15	20	30	90
			24 <i>c</i>	0,45 град с ⁻¹	0,15 A	13,49	13,45	60'6	6,84	4,61	2,30	0,10	2,24	4,55	6,91	9,14	13,41	13,45

Гарантійні зобов'язання підприємства-виготовлювача

Підприємство-виготовлювач гарантує безвідмовну роботу датчика терміном у *150 годин* на протязі 12 років, до яких входять:

 Термін збереження в складі об'єкта до 11 років, в тому числі 6 років збереження і експлуатації в складі об'єкта на відкритих стартових позиціях в природних умовах.

2. Термін збереження в складських приміщеннях з урахуванням транспортування дорівнює 1 року.

Конструкцією датчика гарантується:

a) безвідмовна робота приладу в умовах зміни тиску оточуючого середовища від 900 мм рт. ст. до 10⁻⁶ мм рт. ст.;

б) безвідмовна робота за температури оточуючого середовища лінійно змінною від +70 до +200 \degree C за 7 *хв*. (тільки для датчиків з живленням гіромотора ~ 36 В 400 Гц). При цьому час неперервної роботи датчика за температури +70 \degree C – не перевищує 15 *хв*.;

в) безвідмовна робота датчика кутових швидкостей в ревербераційному просторі акустичних шумів частотою від 100 Гц до 10000 Гц;

г) величина максимальної похибки не більше 2% від напруги живлення потенціометра.

Тестування датчика кутових швидкостей на функціональну здатність проводилося на ультразвуковій установці **MINI ULTRASONIC CLEANER MODEL 3560** (рис. 4.2). Ультразвуковий промінь генерується п'єзокерамічною пластиною, що надає можливість для створення практично без градієнтного, вздовж фронту, випромінювання.

Стислі Технічні характеристики ультразвукової установки, "модель 3560"

- джерело живлення напругою 220 В (110 В) і частотою 50 Гц (60 Гц);

– подвійний вибір режиму вібрації потужністю 30 Bm (50 Bm);

- робоча частота 42 кГц;
- час роботи *1 30 хв* (можливе регулювання);
- налагодження режимів роботи кнопкове;
- спосіб виведення інформації здійснюється відтворенням на безкристалічному дисплеї;
- випромінювач плоский, п'єзокерамічний;
- інтелектуальний привод MCU;
- установка використовується тільки за наявності води у ванночці.

Рис. 4.2. Ультразвукова установка, модель 3560

§ 4.1. Визначення відповідності паспортним вимогам

Відповідність датчика кутових швидкостей уніфікованого ДУСУ2-30В на функціональну здатність проводилася опромінюванням оболонкової частини корпуса приладу достатньо широким звуковим променем (рис. 4.3). Датчик занурювався, згідно вимогам на експлуатацію ультразвукової установки **МІNI** **ULTRASONIC CLEANER MODEL 3560**, у наповнену водою ванночку і жорстко фіксувався на штативі за допомогою кріплень. Вихідний сигнал приладу фіксувався вимірювальною апаратурою у двох режимах – за відсутності живлення на гіромоторі і при робочому його стані.

Рис. 4.3. Зовнішній вигляд іспитового стенда

Порівняльний аналіз реалізацій вихідного сигналу надасть змогу, з одного боку, визначити ступінь впливу ультразвукового променя на, власне, поліагрегатний підвіс гіроскопа, а з іншого – визначити ступінь впливу і динаміку розвитку у часі додаткової похибки $\Delta \omega$ виміру кутової швидкості літального апарата за гіперзвукового польоту. Датчик *ДУСУ* встановлювався на штативі таким чином, щоб поворотом корпуса приладу відносно своєї поздовжньої осі на фіксований кут φ можна було б з'ясувати найбільш небезпечний напрям пройдешнього ультразвукового променя при льотній експлуатації.

Після виходу гіроприладу на тепловий режим, реєструвався, "нуль" вихідного

сигналу потенціометра в аналоговій формі (рис. 4.4) і в кількісному еквіваленті (табл. 4.4). Для зручності, "*нуль*" датчика кута записаний у долях похибки $\Delta \omega$ приладу.

Таблиця 4.4

Opie	нтація корпуса приладу	$\varphi = 0^0$			Гіроскоп " <i>OFF</i> "		
t, <i>c</i>	Сигнал потенціо- метра, <i>град с</i> ⁻¹	t, <i>c</i>	Сигнал потенціо- метра <i>град с</i> ⁻¹	t, <i>c</i>	Сигнал потенціомет- ра, <i>град с</i> -1	t, <i>c</i>	Сигнал потенціо- метра, <i>град с</i> ⁻¹
0,5	-0,0069	15,5	-0,0069	30,5	-0,0069	45,5	-0,0069
1	-0,0069	16	-0,0069	31	-0,0069	46	-0,0069
1,5	-0,0069	16,5	-0,0069	31,5	-0,0069	46,5	-0,0069
2	-0,0069	17	-0,0069	32	-0,0069	47	-0,0069
2,5	-0,0069	17,5	-0,0069	32,5	-0,0069	47,5	-0,0069
3	-0,0069	18	-0,0069	33	-0,0069	48	-0,0069
3,5	-0,0069	18,5	-0,0069	33,5	-0,0069	48,5	-0,0069
4	-0,0069	19	-0,0069	34	-0,0069	49	-0,0069
4,5	-0,0069	19,5	-0,0069	34,5	-0,0069	49,5	-0,0069
5	-0,0069	20	-0,0069	35	-0,0069	50	-0,0069
5,5	-0,0069	20,5	-0,0069	35,5	-0,0069	50,5	-0,0069
6	-0,0069	21	-0,0069	36	-0,0069	51	-0,0069
6,5	-0,0069	21,5	-0,0069	36,5	-0,0069	51,5	-0,0069
7	-0,0069	22	-0,0069	37	-0,0069	52	-0,0069
7,5	-0,0069	22,5	-0,0069	37,5	-0,0069	52,5	-0,0069
8	-0,0069	23	-0,0069	38	-0,0069	53	-0,0069
8,5	-0,0069	23,5	-0,0069	38,5	-0,0069	53,5	-0,0069
9	-0,0069	24	-0,0069	39	-0,0069	54	-0,0069
9,5	-0,0069	24,5	-0,0069	39,5	-0,0069	54,5	-0,0069
10	-0,0069	25	-0,0069	40	-0,0069	55	-0,0069
10,5	-0,0069	25,5	-0,0069	40,5	-0,0069	55,5	-0,0069
11	-0,0069	26	-0,0069	41	-0,0069	56	-0,0069
11,5	-0,0069	26,5	-0,0069	41,5	-0,0069	56,5	-0,0069
12	-0,0069	27	-0,0069	42	-0,0069	57	-0,0069
12,5	-0,0069	27,5	-0,0069	42,5	-0,0069	57,5	-0,0069
13	-0,0069	28	-0,0069	43	-0,0069	58	-0,0069
13,5	-0,0069	28,5	-0,0069	43,5	-0,0069	58,5	-0,0069
14	-0,0069	29	-0,0069	44	-0,0069	59	-0,0069
14,5	-0,0069	29,5	-0,0069	44,5	-0,0069	59,5	-0,0069
15	-0,0069	30	-0,0069	45	-0,0069	60	-0,0069

Рис. 4.4. "Нуль" реалізації вихідного сигналу

4.1.1. Вплив ультразвукових хвиль на підвіс гіроскопа

Обмежимося вісьмома значеннями кута повороту корпуса ДУСУ відносно своєї поздовжньої осі, тобто через кожні $\frac{\pi}{4} pad$, починаючи з умовного нуля (позначимо його $\varphi = 0^0$). Тонкою лінією на діаграмах вихідного сигналу датчика кутових швидкостей позначимо "*зсув нуля*" приладу за виключеного живлення гіромотора. Жирною лінією представлений вихідний сигнал при включеному живленні гіромотора (рис. 4.5 – рис. 4.12). Перші п'ять – сім секунд і останні п'ять – сім секунд реалізацій можна виключити з розгляду, бо це час виходу на номінальний режим гіроскопа випромінювача та час зупинки, відповідно. Прилад і випромінювач працюють в нестаціонарному режимі.

Гідроагрегат виключений. Як видно, вихідний сигнал датчика кутових швидкостей в ультразвуковому промені зазнає стохастичної зміни за величиною (рис. 4.6, рис. 4.8, рис. 4.9, рис. 4.10, рис. 4.12) і за знаком (рис. 4.5, рис. 4.6, рис. 4.9, рис. 4.12). Величина *"зсуву нуля"* може рости до 0,5 *град с*⁻¹ (в перерахунку на кутову швидкість). В положенні $\varphi = 0^0$ *"зсув нуля"* практично відсутній, точніше, знаходиться нижче порогу чутливості датчика.

Незначні зміни за знаком у вихідному сигналі мають місце при $\varphi = 0^{0}$ (рис. 4.5). Натомість при $\varphi = 270^{0}$, вони не тільки змінні за знаком, але мають

суттєвий розкид за амплітудою (рис. 4.11). Якщо кут $\varphi = 225^{\circ}$, розкид значень більше за 0,1 *град* c^{-1} , але незмінного знаку (рис. 5.10).

Очевидно, що наявний "*зсув нуля*" датчика ДУСУ в ультразвуковому промені за відключеного гіромотору обумовлений інтегральною реакцією комплектуючих підвісу гіроскопа на опромінювання. В першу чергу, це стосується струмознімачів потенціометра, які мають вид консолі.

Не останню роль відіграють тут нелінійні коливання поверхні "поплавка", а також виникаючі зони *каустики*, які є наслідком резонансних явищ хвильового співпадання.

Таблиці числових значень вихідного сигналу ДУСУ для різних кутових положень приладу дають змогу (наприклад, за тривалості дії ультразвукового променя у 60 секунд) оцінити характер розвитку у часі, а також, власне, величину "*зсуву нуля*" приладу в полі ультразвукового випромінювання (табл.4.5 – табл. 4.12).

Гідроагрегат включений. Звісно, що за цих умов будуть мати місце серйозні зміни вихідного сигналу приладу, обумовлені гіроскопічною реакцією. Так, якщо $\varphi = 0^{0}$, похибка приладу $\Delta \omega$ збільшується практично у десять разів і змінює знак (рис. 4.5). Максимальна її величина досягає $\Delta \omega_{max} = 1 \, cpad \, c^{-1}$. Середня величина дорівнює $\Delta \omega_{cp} = 0,7 \, cpad \, c^{-1}$ (табл. 4.13).

Якщо $\varphi = 45^{\circ}$, середня величина похибки $\Delta \omega_{cp}$ і її максимальне значення $\Delta \omega_{max}$ трохи зменшуються за величиною, але змінюють знак на протилежний (рис. 4.6):

$$\Delta \omega_{cp} \approx +0,55 \ epad \ c^{-1}$$
, $\Delta \omega_{max} \approx +0,72 \ epad \ c^{-1}$ (табл. 4.14).

Поворот корпуса ДУСУ на кут $\varphi = 90^{\circ}$, дозволяє практично стабілізувати у часі похибку приладу на рівні $\Delta \omega_{cp} \approx -0,45 \ cpad \ c^{-1}$ (табл. 4.15), (рис. 4.7).

Поворот корпуса *ДУСУ* на кут $\varphi = 135^{\circ}$ дозволяє середню похибку звести до величини $\Delta \omega \approx -0.05 \ cpad \ c^{-1}$. Разом з тим, розкид значень буде становити

 $\pm 0,2$ град c^{-1} (табл. 4.16). Крім того, має місце суперпозиція довгоперіодної і короткоперіодної складових (рис. 4.8).

За кута $\varphi = 180^{\circ}$, вихідний сигнал ДУСУ має мінімальний розкид за амплітудою, а середня похибка не перевищує $\Delta \omega_{cp} \approx -0,45 \ cpad \ c^{-1}$ (рис. 4.9), (табл. 4.17).

Поворот корпуса $\mathcal{A}VCV$ на кут $\varphi = 225^{\circ}$ практично не змінює картину (рис. 4.10). Це ж відноситься і до чисельних значень (табл. 4.18).

За кутів повороту $\varphi = 270^{\circ}$ та $\varphi = 315^{\circ}$ діаграма похибки не змінюється (рис. 4.11, рис. 4.12). Середнє значення теж не змінюється

$$\Delta \omega_{cn} \approx -0,45 \ epad \ c^{-1}$$

і залишається стабільним у часі (табл. 4.19). В той же час, спостерігається поява невеликого розкиду (табл. 4.20).

Отже, кутова орієнтація корпуса ДУСУ при значеннях $\varphi = 180^{\circ}, 225^{\circ}, 270^{\circ}$ та 315° практично не впливає на діаграму розвитку похибки приладу у часі (рис. 4.9 – рис. 4.12).

Рис. 4.5. Вихідний сигнал ДУСУ при $\varphi = 0^\circ$: тонка лінія – гіроагрегат виключений; жирна лінія – гіроагрегат включений

Рис. 4.6. Вихідний сигнал ДУСУ при $\varphi = 45^{\circ}$: тонка лінія – гіроагрегат виключений; жирна лінія – гіроагрегат включений

Рис. 4.8. Вихідний сигнал ДУСУ при $\phi = 135^{\circ}$: тонка лінія – гіроагрегат виключений; жирна лінія – гіроагрегат включений

Рис. 4.9. Вихідний сигнал ДУСУ при $\varphi = 180^\circ$: тонка лінія – гіроагрегат виключений; жирна лінія – гіроагрегат включений

Рис. 4.10. Вихідний сигнал ДУСУ при $\varphi = 225^{\circ}$: тонка лінія – гіроагрегат виключений; жирна лінія – гіроагрегат включений

Рис. 4.11. Вихідний сигнал ДУСУ при $\varphi = 270^\circ$: тонка лінія – гіроагрегат виключений; жирна лінія – гіроагрегат включений

Рис. 4.12. Вихідний сигнал ДУСУ при $\varphi = 315^{\circ}$: тонка лінія – гіроагрегат виключений; жирна лінія – гіроагрегат включений

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 0^0$

ко	Орієнтація	$\varphi = 0^0$	Об'єм	V=400 ml	Гіроскоп	" OFF "	
<i>t, c</i>	Вихідна величина, град с ⁻¹	t, c	Вихідна величина, град с ⁻¹	<i>t</i> , <i>c</i>	Вихідна величина, град с ⁻¹	<i>t, c</i>	Вихідна величина, <i>град</i> с ⁻¹
0,5	-0,1311	15,5	0,0667	30,5	0,0115	45,5	-0,0069
1	-0,1311	16	0,0621	31	0,0069	46	-0,0184
1,5	-0,1311	16,5	0,0874	31,5	0,0069	46,5	0,0069
2	0,0391	17	0,0897	32	0	47	-0,0184
2,5	0,0828	17,5	0,0644	32,5	0,0023	47,5	-0,0115
3	0,0874	18	0,069	33	0,0069	48	-0,0138
3,5	0,1426	18,5	0,0759	33,5	0,0046	48,5	-0,0299
4	0,0874	19	0,0759	34	0,0161	49	-0,0299
4,5	0,1012	19,5	0,115	34,5	0,0023	49,5	-0,023
5	0,1219	20	0,0759	35	0,0069	50	-0,023
5,5	0,1104	20,5	0,0391	35,5	-0,0023	50,5	0
6	0,0736	21	0,0897	36	-0,0092	51	0
6,5	0,0759	21,5	0,0437	36,5	-0,0161	51,5	-0,0115
7	0,0621	22	0,0368	37	-0,0069	52	-0,0299
7,5	0,0644	22,5	0,0345	37,5	-0,0046	52,5	-0,0161
8	0,0805	23	0,0253	38	0	53	-0,0161
8,5	0,0989	23,5	0,0207	38,5	-0,0046	53,5	-0,0046
9	0,092	24	0,0253	39	-0,0138	54	-0,023
9,5	0,1058	24,5	0,0414	39,5	-0,0046	54,5	-0,0138
10	0,0966	25	0,0322	40	0,0069	55	-0,0161
10,5	0,0736	25,5	0,0437	40,5	0	55,5	-0,0184
11	0,1035	26	0,046	41	-0,0023	56	-0,0345
11,5	0,0483	26,5	0,0345	41,5	-0,0207	56,5	-0,0184
12	0,023	27	0,0322	42	-0,0161	57	0,0138
12,5	0,0322	27,5	0,0207	42,5	-0,0207	57,5	-0,0207
13	0,046	28	0,0115	43	-0,0092	58	-0,0483
13,5	0,0437	28,5	-0,0023	43,5	-0,0161	58,5	-0,0598
14	0,0483	29	-0,0092	44	0,0184	59	-0,0115
14,5	0,0736	29,5	-0,0069	44,5	0,0069	59,5	-0,023
15	0,0621	30	0,0253	45	-0,0161	60	-0,0092

кор	Орієнтація опуса приладу	$\varphi = 45^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>OFF</i> "	
<i>t</i> , <i>c</i>	Вихідна величина, град с ⁻¹	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,1311	15,5	-0,3588	30,5	-0,3864	45,5	-0,4301
1	-0,3956	16	-0,4991	31	-0,3151	46	-0,3726
1,5	-0,2714	16,5	-0,4393	31,5	-0,4968	46,5	-0,3059
2	-0,3749	17	-0,4531	32	-0,3082	47	-0,4278
2,5	-0,3588	17,5	-0,5152	32,5	-0,3289	47,5	-0,3887
3	-0,3542	18	-0,46	33	-0,3266	48	-0,4048
3,5	-0,299	18,5	-0,4991	33,5	-0,3542	48,5	-0,4531
4	-0,3979	19	-0,4554	34	-0,3174	49	-0,414
4,5	-0,3105	19,5	-0,4646	34,5	-0,3335	49,5	-0,4232
5	-0,3864	20	-0,3772	35	-0,3036	50	-0,4784
5,5	-0,368	20,5	-0,3818	35,5	-0,299	50,5	-0,3864
6	-0,437	21	-0,3496	36	-0,3634	51	-0,4002
6,5	-0,4117	21,5	-0,4255	36,5	-0,3519	51,5	-0,4807
7	-0,3611	22	-0,5198	37	-0,3128	52	-0,4347
7,5	-0,3933	22,5	-0,5083	37,5	-0,3726	52,5	-0,4853
8	-0,3013	23	-0,3841	38	-0,3795	53	-0,5244
8,5	-0,368	23,5	-0,368	38,5	-0,3818	53,5	-0,437
9	-0,4761	24	-0,4278	39	-0,3611	54	-0,4048
9,5	-0,4002	24,5	-0,4462	39,5	-0,3197	54,5	-0,4209
10	-0,4347	25	-0,4232	40	-0,3588	55	-0,4577
10,5	-0,4646	25,5	-0,3956	40,5	-0,3128	55,5	-0,3841
11	-0,3542	26	-0,4922	41	-0,276	56	-0,4393
11,5	-0,4094	26,5	-0,3749	41,5	-0,2921	56,5	-0,4393
12	-0,391	27	-0,322	42	-0,3772	57	-0,437
12,5	-0,299	27,5	-0,3151	42,5	-0,3795	57,5	-0,4485
13	-0,4002	28	-0,3818	43	-0,4071	58	-0,3404
13,5	-0,3174	28,5	-0,3542	43,5	-0,3634	58,5	-0,4071
14	-0,3151	29	-0,2484	44	-0,3956	59	-0,4324
14,5	-0,3726	29,5	-0,276	44,5	-0,391	59,5	-0,5106
15	-0,3887	30	-0,3059	45	-0,3381	60	-0,483

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 45^{\circ}$

кор	Орієнтація пуса приладу	$\varphi = 90^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>OFF</i> "	
<i>t</i> , <i>c</i>	Вихідна величина, град с ⁻¹	<i>t, c</i>	Вихідна величина, град с ⁻¹	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	t, C	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,1035	15,5	-0,1104	30,5	-0,1058	45,5	-0,1265
1	-0,1104	16	-0,1196	31	-0,1081	46	-0,1288
1,5	-0,1058	16,5	-0,1242	31,5	-0,0897	46,5	-0,1288
2	-0,1173	17	-0,1081	32	-0,1035	47	-0,1265
2,5	-0,1081	17,5	-0,115	32,5	-0,0345	47,5	-0,1288
3	-0,115	18	-0,0943	33	-0,0506	48	-0,1288
3,5	-0,1173	18,5	-0,0805	33,5	-0,1058	48,5	-0,1265
4	-0,1173	19	-0,046	34	-0,115	49	-0,1265
4,5	-0,1219	19,5	-0,0759	34,5	-0,1127	49,5	-0,1265
5	-0,1127	20	-0,1081	35	-0,115	50	-0,1288
5,5	-0,115	20,5	-0,0805	35,5	-0,1219	50,5	-0,1242
6	-0,1219	21	-0,0759	36	-0,1242	51	-0,1265
6,5	-0,1334	21,5	-0,0805	36,5	-0,1242	51,5	-0,1265
7	-0,1173	22	-0,0943	37	-0,1196	52	-0,1288
7,5	-0,1219	22,5	-0,1012	37,5	-0,1288	52,5	-0,1265
8	-0,0966	23	-0,1219	38	-0,1265	53	-0,1288
8,5	-0,115	23,5	-0,1242	38,5	-0,1242	53,5	-0,1288
9	-0,1219	24	-0,115	39	-0,1288	54	-0,1311
9,5	-0,1219	24,5	-0,1104	39,5	-0,1311	54,5	-0,1288
10	-0,1173	25	-0,0759	40	-0,1426	55	-0,1288
10,5	-0,1127	25,5	-0,1035	40,5	-0,1288	55,5	-0,1311
11	-0,1012	26	-0,1035	41	-0,1288	56	-0,1288
11,5	-0,1196	26,5	-0,1035	41,5	-0,1288	56,5	-0,1288
12	-0,1196	27	-0,0828	42	-0,1311	57	-0,1288
12,5	-0,1219	27,5	-0,0828	42,5	-0,1311	57,5	-0,1288
13	-0,1104	28	-0,1081	43	-0,1288	58	-0,1288
13,5	-0,1035	28,5	-0,092	43,5	-0,1288	58,5	-0,1173
14	-0,1081	29	-0,1127	44	-0,1288	59	-0,1265
14,5	-0,0989	29,5	-0,092	44,5	-0,1288	59,5	-0,1173
15	-0,1219	30	-0,1196	45	-0,1288	60	-0,1242

"Зсув нуля" ДУСУ в ультразвуковому промені: $\phi = 90^{\circ}$

ког	Орієнтація пуса прилалу	$\varphi = 135^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>OFF</i> "	
t, c	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, град с ⁻¹	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	t, c	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,1679	15,5	-0,1219	30,5	-0,1265	45,5	-0,1495
1	-0,1449	16	-0,1288	31	-0,1219	46	-0,1449
1,5	-0,115	16,5	-0,1357	31,5	-0,1288	46,5	-0,1909
2	-0,1173	17	-0,1012	32	-0,1357	47	-0,1357
2,5	-0,1173	17,5	-0,1334	32,5	-0,1127	47,5	-0,1288
3	-0,1196	18	-0,1357	33	-0,1127	48	-0,1265
3,5	-0,1173	18,5	-0,1357	33,5	-0,1104	48,5	-0,1334
4	-0,1173	19	-0,1219	34	-0,1127	49	-0,1288
4,5	-0,1265	19,5	-0,1173	34,5	-0,1104	49,5	-0,1334
5	-0,1196	20	-0,1311	35	-0,1196	50	-0,1311
5,5	-0,1219	20,5	-0,1196	35,5	-0,1196	50,5	-0,1541
6	-0,1196	21	-0,1449	36	-0,1173	51	-0,1334
6,5	-0,1127	21,5	-0,1334	36,5	-0,1196	51,5	-0,1403
7	-0,115	22	-0,1265	37	-0,1196	52	-0,1426
7,5	-0,1173	22,5	-0,1242	37,5	-0,1219	52,5	-0,1564
8	-0,1127	23	-0,1265	38	-0,1242	53	-0,1426
8,5	-0,115	23,5	-0,1265	38,5	-0,1173	53,5	-0,138
9	-0,115	24	-0,1265	39	-0,1196	54	-0,1311
9,5	-0,1196	24,5	-0,1311	39,5	-0,1242	54,5	-0,1403
10	-0,1196	25	-0,1265	40	-0,1288	55	-0,1334
10,5	-0,0989	25,5	-0,1265	40,5	-0,1265	55,5	-0,1403
11	-0,1242	26	-0,1288	41	-0,1242	56	-0,1334
11,5	-0,1196	26,5	-0,1265	41,5	-0,1196	56,5	-0,1311
12	-0,1357	27	-0,1219	42	-0,1265	57	-0,1311
12,5	-0,1219	27,5	-0,1219	42,5	-0,1219	57,5	-0,1311
13	-0,1196	28	-0,1173	43	-0,1311	58	-0,1541
13,5	-0,1173	28,5	-0,1219	43,5	-0,1196	58,5	-0,1334
14	-0,1311	29	-0,1288	44	-0,1288	59	-0,1334
14,5	-0,1265	29,5	-0,1288	44,5	-0,1219	59,5	-0,1449
15	-0,1242	30	-0,1311	45	-0,1288	60	-0,1357

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 135^{\circ}$

Ор корпу	оієнтація са прилалу	$\varphi = 180^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>OFF</i> "	
<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>
0,5	0,0575	15,5	0,1012	30,5	0,2553	45,5	0,1978
1	0,1748	16	0,1541	31	0,1357	46	0,115
1,5	0,2369	16,5	0,0529	31,5	0,138	46,5	0,0897
2	0,1472	17	0,0759	32	0,1311	47	0,0782
2,5	0,0874	17,5	0,1541	32,5	0,1472	47,5	0,1955
3	0,1702	18	0,0805	33	0,0851	48	0,1886
3,5	0,1932	18,5	0,1725	33,5	0,0897	48,5	0,161
4	0,2346	19	0,1495	34	0,1311	49	0,1955
4,5	0,2001	19,5	0,115	34,5	0,2852	49,5	0,1196
5	0,2116	20	0,1518	35	0,1288	50	0,1725
5,5	0,2024	20,5	0,1679	35,5	0,0874	50,5	0,1426
6	0,1357	21	0,161	36	0,092	51	0,1771
6,5	0,1311	21,5	0,1449	36,5	0,1357	51,5	0,1656
7	0,1173	22	0,1357	37	0,1449	52	0,1564
7,5	0,1173	22,5	0,1794	37,5	0,1334	52,5	0,2392
8	0,0805	23	0,2507	38	0,0828	53	0,1656
8,5	0,0966	23,5	0,1748	38,5	0,0828	53,5	0,1495
9	0,1725	24	0,1472	39	0,115	54	0,0782
9,5	0,1104	24,5	0,1127	39,5	0,1357	54,5	0,0851
10	0,0759	25	0,1265	40	0,1541	55	0,1081
10,5	0,092	25,5	0,1587	40,5	0,1334	55,5	0,1403
11	0,0782	26	0,1541	41	0,115	56	0,1127
11,5	0,0943	26,5	0,1334	41,5	0,1426	56,5	0,1334
12	0,0782	27	0,1334	42	0,1633	57	0,092
12,5	0,1058	27,5	0,2461	42,5	0,1748	57,5	0,0805
13	0,0506	28	0,1541	43	0,1794	58	0,0759
13,5	0,1035	28,5	0,1058	43,5	0,2806	58,5	0,1932
14	0,1311	29	0,1173	44	0,2047	59	0,1403
14,5	0,1058	29,5	0,1265	44,5	0,1035	59,5	0,1104
15	0.0943	30	0.1518	45	0.1702	60	0.1334

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 180^{\circ}$

О Корп	рієнтація уса приладу	$\varphi = 225^{\circ}$	Об'єм	V=400 ml	Гіроскоп	<i>"OFF "</i>	
<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	t, c	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,0851	15,5	-0,4738	30,5	-0,2507	45,5	-0,4232
1	-0,5405	16	-0,4761	31	-0,207	46	-0,3657
1,5	-0,5313	16,5	-0,5198	31,5	-0,3059	46,5	-0,4117
2	-0,1403	17	-0,4554	32	-0,3036	47	-0,4163
2,5	-0,5497	17,5	-0,506	32,5	-0,1909	47,5	-0,2346
3	-0,5198	18	-0,4554	33	-0,2185	48	-0,4646
3,5	-0,4784	18,5	-0,4646	33,5	-0,1771	48,5	-0,4623
4	-0,4968	19	-0,4761	34	-0,2369	49	-0,4531
4,5	-0,4439	19,5	-0,4255	34,5	-0,2507	49,5	-0,483
5	-0,483	20	-0,3542	35	-0,1679	50	-0,3887
5,5	-0,4761	20,5	-0,391	35,5	-0,2162	50,5	-0,3105
6	-0,4899	21	-0,4255	36	-0,2507	51	-0,3289
6,5	-0,4807	21,5	-0,2369	36,5	-0,2806	51,5	-0,3634
7	-0,4002	22	-0,2645	37	-0,3312	52	-0,3772
7,5	-0,3772	22,5	-0,2944	37,5	-0,2944	52,5	-0,3519
8	-0,3841	23	-0,4048	38	-0,4071	53	-0,4485
8,5	-0,4186	23,5	-0,3703	38,5	-0,1863	53,5	-0,46
9	-0,2852	24	-0,4025	39	-0,2461	54	-0,3864
9,5	-0,253	24,5	-0,414	39,5	-0,2277	54,5	-0,3979
10	-0,2806	25	-0,46	40	-0,3013	55	-0,4347
10,5	-0,2438	25,5	-0,253	40,5	-0,2438	55,5	-0,391
11	-0,3151	26	-0,2231	41	-0,2967	56	-0,368
11,5	-0,3358	26,5	-0,2093	41,5	-0,3404	56,5	-0,4209
12	-0,3381	27	-0,2254	42	-0,2369	57	-0,4324
12,5	-0,3036	27,5	-0,2668	42,5	-0,3887	57,5	-0,3381
13	-0,4002	28	-0,3358	43	-0,3634	58	-0,3611
13,5	-0,2875	28,5	-0,2346	43,5	-0,3565	58,5	-0,3588
14	-0,3105	29	-0,253	44	-0,2967	59	-0,299
14,5	-0,2024	29,5	-0,3565	44,5	-0,3335	59,5	-0,3657
15	-0,3542	30	-0,2553	45	-0,3979	60	-0,3243

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 225^{\circ}$

Оріє: корпуса	нтація приладу	$\varphi = 270^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>OFF</i> "	
<i>t, c</i>	Вихідна величина, град с ⁻¹	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с</i> ⁻¹	<i>t, c</i>	Вихідна величина, град с ⁻¹
0,5	0,1955	15,5	0,1564	30,5	-0,0115	45,5	0,0483
1	0,2668	16	0,0046	31	0,1541	46	0,0414
1,5	0,3358	16,5	0,0782	31,5	-0,1173	46,5	0,0782
2	0,184	17	0,0437	32	0,0299	47	-0,0598
2,5	0,2714	17,5	0,0253	32,5	0,0046	47,5	-0,1288
3	-0,0391	18	0,0598	33	-0,0943	48	-0,1288
3,5	-0,1104	18,5	0,0897	33,5	0,1104	48,5	-0,1288
4	-0,1242	19	0,1265	34	-0,0322	49	-0,1311
4,5	0,0184	19,5	0,2484	34,5	-0,0253	49,5	-0,1311
5	0,0667	20	0,2507	35	0,0782	50	-0,1265
5,5	0,1035	20,5	0,1127	35,5	0,0598	50,5	-0,0598
6	0,023	21	0,2116	36	0,184	51	-0,1242
6,5	-0,0828	21,5	0,2231	36,5	0,1426	51,5	-0,0437
7	-0,0966	22	0,2967	37	0,1472	52	0,0759
7,5	-0,0966	22,5	0,1633	37,5	0,0368	52,5	0,0989
8	-0,0644	23	0,2392	38	-0,0483	53	-0,0943
8,5	-0,1173	23,5	0,3818	38,5	-0,0552	53,5	-0,0759
9	-0,0552	24	0,0782	39	-0,1173	54	-0,1311
9,5	0,2162	24,5	0,3519	39,5	-0,0989	54,5	0,1219
10	0,0943	25	0,1679	40	-0,0598	55	0,1288
10,5	-0,1196	25,5	-0,092	40,5	-0,0483	55,5	0,0989
11	-0,1219	26	-0,0966	41	-0,0943	56	-0,0966
11,5	-0,1288	26,5	-0,1058	41,5	-0,0667	56,5	-0,0874
12	-0,0874	27	-0,0391	42	-0,0552	57	-0,1288
12,5	-0,1035	27,5	-0,0943	42,5	-0,0207	57,5	-0,1081
13	-0,1035	28	-0,1242	43	-0,0966	58	-0,1035
13,5	0,0069	28,5	-0,1265	43,5	-0,0851	58,5	-0,1265
14	-0,0667	29	-0,1242	44	0,0782	59	-0,1242
14,5	-0,046	29,5	-0,1265	44,5	-0,0529	59,5	-0,1242
15	0,0414	30	-0,0529	45	0,1449	60	-0,1242

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 270^{\circ}$

Оріє корпуса	нтація 1 приладу	$\varphi = 315^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>OFF</i> "	
t, c	Вихідна величина, <i>град с</i> ⁻¹	<i>t</i> , <i>C</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>
0,5	0,0966	15,5	0,2921	30,5	0,3036	45,5	0,2967
1	0,3266	16	0,3036	31	0,2714	46	0,2622
1,5	0,2898	16,5	0,2576	31,5	0,3381	46,5	0,322
2	0,3243	17	0,2645	32	0,3289	47	0,3197
2,5	0,2231	17,5	0,2967	32,5	0,3519	47,5	0,3174
3	0,2829	18	0,3266	33	0,3105	48	0,2599
3,5	0,2415	18,5	0,322	33,5	0,253	48,5	0,299
4	0,2461	19	0,2737	34	0,3013	49	0,2645
4,5	0,2576	19,5	0,3036	34,5	0,2806	49,5	0,2392
5	0,2461	20	0,2507	35	0,2254	50	0,2162
5,5	0,2346	20,5	0,3013	35,5	0,2898	50,5	0,2001
6	0,23	21	0,3266	36	0,345	51	0,2047
6,5	0,3105	21,5	0,3979	36,5	0,2852	51,5	0,1794
7	0,3036	22	0,3243	37	0,3082	52	0,1679
7,5	0,2852	22,5	0,2668	37,5	0,2875	52,5	0,1909
8	0,2875	23	0,2875	38	0,2737	53	0,184
8,5	0,3151	23,5	0,2622	38,5	0,2507	53,5	0,1955
9	0,2967	24	0,2507	39	0,2576	54	0,2162
9,5	0,3082	24,5	0,2599	39,5	0,2461	54,5	0,207
10	0,2875	25	0,3082	40	0,2162	55	0,2231
10,5	0,2921	25,5	0,3335	40,5	0,2852	55,5	0,1679
11	0,3036	26	0,2622	41	0,2806	56	0,1863
11,5	0,3174	26,5	0,3105	41,5	0,2599	56,5	0,2001
12	0,3427	27	0,3312	42	0,3289	57	0,2116
12,5	0,2691	27,5	0,3197	42,5	0,3312	57,5	0,184
13	0,2599	28	0,3289	43	0,3427	58	0,2162
13,5	0,2599	28,5	0,3542	43,5	0,2576	58,5	0,1794
14	0,3128	29	0,3289	44	0,322	59	0,2369
14,5	0,207	29,5	0,2392	44,5	0,2576	59,5	0,2553
15	0,2783	30	0,2645	45	0,2921	60	0,2461

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 315^{\circ}$
Op	ієнтація	$a - 0^0$	Об'єм	V=400	Гіроскоп	" <i>ON</i> "	
корпу	са приладу	$\psi = 0$		ml	1	1	
	Вихідна		Вихідна		Вихідна		Вихідна
<i>t</i> , <i>c</i>	величина,	<i>t</i> , <i>c</i>	величина,	<i>t</i> , <i>c</i>	величина,	<i>t</i> , <i>c</i>	величина,
	град с		град с		град с		град с
0,5	-0,4278	15,5	-0,6486	30,5	-0,6831	45,5	-0,8073
1	-0,44735	16	-0,67045	31	-0,6831	46	-0,78085
1,5	0,2369	16,5	-0,69575	31,5	-0,61525	46,5	-0,89355
2	-0,437	17	-0,68195	32	-0,6785	47	-0,9108
2,5	-0,49105	17,5	-0,5543	32,5	-0,6279	47,5	-0,9154
3	-0,6164	18	-0,54165	33	-0,7107	48	-0,874
3,5	-0,52095	18,5	-0,70265	33,5	-0,70265	48,5	-0,7153
4	-0,5152	19	-0,63365	34	-0,58765	49	-0,71415
4,5	-0,4945	19,5	-0,7038	34,5	-0,71645	49,5	-0,7199
5	-0,552	20	-0,59455	35	-0,6877	50	-0,76245
5,5	-0,4531	20,5	-0,80155	35,5	-0,61755	50,5	-0,73025
6	-0,50025	21	-0,6463	36	-0,736	51	-0,85905
6,5	-0,5037	21,5	-0,7475	36,5	-0,6463	51,5	-0,72565
7	-0,5566	22	-0,60605	37	-0,68195	52	-0,96945
7,5	-0,54855	22,5	-0,6417	37,5	-0,7084	52,5	-0,93725
8	-0,5428	23	-0,782	38	-0,75555	53	-0,8372
8,5	-0,52325	23,5	-0,6808	38,5	-0,8119	53,5	-0,80155
9	-0,49565	24	-0,67275	39	-0,66355	54	-0,84295
9,5	-0,54395	24,5	-0,68885	39,5	-0,7866	54,5	-0,83835
10	-0,4968	25	-0,6923	40	-0,82915	55	-0,76935
10,5	-0,4853	25,5	-0,60145	40,5	-0,6532	55,5	-0,8901
11	-0,46805	26	-0,67965	41	-0,667	56	-0,9177
11,5	-0,5221	26,5	-0,5704	41,5	-0,782	56,5	-0,782
12	-0,61295	27	-0,62215	42	-0,85675	57	-0,74865
12,5	-0,6486	27,5	-0,6992	42,5	-0,9154	57,5	-0,8004
13	-0,56465	28	-0,69805	43	-0,75095	58	-0,7705
13,5	-0,59685	28,5	-0,6463	43,5	-0,828	58,5	-0,69
14	-0,53705	29	-0,54395	44	-0,7314	59	-0,6808
14,5	-0,5175	29,5	-0,5405	44,5	-0,7038	59,5	-0,55085
15	-0,6302	30	-0,5934	45	-0,6739	60	-0,65205

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 0^0$

Ој корп	рієнтація уса приладу	$\varphi = 45^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>ON</i> "	
<i>t</i> , <i>c</i>	Вихідна величина, <i>град с</i> -1	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	t, c	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,4301	15,5	0,6877	30,5	0,4669	45,5	0,54625
1	-0,3956	16	0,37605	31	0,48645	46	0,42205
1,5	0,07935	16,5	0,46115	31,5	0,35305	46,5	0,3174
2	0,62905	17	0,5152	32	0,3427	47	0,483
2,5	0,52555	17,5	0,46	32,5	0,4439	47,5	0,39215
3	0,6394	18	0,45425	33	0,29325	48	0,529
3,5	0,6049	18,5	0,49335	33,5	0,3404	48,5	0,5543
4	0,6601	19	0,5842	34	0,2599	49	0,30245
4,5	0,7751	19,5	0,53245	34,5	0,2783	49,5	0,3726
5	0,7245	20	0,55315	35	0,46575	50	0,31395
5,5	0,64975	20,5	0,22425	35,5	0,4163	50,5	0,3887
6	0,47725	21	0,50025	36	0,3772	51	0,253
6,5	0,40365	21,5	0,5888	36,5	0,45655	51,5	0,39675
7	0,3036	22	0,45655	37	0,43815	52	0,36225
7,5	0,4071	22,5	0,48875	37,5	0,2691	52,5	0,391
8	0,30705	23	0,52325	38	0,3634	53	0,43815
8,5	0,27255	23,5	0,3772	38,5	0,4439	53,5	0,52095
9	0,4416	24	0,63135	39	0,3795	54	0,3864
9,5	0,3082	24,5	0,4186	39,5	0,3174	54,5	0,44735
10	0,32545	25	0,5175	40	0,3956	55	0,41285
10,5	0,2898	25,5	0,32085	40,5	0,299	55,5	0,3634
11	0,39215	26	0,42665	41	0,39215	56	0,38985
11,5	0,38065	26,5	0,4623	41,5	0,53475	56,5	0,30935
12	0,506	27	0,55775	42	0,66585	57	0,2829
12,5	0,4232	27,5	0,52555	42,5	0,5543	57,5	0,5819
13	0,56005	28	0,6072	43	0,5221	58	0,63135
13,5	0,2944	28,5	0,55315	43,5	0,4738	58,5	0,51635
14	0,5014	29	0,51865	44	0,4554	59	0,3151
14,5	0,5796	29,5	0,529	44,5	0,5497	59,5	0,23805
15	0,38295	30	0,4324	45	0,50945	60	0,1357

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 45^{\circ}$

Орієнтація		0.00	Об'єм	V-400 ml	Гіроскоп	"ON"	
корп	уса приладу	$\varphi = 90^{\circ}$	00 CM	v -+00 III	Проскоп	011	
	Вихідна		Вихідна		Вихідна		Вихідна
<i>t</i> , <i>c</i>	величина,	<i>t</i> , <i>c</i>	величина,	<i>t</i> , <i>c</i>	величина,	<i>t</i> , <i>c</i>	величина,
	град с-1		град с		град с-1		град с-1
0,5	-0,41515	15,5	-0,4048	30,5	-0,4278	45,5	-0,42895
1	-0,4278	16	-0,4071	31	-0,42895	46	-0,4278
1,5	-0,35305	16,5	-0,42205	31,5	-0,4324	46,5	-0,42895
2	-0,25415	17	-0,4232	32	-0,43815	47	-0,42895
2,5	-0,41745	17,5	-0,4255	32,5	-0,43125	47,5	-0,4301
3	-0,44505	18	-0,4094	33	-0,4324	48	-0,4301
3,5	-0,35305	18,5	-0,368	33,5	-0,4301	48,5	-0,43125
4	-0,38525	19	-0,40595	34	-0,45195	49	-0,4301
4,5	-0,27485	19,5	-0,40595	34,5	-0,43585	49,5	-0,4301
5	-0,56235	20	-0,41975	35	-0,4301	50	-0,43125
5,5	-0,36915	20,5	-0,4117	35,5	-0,4278	50,5	-0,40595
6	-0,2668	21	-0,414	36	-0,44275	51	-0,4278
6,5	-0,34155	21,5	-0,4278	36,5	-0,4301	51,5	-0,42435
7	-0,31395	22	-0,42665	37	-0,4301	52	-0,4278
7,5	-0,39905	22,5	-0,4232	37,5	-0,42895	52,5	-0,4278
8	-0,4094	23	-0,42205	38	-0,42895	53	-0,4278
8,5	-0,3979	23,5	-0,42205	38,5	-0,42895	53,5	-0,43125
9	-0,4094	24	-0,4278	39	-0,42665	54	-0,4301
9,5	-0,4255	24,5	-0,4301	39,5	-0,42895	54,5	-0,4324
10	-0,4255	25	-0,4255	40	-0,4278	55	-0,4278
10,5	-0,42665	25,5	-0,4232	40,5	-0,42895	55,5	-0,42895
11	-0,42205	26	-0,42665	41	-0,4278	56	-0,4278
11,5	-0,42435	26,5	-0,4278	41,5	-0,42895	56,5	-0,4278
12	-0,4232	27	-0,4301	42	-0,43125	57	-0,42665
12,5	-0,368	27,5	-0,42895	42,5	-0,4301	57,5	-0,42665
13	-0,41515	28	-0,4255	43	-0,42895	58	-0,4324
13,5	-0,41515	28,5	-0,42895	43,5	-0,43125	58,5	-0,42895
14	-0,3956	29	-0,4255	44	-0,4278	59	-0,4278
14,5	-0,4163	29,5	-0,4255	44,5	-0,42895	59,5	-0,42895
15	-0.42205	30	-0.4278	45	-0.4278	60	-0.43125

"Зсув нуля" ДУСУ в ультразвуковому промені: $\phi = 90^{\circ}$

Ор	оієнтація иса прилалу	$\varphi = 135^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>ON</i> "	
t, c	Вихідна величина, <i>град</i> с ⁻¹	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, град с ⁻¹	t, c	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,36685	15,5	-0,0345	30,5	-0,0644	45,5	-0,0897
1	-0,42435	16	0,0851	31	-0,09315	46	-0,15755
1,5	-0,4209	16,5	0,1909	31,5	-0,0345	46,5	-0,0276
2	-0,40825	17	-0,15985	32	-0,2185	47	-0,1541
2,5	-0,4232	17,5	-0,0897	32,5	-0,29785	47,5	-0,15525
3	-0,2507	18	0,0046	33	0,04715	48	-0,29325
3,5	-0,3059	18,5	0,1656	33,5	-0,207	48,5	-0,18515
4	0,05175	19	-0,00805	34	-0,12535	49	-0,2599
4,5	0,31165	19,5	0,0437	34,5	-0,21045	49,5	-0,0276
5	0,4738	20	-0,1219	35	-0,0483	50	-0,26795
5,5	0,2898	20,5	-0,0552	35,5	-0,1081	50,5	-0,09545
6	0,1978	21	-0,0506	36	-0,1242	51	-0,1495
6,5	0,161	21,5	-0,0161	36,5	-0,1541	51,5	-0,16445
7	0,1587	22	-0,1035	37	-0,2231	52	-0,27945
7,5	0,1403	22,5	0,1633	37,5	-0,3726	52,5	-0,20125
8	0,21045	23	0,24725	38	-0,1173	53	-0,3496
8,5	0,03565	23,5	0	38,5	-0,2162	53,5	-0,3427
9	0,04945	24	-0,23575	39	-0,2507	54	-0,3473
9,5	-0,01725	24,5	-0,0138	39,5	-0,3059	54,5	-0,38755
10	-0,0069	25	0,21735	40	-0,20125	55	-0,19895
10,5	-0,02185	25,5	-0,0414	40,5	-0,21735	55,5	-0,24265
11	0,0184	26	-0,1564	41	-0,184	56	-0,3634
11,5	-0,0322	26,5	-0,0667	41,5	-0,2047	56,5	-0,36455
12	-0,1334	27	-0,0897	42	-0,3151	57	-0,24495
12,5	0,0782	27,5	-0,07015	42,5	0,18745	57,5	-0,24265
13	0,01035	28	-0,0437	43	-0,28405	58	-0,24495
13,5	-0,1794	28,5	0,1173	43,5	0,02875	58,5	-0,24495
14	-0,18285	29	-0,2231	44	-0,07475	59	-0,36915
14,5	-0,06325	29,5	-0,22195	44,5	-0,1886	59,5	-0,27485
15	-0,09315	30	-0,2737	45	-0,1748	60	-0,1495

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 135^{\circ}$

Оріє корпуса	нтація а приладу	$\varphi = 180^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>ON</i> "	
<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,38295	15,5	-0,5336	30,5	-0,4416	45,5	-0,40825
1	-0,34155	16	-0,58535	31	-0,4232	46	-0,414
1,5	-0,4876	16,5	-0,50945	31,5	-0,42895	46,5	-0,4002
2	-0,24955	17	-0,4324	32	-0,42435	47	-0,4094
2,5	-0,3197	17,5	-0,47725	32,5	-0,4347	47,5	-0,42435
3	-0,34615	18	-0,4623	33	-0,4462	48	-0,4347
3,5	-0,32545	18,5	-0,50715	33,5	-0,44045	48,5	-0,43585
4	-0,3887	19	-0,45885	34	-0,48875	49	-0,40595
4,5	-0,4738	19,5	-0,63595	34,5	-0,44045	49,5	-0,42665
5	-0,35765	20	-0,5267	35	-0,4991	50	-0,41515
5,5	-0,391	20,5	-0,56925	35,5	-0,43585	50,5	-0,3726
6	-0,4669	21	-0,50025	36	-0,44045	51	-0,3565
6,5	-0,414	21,5	-0,4508	36,5	-0,41975	51,5	-0,4071
7	-0,43585	22	-0,5129	37	-0,45195	52	-0,4163
7,5	-0,42665	22,5	-0,65435	37,5	-0,44505	52,5	-0,4255
8	-0,4531	23	-0,49795	38	-0,4439	53	-0,40135
8,5	-0,4278	23,5	-0,4899	38,5	-0,4278	53,5	-0,42665
9	-0,4278	24	-0,48645	39	-0,42435	54	-0,39675
9,5	-0,4301	24,5	-0,44045	39,5	-0,4301	54,5	-0,42435
10	-0,45885	25	-0,54625	40	-0,42895	55	-0,41975
10,5	-0,4462	25,5	-0,44045	40,5	-0,4278	55,5	-0,42895
11	-0,4439	26	-0,46345	41	-0,4301	56	-0,44275
11,5	-0,4324	26,5	-0,44275	41,5	-0,41745	56,5	-0,44045
12	-0,4554	27	-0,4416	42	-0,43355	57	-0,4163
12,5	-0,51405	27,5	-0,414	42,5	-0,4623	57,5	-0,37605
13	-0,5405	28	-0,3059	43	-0,41055	58	-0,44965
13,5	-0,5037	28,5	-0,4209	43,5	-0,43125	58,5	-0,4071
14	-0,49335	29	-0,32545	44	-0,4393	59	-0,42665
14,5	-0,55545	29,5	-0,43585	44,5	-0,40825	59,5	-0,4232
15	-0,5543	30	-0,4462	45	-0,42665	60	-0,38755

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 180^{\circ}$

кор	Орієнтація опуса приладу	$\varphi = 225^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>ON</i> "	
<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,14145	15,5	-0,43355	30,5	-0,44275	45,5	-0,43355
1	-0,3174	16	-0,43355	31	-0,35075	46	-0,2392
1,5	-0,39445	16,5	-0,4485	31,5	-0,3634	46,5	-0,4117
2	-0,4163	17	-0,43125	32	-0,2254	47	-0,2093
2,5	-0,4669	17,5	-0,43355	32,5	-0,2047	47,5	-0,4255
3	-0,3703	18	-0,4301	33	-0,20815	48	-0,34155
3,5	-0,3818	18,5	-0,437	33,5	-0,26565	48,5	-0,36455
4	-0,18975	19	-0,437	34	-0,4255	49	-0,40135
4,5	-0,12765	19,5	-0,44045	34,5	-0,4301	49,5	-0,3312
5	-0,2484	20	-0,4163	35	-0,4186	50	-0,41745
5,5	-0,24495	20,5	-0,4301	35,5	-0,4324	50,5	-0,3588
6	-0,4094	21	-0,43125	36	-0,4301	51	-0,36685
6,5	-0,3565	21,5	-0,4278	36,5	-0,40825	51,5	-0,39215
7	-0,27025	22	-0,44275	37	-0,43125	52	-0,4071
7,5	-0,2806	22,5	-0,4278	37,5	-0,4255	52,5	-0,2093
8	-0,4324	23	-0,41285	38	-0,43125	53	-0,23805
8,5	-0,4324	23,5	-0,44045	38,5	-0,4416	53,5	-0,2783
9	-0,41975	24	-0,42435	39	-0,43355	54	-0,2806
9,5	-0,4232	24,5	-0,4255	39,5	-0,437	54,5	-0,38295
10	-0,3841	25	-0,41975	40	-0,34155	55	-0,30705
10,5	-0,40595	25,5	-0,3542	40,5	-0,42665	55,5	-0,2599
11	-0,42435	26	-0,4324	41	-0,4186	56	-0,42205
11,5	-0,41285	26,5	-0,43355	41,5	-0,42435	56,5	-0,38295
12	-0,43585	27	-0,42665	42	-0,4163	57	-0,2139
12,5	-0,43585	27,5	-0,47265	42,5	-0,42435	57,5	-0,24495
13	-0,4853	28	-0,4324	43	-0,4301	58	-0,2599
13,5	-0,43125	28,5	-0,4278	43,5	-0,4301	58,5	-0,2484
14	-0,43125	29	-0,4324	44	-0,4301	59	-0,1955
14,5	-0,43355	29,5	-0,4577	44,5	-0,37605	59,5	-0,3841
15	-0,43125	30	-0,4186	45	-0,4186	60	-0,41745

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 225^{\circ}$

О корп	рієнтація уса приладу	$\varphi = 270^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>ON</i> "	
<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t, c</i>	Вихідна величина, <i>град с</i> -1	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,30475	15,5	-0,42665	30,5	-0,4945	45,5	-0,43125
1	-0,3703	16	-0,4784	31	-0,43585	46	-0,437
1,5	-0,3703	16,5	-0,42665	31,5	-0,44965	46,5	-0,4301
2	-0,4209	17	-0,4439	32	-0,4761	47	-0,437
2,5	-0,4278	17,5	-0,437	32,5	-0,45885	47,5	-0,46
3	0,4117	18	-0,41975	33	-0,45425	48	-0,4393
3,5	-0,3243	18,5	-0,43125	33,5	-0,437	48,5	-0,4347
4	-0,44505	19	-0,43585	34	-0,45885	49	-0,43585
4,5	-0,4577	19,5	-0,42665	34,5	-0,46	49,5	-0,4485
5	-0,4393	20	-0,4163	35	-0,4347	50	-0,4301
5,5	-0,42665	20,5	-0,41975	35,5	-0,45655	50,5	-0,43125
6	-0,4439	21	-0,4278	36	-0,44735	51	-0,42895
6,5	-0,35995	21,5	-0,41745	36,5	-0,4278	51,5	-0,42205
7	-0,32315	22	-0,3979	37	-0,4301	52	-0,41975
7,5	-0,13915	22,5	-0,4232	37,5	-0,42435	52,5	-0,4301
8	-0,16905	23	-0,41285	38	-0,4117	53	-0,4209
8,5	-0,24265	23,5	-0,41745	38,5	-0,41745	53,5	-0,4209
9	-0,253	24	-0,41055	39	-0,4278	54	-0,42435
9,5	-0,34385	24,5	-0,414	39,5	-0,4301	54,5	-0,42895
10	-0,32315	25	-0,41285	40	-0,4324	55	-0,42435
10,5	-0,3818	25,5	-0,4278	40,5	-0,40365	55,5	-0,4531
11	-0,4255	26	-0,4393	41	-0,44735	56	-0,42205
11,5	-0,4301	26,5	-0,43355	41,5	-0,42435	56,5	-0,4163
12	-0,4347	27	-0,4071	42	-0,44045	57	-0,3887
12,5	-0,42665	27,5	-0,40365	42,5	-0,37835	57,5	-0,4163
13	-0,42205	28	-0,4186	43	-0,322	58	-0,41055
13,5	-0,40135	28,5	-0,4324	43,5	-0,3404	58,5	-0,4094
14	-0,4255	29	-0,4324	44	-0,3864	59	-0,3979
14,5	-0,4209	29,5	-0,44505	44,5	-0,414	59,5	-0,4094
15	-0,4209	30	-0,4347	45	-0,38065	60	-0,40595

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 270^{\circ}$

Ој корп	рієнтація уса прилалу	$\varphi = 315^{\circ}$	Об'єм	V=400 ml	Гіроскоп	" <i>ON</i> "	
t, c	Вихідна величина, <i>град с⁻¹</i>	t, c	Вихідна величина, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідна величина, <i>град с⁻¹</i>
0,5	-0,2967	15,5	-0,2438	30,5	-0,3013	45,5	-0,34845
1	-0,3312	16	-0,3588	31	-0,27025	46	-0,37145
1,5	-0,21275	16,5	-0,36455	31,5	-0,32775	46,5	-0,35535
2	-0,3059	17	-0,3427	32	-0,3289	47	-0,3013
2,5	-0,3036	17,5	-0,3634	32,5	-0,2944	47,5	-0,36225
3	-0,3588	18	-0,37375	33	-0,2875	48	-0,30705
3,5	-0,14145	18,5	-0,37605	33,5	-0,2001	48,5	-0,30475
4	-0,25185	19	-0,3726	34	-0,3174	49	-0,27945
4,5	-0,16675	19,5	-0,37835	34,5	-0,36225	49,5	-0,3496
5	0,0598	20	-0,38065	35	-0,37375	50	-0,3013
5,5	-0,01035	20,5	-0,4117	35,5	-0,34155	50,5	-0,31625
6	-0,20355	21	-0,38755	36	-0,38985	51	-0,37835
6,5	-0,1357	21,5	-0,37605	36,5	-0,3772	51,5	-0,38525
7	-0,2116	22	-0,3726	37	-0,3473	52	-0,33925
7,5	-0,2553	22,5	-0,37145	37,5	-0,4048	52,5	-0,3197
8	-0,2415	23	-0,3818	38	-0,38755	53	-0,10695
8,5	-0,14835	23,5	-0,31855	38,5	-0,37835	53,5	-0,138
9	-0,25875	24	-0,33005	39	-0,3703	54	-0,2162
9,5	-0,3542	24,5	-0,34385	39,5	-0,38985	54,5	-0,23115
10	-0,32315	25	-0,2645	40	-0,391	55	-0,2668
10,5	-0,3749	25,5	-0,3174	40,5	-0,3887	55,5	-0,3565
11	-0,3726	26	-0,3059	41	-0,40825	56	-0,3404
11,5	-0,3519	26,5	-0,47495	41,5	-0,391	56,5	-0,37835
12	-0,3243	27	-0,11385	42	-0,3726	57	-0,3565
12,5	-0,3542	27,5	-0,31165	42,5	-0,34385	57,5	-0,3933
13	-0,3404	28	-0,3404	43	-0,2829	58	-0,3956
13,5	-0,3496	28,5	-0,391	43,5	-0,4048	58,5	-0,3887
14	-0,28635	29	-0,3887	44	-0,32315	59	-0,4002
14,5	-0,368	29,5	-0,3634	44,5	-0,3841	59,5	-0,40135
15	-0,3565	30	-0,28175	45	-0,38985	60	-0,414

"Зсув нуля" ДУСУ в ультразвуковому промені: $\varphi = 315^{\circ}$

Похибки ДУСУ на хитавиці

Надавши датчику кутових швидкостей кінематичного збурення у вигляді тривісної хитавиці з частотою ~ 0,5 Гц, отримуємо реалізацію вихідного сигналу

(рис. 4.13). Діаграма свідчить про відсутність систематичної складової при стохастичній структурі вихідного сигналу в цілому. Чисельні значення наведені в таблиці 4.21

Таблиця 4.21

(кор	Эрієнтація пуса приладу	$\varphi = 0^0$					
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, град с ⁻¹
0,5	-0,0782	15,5	0,2047	30,5	-0,0782	45,5	-0,2277
1	0,0207	16	-0,9177	31	-0,46	46	-0,2047
1,5	0,161	16,5	0,2438	31,5	-0,1081	46,5	0,2438
2	0,161	17	0,0667	32	-1,1661	47	0,0667
2,5	0,161	17,5	-0,1518	32,5	-0,0391	47,5	0,1518
3	0,161	18	-0,9269	33	-0,2553	48	-0,2162
3,5	-0,2806	18,5	1,1339	33,5	0,6854	48,5	-0,184
4	-0,2806	19	-0,2162	34	0,1955	49	-0,1196
4,5	-0,4439	19,5	-0,5313	34,5	-0,3864	49,5	0,2875
5	0,437	20	-0,5129	35	-0,0184	50	-0,3174
5,5	0,0529	20,5	0,184	35,5	0,69	50,5	0,1541
6	-0,2369	21	-0,1196	36	-1,8561	51	0,2139
6,5	-0,1587	21,5	-0,2875	36,5	0,0299	51,5	-0,1679
7	0,1265	22	-0,4899	37	0,0046	52	1,1132
7,5	-0,3611	22,5	0,2323	37,5	-0,0184	52,5	-0,3335
8	0,6831	23	-0,3174	38	-0,0115	53	0,2484
8,5	-0,0644	23,5	-0,1771	38,5	0,0667	53,5	-0,46
9	-0,4876	24	-0,1541	39	-0,0759	54	-0,1081
9,5	0,4462	24,5	-0,2139	39,5	-0,0736	54,5	1,1661
10	1,0787	25	2,0746	40	-0,0782	55	0,6854
10,5	-0,1702	25,5	0,0759	40,5	-0,0207	55,5	0,1955
11	-0,1449	26	0,1035	41	-0,2806	56	0,2001
11,5	-0,2645	26,5	0,1679	41,5	0,2829	56,5	0,0299
12	0,3726	27	0,0529	42	-0,1587	57	-0,2829
12,5	-0,4577	27,5	1,1132	42,5	0,3611	57,5	-0,0368
13	0,4715	28	0,3657	43	-0,6762	58	0,0575
13,5	-0,0161	28,5	-0,3335	43,5	-0,1702	58,5	0,2208
14	-0,2829	29	0,0851	44	-0,2645	59	0,1426
14,5	-0,2277	29,5	-0,46	44,5	-0,4508	59,5	-0,3151
15	-0,3289	30	0,2484	45	-0,0161	60	0,0046

Вихідний сигнал ДУСУ на хитавиці

Рис. 4.13. Вихідний сигнал ДУСУ на хитавиці основи

Відмінною рисою сигнала є відсутність систематичної складової у вихідному сигналі датчика кутових швидкостей.

Похибки ДУСУ за одночасної дії хитавиці і ультразвукового опромінювання

Являє практичний інтерес порівняльний аналіз похибки ДУСУ 3a кінематичного впливу (хитавиця) і сумісної, одночасної дії хитавиці i ультразвукового випромінюванням (рис. 4.14), табл. 4.22.

Очевидно, що спектр вихідного сигналу стає більш насиченим, розкид значень також збільшується і у 2-3 рази перевищує сигнал за однієї хитавиці.

Рис. 4.14. Вихідний сигнал ДУСУ при спільній дії хитавиці і ультразвукового випромінювання

Невеличка систематична складова $(0,15 \, cpad \, c^{-1})$ знаходиться нижче за поріг чутливості приладу $(0,45 \, cpad \, c^{-1})$ і тому в даному контексті не може слугувати предметом для обговорення

Таблиця 4.22

Вихідний сигнал ДУСУ за сумісної дії на прилад хитавиці і ультразвукового випромінювання

KODI	рієнтація	$\omega = 0^0$					
корі	пуса приладу Вихітний	φu	Виуілний		Buyimum		Buyimmŭ
t c	СИГНАЛ	t c	СИГНАЛ	t c	СИГНАЛ	t c	Сигнал
ι, τ	$2 pad c^{-1}$	ι, τ	$2 p a \partial c^{-1}$	ι, τ	$2 pad c^{-1}$	ι, τ	$2 pad c^{-1}$
0.5	-0.0828	15.5	-0.1817	30.5	-0 1541	45.5	-0.2392
1	0.0184	15,5	1 1477	31	-0.2806	46	-0.2622
15	0,0164	16.5	-0.4692	31.5	0.9453	46.5	0.8349
2	-0.1242	10,5	0,1092	32	0.3611	A7	0.069
25	-0.506	17.5	-0.115	32 5	-0 7797	47.5	-0.3059
3	-0.1196	17,5	-0.1426	33	-0.6279	48	-0 1472
35	0,736	18.5	0.23	33.5	-0.0437	48.5	1 3018
<u>3,5</u>	0 2254	10,5	0 5244	34	0.9499	49	0.3082
4.5	0	19.5	-0.5543	34.5	-0.0184	49.5	-1.1845
5	-0.5152	20	-0,2668	35	-0,0828	50	1,1201
5,5	-0,3657	20,5	-0,0552	35,5	-0,3703	50,5	0,1219
6	0.0598	21	0,5474	36	1,4582	51	0,6532
6,5	0,0713	21,5	0,529	36,5	-0,0253	51,5	-1,2259
7	1,3018	22	-0,6325	37	-0,1886	52	0,9522
7,5	-0,2599	22,5	-0,1311	37,5	-0,6233	52,5	0,6394
8	-0,2139	23	-0,1656	38	0,8602	53	-0,3266
8,5	0,9637	23,5	0,0115	38,5	0,6992	53,5	-0,4163
9	-0,7682	24	1,6491	39	-0,0805	54	0,5704
9,5	-0,0529	24,5	0,4232	39,5	-0,2829	54,5	0,4508
10	0,2921	25	-0,4669	40	-0,8487	55	-0,8878
10,5	0,7314	25,5	-0,0437	40,5	1,5893	55,5	-1,1408
11	-0,4554	26	1,6905	41	0,2231	56	0,7866
11,5	-0,1334	26,5	-0,4692	41,5	-0,3588	56,5	0,6969
12	-0,4117	27	-0,3933	42	-1,1362	57	-0,4048
12,5	0,1679	27,5	0,3174	42,5	0,8073	57,5	-0,3887
13	0,9545	28	0,1311	43	0,0207	58	0,00138
13,5	-0,3082	28,5	0,1564	43,5	-0,1909	58,5	0,5635
14	-0,3519	29	-0,6509	44	-0,621	59	-0,7107
14,5	-0,1817	29,5	-0,0552	44,5	1,4053	59,5	-0,2622
15	-0,4968	30	-0,0598	45	-0,0207	60	0,2967

Таке насичення вихідного сигналу нелінійними коливаннями, які складають похибку $\Delta \omega$, пояснюється суперпозицією її складових $\Delta \omega_k$ і $\Delta \omega^a$ (тобто кінематичної і акустичної). Причому, акустична обумовлена впливом Ейлерових сил інерції, що діють на імпедансну поверхню поплавка.

Похибки ДУСУ на резонансному рівні

Безумовний інтерес викликає аналіз причин виникнення похибок датчика кутових швидкостей в ультразвуковому полі на резонансному рівні. При опромінюванні корпуса приладу під кутом θ до радіуса шпангоута плоским звуковим променем, за деяких обставин може мати місце енергетичної активності рідинностатичного підвісу і поверхні корпуса приладу, що може суттєво вплинути на похибки приладу в експлуатаційних умовах гіперзвукового польоту.

З метою чистоти експерименту проаналізуємо два режими. Перший режим – *гіроагрегат виключений*. Другий режим – *гіроагрегат включений*. Ця подробиця дасть змогу оцінити ступінь впливу променя на, власне, підвіс, а також виявити небезпеку виникнення особливостей резонансного типу в експлуатаційних умовах.

Гіроагрегат виключений. Основа нерухома

Оберемо два кута падіння θ ультразвукового променя: $\theta = 0^{\circ}$ і $\theta = 17^{\circ}$.

Якщо кут $\theta = 0^{\circ}$, або $\theta = 17^{\circ}$, тоді за орієнтації приладу $\varphi = 0^{\circ}$ (рис. 4.15), $\varphi = 90^{\circ}$ (рис. 4.17), $\varphi = 135^{\circ}$ (рис. 4.18), $\varphi = 180^{\circ}$ (рис. 4.19) та $\varphi = 225^{\circ}$ (рис. 4.20) *"зсув нуля"* приладу практично відсутній, точніше, знаходиться нижче порогу чутливості (0,45 *град* c^{-1}). Це значить, що за такої орієнтації підвіс практично однаково реагує на ультразвуковий промінь.

При значенні $\varphi = 45^{\circ}$ (рис. 4.16), "*зсув нуля*" виходить із зони чутливості, залишається тієї ж величини, але змінює знак. При значенні $\varphi = 270^{\circ}$, "*зсув нуля*" сягає 0,6 *град* c^{-1} , якщо $\theta = 17^{\circ}$ (в перерахунку на похибку), маючи "0" при $\varphi = 0^{\circ}$ (рис. 4.21). Схожа ситуація має місце при $\varphi = 315^{\circ}$ (рис. 4.22). Якщо при $\theta = 0^{\circ}$, "*зсув нуля*" складає 0,2 *град* c^{-1} , тобто нижче зони чутливості. Якщо $\theta = 17^{\circ}$, тоді "зсув нуля" сягає 0,5 град c^{-1} .

Числові значення "зсуву нуля" ДУСУ зведені в табл. 4.23 – 4.30.

Гіроагрегат включений. Основа нерухома

Знову обираємо два значення кута θ : $\theta = 0^{\circ}$ та $\theta = 17^{\circ}$.

Якщо $\varphi = 0^{\circ}$, мають місце суттєві зміни в структурі розвитку похибки приладу

(рис. 4.23). Максимальна величина росте до 0,8 *град* c^{-1} .

Якщо $\varphi = 45^{\circ}$, зміна кута θ з 17° до нуля призводить до зменшення похибки приладу з 0,5 *град* c^{-1} практично до нуля (рис. 4.24).

За інших кутів $\varphi \sim 90^\circ$; 135°; 180°; 225°; 270°; 315°, похибки приладу практично однакові (рис. 4.25 – 4.30).

Чисельні значення відображені в табл. 4.31 – 4.38.

Рис. 4.15. Вихідний сигнал *ДУСУ* при $\varphi = 0^{\circ}$, гіроагрегат виключений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.16. Вихідний сигнал ДУСУ при $\varphi = 45^{\circ}$, гіроагрегат виключений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.17. Вихідний сигнал ДУСУ при $\varphi = 90^{\circ}$, гіроагрегат виключений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.18. Вихідний сигнал ДУСУ при $\varphi = 135^{\circ}$, гіроагрегат виключений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.19. Вихідний сигнал ДУСУ при $\varphi = 180^{\circ}$, гіроагрегат виключений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.20. Вихідний сигнал ДУСУ при $\varphi = 225^{\circ}$, гіроагрегат виключений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.21. Вихідний сигнал ДУСУ при $\varphi = 270^{\circ}$, гіроагрегат виключений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.22. Вихідний сигнал ДУСУ при $\varphi = 315^{\circ}$, гіроагрегат виключений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

KOI	Орієнтація опуса прилалу: <i>q</i> =	: 0°	Об'єм: V=400	ml	Гіроскоп: "OF	<i>F</i> "	
t, c	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град</i> с ⁻¹	<i>t</i> , <i>c</i>	Вихідний сигнал, град с ⁻¹	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>
0,5	-0,00805	15,5	-0,08625	30,5	-0,01771	45,5	-0,09062
1	-0,01472	16	-0,05865	31	-0,06854	46	-0,08234
1,5	-0,08694	16,5	-0,092	31,5	-0,03381	46,5	-0,06739
2	-0,11362	17	-0,0966	32	-0,08372	47	-0,01541
2,5	-0,11546	17,5	-0,07935	32,5	-0,05934	47,5	-0,04738
3	-0,11017	18	-0,06762	33	-0,11247	48	-0,09338
3,5	-0,10764	18,5	-0,06923	33,5	-0,01058	48,5	-0,08234
4	-0,09706	19	-0,03588	34	-0,02553	49	-0,1058
4,5	-0,11086	19,5	-0,05681	34,5	-0,07843	49,5	-0,12029
5	-0,10718	20	-0,05911	35	-0,08717	50	-0,11776
5,5	-0,10304	20,5	-0,01794	35,5	-0,06624	50,5	-0,10373
6	-0,09476	21	0,01587	36	-0,06831	51	-0,10718
6,5	-0,11431	21,5	0,01288	36,5	-0,08556	51,5	-0,11293
7	-0,11132	22	-0,06026	37	-0,07038	52	-0,11017
7,5	-0,11454	22,5	-0,0368	37,5	-0,00322	52,5	-0,08556
8	-0,1219	23	-0,03197	38	-0,08763	53	-0,08142
8,5	-0,11155	23,5	0,10373	38,5	-0,10488	53,5	-0,08809
9	-0,12374	24	0,01656	39	-0,08602	54	-0,07935
9,5	-0,12305	24,5	0,02024	39,5	-0,11017	54,5	-0,06739
10	-0,11408	25	0,03979	40	-0,0897	55	-0,10672
10,5	-0,09591	25,5	-0,01081	40,5	-0,10971	55,5	-0,10764
11	-0,09844	26	-0,02507	41	-0,09338	56	-0,10994
11,5	-0,10856	26,5	0,07107	41,5	-0,05221	56,5	-0,05934
12	-0,10672	27	0,03634	42	-0,08809	57	-0,08441
12,5	-0,07314	27,5	-0,0851	42,5	-0,09246	57,5	-0,11155
13	-0,04094	28	-0,02415	43	-0,10695	58	-0,10948
13,5	-0,04899	28,5	-0,06417	43,5	-0,1058	58,5	-0,08487
14	-0,05865	29	-0,06831	44	-0,09614	59	-0,05405
14,5	-0,05359	29,5	-0,09683	44,5	-0,1104	59,5	-0,10189
15	-0,0782	30	-0,10005	45	-0,07268	60	-0,09568

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 0^{\circ}$

кор	Орієнтація опуса приладу: ф	$\varphi = 45^{\circ}$	Об'єм: V=4	00 ml	Гіроскоп: "С	DFF"	
<i>t, c</i>	Вихідний сигнал,	<i>t</i> , <i>c</i>	Вихідний сигнал,	<i>t, c</i>	Вихідний сигнал,	<i>t</i> , <i>c</i>	Вихідний сигнал,
0.5	-0.0023	15.5	0.14766	30.5	0 32867	15.5	0 1/375
0,5	0 35742	15,5	0,14700	30,5	0,32807		0,14575
15	0 38939	16.5	0.19205	31.5	0,20770	46.5	0 20447
2	0 34316	10,5	0.24679	32	0.1587	47	0.16031
2.5	0 34799	17.5	0.14605	32.5	0.1932	47.5	0.15065
3	0 42481	18	0.23368	33	0 26933	48	0.18745
3.5	0.43677	18.5	0.1702	33.5	0.12535	48.5	0.14122
4	0.31441	19	0.15594	34	0.24794	49	0.2714
4.5	0,345	19.5	0,22126	34,5	0,17917	49.5	0,16284
5	0,33672	20	0,21275	35	0,20401	50	0,17733
5,5	0,37513	20,5	0,20378	35,5	0,20723	50,5	0,18538
6	0,35282	21	0,25875	36	0,16192	51	0,16744
6,5	0,38088	21,5	0,24541	36,5	0,27738	51,5	0,17871
7	0,39376	22	0,23966	37	0,20792	52	0,2645
7,5	0,44597	22,5	0,28428	37,5	0,19481	52,5	0,27738
8	0,38226	23	0,23414	38	0,19596	53	0,22908
8,5	0,36064	23,5	0,12029	38,5	0,21988	53,5	0,19067
9	0,39491	24	0,1656	39	0,12581	54	0,1587
9,5	0,44459	24,5	0,30613	39,5	0,16031	54,5	0,16905
10	0,36593	25	0,18078	40	0,20171	55	0,18009
10,5	0,37329	25,5	0,16675	40,5	0,15847	55,5	0,16031
11	0,42849	26	0,22471	41	0,19504	56	0,10028
11,5	0,28359	26,5	0,12259	41,5	0,21758	56,5	0,1495
12	0,21689	27	0,25024	42	0,34799	57	0,17227
12,5	0,18952	27,5	0,22287	42,5	0,18998	57,5	0,14858
13	0,23598	28	0,24495	43	0,23	58	0,13501
13,5	0,22678	28,5	0,21091	43,5	0,25507	58,5	0,21666
14	0,24288	29	0,17595	44	0,30038	59	0,11868
14,5	0,33005	29,5	0,22425	44,5	0,25139	59,5	0,1196
15	0.20976	30	0.15617	45	0.22241	60	0.10074

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 45^{\circ}$

кор	Орієнтація опуса приладу: <i>φ</i> = 9	90°	Об'єм: V=400 і	nl	Гіроскоп: "ОГ	F"	
<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>
0,5	-0,0046	15,5	0,2415	30,5	0,0736	45,5	0,1656
1	-0,0023	16	0,1771	31	0,0897	46	0,184
1,5	-0,0069	16,5	0,161	31,5	0,1058	46,5	0,1679
2	0,1794	17	0,1794	32	0,0506	47	0,1081
2,5	0,1012	17,5	0,1357	32,5	0,115	47,5	0,0989
3	0,0391	18	0,3542	33	0,0943	48	0,1334
3,5	-0,0115	18,5	0,1771	33,5	0,0713	48,5	0,1633
4	0	19	0,2047	34	0,069	49	0,1886
4,5	-0,0299	19,5	0,4715	34,5	0,0736	49,5	0,0759
5	-0,0322	20	0,3289	35	0,1334	50	0,0345
5,5	0,0138	20,5	0,4623	35,5	0,2231	50,5	0,092
6	0,0046	21	0,2553	36	0,0828	51	0,0506
6,5	-0,0575	21,5	0,3082	36,5	0,0782	51,5	0,092
7	0,0529	22	0,2737	37	0,0989	52	0,1035
7,5	0,046	22,5	0,3381	37,5	0,115	52,5	0,0621
8	0,0299	23	0,3312	38	0,1426	53	0,1173
8,5	0,1886	23,5	0,2944	38,5	0,1357	53,5	0,1081
9	0,1219	24	0,5037	39	0,0989	54	0,0874
9,5	0,2576	24,5	0,2553	39,5	0,1518	54,5	0,0345
10	0,2047	25	0,2323	40	0,1058	55	0,0414
10,5	0,2622	25,5	0,1702	40,5	0,092	55,5	0,046
11	0,3243	26	0,0943	41	0,092	56	-0,0069
11,5	0,2622	26,5	0,1058	41,5	0,0989	56,5	0,0575
12	0,2277	27	0,0828	42	0,1656	57	0,0621
12,5	0,2806	27,5	0,1012	42,5	0,161	57,5	0,0322
13	0,2461	28	0,0874	43	0,1587	58	0,0483
13,5	0,2484	28,5	0,1403	43,5	0,1035	58,5	0,0851
14	0,2461	29	0,0966	44	0,0621	59	0,0368
14,5	0,2691	29,5	0,1863	44,5	0,1472	59,5	0,0529
15	0,2783	30	0,0943	45	0,1702	60	0,0253

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 90^{\circ}$

кор	Орієнтація опуса приладу: <i>ф</i>	p=135°	Об'єм: V=	=400 ml	Гіроскоп: "С	OFF"	
	Вихідний		Вихідний		Вихідний		Вихідний
<i>t</i> , <i>c</i>	сигнал,	<i>t</i> , <i>c</i>	сигнал,	<i>t</i> , <i>c</i>	сигнал,	<i>t</i> , <i>c</i>	сигнал,
	град с-1		град с		град с-1		град с-1
0,5	0	15,5	0,1035	30,5	0,0621	45,5	0,0644
1	0,0414	16	0,0759	31	0,0828	46	0,0161
1,5	0,1196	16,5	0,0851	31,5	0,1656	46,5	-0,0046
2	-0,0506	17	0,0851	32	0,0874	47	-0,0207
2,5	-0,0966	17,5	0,0506	32,5	0,1196	47,5	0,0575
3	-0,0207	18	0,0207	33	0,1081	48	0,0667
3,5	-0,0897	18,5	0,1679	33,5	0,1541	48,5	0,1035
4	-0,0736	19	0,1265	34	0,1587	49	0,1058
4,5	-0,0253	19,5	0,1035	34,5	0,1081	49,5	0,0207
5	-0,0667	20	0,1127	35	0,1196	50	-0,0138
5,5	-0,1012	20,5	0,0874	35,5	0,2139	50,5	0,0736
6	-0,1012	21	0,0644	36	0,2576	51	-0,0115
6,5	-0,1035	21,5	0,023	36,5	0,2139	51,5	-0,0161
7	0,0069	22	0,0483	37	0,0345	52	0,0552
7,5	-0,0552	22,5	0,0276	37,5	0,0713	52,5	-0,0483
8	-0,0851	23	0,0138	38	0,0414	53	0,0322
8,5	-0,0736	23,5	0,1265	38,5	0,0989	53,5	0,0276
9	-0,0598	24	0,046	39	0,1219	54	0,0092
9,5	0,023	24,5	-0,023	39,5	0,1449	54,5	-0,0368
10	0,023	25	0,0391	40	0,1564	55	-0,0138
10,5	0,0483	25,5	-0,0092	40,5	0,0805	55,5	-0,0575
11	0,0161	26	-0,0046	41	0,0621	56	0,0115
11,5	0,1104	26,5	-0,0851	41,5	0,1265	56,5	0,0414
12	0,0552	27	0,1357	42	0,1173	57	0,0644
12,5	-0,0276	27,5	0,1725	42,5	0,1886	57,5	-0,0207
13	-0,0184	28	0,2024	43	0,0391	58	-0,0575
13,5	0,1426	28,5	0,0529	43,5	0,0644	58,5	-0,0391
14	0,1035	29	0,0575	44	0,0322	59	-0,0184
14,5	0,1058	29,5	0,1242	44,5	-0,0069	59,5	-0,0253
15	0,0989	30	0,1173	45	0,0621	60	-0,0391

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 135^{\circ}$

кор	Орієнтація корпуса приладу: <i>φ</i> =180°		Об'єм: V=400 ml		Гіроскоп: "OFF"		
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>						
0,5	0	15,5	-0,1242	30,5	-0,1219	45,5	0,1357
1	-0,0046	16	-0,1242	31	-0,1196	46	-0,1357
1,5	-0,0253	16,5	-0,1288	31,5	-0,1311	46,5	-0,1357
2	-0,0184	17	-0,1265	32	-0,1219	47	-0,1357
2,5	-0,1012	17,5	-0,1311	32,5	-0,1265	47,5	-0,1357
3	-0,115	18	-0,1311	33	-0,1265	48	-0,1334
3,5	-0,1357	18,5	-0,1334	33,5	-0,0943	48,5	-0,1334
4	-0,1242	19	-0,1334	34	-0,0943	49	-0,1357
4,5	-0,1288	19,5	-0,1334	34,5	-0,0943	49,5	-0,1357
5	-0,115	20	-0,1334	35	-0,1104	50	-0,1357
5,5	-0,115	20,5	-0,1334	35,5	-0,0989	50,5	-0,1357
6	-0,1288	21	-0,1311	36	-0,0966	51	-0,1357
6,5	-0,115	21,5	-0,1334	36,5	-0,0989	51,5	-0,1357
7	-0,1242	22	-0,1334	37	-0,0943	52	-0,1357
7,5	-0,0989	22,5	-0,1357	37,5	-0,0966	52,5	-0,138
8	-0,1311	23	-0,1012	38	-0,0989	53	-0,138
8,5	-0,1311	23,5	-0,1104	38,5	-0,1104	53,5	-0,1357
9	-0,1334	24	-0,115	39	-0,0621	54	-0,1357
9,5	-0,1288	24,5	-0,092	39,5	-0,0759	54,5	-0,138
10	-0,1357	25	-0,0667	40	-0,0713	55	-0,138
10,5	-0,1311	25,5	-0,1012	40,5	-0,0552	55,5	-0,138
11	-0,1242	26	-0,115	41	-0,0874	56	-0,138
11,5	-0,1265	26,5	-0,092	41,5	-0,1081	56,5	-0,138
12	-0,1311	27	-0,1035	42	-0,1242	57	-0,138
12,5	-0,1311	27,5	-0,0713	42,5	-0,1334	57,5	-0,138
13	-0,1334	28	-0,0437	43	-0,1311	58	-0,138
13,5	-0,0874	28,5	-0,0759	43,5	-0,1334	58,5	-0,138
14	-0,1196	29	-0,092	44	-0,1334	59	-0,138
14,5	-0,1173	29,5	-0,0805	44,5	-0,1334	59,5	-0,138
15	-0,1219	30	-0,1311	45	-0,1334	60	-0,138

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 180^{\circ}$

кор	Орієнтація пуса приладу: <i>φ</i> = 2	225°	Об'єм: V=	400 ml	Гіроскоп: "С	OFF"	
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, град с ⁻¹	t, c	Вихідний сигнал, град с ⁻¹
0,5	0	15,5	-0,1357	30,5	-0,1334	45,5	-0,023
1	0,0552	16	-0,1357	31	-0,1357	46	-0,0345
1,5	-0,0575	16,5	-0,1357	31,5	-0,1357	46,5	-0,0483
2	-0,0345	17	-0,138	32	-0,1334	47	-0,0368
2,5	-0,0966	17,5	-0,1357	32,5	-0,1127	47,5	-0,0529
3	-0,1035	18	-0,138	33	-0,0598	48	-0,0506
3,5	-0,1104	18,5	-0,0897	33,5	-0,1311	48,5	-0,0552
4	-0,1058	19	-0,046	34	-0,1334	49	-0,0529
4,5	-0,1081	19,5	-0,0828	34,5	-0,0943	49,5	-0,0414
5	-0,0805	20	-0,0713	35	-0,0713	50	-0,0529
5,5	-0,1173	20,5	-0,0966	35,5	-0,0575	50,5	-0,0322
6	-0,1311	21	-0,0805	36	-0,0575	51	-0,0598
6,5	-0,1334	21,5	-0,092	36,5	-0,0345	51,5	-0,0621
7	-0,1334	22	-0,1127	37	-0,0368	52	-0,0598
7,5	-0,1334	22,5	-0,0391	37,5	-0,1311	52,5	-0,0368
8	-0,1334	23	0,0069	38	-0,1334	53	0,0368
8,5	-0,1334	23,5	-0,0023	38,5	-0,1334	53,5	0,023
9	-0,1334	24	-0,0391	39	-0,1334	54	-0,0092
9,5	-0,1334	24,5	-0,0299	39,5	-0,0989	54,5	-0,0253
10	-0,1334	25	-0,0299	40	-0,1012	55	0
10,5	-0,1334	25,5	-0,0184	40,5	-0,0828	55,5	0,0092
11	-0,1334	26	-0,0138	41	-0,069	56	0
11,5	-0,1311	26,5	-0,0621	41,5	-0,0782	56,5	-0,0368
12	-0,1334	27	-0,0345	42	-0,0897	57	-0,0069
12,5	-0,1357	27,5	-0,0713	42,5	-0,0644	57,5	-0,0092
13	-0,1357	28	-0,0276	43	-0,0437	58	0
13,5	-0,1357	28,5	-0,0621	43,5	-0,0276	58,5	-0,0115
14	-0,1357	29	-0,1173	44	-0,0138	59	-0,0092
14,5	-0,1357	29,5	-0,1334	44,5	-0,0069	59,5	0,0207
15	-0,1357	30	-0,1334	45	-0,0621	60	-0,0207

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 225^{\circ}$

кор	Орієнтація корпуса прила опусу приладу:	аду $\varphi = 270^{\circ}$	Об'єм: V=	=400 ml	Гіроскоп: "С	OFF"	
	Вихідний		Вихідний		Вихідний		Вихідний
<i>t</i> , <i>c</i>	сигнал,	<i>t</i> , <i>c</i>	сигнал,	<i>t</i> , <i>c</i>	сигнал,	<i>t</i> , <i>c</i>	сигнал,
	град с-1		град с-1		град с		град с
0,5	-0,0023	15,5	-0,4715	30,5	-0,5428	45,5	-0,529
1	-0,0069	16	-0,5106	31	-0,4968	46	-0,4531
1,5	-0,0046	16,5	-0,483	31,5	-0,5037	46,5	-0,4508
2	-0,0046	17	-0,5083	32	-0,4669	47	-0,4462
2,5	-0,5152	17,5	-0,4715	32,5	-0,4416	47,5	-0,4554
3	-0,621	18	-0,5382	33	-0,4807	48	-0,4577
3,5	-0,5934	18,5	-0,5175	33,5	-0,4991	48,5	-0,414
4	-0,5497	19	-0,4554	34	-0,5359	49	-0,483
4,5	-0,5681	19,5	-0,4715	34,5	-0,5497	49,5	-0,4623
5	-0,4853	20	-0,5566	35	-0,5865	50	-0,5106
5,5	-0,483	20,5	-0,5129	35,5	-0,5796	50,5	-0,4922
6	-0,4393	21	-0,5658	36	-0,6118	51	-0,368
6,5	-0,3841	21,5	-0,5106	36,5	-0,5198	51,5	-0,414
7	-0,5244	22	-0,4738	37	-0,5543	52	-0,4393
7,5	-0,5405	22,5	-0,506	37,5	-0,529	52,5	-0,4462
8	-0,5681	23	-0,4232	38	-0,5865	53	-0,4439
8,5	-0,4163	23,5	-0,5106	38,5	-0,5612	53,5	-0,4439
9	-0,4094	24	-0,5428	39	-0,5474	54	-0,4738
9,5	-0,4991	24,5	-0,5221	39,5	-0,5267	54,5	-0,4324
10	-0,3887	25	-0,4853	40	-0,5083	55	-0,46
10,5	-0,1909	25,5	-0,4715	40,5	-0,483	55,5	-0,46
11	-0,4048	26	-0,4922	41	-0,4255	56	-0,4232
11,5	-0,4347	26,5	-0,506	41,5	-0,4232	56,5	-0,414
12	-0,1748	27	-0,4899	42	-0,4646	57	-0,4761
12,5	-0,4531	27,5	-0,5129	42,5	-0,4784	57,5	-0,4623
13	-0,4692	28	-0,4945	43	-0,4554	58	-0,46
13,5	-0,4347	28,5	-0,5359	43,5	-0,437	58,5	-0,4876
14	-0,4784	29	-0,5382	44	-0,46	59	-0,4738
14,5	-0,4646	29,5	-0,5359	44,5	-0,4577	59,5	-0,4761
15	-0,4209	30	-0,5083	45	-0,4669	60	-0,4393

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 270^{\circ}$

кој	Орієнтація рпуса приладу: <i>ф</i>	$p = 315^{\circ}$	Об'єм: V=	=400 ml	Гіроскоп: "С	OFF"	
<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>
0,5	-0,0092	15,5	-0,4163	30,5	-0,4807	45,5	-0,4715
1	-0,4554	16	-0,4278	31	-0,4922	46	-0,4945
1,5	-0,4554	16,5	-0,4163	31,5	-0,4945	46,5	-0,4761
2	-0,46	17	-0,368	32	-0,5198	47	-0,5014
2,5	-0,391	17,5	-0,3243	32,5	-0,5129	47,5	-0,5175
3	-0,4508	18	-0,3611	33	-0,4761	48	-0,5014
3,5	-0,529	18,5	-0,368	33,5	-0,529	48,5	-0,4922
4	-0,4922	19	-0,3013	34	-0,4646	49	-0,5405
4,5	-0,3864	19,5	-0,3312	34,5	-0,4738	49,5	-0,4876
5	-0,4117	20	-0,3588	35	-0,4324	50	-0,4968
5,5	-0,4071	20,5	-0,3565	35,5	-0,4715	50,5	-0,4899
6	-0,4462	21	-0,4301	36	-0,4715	51	-0,4669
6,5	-0,4577	21,5	-0,4462	36,5	-0,5083	51,5	-0,4692
7	-0,4807	22	-0,4784	37	-0,4784	52	-0,4554
7,5	-0,4347	22,5	-0,483	37,5	-0,4623	52,5	-0,4715
8	-0,4623	23	-0,4784	38	-0,483	53	-0,4255
8,5	-0,4485	23,5	-0,4416	38,5	-0,4485	53,5	-0,4508
9	-0,4508	24	-0,483	39	-0,4508	54	-0,4531
9,5	-0,4554	24,5	-0,4945	39,5	-0,4347	54,5	-0,4416
10	-0,4462	25	-0,483	40	-0,4508	55	-0,4623
10,5	-0,4324	25,5	-0,5014	40,5	-0,4715	55,5	-0,4807
11	-0,483	26	-0,506	41	-0,5175	56	-0,4669
11,5	-0,4761	26,5	-0,4968	41,5	-0,5106	56,5	-0,5014
12	-0,506	27	-0,4784	42	-0,4554	57	-0,4117
12,5	-0,4991	27,5	-0,506	42,5	-0,5083	57,5	-0,4623
13	-0,4761	28	-0,4784	43	-0,5083	58	-0,4922
13,5	-0,4301	28,5	-0,4922	43,5	-0,4899	58,5	-0,4876
14	-0,4301	29	-0,5175	44	-0,483	59	-0,4738
14,5	-0,4324	29,5	-0,5451	44,5	-0,4531	59,5	-0,4623
15	-0.4117	30	-0.4991	45	-0.4232	60	-0.4692

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 315^{\circ}$

Рис. 4.23. Вихідний сигнал ДУСУ при $\varphi = 0^{\circ}$, гіроагрегат включений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.24. Вихідний сигнал ДУСУ при $\varphi = 45^{\circ}$, гіроагрегат включений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.25. Вихідний сигнал ДУСУ при $\varphi = 90^{\circ}$, гіроагрегат включений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.27. Вихідний сигнал ДУСУ при $\varphi = 180^\circ$, гіроагрегат включений: тонка лінія – $\theta = 0^\circ$; жирна лінія – $\theta = 17^\circ$

Рис. 4.28. Вихідний сигнал ДУСУ при $\varphi = 225^{\circ}$, гіроагрегат включений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.29. Вихідний сигнал ДУСУ при $\varphi = 270^{\circ}$, гіроагрегат включений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

Рис. 4.30. Вихідний сигнал ДУСУ при $\varphi = 315^{\circ}$, гіроагрегат включений: тонка лінія – $\theta = 0^{\circ}$; жирна лінія – $\theta = 17^{\circ}$

кор	Орієнтація корпуса приладу: $\varphi = 0^{\circ}$		Об'єм: V=400 ml		Гіроскоп: "ON"		
t, c	Вихідний сигнал, <i>град с</i> -1	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>
0,5	-0,069	15,5	-0,069	30,5	0,4255	45,5	-0,2875
1	0,69	16	0,3105	31	0,207	46	-0,3335
1,5	0,46	16,5	0,299	31,5	0,115	46,5	-0,345
2	0,368	17	0,3565	32	-0,0345	47	-0,3335
2,5	0,1495	17,5	0	32,5	0,1725	47,5	-0,276
3	0,2415	18	0,23	33	-0,1725	48	-0,299
3,5	0,023	18,5	0,3335	33,5	-0,2875	48,5	-0,2185
4	-0,161	19	0,276	34	-0,276	49	-0,1955
4,5	-0,3105	19,5	0,0345	34,5	-0,322	49,5	-0,2415
5	-0,437	20	0,4945	35	-0,276	50	-0,3105
5,5	-0,4025	20,5	0,4945	35,5	-0,23	50,5	-0,299
6	-0,46	21	0,1725	36	-0,2645	51	-0,2645
6,5	-0,4485	21,5	0,391	36,5	-0,2875	51,5	-0,276
7	-0,3105	22	0,529	37	-0,2875	52	-0,3105
7,5	-0,3105	22,5	0,529	37,5	-0,368	52,5	-0,345
8	-0,1495	23	0,4715	38	-0,3565	53	-0,2645
8,5	0,1265	23,5	0,4025	38,5	-0,253	53,5	-0,3335
9	0	24	0,3565	39	-0,276	54	-0,3105
9,5	0,2415	24,5	0,6325	39,5	-0,345	54,5	-0,184
10	0,2875	25	0,6555	40	-0,3335	55	-0,184
10,5	0,368	25,5	0,644	40,5	-0,322	55,5	-0,2875
11	0,299	26	0,6785	41	-0,253	56	-0,092
11,5	0,46	26,5	0,782	41,5	-0,368	56,5	-0,3335
12	0,2875	27	0,7475	42	-0,3795	57	-0,253
12,5	0,3335	27,5	0,736	42,5	-0,322	57,5	-0,2185
13	0,1725	28	0,69	43	-0,253	58	-0,276
13,5	0,1035	28,5	0,713	43,5	-0,161	58,5	-0,2645
14	0,3795	29	0,552	44	-0,368	59	-0,1725
14,5	0,529	29,5	0,644	44,5	-0,3565	59,5	-0,2645
15	0.391	30	0,575	45	-0,345	60	-0,184

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 0^{\circ}$

кор	Орієнтація корпуса приладу: $\varphi = 45^{\circ}$		Об'єм: V=400 ml		Гіроскоп: "О	V"	
<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град</i> с ⁻¹	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град</i> с ⁻¹	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град</i> с ⁻¹
0,5	-0,0805	15,5	-0,2645	30,5	-0,1035	45,5	-0,207
1	-0,0575	16	-0,1725	31	0,1035	46	-0,3105
1,5	-0,184	16,5	-0,1265	31,5	-0,161	46,5	-0,3335
2	-0,1955	17	-0,138	32	-0,0575	47	-0,23
2,5	-0,2185	17,5	-0,1725	32,5	0,161	47,5	-0,23
3	-0,1495	18	-0,368	33	0,161	48	-0,1955
3,5	-0,1035	18,5	-0,2645	33,5	0,092	48,5	-0,23
4	-0,1265	19	-0,368	34	0,138	49	0,184
4,5	-0,092	19,5	-0,092	34,5	0,276	49,5	-0,2185
5	-0,069	20	-0,115	35	0,299	50	-0,184
5,5	-0,1955	20,5	-0,0345	35,5	0,2875	50,5	-0,1955
6	-0,1495	21	0,138	36	0,0345	51	-0,207
6,5	-0,276	21,5	-0,0345	36,5	0,092	51,5	-0,1725
7	-0,1495	22	-0,046	37	-0,1265	52	-0,276
7,5	-0,0575	22,5	0,0115	37,5	-0,2415	52,5	-0,3565
8	-0,161	23	-0,092	38	0,1035	53	-0,0575
8,5	0,3105	23,5	-0,0115	38,5	0	53,5	-0,0115
9	0,2645	24	0,161	39	0,069	54	0
9,5	0,0345	24,5	0,184	39,5	-0,1265	54,5	-0,138
10	-0,161	25	0,1725	40	0,023	55	-0,1955
10,5	-0,2415	25,5	-0,1265	40,5	-0,023	55,5	-0,299
11	-0,23	26	-0,322	41	-0,0345	56	-0,322
11,5	-0,207	26,5	-0,345	41,5	-0,1035	56,5	-0,092
12	-0,3335	27	-0,115	42	-0,1725	57	-0,0575
12,5	-0,3565	27,5	-0,069	42,5	0,0345	57,5	-0,3335
13	-0,23	28	0	43	-0,184	58	-0,3565
13,5	-0,3335	28,5	-0,023	43,5	-0,115	58,5	-0,3335
14	-0,253	29	-0,1495	44	-0,1725	59	-0,23
14,5	-0,3335	29,5	-0,276	44,5	-0,1955	59,5	-0,299
15	-0,3335	30	-0,1265	45	0,0575	60	-0,3105

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 45^{\circ}$

кор	Орієнтація корпуса приладу: <i>φ</i> = 90°		Об'єм: V=400	ml	Гіроскоп: "ON"		
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, град с ⁻¹	<i>t</i> , <i>c</i>	Вихідний сигнал, град с ⁻¹	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>
0,5	-0,138	15,5	-0,598	30,5	-0,4715	45,5	-0,322
1	-0,0575	16	-0,5175	31	-0,46	46	-0,322
1,5	-0,0805	16,5	-0,4945	31,5	-0,345	46,5	-0,345
2	-0,115	17	-0,5635	32	-0,2875	47	-0,368
2,5	-0,069	17,5	-0,5635	32,5	-0,4255	47,5	-0,2415
3	-0,069	18	-0,69	33	-0,345	48	-0,575
3,5	-1,035	18,5	-0,644	33,5	-0,391	48,5	-0,46
4	-0,736	19	-0,667	34	-0,46	49	-0,6325
4,5	-0,5865	19,5	-0,483	34,5	-0,483	49,5	-0,3795
5	-0,3335	20	-0,6785	35	-0,46	50	-0,3795
5,5	-0,7475	20,5	-0,368	35,5	-0,4945	50,5	-0,2875
6	-0,506	21	-0,4025	36	-0,506	51	-0,483
6,5	-0,5405	21,5	-0,322	36,5	-0,6095	51,5	-0,345
7	-0,506	22	-0,575	37	-0,4025	52	-0,3795
7,5	-0,184	22,5	-0,5175	37,5	-0,4715	52,5	-0,2875
8	-0,3565	23	-0,3795	38	-0,5175	53	-0,2185
8,5	-0,667	23,5	-0,3105	38,5	-0,3795	53,5	-0,3335
9	-0,506	24	-0,3565	39	-0,414	54	-0,2875
9,5	-0,598	24,5	-0,4715	39,5	-0,3105	54,5	-0,184
10	-0,598	25	-0,6095	40	-0,483	55	-0,207
10,5	-0,3335	25,5	-0,253	40,5	-0,483	55,5	-0,161
11	-0,6325	26	-0,4255	41	-0,598	56	-0,069
11,5	-0,7245	26,5	-0,368	41,5	-0,5175	56,5	-0,1955
12	-0,414	27	-0,3795	42	-0,322	57	-0,4025
12,5	-0,5405	27,5	-0,529	42,5	-0,368	57,5	-0,3565
13	-0,874	28	-0,4715	43	-0,552	58	-0,2645
13,5	-0,828	28,5	-0,3795	43,5	-0,391	58,5	-0,483
14	-0,6555	29	-0,5175	44	-0,46	59	-0,1955
14,5	-0,8625	29,5	-0,3795	44,5	-0,46	59,5	-0,3335
15	-0,759	30	-0,391	45	-0,2875	60	-0,276

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 90^{\circ}$

101

кој	Орієнтація рпуса приладу: <i>ф</i>	Ø=135°	Об'єм: V=	=400 ml	Гіроскоп: "	ON"	
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>
0,5	-0,322	15,5	-0,046	30,5	-0,1725	45,5	-0,2415
1	-0,2875	16	-0,0575	31	-0,0575	46	-0,23
1,5	-0,1495	16,5	-0,0115	31,5	-0,0575	46,5	-0,1265
2	-0,207	17	-0,092	32	0	47	0,1495
2,5	-0,276	17,5	-0,023	32,5	-0,092	47,5	-0,253
3	-0,115	18	-0,046	33	-0,161	48	-0,1495
3,5	-0,0115	18,5	-0,1035	33,5	-0,184	48,5	-0,2875
4	-0,1035	19	-0,1495	34	-0,207	49	-0,322
4,5	0,345	19,5	-0,1495	34,5	-0,184	49,5	-0,3105
5	0,1955	20	-0,207	35	-0,184	50	-0,2645
5,5	0,138	20,5	-0,0575	35,5	-0,184	50,5	-0,0575
6	-0,023	21	-0,115	36	-0,23	51	-0,138
6,5	0,276	21,5	-0,046	36,5	-0,1265	51,5	-0,1265
7	0,1725	22	-0,0575	37	0,1035	52	-0,368
7,5	-0,0345	22,5	-0,046	37,5	-0,1495	52,5	-0,3105
8	0,138	23	-0,0575	38	-0,1495	53	-0,345
8,5	-0,046	23,5	-0,1495	38,5	-0,1265	53,5	0
9	-0,023	24	-0,1035	39	-0,1725	54	-0,23
9,5	-0,0115	24,5	-0,069	39,5	-0,1035	54,5	-0,2875
10	0,0345	25	-0,1035	40	0,2645	55	-0,3565
10,5	0,023	25,5	-0,184	40,5	0,23	55,5	-0,322
11	0,0115	26	-0,1725	41	0,3335	56	-0,1725
11,5	-0,184	26,5	-0,092	41,5	-0,1495	56,5	-0,115
12	-0,138	27	-0,0345	42	0,0805	57	-0,138
12,5	-0,092	27,5	-0,0805	42,5	-0,1955	57,5	-0,276
13	-0,1495	28	-0,1955	43	-0,276	58	0,0805
13,5	-0,0805	28,5	-0,0805	43,5	-0,3105	58,5	-0,1035
14	-0,046	29	-0,0805	44	-0,276	59	-0,23
14,5	-0,046	29,5	-0,115	44,5	-0,3105	59,5	-0,138
15	-0,1495	30	-0,138	45	-0,2875	60	0,0115

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 135^{\circ}$

кор	Орієнтація корпуса приладу: <i>φ</i> = 180°		Об'єм: V=400	ml	Гіроскоп: "ON"		
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, град с ⁻¹	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>
0,5	-0,3565	15,5	-0,0805	30,5	-0,368	45,5	-0,184
1	-0,253	16	0,0345	31	-0,368	46	-0,391
1,5	-0,2875	16,5	-0,345	31,5	-0,391	46,5	-0,414
2	-0,3105	17	-0,391	32	-0,322	47	-0,3795
2,5	-0,069	17,5	-0,391	32,5	-0,2415	47,5	-0,322
3	-0,138	18	-0,3335	33	-0,391	48	-0,4025
3,5	-0,1495	18,5	-0,368	33,5	-0,3795	48,5	-0,414
4	-0,2185	19	-0,2875	34	-0,368	49	-0,3795
4,5	0,1725	19,5	-0,2645	34,5	-0,368	49,5	-0,4255
5	0,023	20	-0,276	35	-0,391	50	-0,2645
5,5	-0,1495	20,5	-0,3795	35,5	-0,368	50,5	-0,2415
6	-0,161	21	-0,368	36	-0,2645	51	-0,2185
6,5	0,0115	21,5	-0,391	36,5	-0,322	51,5	-0,23
7	-0,115	22	-0,368	37	-0,3565	52	-0,3105
7,5	-0,092	22,5	-0,368	37,5	-0,253	52,5	-0,368
8	-0,115	23	-0,368	38	-0,368	53	-0,3795
8,5	-0,368	23,5	-0,3795	38,5	-0,345	53,5	-0,4025
9	-0,1725	24	-0,3795	39	-0,345	54	-0,253
9,5	-0,207	24,5	-0,4025	39,5	-0,368	54,5	-0,391
10	-0,276	25	-0,368	40	-0,3795	55	-0,3565
10,5	-0,4025	25,5	-0,368	40,5	-0,368	55,5	-0,3565
11	-0,3335	26	-0,345	41	-0,345	56	-0,2645
11,5	-0,299	26,5	-0,3565	41,5	-0,368	56,5	-0,299
12	-0,3565	27	-0,322	42	-0,138	57	-0,391
12,5	-0,3795	27,5	-0,368	42,5	-0,368	57,5	-0,23
13	-0,3565	28	-0,368	43	-0,414	58	-0,092
13,5	-0,253	28,5	-0,3795	43,5	-0,4025	58,5	-0,138
14	-0,368	29	-0,3795	44	-0,345	59	-0,3565
14,5	-0,345	29,5	-0,414	44,5	-0,23	59,5	-0,3565
15	-0.3795	30	-0.3795	45	-0.23	60	-0.391

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 180^{\circ}$

103

корг	Орієнтація туса приладу: <i>φ</i> = 2	225°	Об'єм: V=	400 ml	Гіроскоп: "О	N"	
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>						
0,5	-0,138	15,5	-0,4485	30,5	-0,437	45,5	-0,437
1	-0,1495	16	-0,437	31	-0,437	46	-0,4485
1,5	-0,4025	16,5	-0,437	31,5	-0,437	46,5	-0,437
2	-0,4485	17	-0,4255	32	-0,437	47	-0,4485
2,5	-0,414	17,5	-0,4255	32,5	-0,437	47,5	-0,2645
3	-0,4255	18	-0,437	33	-0,437	48	-0,414
3,5	-0,4255	18,5	-0,437	33,5	-0,4255	48,5	-0,276
4	-0,391	19	-0,437	34	-0,437	49	-0,0345
4,5	-0,414	19,5	-0,437	34,5	-0,437	49,5	-0,3565
5	-0,483	20	-0,437	35	-0,437	50	-0,2415
5,5	-0,437	20,5	-0,437	35,5	-0,4255	50,5	-0,046
6	-0,4025	21	-0,437	36	-0,437	51	-0,1495
6,5	-0,46	21,5	-0,437	36,5	-0,437	51,5	-0,3795
7	-0,483	22	-0,437	37	-0,437	52	-0,3565
7,5	-0,46	22,5	-0,437	37,5	-0,437	52,5	-0,3335
8	-0,4715	23	-0,4485	38	-0,4715	53	-0,437
8,5	-0,46	23,5	-0,437	38,5	-0,46	53,5	-0,437
9	-0,4715	24	-0,437	39	-0,437	54	-0,368
9,5	-0,4485	24,5	-0,46	39,5	-0,437	54,5	-0,4255
10	-0,437	25	-0,437	40	-0,4255	55	-0,2875
10,5	-0,4715	25,5	-0,4255	40,5	-0,437	55,5	-0,4255
11	-0,4715	26	-0,437	41	-0,4485	56	-0,2875
11,5	-0,4485	26,5	-0,437	41,5	-0,46	56,5	-0,4025
12	-0,437	27	-0,437	42	-0,437	57	-0,4255
12,5	-0,4715	27,5	-0,437	42,5	-0,4255	57,5	-0,3565
13	-0,46	28	-0,437	43	-0,4255	58	-0,391
13,5	-0,437	28,5	-0,437	43,5	-0,437	58,5	-0,4025
14	-0,4715	29	-0,437	44	-0,437	59	-0,414
14,5	-0,4485	29,5	-0,437	44,5	-0,437	59,5	-0,4255
15	-0,46	30	-0,437	45	-0,4255	60	-0,253

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 225^{\circ}$

Орієнтація корпуса приладу: <i>φ</i> = 270°			Об'єм: V=	=400 ml	Гіроскоп: "					
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>			
0,5	-0,368	15,5	-0,0115	30,5	-0,3335	45,5	-0,437			
1	-0,3795	16	-0,023	31	-0,3565	46	-0,4255			
1,5	-0,3105	16,5	-0,1955	31,5	-0,4255	46,5	-0,414			
2	-0,828	17	-0,253	32	-0,391	47	-0,391			
2,5	-0,414	17,5	-0,115	32,5	-0,391	47,5	-0,4025			
3	-0,4255	18	-0,2645	33	-0,322	48	-0,4025			
3,5	-0,437	18,5	-0,3335	33,5	-0,437	48,5	-0,3795			
4	-0,437	19	-0,3335	34	-0,3795	49	-0,391			
4,5	-0,4255	19,5	-0,2185	34,5	-0,253	49,5	-0,4025			
5	-0,414	20	-0,1495	35	-0,2645	50	-0,4025			
5,5	-0,4255	20,5	-0,2415	35,5	-0,207	50,5	-0,414			
6	-0,414	21	-0,184	36	-0,184	51	-0,391			
6,5	-0,4025	21,5	-0,2645	36,5	-0,299	51,5	-0,4255			
7	-0,4025	22	-0,253	37	-0,3105	52	-0,391			
7,5	-0,391	22,5	-0,2185	37,5	-0,207	52,5	-0,414			
8	-0,368	23	-0,1955	38	-0,3335	53	-0,391			
8,5	-0,1725	23,5	-0,1495	-0,1495 38,5		53,5	-0,23			
9	-0,2415	24	-0,23	39	-0,2645	54	-0,207			
9,5	-0,299	24,5	-0,276	39,5	-0,3565	54,5	-0,184			
10	-0,253	25	-0,2415	40	-0,3335	55	-0,2645			
10,5	-0,322	25,5	-0,207	40,5	-0,4255	55,5	-0,0575			
11	-0,322	26	-0,23	41	-0,437	56	-0,138			
11,5	-0,2875	26,5	-0,138	41,5	-0,4255	56,5	-0,253			
12	-0,322	27	-0,2415	42	-0,4025	57	-0,2185			
12,5	-0,2875	27,5	-0,2875	42,5	-0,414	57,5	-0,2645			
13	-0,1955	28	-0,2415	43	-0,437	58	-0,2415			
13,5	-0,069	28,5	-0,2875	43,5	-0,4255	58,5	-0,345			
14	-0,046	29	-0,276	44	-0,437	59	0,092			
14,5	-0,2645	29,5	-0,184	44,5	-0,414	59,5	-0,1955			
15	-0.23	30	-0.2875	45	-0.437	60	-0.2185			

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 270^{\circ}$

105

Орієнтація корпуса приладу: <i>φ</i> = 315°			Об'єм: V=	=400 ml	Гіроскоп: "				
<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град</i> с ⁻¹		
0,5	-0,414	15,5	-0,2185	30,5	-0,322	45,5	-0,391		
1	-0,437	16	-0,1955	31	-0,3795	46	-0,414		
1,5	-0,437	16,5	-0,391	31,5	-0,2645	46,5	-0,4025		
2	-0,46	17	-0,4025	32	-0,4025	-0,4255			
2,5	-0,437	17,5	-0,3565	32,5	-0,3565	47,5	-0,437		
3	-0,4025	18	-0,3105	33	-0,414	48	-0,4025		
3,5	-0,3795	18,5	-0,368	33,5	-0,368	48,5	-0,437		
4	-0,368	19	-0,276	34	-0,368	49	-0,414		
4,5	-0,437	19,5	-0,368	34,5	-0,391	49,5	-0,437		
5	-0,414	20	-0,3335	35	-0,4025	50	-0,414		
5,5	-0,4255	20,5	-0,2415	35,5	-0,3795	50,5	-0,4255		
6	-0,414	21	-0,2875	36	-0,368	51	-0,414		
6,5	-0,46	21,5	-0,391	36,5	-0,4025	51,5	-0,414		
7	-0,46	22	-0,345	37	-0,4025	52	-0,414		
7,5	-0,4485	22,5	-0,3565	37,5	-0,368	52,5	-0,4025		
8	-0,3795	23	-0,4025	38	-0,391	53	-0,414		
8,5	-0,46	23,5	-0,3795	38,5	-0,3795	53,5	-0,368		
9	-0,506	24	-0,4025	39	-0,4025	54	-0,4025		
9,5	-0,4255	24,5	-0,299	39,5	-0,4025	54,5	-0,2875		
10	-0,4485	25	-0,3565	40	-0,414	55	-0,299		
10,5	-0,5635	25,5	-0,276	40,5	-0,414 55		-0,4025		
11	-0,46	26	-0,3795	41	-0,4025	56	-0,414		
11,5	-0,6095	26,5	-0,299	41,5	-0,414	56,5	-0,414		
12	-0,598	27	-0,3565	42	-0,391	57	-0,3795		
12,5	-0,391	27,5	-0,368	42,5	-0,414	57,5	-0,414		
13	-0,0345	28	-0,276	43	-0,414	58	-0,4025		
13,5	-0,138	28,5	-0,2415	43,5	-0,414	58,5	-0,391		
14	-0,184	29	-0,1035	44	-0,4025	59	-0,4025		
14,5	-0,092	29,5	-0,1725	44,5	-0,4025	59,5	-0,391		
15	-0,207	30	-0,2645	45	-0,4025	60	-0,414		

"Зсув нуля" ДУСУ в ультразвуковому промені, $\theta = 17^{\circ}$, основа нерухома: $\varphi = 315^{\circ}$

4.1.2. Хвильове співпадання і похибки приладу на резонансному рівні

Являє безумовний практичний інтерес тестування гіроскопічного датчика кутових швидкостей з рідинностатичним підвісом в полі ультразвукового променя з метою виявлення причин виникнення особливостей резонансного типу.

Зупинимося на деяких резонансних проявах в поліагрегатному підвісі гіроскопа. Особливу увагу слід приділити виникненню збурюючих чинників внаслідок різкої зміни енергетичної активності рідинностатичної складової підвісу. Яка, до речі, постає чудовим транслятором проникаючого зовнішнього акустичного випромінювання

Для забезпечення чистоти експерименту, виключена можливість кінематичного збурення з боку основи. Розглядається два режими – при виключеному гіроагрегаті і при включеному гіроагрегаті.

Гіроагрегат відключений

Реєстрація вихідного сигналу гіроскопа при виключеному гіроагрегаті дозволяє оцінити ступінь впливу ультразвукового променя тільки на механічну систему підвісу. Другий режим – з включеним гіроагрегатом – дозволить оцінити вплив гіроскопічної реакції на виникнення додаткових похибок приладу в експлуатаційних умовах.

Зробимо оцінку вихідного сигналу ДУСУ на нерухомій основі в полі ультразвукового променя. Напрям променя оберемо перпендикулярним до оболонкової поверхні корпуса приладу ($\theta = 0^{\circ}$) і під кутом $\theta = 10^{\circ}37'$ до радіуса шпангоута, тобто під кутом "*співпадання*"). Чисельні дані збуреного руху поплавкового підвісу наведені в табл. 4.39.

Реалізації вихідного сигналу в реальному часі відображені на рис 4.31 та на рис. 4.32 (тривалість 2 хв).

Як видно, коли ультразвуковий промінь падає на оболонку корпуса по лінії радіуса шпангоута ($\theta = 0^{\circ}$), підвіс практично не реагує на збурення. Вихідний

Вихідний сигнал ДVCV в ультразвуковому полі. Основа нерухома, гіроагрегат відключений, $\theta = 10^0 37^7$

							-																
		Вихідний	сигнал, 	zpad c	-0,3312	-0,3312	-0,3565	-0,3611	-0,3542	-0,3818	-0,391	-0,3335	-0,4186	-0,3473	-0,3565	-0,3726	-0,3979	-0,3772	-0,322	-0,3588	-0,3151	-0,4209	-0,3404
			t, c		100,5	101	101,5	102	102,5	103	103,5	104	104,5	105	105,5	106	106,5	107	107,5	108	108,5	109	109,5
		Вихідний	сигнал, -1	zpad c	-0,3772	-0,3312	-0,3542	-0,3519	-0,2944	-0,2829	-0,3174	-0,3289	-0,2944	-0,3082	-0,2737	-0,2714	-0,3542	-0,3657	-0,3266	-0,2553	-0,2645	-0,2783	-0,3473
			t, c		80,5	81	81,5	82	82,5	83	83,5	84	84,5	85	85,5	86	86,5	87	87,5	88	88,5	89	89,5
		Вихідний	сигнал, -1	zpad c	-0,4209	-0,4715	-0,529	-0,4991	-0,5313	-0,529	-0,5359	-0,5474	-0,5658	-0,5221	-0,5267	-0,5106	-0,5152	-0,4255	-0,5221	-0,4853	-0,4646	-0,4853	-0,4945
Гіроскоп: « <i>OFF</i> »			t, c		60,5	61	61,5	62	62,5	63	63,5	64	64,5	65	65,5	99	66,5	67	67,5	68	68,5	69	69,5
	4	Вихідний	сигнал, -1	epad c	-0,5129	-0,6555	-0,4876	-0,4807	-0,4807	-0,5405	-0,4715	-0,483	-0,4922	-0,4922	-0,5152	-0,4899	-0,4784	-0,5198	-0,483	-0,4623	-0,5267	-0,4968	-0,4347
O6'€M: V=400 ml			t, c		40,5	41	41,5	42	42,5	43	43,5	44	44,5	45	45,5	46	46,5	47	47,5	48	48,5	49	49,5
		Вихідний	сигнал, -1	epad c	-0,3749	-0,4462	-0,3611	-0,3795	-0,3151	-0,3404	-0,3749	-0,3726	-0,4347	-0,3887	-0,4232	-0,4071	-0,4439	-0,4347	-0,4761	-0,5014	-0,4646	-0,4048	-0,4692
Орієнтація корпуса приладу: $\phi = 0^{\circ}$;	¢		<i>t, c</i>		20,5	21	21,5	22	22,5	23	23,5	24	24,5	25	25,5	26	26,5	27	27,5	28	28,5	29	29,5
	$\theta = 10^{0}37^{1}$	Вихідний	сигнал,	zpad c	-0,3013	-0,3427	-0,3381	-0,4163	-0,3381	-0,3979	-0,4025	-0,3772	-0,368	-0,3588	-0,3243	-0,4508	-0,3404	-0,4163	-0,3841	-0,3818	-0,3933	-0,4807	-0,4508
			t, c		0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	9	6,5	7	7,5	8	8,5	9	9,5
											1												
---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------			
-0,23	-0,2622	-0,3289	-0,2852	-0,3082	-0,3128	-0,2691	-0,3427	-0,3312	-0,3404	-0,3036													
110	110,5	111	111,5	112	112,5	113	113,5	114	114,5	115													
-0,3197	-0,2714	-0,2645	-0,2461	-0,2691	-0,2714	-0,2622	-0,2415	-0,2599	-0,2806	-0,2921	-0,2737	-0,2898	-0,3841	-0,2622	-0,3611	-0,4232	-0,4048	-0,3381	-0,345	-0,3266			
06	90,5	91	91,5	92	92,5	63	93,5	94	94,5	56	95,5	96	5'96	L6	5'26	86	5'86	66	5'66	100			
-0,506	-0,5037	-0,552	-0,5244	-0,5773	-0,5888	-0,552	-0,4784	-0,4991	-0,4186	-0,4669	-0,4255	-0,4301	-0,4301	-0,4071	-0,5014	-0,4577	-0,4048	-0,3519	-0,4278	-0,4232			
70	70,5	71	71,5	72	72,5	73	73,5	74	74,5	75	75,5	92	76,5	LL	77,5	78	78,5	6L	79,5	80			
-0,4439	-0,5451	-0,5313	-0,4945	-0,4899	-0,5658	-0,5405	-0,483	-0,5359	-0,5313	-0,3887	-0,3933	-0,4324	-0,4968	-0,4876	-0,4232	-0,4347	-0,5014	-0,4577	-0,4623	-0,5267			
50	50,5	51	51,5	52	52,5	53	53,5	54	54,5	55	55,5	56	56,5	57	57,5	58	58,5	59	59,5	09			
-0,4623	-0,5175	-0,483	-0,4531	-0,3956	-0,3726	-0,4301	-0,4623	-0,4968	-0,3726	-0,4577	-0,4324	-0,3634	-0,4094	-0,3795	-0,4738	-0,4715	-0,4462	-0,4876	-0,4715	-0,4623			
30	30,5	31	31,5	32	32,5	33	33,5	34	34,5	35	35,5	36	36,5	37	37,5	38	38,5	39	39,5	40			
-0,4232	-0,4485	-0,4807	-0,5014	-0,4531	-0,322	-0,3358	-0,3542	-0,4393	-0,3496	-0,3542	-0,4623	-0,3887	-0,4163	-0,4462	-0,3772	-0,3427	-0,3611	-0,3404	-0,4117	-0,3266			
10	10,5	11	11,5	12	12,5	13	13,5	14	14,5	15	15,5	16	16,5	17	17,5	18	18,5	19	19,5	20			

сигнал можна вважати рівним нулю (тонка лінія на рис. 4.31). Зовсім інша картина спостерігається при куті падіння променя $\theta = 10^{\circ} 37'$. Має місце різке збільшення вихідного сигналу із стійкою значною величиною, що дає можливість зробити висновок стосовно наявного резонансу.

Теоретичні дані, які будуть наведені далі, показали, що за кута падіння $\theta = 10^{\circ}$ в корпусі приладу виникає геометричний, або просторовий, резонанс (хвильове співпадання), коли слід згинної і падаючої хвилі співпадають. За цих умов виникає, практично без дисипації, перекачка енергії зовнішньої звукової хвилі усередину приладу.

Слід зауважити, що колова хвиля в корпусі не сприяє виникненню резонанса. Вона здатна до цього лише на низьких, нижче граничної, частотах.

Як видно, розбіжність між теоретичним здогадом і стендовим випробуванням складає усього *37 кутових хвилин*, що цілком припустимо.

Рис. 4.31. Вихідний сигнал ДVCV в ультразвуковому полі при відключеному гіроагрегаті, $\varphi = 0^\circ$: тонка лінія - $\theta = 0^\circ$; жирна лінія - $\theta = 10^\circ 37'$

Вивчення розрахункової моделі явища свідчить, що генеруємі згинні коливання корпуса здатні створити резонансну ситуацію тільки на частотах, вищих за граничну. Цікаво, що кожній частоті відповідає свій кут співпадання θ_c . У всіх інших випадках, звукопроникність корпуса різко зменшується. Для умов експерименту це виконано, бо гранична частота $f_{ep} = 15473 \ \Gamma u$ і, відповідно, набагато менша частоти ультразвукового променя у 42 к Γu .

Реалізація вихідного сигналу ДУСУ показує, що в ньому присутня досить велика систематична складова (біля 0,5 *град* c^{-1}) і стохастична складова (рис. 4.32). Причому максимальне значення вихідного сигналу дорівнює 0,65 *град* c^{-1} , що набагато вище за порогове (0,45 *град* c^{-1}).

Рис. 4.32. Вихідний сигнал ДУСУ при $\varphi = 0^\circ$, $\theta = 10^\circ 37^\circ$

Поза увагою залишилася диференціальна оцінка ступеня впливу комплектуючих. Але, очевидно, що резонансні явища в підвісі, все ж таки, будуть породжувати левову долю загальної похибки.

Гіроагрегат включений

Стабілізуючи в просторі поплавковий підвіс, гіроскоп, природно, привнесе суттєві зміни в показання приладу (табл. 4.40).

З'ясувалося, що для кутів падіння ультразвукового променя, які не дорівнюють куту співпадання θ_c , вихідний сигнал лише трошки перевищує поріг чутливості. В той же час, коли кут падіння дорівнює куту співпадання, вихідний сигнал стрімко зростає і доходить до 2,19 град с⁻¹ (рис. 4.33). І це на нерухомій основі.

Середня величина знаходиться поблизу 1,6 град c^{-1} (рис. 4.34). Причому, змінюється і знак вихідного сигналу.

Очевидно, що за такої ситуації виникає питання про функціональну спроможність датчика кутових швидкостей. Іншими словами, такий прилад не відповідає паспортним вимогам

111

Таблиця 4.40

"Зсув нуля" ДУСУ під дією ультразвукового променя

		Вихідний	сигнал, 2022 г. ¹	cpuo c	1,3455	1,0695	1,219	1,2995	1,2535	1,2305	1,2765	1,196	1,058	1,1385	1,311	1,288	1,403	1,2995	1,1845	1,012
			<i>t</i> , <i>c</i>		100,5	101	101,5	102	102,5	103	103,5	104	104,5	105	105,5	106	106,5	107	107,5	108
		Вихідний	сигнал, 2022 г. ⁻¹	epuo c	1,518	1,863	1,5525	1,2765	1,541	1,7365	1,2075	1,311	1,38	1,518	1,564	1,3685	1,2765	1,219	1,2075	1,288
			t, c		<i>5</i> ' 08	18	81,5	82	82,5	83	83,5	84	84,5	85	85,5	86	86,5	87	87,5	88
		Вихідний	сигнал, 2222 г. ⁻¹	cpuo c	1,8285	1,4145	1,3915	1,5065	2,0585	1,6445	2,07	2,1735	2,1275	1,7365	1,725	1,7365	2,0815	1,8975	1,8745	2,024
«ON»			t, c		60,5	61	61,5	62	62,5	63	63,5	64	64,5	<u>5</u> 9	65,5	66	66,5	<i>L</i> 9	67,5	89
Гіроскоп:		Вихідний	сигнал, 2222 с ⁻¹	cpuu u	1,5065	2,001	1,9435	1,748	2,0355	1,9205	2,185	1,61	1,6905	1,3685	1,3455	1,6905	1,38	1,2535	1,311	1,2305
=400 ml			t, c		40,5	41	41,5	42	42,5	43	43,5	74	44,5	45	45,5	46	46,5	47	47,5	48
06'єм : V=		Вихідний	сигнал, 2222 г. ⁻¹	cpuo c	1,242	1,5525	1,426	1,5525	1,1845	1,2765	1,5295	1,5755	1,656	1,633	1,771	1,84	1,84	1,8975	1,8745	1,3685
Орієнтація са приладу : $\varphi = 0^{\circ}$, $\theta = 10^{\circ}37'$, ,		t, c		20,5	21	21,5	22	22,5	23	23,5	24	24,5	25	25,5	26	26,5	27	27,5	28
	$\theta = 10^{\circ}37'$	Вихідний	сигнал, 2222 г1	cpuo c	1,288	1,3915	1,219	1,541	1,5295	0,989	1,2305	1,4145	1,4145	1,3915	1,61	1,3225	1,311	1,357	1,9205	1,7135
корпу	-		t, c		0,5	1	1,5	2	2,5	3	3,5	4	4,5	5	5,5	9	6,5	7	7,5	8

112

													_									
1,1615	1,15	1,2075	1,1845	1,196	1,2535	1,058	1,1385	1,2305	1,0005	0,943	1,2075	1,2995										
108,5	109,5	110	110,5	111	111,5	112	112,5	113	113,5	114	114,5	115										
1,61	1,0925	1,1615	1,081	1,3915	1,104	0,989	1,1615	1,173	1,104	1,1615	1,2305	1,7595	1,334	1,2305	1,1385	1,2305	1,0925	1,0925	1,173	1,127	1,196	1,15
88,5	39,5	06	5,06	91	91,5	92	92,5	63	93,5	94	94,5	95	95,5	96	96,5	97	5,79	86	98,5	66	99,5	100
1,9665	1,725	1,5295	1,702	1,5065	1,6215	1,288	1,6215	1,219	1,1845	1,4605	1,495	1,15	1,38	1,334	1,38	1,426	1,725	1,6675	1,863	1,6905	1,7595	1,7595
68,5	5,69	0L	2 ' 0L	1 <i>L</i>	71,5	72	72 , 5	£L	73 , 5	74	74,5	75	75,5	9L	76,5	LL	5°LL	8L	78,5	6L	79,5	80
1,15	2,1965	1,288	1,219	1,4145	1,242	1,334	1,4605	1,61	1,541	1,173	1,656	1,7135	1,817	2,1275	1,748	1,472	1,932	1,84	1,6905	1,909	1,3915	1,656
48,5	49,5	20	5,05	51	51,5	52	52,5	23	53,5	54	54,5	55	55,5	99	56,5	57	5.75	28	58,5	65	59,5	09
1,587	1,7595	1,886	1,4145	1,633	1,7135	1,288	1,518	1,6675	1,6675	1,564	1,5065	1,5985	1,242	1,403	1,5985	1,541	1,265	1,472	1,5985	1,426	1,771	1,5525
28,5	29,5	30	30,5	31	31,5	32	32,5	33	33,5	34	34,5	35	35,5	36	36,5	37	37,5	38	38,5	68	39,5	40
1,196	1,265	1,495	1,564	1,5065	1,1615	1,3685	1,3225	1,38	1,173	1,587	1,242	1,7135	1,4375	1,2305	1,2305	1,403	1,518	1,2305	1,449	1,196	1,334	1,7825
8,5	9,5	10	10,5	11	11,5	12	12,5	13	13,5	14	14,5	15	15,5	16	16,5	17	17,5	18	18,5	19	19,5	20

Рис. 4.33. Вихідний сигнал ДУСУ при $\varphi = 0^\circ$: тонка лінія – $\theta = 0^\circ$; жирна лінія – $\theta = 10^\circ 37'$

Отже, на показання приладу, окрім зміни стану самого підвісу, чинить вплив і гіроскопічна реакція. І її вплив настільки суттєвий, що ставить питання обов'язкового створення на літальному апараті для бортової апаратури *акустичного комфорту*. Тут вимальовується декілька шляхів технічної реалізації.

Рис. 4.34. Вихідний сигнал ДУСУ $\varphi = 0^\circ$; $\theta = 10^\circ 37'$. Реалізація тривалістю у 2 хвилини

Або розробити пасивні методи звукоізоляції приладу, як найбільш прості і дешеві, або використати схемні рішення компенсаційної структури, чи автокомпенсаційної.

§ 4.2. Аналітичне обґрунтування резонансних явищ при дифракції звукових хвиль

На той випадок, коли хвильовий розмір корпусу ДУСУ набагато більший за одиницю, тобто

$$1 \ll kR$$
,

де $k = \frac{\omega}{c}$ – хвильове число; R – радіус оболонкової частини корпуса, в рідинностатичній складовій, за певних обставин, можуть утворюватись зони збурення, які ще іменуються зонами *каустики. Каустичні* поверхні конфокальні внутрішній циліндричній поверхні корпуса. Вони утворюються як обвідна акустичних променів, які транслюються з однієї і тієї ж точки внутрішньої порожнини корпуса приладу як наслідок колових (уздовж шпангоута) і поперечних (згинних) її коливань. Як наслідок виявляється різка концентрація енергії звукових хвиль в рідинностатичній складовій [1, 2].

4.2.1. Фокусування енергії ультразвукового променя. Поверхні каустики

Розкриємо деякі аспекти природи виникаючого фокусування енергії проникного акустичного випромінювання. Для конкретності розглянемо середній шпангоут (рис. 4.35).

Припустимо, для наочності, що поплавок відсутній. Падаюча ззовні на корпус ДУСУ звукова хвиля P генерує в матеріалі *колові* (уздовж кола шпангоута) коливання $U_{\varphi}(t, z, \varphi)$, які розповсюджуються в напрямку паралелі зі швидкістю V_{np} , тобто, уздовж бічної поверхні корпуса, а також *згинні* (радіальні) коливання $W(t, z, \varphi)$ в площині шпангоута зі швидкістю V_{nn} .

Рис. 4.35. Фокусування енергії акустичного випромінювання

З'ясуємо, перш за все, механізм дії *колової* хвилі. Приймаючи бічну поверхню корпуса ДУСУ оболонкою достатньо великого хвильового розміру, припустимо розглядати окремо взятий елемент внутрішньої поверхні шпангоута як пластину нульової кривизни, швидкість поздовжніх хвиль у якій збігається з коловою швидкістю V_{пр} оболонки.

Якщо швидкість поздовжньої хвилі V_{np} більше швидкості звуку c_0 в рідині, тобто

$$c_0 < V_{np},$$

тоді біжуча уздовж паралелі хвиля буде випромінювати у рідину звукову хвилю, причому напрямок її розповсюдження буде складати з вектором швидкості V_{пр} кут

 α , який обчислюється за формулою (рис. 4.35):

$$\sin\alpha = \frac{c_0}{V_{np}}.$$

Внаслідок цього, значна частина енергії звукової хвилі буде зосереджувати поблизу кола радіуса *r*₁ (рис. 4.35)

$$r_1 = R\cos\alpha$$
.

Так, наприклад, якщо прийняти радіус внутрішньої порожнини корпуса ДУСУ за $R = 0,025 \ m$, матеріал прийняти алюмінієвим сплавом ($V_{np} = 6400 - 5200 \ m c^{-1}$, $V_{nn} = 3080 \ m c^{-1}$), рідинностатичний підвіс – з гліцерину ($c_0 |_{t=20^{\circ}C} = 1923 \ m c^{-1}$), а частоту ультразвукового променя $f=42 \ \kappa \Gamma u$, тоді хвильовий розмір буде становити 3,43.

Не вимагає труднощів обчислення радіуса r₁ поверхні каустики (рис. 4.35) –

$$r_1 = R \cos \alpha = 0,023 \ (M).$$

Зрозуміло, що за умови $V_{np} = c_0$, кут $\alpha = \frac{\pi}{2} pad$ і біжуча уздовж паралелі хвиля буде випромінювати в рідину звукову хвилю, яка перетинає ось приладу. Таким чином, зникне *аберація* і *каустична поверхня* обернеться на геометричне місце точок концентрації енергії, які знаходяться на осі ДУСУ.

Аналогічно, якщо $V_{nn} = c_0$, тоді $\beta = \frac{\pi}{2} p a \partial$ і каустична поверхня зовсім не утворюється згинною хвилею.

Являє інтерес оцінка впливу температури на ступінь концентрації енергії в рідинностатичній частині. Швидкість звуку в рідині при зміні температури обчислюється за формулою –

$$c(t) = c_0 + \alpha (t - t_0).$$

Для гліцерину $\alpha = -1.8$; $t_0 = 20 \ ^{0}C$. Отже, при $t = 60 \ ^{0}C$, швидкість звуку в рідинностатичній частині підвісу зменшиться до 1851 $m c^{-1}$. В той же час, при $t = 0^{\circ}C$, навпаки, швидкість звуку збільшиться до 1959 $m c^{-1}$. Гарантійні

зобов'язання заводу-виробника гарантують стійку роботу при $t = +200^{\circ} C$ на протязі 7 *хвилин*. Тобто швидкість звуку в рідині буде дорівнювати 1899 $M c^{-1}$. Звідкіля походить, що підтримка сталої температури рідини створює умови для управління процесом формування "*zone kaustikos*" і, відповідно, впливом на похибку *ДУСУ* за льотної експлуатації.

З цієї ж причини, *поперечна хвиля* буде призводити до концентрації енергії поблизу колового циліндра радіуса:

$$r_2 = R \sin \beta = 0,0168 \ (m).$$

Радіус поплавка прийнятий рівним $0,020 \, m$, тому очевидно, що каустична поверхня радіуса r_2 щезне, а поверхня радіуса r_1 – залишиться (рис. 4.36).

Каустичні поверхні радіуса r_1 та r_2 чітко розмежують області акустичної тіні в рідині.

Рис. 4.36. Фокусування енергії проникаючого випромінювання в рідинностатичній частині поплавкового підвісу

Зрозуміло, що підбираючи повним чином матеріал корпуса і рідини, можна впливати на характер *зон каустики*. Наприклад, зробити їх дискретнонеперервними [3].

Якщо скористатися методами променевої акустики, тоді можна класифікувати вивчаєме явище як, свого роду, *аберацію* (від грец. *aberration* – відхилення від

нормалі) звукових хвиль. У безабераційних конструкцій, як відомо, каустична поверхня обертається на ось і, таким чином, в нашому прикладі буде знаходитися на осі корпуса.

Можна стверджувати, що наявність усередині оболонок *зон збурення* є наслідком співпадіння швидкості сліду падаючої хвилі із швидкістю хвиль, генеруємих в оболонці [4, 5].

За опромінювання корпуса поплавкового приладу досить широким *звуковим пучком*, що, власне, і має місце в експлуатаційних умовах у вигляді ревербераційного простору блоку приладів управління (БПУ), резонанс співпадання може проявлятися як для поперечних, так і для колових хвиль (рис. 4.35).

Не зайвим буде зауважити, що в рідинностатичній частині підвісу можуть виникати також радіальні площини концентрації звукового випромінювання, як наслідок інтерфераційних явищ. Вони набувають вигляду чергуючихся темних (акустична тінь) і світлих смуг, хоча і не таких інтенсивних, як поверхні радіуса r_1 та r_2 [2].

4.2.2. Наближена розрахункова модель. Значний хвильовий розмір корпуса приладу

Проаналізуємо докладно вплив радіальних (в площині шпангоута) хвиль оболонкової частини корпуса гіроскопічного датчика кутових швидкостей класу ДУСУ та розповсюджуючихся по паралелі (колових) пружних хвиль, які виникають під впливом зовнішнього акустичного випромінювання гіперзвукового польоту.

Генеруєма в корпусі *ДУСУ* радіальна хвиля і хвиля, що біжить уздовж паралелі, будуть випромінювати у рідинностатичну частину підвісу гіроскопа звукові хвилі. Вони і будуть, за наявності хвильового співпадання, слугувати причиною формування в рідині зон енергетичної активності – *зон каустик*.

Наближену розрахункову модель будуємо з огляду на наявний великий

хвильовий розмір $1 \ll kR$, що дозволяє спростити вихідні чинники в аналітичній структурі явища, замінивши оболонкову частину корпуса на дискретно-неперервну сукупність тонких пластин нульової кривизни, які випромінюють в рідину акустичні хвилі внаслідок згинного руху $W(t, z, \varphi)$ та пружних коливань $U_{\varphi}(t, z, \varphi)$ по паралелі (рис. 4.37). Почнемо з вивчення згинного руху елементарної (плоскої) ділянки внутрішньої поверхні корпуса.

Рис. 4.37. Корпус датчика кутових швидкостей ДУСУ

Радіальні (згинні) коливання поверхні корпуса під дією ультразвукового випромінювання

Обумовлена умова значного хвильового розміру корпуса, тобто виконання співвідношення

$$1 \ll kR, \tag{4.1}$$

дозволяють надалі розглядати окремо взятий елемент поверхні корпуса у вигляді тонкої, пружної, ізотропної пластини нескінченої протяжності і товщиною 2*δ*

Рис. 4.38. Проходження ультразвукового променя крізь пружний ізотропний шар шпангоута

Приймаємо, що на пластину падає плоска звукова хвиля "1" під кутом θ . Ось *Ох* паралельна фронту збурення. Тиск в падаючій хвилі приймемо у вигляді

$$P_{1} = P_{10} \exp i \left\{ \omega t - k_{e} \left[\left(z + \delta \right) \cos \theta + y \sin \theta \right] \right\}, \qquad (4.2)$$

де $k_s = \frac{\omega}{c_0}$ – хвильове число повітряного середовища ззовні корпуса; P_{10} – амплітуда тиску в падаючій хвилі "1". Якщо прийняти хвильові числа з лицьової і тіньової сторін однаковими, тоді $\theta_1 = \theta$. Якщо ні, тоді слід використати закон Снеліуса:

$$\frac{c_0}{\sin\theta} = \frac{c_1}{\sin\theta_1}$$

В нашому випадку $\sin \theta_1 \approx 6 \sin \theta$; $k_{\mathcal{H}} = \frac{k_{\mathcal{H}}}{6}$.

Тиск у відбитій "2" і пройдешній "3" хвилях можна записати у вигляді –

$$P_{2} = P_{20} \exp i \left\{ \omega t - k_{e} \left[-(z+\delta)\cos\theta + y\sin\theta \right] \right\};$$

$$P_{3} = P_{30} \exp i \left\{ \omega t - k_{e} \left[(z+\delta)\cos\theta_{1} + y\sin\theta_{1} \right] \right\}.$$
(4.3)

Як видно, має місце плоска деформація шару пластини в напрямку *y*, *z*, бо відсутня третя координата *x*, (уздовж неї тиск не змінюється).

Відомо, що коливання пластин з жорстких матеріалів у цьому випадку описуються рівняннями руху тонких пластин у формі *Ламе*, але за умови, що довжина сліду падаючої хвилі не менша за шістку товщин пластини:

$$(\lambda + \mu) \left(\frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 W}{\partial y \partial z} \right) + \mu \left(\frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \right) = \rho_c \frac{\partial^2 V}{\partial t^2};$$

$$(\lambda + \mu) \left(\frac{\partial^2 V}{\partial y \partial z} + \frac{\partial^2 W}{\partial z^2} \right) + \mu \left(\frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2} \right) = \rho_c \frac{\partial^2 W}{\partial t^2},$$

$$(4.4)$$

де V, W – пружні переміщення в напрямку осей O_y і O_z ; ρ_c – щільність шару матеріалу; λ , μ – пружні сталі *Ламе*

$$\lambda = \frac{E\sigma}{(1+\sigma)(1-2\sigma)};$$
$$\mu = \frac{E}{2(1+\sigma)};$$

E – модуль Юнга; σ – коефіцієнт Пуассона.

Поклавши в рівняннях (4.4)

$$V = \frac{\partial \varphi}{\partial y} - \frac{\partial \psi}{\partial z}; \quad W = \frac{\partial \varphi}{\partial z} + \frac{\partial \psi}{\partial y},$$

після підстановки отримуємо два рівняння

$$\nabla^2 \varphi + k_1^2 \varphi = 0;$$

$$\nabla^2 \psi + k_2^2 \psi = 0,$$
(4.5)

де $k_1 = \omega c_1^{-1}$; $k_2 = \omega c_2^{-1} -$ хвильові числа для колових U_{φ} і поперечних W хвиль; $c_1 = \left[(\lambda + 2\mu) \rho_k^{-1} \right]^{\frac{1}{2}} = \left[\rho_k^{-1} E (1 - \sigma) (1 + \sigma)^{-1} (1 - 2\sigma)^{-1} \right]^{\frac{1}{2}} -$ швидкість розповсюдження колових хвиль у корпусі ДУСУ; $c_2 = \left[\mu \rho_k^{-1}\right]^{\frac{1}{2}} = \left\{ E \left[2\rho_k \left(1 + \sigma\right) \right]^{-1} \right\}^{\frac{1}{2}} -$ швидкість

розповсюдження хвиль у поперечній площині.

Розв'язок рівнянь (4.4) визначає пружні переміщення поверхні корпуса приладу [5]:

$$V = -\left[\left(C_1 \exp \alpha_1 z + C_2 \exp(-\alpha_1 z) i k_e \sin \theta + (C_3 \exp \alpha_2 z - C_4 \exp(-\alpha_2 z) \right] \times \exp(-i k_e y \sin \theta);$$

$$W = \left[\left(C_1 \exp \alpha_1 z - C_2 \exp(-\alpha_1 z) \alpha_1 - (C_3 \exp \alpha_2 z + C_4 \exp(-\alpha_2 z) i k_e \sin \theta \right] \times \exp(-i k_e y \sin \theta),$$

$$(4.6)$$

тут не врахований множник expiot.

Надалі знаходимо значення нормальних напруг

$$Z_{z} = (\lambda + 2\mu) \frac{\partial W}{\partial z} + \lambda \frac{\partial V}{\partial y} =$$

= $\left[(C_{1} \exp \alpha_{1} z + C_{2} \exp(-\alpha_{1} z) a_{1} - (C_{3} \exp \alpha_{2} z - C_{4} \exp(-\alpha_{2} z) a_{2}] \times (4.7) \times \exp(-ik_{e} y \sin \theta) \right]$

і тангенціальних напруг

$$Z_{y} = \mu \left(\frac{\partial V}{\partial z} + \frac{\partial W}{\partial y} \right) =$$

= $-\left[\left(C_{1} \exp \alpha_{1} z - C_{2} \exp \left(-\alpha_{1} z \right) a_{3} + \left(C_{3} \exp \alpha_{2} z + C_{4} \exp \left(-\alpha_{2} z \right) a_{4} \right] \times (4.8) \times \exp \left(-ik_{e} y \sin \theta \right),$

де $a_1 = (\lambda + 2\mu)\alpha_1^2 - \lambda k_s^2 \sin^2 \theta;$

$$a_{2} = 2i\mu\alpha_{2}k_{e}\sin\theta;$$

$$a_{3} = 2i\mu\alpha_{1}k_{e}\sin\theta;$$

$$a_{4} = \mu(\alpha_{2}^{2} + k_{e}^{2}\sin^{2}\theta).$$

З рівнянь (4.2) та (4.3) визначаємо звуковий тиск на зовнішню поверхню корпуса ДУСУ

$$\left(P_1 + P_2\right)_{z=-\delta} = \left(P_{10} + P_{20}\right) \exp\left(-ik_{\theta}y\sin\theta\right)$$

і на внутрішню поверхню корпуса

$$(P_3)_{z=\delta} = P_{30} \exp(-ik_{\mathcal{H}} y \sin\theta_1).$$

Акустичний тиск запишемо у вигляді суми *симетричної P_c* і *антисиметричної P_a* складових –

$$P_{c} = \frac{1}{2} (P_{10} + P_{20} + P_{30}) \exp(-ik_{s} y \sin\theta);$$
$$P_{a} = \frac{1}{2} (P_{10} + P_{20} - P_{30}) \exp(-ik_{s} y \sin\theta_{1})$$

і з'ясуємо ступінь окремого їх впливу на вимушені коливання пластини "П".

Симетрична складова

Коли до пластини прикладена симетрична складова, граничні умови мають вигляд –

$$Z_{z}\Big|_{\substack{z=-\delta\\z=\delta}} = -P_{c}; \qquad Z_{y}\Big|_{\substack{z=-\delta\\z=\delta}} = 0.$$
(4.9)

Чотири граничні умови (4.9) дозволяють винайти значення довільних сталих C_1 , C_2 , C_3 , C_4 рівнянь (4.7) та (4.8) і в остаточному вигляді окреслити *симетричну* частину зміщення шарів пластини в поперечному напрямку *z*:

$$W_{c}|_{z=\pm\delta} = \pm \frac{P_{c}}{\rho_{k}\omega^{2}\delta} k_{2}\delta \left[4\gamma(\gamma-1)^{\frac{1}{2}} cthk_{2}\delta(\gamma-1)^{\frac{1}{2}} - (2\gamma-1)^{2}(\gamma-d)^{-\frac{1}{2}} cthk_{2}\delta(\gamma-d) \right]^{-1}, (4.10)$$

$$\exists e \ \gamma = \left(\frac{c_{2}}{c_{e}}\sin\theta\right)^{2}; \quad d = \left(\frac{c_{2}}{c_{1}}\right)^{2} = \frac{1-2\sigma}{2(1-\sigma)}.$$

Антисиметрична складова

Коли до пластини прикладена антисиметрична *P_a* складова тиску, граничні умови мають вид –

$$Z_{z}|_{z=-\delta} = -P_{a}; \qquad Z_{y}|_{z=-\delta} = 0;$$
$$Z_{z}|_{z=\delta} = P_{a}; \qquad Z_{y}|_{z=\delta} = 0.$$

Тепер можна окреслити антисиметричну складову пружного зміщення:

$$W_{a}|_{z=\pm\delta} = \frac{P_{a}}{\rho_{k}\omega^{2}\delta}k_{2}\delta\left[4\gamma(\gamma-1)^{\frac{1}{2}}thk_{2}\delta(\gamma-1)^{\frac{1}{2}} - (2\gamma-1)^{2}(\gamma-d)^{-\frac{1}{2}}thk_{2}\delta(\gamma-d)^{\frac{1}{2}}\right]^{-1}.$$
 (4.11)

Якщо прийняти малими величини $k_2 \delta(\gamma - 1)^{\frac{1}{2}}$ і $k_2 \delta(\gamma - d)^{\frac{1}{2}}$, тоді функції $thk_2 \delta(\gamma - 1)^{\frac{1}{2}}$ та $thk_2 \delta(\gamma - d)^{\frac{1}{2}}$ можуть бути заміненими першими двома членами їх розкладання в ряд Тейлора, тобто –

$$th k_{2}\delta(\gamma-1)^{\frac{1}{2}} = k_{2}\delta(\gamma-1) - 3^{-1} \left[k_{2}\delta(\gamma-1)^{\frac{1}{2}} \right]^{3};$$

$$th k_{2}\delta(\gamma-d)^{\frac{1}{2}} = k_{2}\delta(\gamma-d) - 3^{-1} \left[k_{2}\delta(\gamma-d)^{\frac{1}{2}} \right]^{3}.$$
(4.12)

Це дозволить спростити вирази (4.10) і (4.11):

$$W_{c}|_{z=\pm\delta} = \mp \frac{P_{c}}{\rho_{k}\omega^{2}\delta} \cdot \frac{k_{2}^{2}\delta^{2}(\gamma-d)}{4\gamma(1-d)-1} = \mp P_{c}\delta \frac{1-\sigma^{2}}{E} \cdot \frac{\left(\frac{c_{\Pi}}{c_{s}}\sin\theta\right)^{2} - \frac{1-2\sigma}{\left(1-\sigma\right)^{2}}}{\left(\frac{c_{\Pi}}{c_{s}}\sin\theta\right)^{2} - 1}, \qquad (4.13)$$

де $c_{\Pi} = \left[E \rho_k^{-1} (1 - \sigma)^{-1} \right]^{\frac{1}{2}}$ – швидкість розповсюдження поздовжньої (колової в корпусі) хвилі в пластині "П" за симетричних коливань [8].

Аналогічно при антисиметричному навантажені, якщо прийняти що 1≪ γ, отримуємо –

$$W_{a}|_{z=\pm\delta} = \frac{P_{a}}{\rho_{k}\omega^{2}\delta} \cdot \frac{1}{\frac{4}{3}\gamma(\gamma-1)k_{2}^{2}\delta^{2}(1-d)-1} \approx \frac{2P_{a}}{m_{\Pi}\omega^{2}} \cdot \frac{1}{\frac{D\omega^{2}}{m_{\Pi}c_{6}^{4}}} \sin^{4}\theta - 1, \qquad (4.14)$$

де $D = \frac{2}{3} \cdot \frac{E\delta^3}{1-\sigma^2}$ – циліндрична жорсткість пластини "П";

 $m_{\Pi} = 2\rho_k \delta$ – питома маса.

Формула (4.14) являє собою відомий вираз закономірності згинних коливань тонкої пластини [9].

З'ясуємо межі застосування виразу (4.14) для жорстких і м'яких матеріалів.

Під жорстким матеріалом будемо мати на увазі такий, в якому швидкість c_1 колова (по шпангоуту) і поперечна c_2 значно більші за швидкість c_8 звука у повітрі. Корпус ДУСУ виготовлений з алюмінієвого сплаву, тому припустимо вважати його жорстким матеріалом, бо для алюмінія $c_1 = 6400 \ M \ c^{-1}$, $c_2 = 3080 \ M \ c^{-1}$.

Дослідження Ю.А. Нілендера, Е.С. Сорокіна, Тh. Kristen, H.W. Muller та ін. довели, що модуль Юнга *Е жорстких* матеріалів, виміряний у динамічному і статичному режимах, практично нічим не відрізняється у широкому діапазоні частот. Тому, можна прийняти, що величини швидкостей c_1 і c_2 розповсюдження хвиль в коловому (уздовж паралелі корпусу) напрямку і в поперечній площині не залежать від частоти коливань і обчислювати їх слід з статичних вимірів модулів Юнга і коефіцієнта Пуассона σ .

Таким чином, коливання перешкоди із *жорсткого* матеріалу під дією падаючої хвилі можуть бути описаними рівняннями руху тонких пластин, якщо довжина сліду падаючої хвилі не менша за шестикратну товщину пластини, тобто $12 \cdot 2\delta \cdot \sin \theta \leq \lambda_0$.

Коефіцієнти втрат в *жорстких* матеріалах дуже малі і можуть вважатися сталими. Так, для алюмінію, коефіцієнт втрат за частоти $f = 1 \kappa \Gamma \mu$ становить $1 \cdot 10^{-4}$, а в конструкції – приблизно дорівнює нулю.

Звукоізоляція перешкоди від дії звуку характеризується часткою звукової потужності пройдешнього випромінювання. Коефіцієнтом проходження звуку *А* називається відношення амплітуди *P*₃₀ пройдешньої хвилі до амплітуди *P*₁₀ падаючої хвилі, тобто

$$A = P_{30} P_{10}^{-1}.$$

I, через те, що потужності, які переносяться хвилями, пропорційні квадратам амплітуди тисків, тому величина $|A|^2$ буде коефіцієнтом звукопроникності τ_0 перешкоди від падаючої під кутом θ звукової хвилі. Зрозуміло, що за дифузного поля, коефіцієнт звукопроникності τ_0 буде визначатися осередненням за Перісом –

$$\tau = \int_{0}^{\frac{\pi}{2}} \tau_{\theta} \sin 2\theta d\theta$$

Сумарна коливальна швидкість шарів перешкоди під дією симетричної і антисиметричної складових звукового тиску дорівнює сумі симетричних і антисиметричних швидкостей зміщення на лицьовій стороні корпуса ДУСУ (зовнішній бік) і різниці – на внутрішньому (тіньовому) боці корпуса.

З іншого боку, коливальні швидкості поверхні повинні бути рівними нормальним складовим швидкості коливання повітря на передній і на внутрішній (в рідині) стороні. Ці граничні умови можна записати у вигляді

$$\frac{dW}{dt}\Big|_{z=-\delta} = \frac{P_1 - P_2}{\rho_s c_s} \cos \theta;$$

$$\frac{dW}{dt}\Big|_{z=\delta} = \frac{P_3}{\rho_{sc} c_{sc}} \cos \theta,$$
(4.15)

де $c_{\mathcal{H}} = 6c_{\mathcal{B}}$.

Вважаючи опір корпуса симетричним коливанням значно переважаючим опір антисиметричним коливанням, звукопроникність елементів корпуса виключно згинним коливанням можна записати у вигляді –

$$\tau_{\theta} = \frac{1}{\left(1 + \eta \frac{c_u^4}{c_{\theta}^4} \cdot \frac{m_{\Pi}\omega}{2\rho_{\theta}c_{\theta}} \sin^4\theta \cos\theta\right)^2 + \left(1 - \frac{c_u^4}{c_{\theta}^4} \sin^4\theta\right)^2 \left(\frac{\omega m_{\Pi}}{2\rho_{\theta}c_{\theta}} \cos\theta\right)^2},\tag{4.16}$$

де ρ_{e} – щільність повітря (маса в одиниці об'єму).

Очевидно, що на низьких частотах, коли $c_{_{u}} \ll c_{_{e}}$

$$\tau_{\theta} = \frac{1}{1 + \left(\frac{\omega m_{\Pi}}{2\rho_{e}c_{e}}\cos\theta\right)^{2}}.$$

З ростом частоти *ω* швидкість згинних хвиль росте. Починаючи з деякої, так званої *граничної* (критичної) частоти, за відповідного кута падіння *θ*, завжди стає можливою рівність нулю другого члена знаменника у виразі (4.16), тобто

127

$$c_u = \frac{c_s}{\sin \theta_c}.$$
(4.17)

Співвідношення (4.17) окресляє явище хвильового співпадання за згинних коливань, яке виявлене Л. Кремером [10]. Поділивши обидві частини формули (4.17) на *f*, запишемо її вигляді (рис. 4.39)

де $\lambda_s = \frac{C_s}{f}$ – довжина звукової хвилі на лицьовій (зовнішній) стороні корпуса ДVCV; $\lambda_u = \frac{C_u}{f}$ – довжина хвилі згину в елементарній ділянці корпуса.

Рис. 4.39. Явище хвильового співпадання: 1 – падаюча хвиля; 2 – відбита хвиля; 3 – пройдешня хвиля

Наявність хвильового співпадання забезпечує трансляцію енергії звукового випромінювання в зону акустичної *тіні* практично без дисипації. На відміну від частотного резонансу, який породжений рівністю частот – власної і збурюючого чинника, – хвильовий резонанс має місце при рівності геометричних розмірів, а саме сліду падаючої хвилі і згинної. При хвильовому співпаданні розподіл тиску в падаючій хвилі «1» точно відповідає розподілу пружних зміщень тієї ж частоти, що і слугує інтенсивному росту коливань.

За інших значень кута θ , звукопередача різко знижується, тобто зростає звукоізоляція. Мінімальна частота, за якої стає можливим хвильове співпадання (f_{ep}) , буде, звичайно, якщо $\theta = \frac{\pi}{2} pad$. Це походить з формули (4.17):

$$f = \frac{c_{e}^{2}}{2\pi \sin \theta} \sqrt{\frac{m_{\Pi}}{D}}; \quad f_{zp} = f \bigg|_{\theta = \frac{\pi}{2}} = \frac{c_{e}^{2}}{2\pi} \sqrt{\frac{m_{\Pi}}{D}}.$$
(4.18)

Починаючи з граничної частоти, характер проходження звуку крізь корпус окреслюється явищем співпадання. З формули (4.17) видно, що кожній частоті відповідає свій кут падіння θ_c , за котрого звукова хвиля проходить усередину з мінімальними втратами. *Слід зважити, що головне значення для звукопроникності* на частотах $f_{cp} < f$ набуває зона кутів падіння

$$\theta_c = \arcsin \frac{c_e}{c_u}.$$

Для ілюстрації виконаємо кількісну оцінку явища. Приймемо для алюмінієвого корпусу $\sigma = 0,25$; $E = 10\,300 \cdot 10^7 \, Hm^{-2}$; $m_{\Pi} = 54 \, Hc^2$; $\omega = 2\pi f$; $f = 42 \, \kappa \Gamma \mu$; $\rho_k = 27 \cdot 10^3 \, Hm^{-1}c^2$; $\delta = 1 \cdot 10^{-3} \, m$; $c_s = 331 \, mc^{-1}$. Тоді

$$c_{u} = \sqrt[4]{\frac{D(2\pi)^{2} f^{2}}{m_{\Pi}}} = \sqrt[4]{\frac{2E\delta^{2}(2\pi)^{2} f^{2}}{3m_{\Pi}(1-\sigma^{2})}} = 1900 (Mc^{-1}); \quad f_{zp} = 15,473 \,\kappa \Gamma \mu;$$

$$c_{u} = \frac{c_{e}}{\sin \theta_{u}};$$

$$\sin \theta_{u} = 0,1742; \qquad \theta_{u} = 10^{0};$$

$$c_{\Pi} = \sqrt{\frac{E}{\rho_k \left(1 - \sigma^2\right)}} = 3333 \left(Mc^{-1} \right);$$
$$c_{\Pi} = \frac{c_e}{\sin \theta_{\Pi}}; \sin \theta_{\Pi} = 0,09; \ \theta_{\Pi} = 5^0 10^7.$$

Отже, "*акустично прозорим*" корпус приладу стає за кутів падіння хвилі $\theta = 10^{\circ}$ (в цьому випадку інтенсивна перекачка звукової енергії здійснюється *згинною хвилею* корпуса і цілком залежить від частоти *f* акустичного випромінювання), а також за кутів $\theta = 5^{\circ}10^{\prime}$ (в цьому випадку інтенсивну трансляцію звукової енергії здійснює колова (уздовж паралелі) швидкість, яка не залежить від частоти випромінювання).

Обидва ці значення кута θ найбільш небезпечні, бо слугують практично безперешкодному проходженню усередину приладу, точніше в рідинностатичну частину підвісу, акустичного випромінювання ззовні.

Симетрична складова

В цьому випадку імпеданс $Z_c \ll Z_a$, тобто опір матеріалу корпуса антисиметричним (згинним) коливанням значно більший опору симетричним коливанням. За цих умов має місце співвідношення

$$c_{\Pi} = \frac{c_s}{\sin\theta},\tag{4.19}$$

де $c_{\Pi} = \left[E \rho_k^{-1} \left(1 - \sigma^2 \right)^{-1} \right]^{\frac{1}{2}}$ – швидкість розповсюдження колової (поздовжньої) хвилі.

Вираз (4.19) визначає явище хвильового співпадання за симетричних коливань корпуса, яке виникає кожного разу, коли слід падаючої і колової хвиль співпадають. Зауважимо, що співпадання залежить тільки від кута падіння хвилі і може проявлятися на будь-якій частоті випромінювання.

Напівнатурна стендова атестація ДУСУ. З метою пересвідчення слушності аналітичних передумов, була проведена оцінка похибок приладу при опромінюванні його ультразвуковим променем частотою *42 кГц*. Йдеться про підтвердження прояву резонансу коловою (поздовжньої) хвилею.

131

Як і прогнозувалося, за кута падіння променя $\theta = 5^{\circ}03'$ колова хвиля формує резонанс співпадання у рідинностатичній частині підвісу і похибка приладу становить 0,32 *град с*⁻¹ (табл. 4.41). Для порівняння, на рис. 4.40 наведені діаграми похибки приладу у трьох режимах: $\theta = 0^{\circ}$ (ультразвуковий промінь падає перпендикулярно на бічну поверхню); $\theta = 5^{\circ}03'$ (колова хвиля формує просторовий резонанс); $\theta = 10^{\circ}37'$ (згинна хвиля формує резонансну ситуацію).

Очевидно, що середня похибка від резонансу колової хвилі складає 0,2 *град* c^{-1} (рис. 4.40, крива "2"). Хвильове співпадання згинної хвилі з ультразвуковим променем чинить значно більший вплив на виникнення похибки *ДУСУ* (рис. 4.40, крива "3"). Середня величина складає біля 0,48 *град* c^{-1} , максимальна – росте до 0,65 *град* c^{-1} .

Рис. 4.40. Вихідний сигнал ДУСУ при $\varphi = 0^\circ$: "1" – $\theta = 0^\circ$; "2" – $\theta = 5^\circ 03'$; "3" – $\theta = 10^\circ 37'$

Напівнатурна стендова атестація ДУСУ в полі ультразвукового променя.

Основа нерухома: $\varphi = 0^\circ$, $\theta = 5^\circ 03'$

ко	Орієнтація рпуса приладу: φ = 0 θ = 5°03'	0°,	Об'єм: V=400 і	nl	Гіроскоп: «О		
<i>t, c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>	<i>t</i> , <i>c</i>	Вихідний сигнал, град с ⁻¹	<i>t</i> , <i>c</i>	Вихідний сигнал, <i>град с⁻¹</i>
0,5	-0,0414	15,5	-0,1449	30,5	-0,1495	45,5	-0,1403
1	-0,0897	16	-0,1725	31	-0,1587	46	-0,1794
1,5	-0,0276	16,5	-0,1886	31,5	-0,1909	46,5	-0,2231
2	-0,023	17	-0,2024	32	-0,207	47	-0,1702
2,5	-0,1495	17,5	-0,1886	32,5	-0,1771	47,5	-0,1058
3	-0,1035	18	-0,1587	33	-0,1817	48	-0,161
3,5	-0,1265	18,5	-0,1173	33,5	-0,1679	48,5	-0,2208
4	-0,1817	19	-0,1173	34	-0,1702	49	-0,1886
4,5	-0,0989	19,5	-0,1909	34,5	-0,1633	49,5	-0,1656
5	-0,2139	20	-0,1771	35	-0,1587	50	-0,1564
5,5	-0,1909	20,5	-0,23	35,5	-0,1794	50,5	-0,1035
6	-0,1541	21	-0,2553	36	-0,1679	51	-0,2024
6,5	-0,1932	21,5	-0,2461	36,5	-0,1725	51,5	-0,1265
7	-0,2001	22	-0,2162	37	-0,0874	52	-0,2116
7,5	-0,1656	22,5	-0,2208	37,5	-0,1863	52,5	-0,1564
8	-0,2024	23	-0,2852	38	-0,1817	53	-0,1794
8,5	-0,207	23,5	-0,3105	38,5	-0,1541	53,5	-0,1702
9	-0,2185	24	-0,2668	39	-0,1334	54	-0,2116
9,5	-0,2415	24,5	-0,3174	39,5	-0,1679	54,5	-0,2162
10	-0,2392	25	-0,2461	40	-0,1541	55	-0,2507
10,5	-0,2369	25,5	-0,2484	40,5	-0,1518	55,5	-0,2024
11	-0,1771	26	-0,2231	41	-0,1725	56	-0,2254
11,5	-0,1403	26,5	-0,2461	41,5	-0,0414	56,5	-0,2116
12	-0,184	27	-0,2231	42	-0,1219	57	-0,2208
12,5	-0,1702	27,5	-0,2576	42,5	-0,1472	57,5	-0,2254
13	-0,1909	28	-0,2208	43	-0,1265	58	-0,1679
13,5	-0,1794	28,5	-0,2507	43,5	-0,1518	58,5	-0,2024
14	-0,1817	29	-0,1955	44	-0,1863	59	-0,1748
14,5	-0,1656	29,5	-0,2139	44,5	-0,1127	59,5	-0,2047
15	-0,1794	30	-0,2047	45	-0,1173	60	-0,2346

4.2.3. Уточнена розрахункова модель. Низькочастотний і комбінований резонанси

Порівняльний аналіз виявлених особливостей резонансного типу для двох розрахункових моделей – наближеної (у вигляді елементарної пластини) і уточненої (у вигляді оболонки значної протяжності) дозволив виявити певні розбіжності результатів [10, 11, 12]. Вони знайшли підтвердження і в експериментальних дослідженнях [10, 11].

Слід зупинитися докладніше на з'ясуванні причин цієї розбіжності.

За уточнену розрахункову модель оберемо колову циліндричну оболонку необмеженої протяжності (рис. 4.41). Короткі оболонки вивчалися, наприклад, в роботі [13].

Рис. 4.41. Механізм дії акустичної хвилі на корпус поплавкового гіроскопа. Уточнена розрахункова модель

Подальші міркування побудуємо виходячи з припущення малої товщини 2δ оболонки порівняно з її радіусом *R*, тобто будемо вважати, що $2\delta < \frac{R}{20}$ і менше

однієї шостої частки довжини хвилі згину, тобто $2\delta < \frac{1}{6}\lambda_u$.

Якщо на оболонку діють тільки нормально прикладені до неї збурення, тоді коливальний рух її поверхні буде відображатися системою рівнянь [14, 15, 16]:

$$(2\delta E)^{-1} \nabla^{4} \gamma - R \frac{\partial^{2} W}{\partial z^{2}} = 0; \qquad (4.20)$$
$$R \frac{\partial^{2} \gamma}{\partial z^{2}} + D \nabla^{4} W + R^{4} m_{\Pi} \frac{\partial^{2} W}{\partial t^{2}} = R^{4} q_{\Pi},$$

де W – радіальне пружне зміщення поверхні оболонки; γ – функція напруг; $m_{\Pi} = \rho \ 2\delta$ – питома маса поверхні; $q_{\Pi} = P_1' - P_3$ – різниця звукових тисків по обидві сторони оболонки; ∇^4 – оператор Лапласа

$$\nabla^4 = \frac{\partial^4}{\partial z^4} + \frac{\partial^4}{\partial \gamma^4} + 2\frac{\partial^4}{\partial z^2 \partial \gamma^2}$$

у безрозмірних координатах z та φ , які визначають відстань (в частках радіуса R) на рис. 4.41.

Вживши допоміжну функцію Φ [17]

$$W = \nabla^4 \Phi; \quad \gamma = RE2\delta \frac{\partial^2 \Phi}{\partial z^2} \quad , \tag{4.21}$$

приведемо систему (4.20) до одного рівняння –

$$D\nabla^{8}\Phi + R^{2}2\delta E\frac{\partial^{4}\Phi}{\partial z^{4}} + R^{4}m_{\Pi}\nabla^{4}\frac{\partial^{2}\Phi}{\partial t^{2}} = R^{4}q_{\Pi}.$$
(4.22)

Припустимо, що на оболонку падає плоска звукова хвиля, напрям розповсюдження якої складає з радіальним напрямком кут θ , а площина падіння і площина шпангоута корпуса утворюють кут ψ (рис. 4.41). Тоді, звуковий тиск в падаючій хвилі на зовнішній поверхні корпуса можна записати наступним чином –

$$P = P_0 \exp i \left[\omega t - k_0 2\delta \left(z \sin \theta \sin \psi - \varphi \sin \theta \cos \psi \right) \right].$$
(4.23)

Розв'язок рівняння (4.22) шукаємо у вигляді –

$$\Phi = \Phi_0 \exp i \left[\omega t - k_0 2 \delta \left(z \sin \theta \sin \psi - \varphi \sin \theta \cos \psi \right) \right].$$

Якщо не приймати до уваги розсіяння звуку на поверхні оболонкової частини корпуса, тоді, з урахуванням позначень (4.21), пружні переміщення *W* поверхні в площині шпангоута можна навести наступним чином –

$$W = \left(P_{1}^{\prime} - P_{2}\right) m_{\Pi}^{-1} \omega^{-2} \left(\frac{D\omega^{2}}{m_{\Pi}c_{0}^{4}} \sin^{4}\theta + \frac{E2\delta}{m_{\Pi}\omega^{2} \left(2\delta\right)^{2}} \sin^{4}\psi - 1\right)^{-1}.$$
 (4.24)

Припустимо, що опір корпуса симетричним коливанням значно більший опору антисиметричним коливанням, тобто

$$\left|Z_{a}\right| \ll \left|Z_{c}\right|,$$

а вираз (4.16) для звукопроникності перетворимо до виду –

$$\tau_{0} = \frac{1}{\left| 1 + Z \frac{\cos \theta}{2\rho_{0}c_{0}} \right|^{2}},$$
(4.25)

де імпеданс $Z = \frac{P_1' - P_2}{i\omega W}$.

Співвідношення (4.25) для пластини може бути практично вжитим і для оболонки [18]. Як походить з виразу (4.24) –

$$Z = im_{\Pi}\omega \left(1 - \frac{D\omega^2}{m_{\Pi}c_0^4}\sin^4\theta - \frac{E \cdot 2\delta}{m_{\Pi}\omega^2 R^2}\sin^4\psi\right) =$$

$$= im_{\Pi}\omega \left(1 - \left(\frac{\omega}{\omega_{2p}}\right)^2\sin^4\theta - \left(\frac{\omega_{\Pi\Pi}}{\omega}\right)^2\sin^4\psi\right),$$
(4.26)

де $\omega_{zp} = 2\pi f_{zp}$; $\omega_{IIII} = \frac{c_1}{R}$ – колова частота власних, суто радіальних, коливань кільця, які виникають при стисненні-розтяганні, при цьому довжина колової хвилі λ_{II} стає рівною до довжини кола кільця ($c_1 = \sqrt{\frac{E}{\rho}}$ – швидкість колової хвилі) якщо кут

$$\psi = \frac{\pi}{2} pa\partial.$$

Величина звукопроникності циліндричної оболонки буде

$$\tau = \frac{1}{\left|1 + \frac{i}{\Delta_{\Pi}} \left[1 - \left(\frac{\omega}{\omega_{ep}}\right)^2 \sin^4 \theta - \left(\frac{\omega_{\Pi\Pi}}{\omega}\right)^2 \sin^4 \psi\right]\right|^2} , \qquad (4.27)$$

де $\Delta_{\Pi} = \frac{2\rho_0 c_0}{m_{\Pi}\omega\cos\theta}.$

За нескінченно великого радіуса кривизни оболонки, вираз (4.27) переходить у формулу (4.16).

З виразу (4.27) походить також, що звукопроникність корпуса може різко знижуватися також на низьких частотах, тобто нижчих за f_{zp} , на відміну від наближеної розрахункової моделі у вигляді пластини – формула (4.17).

Так, якщо $\omega \ll \omega_{ep}$, тоді перший доданок у формулі (4.27) стає нескінченно малим в порівнянні з одиницею. Відтоді, за виконання умови

$$\omega = \omega_{III} \sin^2 \psi , \qquad (4.28)$$

оболонкова частина корпуса стане "*акустично прозорою*" (звісно, за відсутності втрат). Цю умову можна розглядати також як рівність сліду довжини кола шпангоута і довжини колової хвилі на площину, що паралельна до фронту падаючої хвилі (рис. 4.42) –

$$\frac{2\pi R}{\sin\psi} = \lambda_{II} \sin\psi \,. \tag{4.29}$$

Таким чином, в циліндричному корпусі виникає на низьких частотах ще одне хвильове співпадання, порівняно з пластиною, для *колових* (*поздовжніх*) хвиль.

Цікаво, що хвильове співпадання для *згинних хвиль* може виникати тільки на частотах вищих за f_{sp} , а для *колових* (*поздовжніх*) *хвиль*, навпаки, може виникати тільки при частотах, які не вищі за ω_{nn} .

Якщо докладніше, то в оболонці може мати місце ще одне співпадання – комбіноване. Це походить з формули (4.27) –

$$\left(\frac{\omega}{\omega_{ep}}\right)^2 \sin^4 \theta + \left(\frac{\omega_{III}}{\omega}\right)^2 \sin^4 \psi = 1.$$
(4.30)

Рис. 4.42. Хвильове співпадання в корпусі ДУСУ для колових хвиль: $\omega \ll \omega_{_{2D}}$

За дифузного опромінювання, коефіцієнт звукопроникності корпуса приладу визначається осередненням по Перісу, тобто

$$\tau_{\theta\psi} = = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \tau \sin 2\theta \,\partial\theta \,\partial\psi, \qquad (4.31)$$

де величина τ обчислюється за формулою (4.27). Інтегруючи цей вираз, доцільно вивчати відокремлено діапазони частот. Наприклад, так:

- 1) $\omega < \omega_{\Pi\Pi}; \quad \omega < \omega_{zp};$
- 2) $\omega_{\Pi\Pi} < \omega < \omega_{cp};$

3)
$$\omega_{\Pi\Pi} < \omega; \qquad \omega_{2n} < \omega.$$

Таким чином, вдається, завдяки наближеній (плоскій) розрахунковій моделі, виявити, що згинні коливання корпуса $(Z_a \ll Z_c)$ здатні формувати хвильове співпадання тільки на частотах ω , які перевищують граничну частоту ω_{cp} . Причому, кожній частоті відповідає свій кут θ_c .

Уточнена розрахункова модель (у вигляді оболонки) дозволила виявити додатково ще один резонанс для колової (поздовжньої) хвилі $(Z_c \ll Z_a)$ у вигляді

збігу сліду довжини кола шпангоута і сліду довжини поздовжньої хвилі. Причому, обидва ці резонанси можуть проявлятися на частотах нижче граничної, тобто

$$\omega \ll \omega_{zp} = 23757 \ pa\partial c^{-1} \ (f_{zp} = 3783 \ \Gamma u);$$

$$\omega \ll \omega_{\Pi\Pi} = 255998 \ pa\partial c^{-1} \ (f_{\Pi\Pi} = 40764 \ \Gamma u).$$
(4.32)

де $\omega_{cp} = 2\pi f_{cp};$ $\omega_{IIII} = \frac{c_1}{R} = \frac{1}{R} \sqrt{\frac{E}{\rho}};$ c_1 – швидкість колових (поздовжніх) хвиль;

 $\omega_{_{IIII}}$ – радіальні власні коливання кільця шпангоута ($Z_c \ll Z_a$).

Для умов попереднього прикладу, тобто приймаючи радіус корпуса R рівним 2,5 *см*, а швидкість колової (поздовжньої) хвилі в алюмінії рівною $c_1 = 6400 - 5200 \ mc^{-1}$, можна встановити умови виникнення резонансу поздовжньої хвилі в корпусі.

Перш за все, з'ясуємо граничну частоту:

$$f_{cp} = \frac{c_1}{2\pi R} = \frac{6400}{2 \cdot 3,14 \cdot 0,025} = 40764,93 (\Gamma \mu) = 40,764 \ \kappa \Gamma \mu.$$

Значення кута ψ , за котрого наступає явище хвильового співпадання на низьких частотах, обчислюємо за формулою (4.29) і, для зручності, зведемо в табл. 4.42.

Таблиця 4.42

алюміній, $c_1 = 6400 \ mc^{-1}$								
f, Гų	ψ, град	f, Гų	ψ, град					
100	2°50′	2000	12°25′					
200	4°00′	3000	15°45′					
300	4°55′	6000	22°35′					
400	5°45′	7000	24°30′					
500	6°20′	8000	26°20′					
600	7°00′	10000	29°40′					
700	7°30′	20000	44°30′					
800	8°05′	30000	59°10′					
900	8°35′	40000	82°10′					
1000	9 ⁰ 00′							

Резонансні значення кута ψ для поздовжньої хвилі

Таким чином, при зменшенні кута ψ падіння хвилі, знижується і частота, на якій проявляється ефект співпадання, тобто

$$2\pi R \frac{f}{c_1} = \sin^2 \psi$$

Підводячи підсумки побудови розрахункових моделей пружної взаємодії проникного акустичного випромінювання гіперзвукового польоту з механічними системами приладів інерціальної навігації, можна констатувати факт непростої структури явища. І йдеться не тільки про аналітичне забезпечення.

Аналіз наближеної, спрощеної, моделі явища за вимоги великого хвильового розміру корпуса двохстепеневого гіроскопічного датчика кутових швидкостей надав можливість виявити особливості дифракції звукових хвиль на підвісі гіроскопа. Ці особливості носять резонансний характер і сприяють практично безперешкодному проходженню звукових хвиль усередину приладу. Похибки вимірювань кутової швидкості ЛА за цих умов стрімко зростають і досягають величин, за котрих прилад можна вважати не відповідаючим паспортним вимогам.

Як з'ясувалося і згинні коливання корпуса, і колові, уздовж паралелі, сприяють розвитку резонансних явищ. Перші активізуються на частотах, вищих за граничну. Другі – на частотах нижчих за граничну.

Перші – створюють резонансну ситуацію за відповідного значення частоти випромінювання і кута співпадання, тобто, кожній частоті відповідає свій кут співпадання.

Другі – створюють резонансну ситуацію тільки за наявності кута співпадання, коли слід падаючої і згинної хвиль співпадають, незалежно від частоти ω .

Уточнена розрахункова модель дозволила виявити ще один резонанс, на низьких частотах, нижчих за граничну.

Література до Розділу 4

- Кузьмичев, Ю.М. Возбуждение цилиндрической оболочки ультразвуком [Текст]// Ю.М. Кузьмичев, В.И. Макаров // Акуст. журнал, 1958. – Т.IV. Вып. 3. – С. 282 – 283.
- Макаров, В.И. Об излучении волн оболочками в звуковом поле [Текст] В.И. Макаров, Н.А. Фадеев // Акуст. журнал, 1960. – Т.IV. Вып. 2. – С. 261 – 263.
- Патент № 66311 на корисну модель, Україна, МПК (2011) G01C19/20. Поплавковий гіроскоп / В.В. Карачун, М.С. Тривайло, В.М. Мельник, О.С. Руденко. U 201108294. – Заявл. 01.07.2011. – Опубл. 26.12.2011. Бюл. 24. – 1с.
- Шендеров, Е. Л. Волновые задачи гидроакустики [Текст]: моногр./
 Е.Л. Шендеров Л.: Судостроение, 1972. 352 с.
- Заборов, В.И. Теория звукоизоляции ограждающих конструкций [Текст]: моногр./ В.И. Заборов – М.: Стройиздат, 1962. – 116 с. – Библиогр.: с. 113-114.
- Reissner, H. Der senkrecht und schräge Durchtritt einer in einen flüssiger Medium erzeugten ebenen Dilatations – (Longitudinal) – Welle durch eine in diesen Medium befindliche planarallelefeste Platte [Текст]/ Y. Reissner // Helv. Phys. Acta. – 1938. – Т. 11.
- Schoch, A. Der Schalldurchgang durch Platten [Текст]/ A. Schoch // Acustica. – 1952. – Т. 2.
- Лейбензон, Л.С. Курс теории упругости [Текст]: учеб. для вузов/ Л.С. Лейбензон. –М.: Гостехтеоретиздат, 1947. – 453 с.
- Тимошенко, С.П. Колебания в инженерном деле [Текст]: пер. с англ. / С.П. Тимошенко, Д.Х. Янг, У. Уивер. – М.: Машиностроение, 1985. – 472 с.
- 10 Вавилов, В.А. О звукоизоляции оболочек [Текст] / В.А. Вавилов, В.Б.

Перетц, С.В. Бараев // Институт охраны труда ВЦСПС. – Вып. 7, 1968. – С. 84 – 87.

- 11 Cremer, L. Theorie der Luftschalldämmung zylindrischer Schaleu [Текст]/
 L. Cremer // Acustica. 5, № 5, 1955.
- 12 Heckl, M. Exerimentelle Untersuchungen zur Schalldämmungen von Zylindern [Teκcτ]/ M. Heckl // Acustica. Vol. 8, № 1, 1958.
- 13 White, P.H. Sound transmission through a finite, closed, eilinderical shell [Teκct]/ P.H. White// JASA. Vol. 40, № 5, 1966.
- 14 Власов, В.З. Основные дифференциальные уравнения общей теории оболочек [Текст]/ В.З. Власов // Прикл. матем. и механика. Т. 8, № 2, 1944. С. 72-76.
- 15 Власов, В.З. Общая теория оболочек и ее приложения в технике [Текст]: моногр./ В.З. Власов. - М.: Гостехтеоретиздат, 1949. – 372 с.
- 16 Новожилов, В.В. Теория тонких оболочек [Текст]: моногр./
 В.В. Новожилов. Л. Судпромгиз, 1951. 437 с.
- 17 Дидковский, В.С. Проектирование ограждающих конструкций с оптимальными звуко- и виброизоляционными свойствами [Текст]: моногр./ В.С. Дидковский, В.В. Карачун, В.И. Заборов. – К.: Будивэльник, 1991. – 120 с.
- 18 Junger, M.C. Letter to the editor [Текст]/ M.C. Junger, P.W. Smith // Acustica, Vol. 5, № 1, 1955. Р. 73-77.

РОЗДІЛ 5. ТРИВІСНА ГІРОСТАБІЛІЗОВАНА ПЛАТФОРМА В АКУСТИЧНИХ ПОЛЯХ. ПОХИБКИ СТАБІЛІЗАЦІЇ ВНАСЛІДОК ДИФРАКЦІЙНИХ ЯВИЩ

У тому випадку, коли вимоги до точності побудови триортогональної системи координат надто великі, а масогабаритні характеристики не такі жорсткі, для побудови опорної системи координат використовують тривісну гіростабілізовану платформу (ГСП). Вона дозволяє створити в просторі площину визначеної кутової орієнтації (рис. 5.1).

На відміну від двовісних, тут можлива побудова площадки, яка не тільки запам'ятовує напрямок її нормалі, але і зберігає нерухомими усі три координатні осі, що з нею зв'язані. Тривісний силовий гіростабілізатор володіє також рядом суттєвих достоїнств порівняно з індикаторними гіроскопами напрямку, а також гіровертикаллю. До речі, задачу стабілізації може, наприклад, вирішувати система з двох вільних гіроскопів. Так от, одна з найсуттєвих переваг полягає у відсутності в показниках карданової та віражної похибок [1, 2, 3].

Тривісна гіростабілізована платформа, як відомо, має похибки побудови нерухомої системи координат, обумовлені хитавицею основи [4, 5, 6, 7, 8], а також похибки, які вносяться самою системою стабілізації – тертям, пружністю, люфтами редукторів тощо [9, 10, 11]. Але, все ж, головним чином дрейф ГСП обумовлений похибками двостепеневих гіроскопів, які виконують роль чутливих елементів [12, 13, 14, 15]. Як доводять дослідження, окрім вже вивчених збурюючих чинників, на гіроскопічні датчики здійснюють вплив акустичні поля, які мають місце в експлуатаційних умовах надзвукових польотів ЛА [15, 16]. Їх пружна взаємодія з механічними системами приладів призводить до виникнення в останніх збурень, які у своїй сукупності формують додаткові похибки ГСП, тобто *акустичні* похибки. Проаналізуємо це явище більш докладно на прикладі ГСП з одним гіроскопічним чутливим елементом на кожній осі (рис. 5.1). Достоїнства таких

схем полягає в тому, що тривісна платформа з силовою гіроскопічною стабілізацією може використовуватися як вільна платформа, що зберігає незмінним заданий напрямок до умовно нерухомих зірок (з точністю до власних уходів чутливих елементів), а також як коректуєма.

Тривісна гіроскопічна платформа в умовах детермінованого, або стохастичного кутового руху основи, як відомо, має власні уходи відносно трьох осей. Найбільш суттєвими з проявляємих збурюючих чинників слід вважати перехресні зв'язки по гіроскопічним моментам – $H_1\beta_1\omega_y, H_2\beta_2\omega_x, H_3\beta_3\omega_y, -$ які виникають при повороті гіромоторів відносно осей підвісів. Разом з тим, окрім самостійного небажаного впливу, кінематичне збуреня вкупі з акустичною вібрацією поверхні підвісу породжує ще Ейлерові сили інерції, які, в свою чергу, створюють додаткові похибки вимірювань.

Слід зазначити, що в тривісній платформі, навіть за досить малих кутів повороту рухомої частини двостепеневих гіроскопів, завжди присутні зв'язки між каналами стабілізації, які іменують перехресними. Їх можна поділити на чотири види – перехресні зв'язки по гіроскопічному моменту, як уже зазначалося; перехресні зв'язки по куту прецесії; зв'язки по моментам стабілізуючих двигунів; зв'язки, які залежать від співвідношення моментів інерції платформи відносно різних осей і моментів інерції гіромотора відносної відповідної осі.

Теоретично і експериментально підтверджено, що вплив перехресної кутової швидкості може бути зменшений використанням двохроторних систем, гіроскопів з примусовим поверненням на нуль, а також датчиків з електричною пружиною [17]. Усі ці методи мають як незаперечні переваги, так і певні недоліки.

Наприклад, використання примусового обертання опор карданового підвісу гіроскопів стає недоцільним при використанні поплавкових датчиків. Метод штучного обертання підвісу гіроскопа навколо осі, паралельної вектору кінетичного моменту, також не може стати в нагоді з причини виникаючих гіроскопічних моментів. До того ж, компенсація цих моментів ускладнює технічну реалізацію методу [9]. Головні недоліки методу реверсування вектора кінетичного

Рис. 5.1. Кінематична схема тривісної гіростабілізованої платформи

моменту являється компенсація уходів лише в середньому за період реверсу, а недолік методу двохканальності полягає у подвійному збільшенні масогабаритних характеристик поряд з осередненням впливу внутрішніх моментів-перешкод у гіроскопів, хоча і миттєвих значень.

Стендові випробування переконливо доводять, що в акустичних полях зазначені методи не являються ефективними. В кращому випадку вони лише
осереднюють у часі негативний прояв впливу акустичного випромінювання. Тому слід шукати інших технічних рішень.

Найбільш перспективними постають в даному випадку методи пасивної звукоізоляції, наприклад, перфорований екран, який дозволив знизити рівень проникаючого акустичного випромінювання з 165 *дБ* до 113 *дБ* [18].

§ 5.1. Природа виникнення додаткових похибок поплавкових чутливих елементів ГСП внаслідок дифракційних явищ на імпедансній поверхні їх підвісу

Почнемо з бічної поверхні поплавкового підвісу і проаналізуємо її пружну взаємодію з проникаючим ззовні акустичним випромінюванням.

Звукова хвиля неминуче призводить до пружних переміщень поверхні в радіальному \vec{W} і тангенціальному \vec{V} напрямках (відносний рух), що в умовах переносного кутового руху фюзеляжу ЛА із швидкістю $\vec{\omega}$ буде правити за формування Ейлерових сил (сил інерції Коріоліса, а точніше, моментів сил інерції) і, природно, збурюючих моментів $\vec{M}_{u}^{c}(W)$ та $\vec{M}_{u}^{c}(V)$ (рис. 5.2).

Складові \vec{M}_1 та \vec{M}_3 цих моментів спричинять до прецесії головної осі і, відповідно, виникненню похибки вимірювань:

$$M_{1} = \frac{2I_{\Pi}\omega\dot{V}(t)}{R}; \quad M_{3} = 2\pi \frac{I_{\Pi}\omega}{R}\dot{W}(t); \\ \omega_{0}^{a}(t) = 2\frac{I_{\Pi}\omega}{HR\sin(\vec{H},\vec{\omega}_{0}^{a})} \left[\dot{V}(t) + \pi\dot{W}(t)\right],$$
(5.1)

де *I*_п – момент інерції поплавка, *H* – кінетичний момент гіроскопа.

Тепер з'ясуємо ступінь впливу вимушених згинних переміщень W_T поверхні торців поплавка. Наявність відносного і переносного рухів, як і в попередньому випадку, призведе до виникнення збурюючого моменту сил інерції Коріоліса M_u^c (рис. 5.3)

$$M_u^c = 2m_T L \omega \dot{W}_T(t) \sin[\vec{\omega}, \vec{W}_T(t)].$$
(5.2)

Відповідно до теореми Резаля, цей момент сформує похибку приладу

$$\omega_T^a(t) = 2 \frac{m_t L \omega \dot{W}_T(t) \sin[\vec{\omega}, \vec{W}_T(t)]}{H \sin\left(\vec{H}, \vec{\omega}_T^a\right)}.$$
(5.3)

Рис. 5.2. Виникнення Ейлерових сил інерції в підвісі гіроскопа в експлуатаційних умовах

Таким чином, інтегральна похибка гіроскопа буде дорівнювати:

$$\omega^{a} = \omega_{0}^{a} + \omega_{T}^{a} =$$

$$= \frac{2\omega}{H} \left\{ \frac{I_{\Pi}}{R\sin(\vec{H}, \vec{\omega}_{0}^{a})} \left[\dot{V}(t) + \pi \dot{W}(t) \right] + \frac{m_{T}L\sin\left[\vec{\omega}, \vec{W}_{T}(t)\right]}{\sin\left(\vec{H}, \vec{\omega}_{T}^{a}\right)} \dot{W}_{T}(t) \right\} \approx$$

$$\approx \frac{2\omega}{HR} \left\{ I_{\Pi} \left[\dot{V}(t) + \pi \dot{W}(t) \right] + m_{T}RL\dot{W}_{T}(t) \right\} .$$
(5.4)

Проаналізуємо збурений рух поплавка в польотних умовах. Жорстко зв'яжемо з корпусом літального апарату систему координат *Охуz*: *Ох* направимо уздовж осі ЛА, *Оу* та *Оz* розташуємо в площині шпангоута. За опорну систему координат оберемо осі, що пов'язані із

Землею. Ось $O\zeta$ направимо вертикально вниз, ось $O\xi$ горизонтальна (наприклад, напрямлена по лінії заданого курсу), ось $O\eta$ складає з першими двома праву трійку осей $O\xi\eta\zeta$.

Припустимо, що в момент старту ЛА займає

Рис. 5.3. Природа прояву збурюючих моментів внаслідок акустичної вібрації торців поплавка

довільне положення. Проведемо через його центр мас площину, перпендикулярну до продольної осі (площина шпангоута) до перетину з горизонтальною площиною $O\xi\eta$. По лінії перетину цих площин ON (лінії вузлів) направимо ось $O\eta_1$ і побудуємо в горизонтальній площині ось $O\xi_1$, перпендикулярну до $O\eta_1$. За кути Ейлера оберемо кут повороту навколо вертикалі горизонтальної координатної площини $O\xi\eta$ до співпадання її з осями системи $O\xi_1\eta_1$ (назвемо його кутом рискання φ), кут повороту навколо лінії вузлів ON координатної площини $\xi_1O\zeta$ до співпадання осі $O\xi_1$ з поздовжньою оссю ЛА Ox назвемо кутом тангажа ψ (в цьому випадку ось $O\zeta$ займе положення $O\zeta_1$ в площині шпангоута) і кут повороту площини $\eta_1O\zeta_1$ навколо поздовжньої осі фюзеляжу Ox (кут крену θ). Відповідні кутові швидкості будуть напрямлені уздовж вертикалі (ϕ), лінії вузлів (ψ) та уздовж осі апарату $(\dot{\phi})$. Кутову швидкість ЛА можна навести у вигляді розкладу по ортам $\vec{e}_1, \vec{e}_2, \vec{e}_3$ осей $O\eta_1, O\zeta$ та Ox

$$\vec{\omega} = \vec{e}_1 \dot{\varphi} + \vec{e}_2 \dot{\psi} + \vec{e}_3 \dot{\theta}, \qquad (5.5)$$

або в проекціях на осі, що зв'язані з корпусом апарату –

$$\vec{\omega} = \vec{e}^x \omega_x + \vec{e}^y \omega_y + \vec{e}^z \omega_z.$$
(5.6)

За тих обставин, коли ЛА стартує з нерухомої основи (осі $O\xi\eta\zeta$ нерухомі), проекції кутової швидкості на осі Oxyz, що зв'язані з фюзеляжем, обчислюються за формулами (рис. 5.4, рис. 5.5):

$$\omega_{x} = \dot{\theta} - \dot{\phi} \sin \psi; \qquad \qquad \omega_{x_{1}} = \omega_{x} \cos \beta - \omega_{z} \sin \beta;
\omega_{y} = \dot{\phi} \sin \theta \cos \psi + \dot{\psi} \cos \theta; \qquad \qquad \omega_{y_{1}} = \omega_{y} + \dot{\beta}; \qquad (5.7)
\omega_{z} = \dot{\phi} \cos \theta \cos \psi - \dot{\psi} \sin \theta; \qquad \qquad \omega_{z_{1}} = \omega_{x} \sin \beta + \omega_{z} \cos \beta,$$

де $\theta = \theta(t); \psi = \psi(t); \varphi = \varphi(t).$

Рис. 5.4. Схема кутів повороту фюзеляжу ЛА: φ - кут рискання, ψ - кут; тангажа, θ - кут крена

Навпаки, коли старт здійснюється з рухомої основи (наприклад, літака-носія), потрібно спочатку її кутову швидкість розкласти по осям *Οξηζ*. Це також

відноситься і до випадку, коли необхідно враховувати кутову швидкість добового обертання Землі.

Будемо вважати, що кути ψ і θ , а також їх похідні у часі, малі. Кутову швидкість рискання наведемо у вигляді –

$$\dot{\varphi} = \omega_0 + \omega_z, \qquad (5.8)$$

де ω_0 – стала величина, яка вимірюється датчиком кутових швидкостей, наприклад, при циркуляції ЛА, а $\omega_z << \omega_0$ – достатньо мале збурення цієї кутової швидкості.

Очевидно, що складові $(\omega_x)_{x_1}$ та $(\omega_z)_{x_1}$ не здійснюють впливу на похибку гіроскопа, бо співпадають за напрямком з оссю фігури. В той же час, кінематичні збурення $(\omega_x)_{a_1}$ та $(\omega_z)_{a_1}$ призведуть до виникнення додаткової похибки вимірювань $\omega_1^{a}(t)$ (рис. 5.5) [19]:

$$\omega_{1}^{a}(t) \approx \frac{2}{HR} (\omega_{x} \sin \beta + \omega_{z} \cos \beta) \left\{ I_{II} \left[\dot{V}(t) + \pi \dot{W}(t) \right] + m_{T} RL \dot{W}_{T}(t) \right\} =$$

$$= \frac{2}{HR} \left[\left(\dot{\theta} - \dot{\phi} \sin \psi \right) \sin \beta + \left(\dot{\phi} \cos \theta \cos \psi - \dot{\psi} \sin \theta \right) \cos \beta \right] \times$$

$$\times \left\{ I_{n} \left[\dot{V}(t) + \pi \dot{W}(t) \right] + m_{T} RL \dot{W}_{T}(t) \right\}.$$
(5.9)

Вектори кутової швидкості $\omega_1^a(t)$ та кутового прискорення $\dot{\omega}_1^a(t)$ напрямлені уздовж вихідної осі приладу.

Аналіз доводить, що кутова швидкість ω_y фюзеляжу за акустичної вібрації торців поплавка призводить до гвинтового руху, що, само по собі, є потрібним чинником, бо зменшує сухе тертя на осі поплавка. Але в сукупності із пружними радіальними переміщеннями $\dot{W}(t)$ бічної поверхні поплавка, кутова швидкість ω_y послужить появі моменту Ейлерових сил (сил інерції Коріоліса) і, природно, призведе до виникнення кутової швидкості $\vec{\omega}_2^a$, спрямованої паралельно вхідній осі, осі чутливості, приладу (рис. 5.6):

$$\omega_2^a = \frac{4}{HR} I_{\Pi} \omega_y \dot{W}(t) = \frac{4I_{\Pi}}{HR} (\dot{\phi} \sin \theta \cos \psi + \dot{\psi} \cos \theta) \dot{W}(t).$$
(5.10)

Тангенціальні пружні переміщення V(t) бічної поверхні, за наявної кутової швидкості ω_y , слугують появі сил інерції Коріоліса, лінії дії котрих будуть перетинати центр підвісу і збурюючого моменту не створять.

Рис. 5.5. Природа появи кутового прискорення $\dot{\omega}_{l}^{a}(t)$

Таким чином, кутовий рух ЛА із швидкостями ω_x та ω_y слугує негативному впливу акустичної вібрації на прилад у вигляді чинника $\dot{\omega}_1^a$ на вихідній осі. В свою чергу, кутова швидкість ω_y фюзеляжу буде підкреслювати тільки радіальні пружні переміщення бічної поверхні поплавка W(t), імітуючи наявність "*хибної*" вхідної величини приладу ω_2^a .

Рис. 5.6. Природа сумісної дії на гіроскоп кінематичного і акустичного збурень

§ 5.2. Рівняння збуреного руху поплавкового підвісу

Диференціальні рівняння рухомої частини приладу запишемо у вигляді [19]:

$$B\ddot{\beta} + R\left\{\left[\left(\omega_{z} + \omega_{2}^{a}\cos\beta\right)^{2} - \omega_{x}^{2}\right]\sin\beta\cos\beta - \omega_{x}\left(\omega_{z} + \omega_{2}^{a}\cos\beta\right)\cos2\beta\right\} + H\left[\omega_{x}\sin\beta + \left(\omega_{z} + \omega_{2}^{a}\cos\beta\right)\cos\beta\right] + B\left(\dot{\omega}_{y} + \dot{\omega}_{1}^{a}\right) + c\beta + b\dot{\beta} = 0, \quad (5.11)$$

де $B = I_0 + I_y$; $R = I_0 + I_z - I_x$; I_x, I_y, I_z – моменти інерції поплавка; I, I_0 – полярний і екваторіальний моменти інерції ротора; c, b – відповідно коефіцієнт жорсткості пружини і коефіцієнт демпфірування.

Розглянемо окремий випадок. Припустимо, що $\omega_x = \omega_y = 0$, $\omega_z = \omega_0 = const$, а акустичний тиск $P_0 = const$. Нескладно з'ясувати зв'язок між усталеним значенням кута повороту поплавка β_0 , кутовою швидкістю повороту ω_0 ЛА навколо осі

чутливості і проникним акустичним випромінюванням. З рівняння (5.11) в цьому випадку отримуємо –

$$\frac{1}{2}R\omega_0^2\sin 2\beta_0 + H\omega_0\cos\beta_0 + B\dot{\omega}_1^a + c\beta_0 = 0.$$
(5.12)

Тоді вираз (5.9) надасть:

$$\omega_{I}^{a} = \frac{2}{HR} \omega_{z} \cos \beta \Big[I_{\Pi} (\dot{V} + \pi \dot{W}) + m_{T} R_{T} L \dot{W}_{T} \Big] =$$

$$= \frac{2\omega_{z}}{HR} P_{0} i \omega_{a} \cos \beta \Big[I_{\Pi} (\rho_{\tau} V + \rho_{r} \pi W) + m_{T} R_{T} L \rho_{T} W_{T} \Big] ; \qquad (5.13)$$

$$\dot{\omega}_{I}^{a} = \frac{2P_{0} i \omega_{a}}{HR} \Big[I_{\Pi} (\rho_{\tau} V + \rho_{r} \pi W) + \rho_{T} m_{T} R_{T} L W_{T} \Big] \times$$

$$\times \left[\dot{\omega}_{z}\cos\beta + \omega_{z}\left(i\omega_{a}\cos\beta - \dot{\beta}\sin\beta\right)\right], \qquad (5.14)$$

де P_0 – тиск у падаючої хвилі; ω_a – колова частота акустичної хвилі.

Приймаючи до уваги вираз (5.14), співвідношення (5.12) набуде вигляду:

$$\frac{1}{2}R\omega_0^2\sin 2\beta_0 + H\omega_0\cos\beta_0 +$$

$$+2BP_0\frac{i\omega_a}{HR}\Big[I_{\Pi}\big(\rho_\tau V + k_r\pi W\big) + \rho_T m_T R_T L W_T\Big]\omega_0 i\omega_a\cos\beta_0 + c\beta_0 = 0.$$
(5.15)

Або так –

$$\frac{1}{2}R\omega_0^2\sin 2\beta_0 + \omega_0 \left\{ H\cos\beta_0 - 2BP_0 \frac{\omega_a^2\cos\beta_0}{HR} \times \left[I_{\Pi} \left(\rho_\tau V + k_r \pi W \right) + \rho_T m_T R_T L W_T \right] \right\} + c\beta_0 = 0.$$
(5.16)

Звідси знаходимо залежність між усталеним значенням кута повороту поплавка і кутовою швидкістю навколо осі чутливості:

$$\omega_{0} = \frac{1}{R \sin 2\beta_{0}} \left\{ -H \cos \beta_{0} + 2BP_{0} \frac{\omega_{a}^{2} \cos \beta_{0}}{HR} \left[I_{\Pi} \left(\rho_{\tau} V + \rho_{r} \pi W \right) + \rho_{T} m_{T} R_{T} L W_{T} \right] + \sqrt{H^{2} \cos^{2} \beta_{0}} + 4B^{2} P_{0}^{2} \frac{\omega_{a}^{4} \cos^{2} \beta_{0}}{H^{2} R^{2}} \left[I_{\Pi} \left(\rho_{\tau} V + \rho_{r} \pi W \right) + \rho_{T} m_{T} R_{T} L W_{T} \right]^{2} - \right]$$

$$\begin{split} \overline{-4HBP_{0}} \frac{\omega_{s}^{2} \cos^{2} \beta_{0}}{HR} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big] - 2Rc\beta_{0} \sin 2\beta_{0} \Big\} = \\ = \frac{1}{R \sin 2\beta_{0}} \Big\{ -H \cos \beta_{0} + 2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{HR} \Big[I_{\pi}(\rho, V + k, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big] + \\ +H \cos \beta_{0} \sqrt{1 + 4B^{2}P_{0}^{2}} \frac{\omega_{s}^{4}}{H^{4}R^{2}} \Big[I_{\pi}(\rho, V + k, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big]^{2} - \\ \overline{-4BP_{0}} \frac{\omega_{s}^{2}}{H^{2}R} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big] - 2\frac{Rc\beta_{0} \sin 2\beta_{0}}{H^{2} \cos \beta_{0}} \Big\} = \\ = \frac{1}{R \sin 2\beta_{0}} \Big\{ \Big\{ -H \cos \beta_{0} + 2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{HR} \Big[I_{\pi}(\rho, V + \rho, \pi W) \Big] + \\ +H \cos \beta_{0} \Big\{ 1 + 2B^{2}P_{0}^{2} \frac{\omega_{s}^{4}}{H^{4}R^{2}} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big]^{2} - \\ -2BP_{0} \frac{\omega_{s}^{2}}{H^{2}R} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big] - \frac{Rc\beta_{0} \sin 2\beta_{0}}{H^{2} \cos^{2}\beta_{0}} \Big\} \Big\} = \\ = \frac{1}{R \sin 2\beta_{0}} \Big\{ \Big\{ 2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{HR_{r}} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big]^{2} - \\ -2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{H^{2}R} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big]^{2} - \\ -2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{H^{2}R} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big]^{2} - \\ -2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{H^{2}R^{2}} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big]^{2} - \\ -2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{H^{2}R^{2}} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big]^{2} - \\ -2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{H^{2}R^{2}} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big]^{2} - \\ -2BP_{0} \frac{\omega_{s}^{2} \cos \beta_{0}}{H^{2}R^{2}} \Big[I_{\pi}(\rho, V + \rho, \pi W) + \rho_{\tau} m_{r} R_{r} L W_{r} \Big] - \frac{Rc\beta_{0} \sin 2\beta_{0}}{H\cos \beta_{0}} \Big\} \Big\} = \\ = \frac{1}{R \sin 2\beta_{0}} \Big\{ \Big\{ 2B^{2} P_{0}^{2} \frac{\omega_{s}^{4} \cos \beta_{0}}{H^{2}R^{2}} \Big\{ I_{\pi} [\rho, V(t) + \rho_{\tau} \pi W(t) \Big] + \rho_{\tau} m_{r} R_{r} L W_{r} (t) \Big\}^{2} - \\ - \frac{Rc\beta_{0} \sin 2\beta_{0}}{H\cos \beta_{0}} \Big\} \Big\}.$$

$$(5.17)$$

За умови, коли проникне акустичне збурення відсутнє (для цього треба у формулі (5.17) прийняти $P_0 = 0$ та $\omega_a = 0$), для малих кутів β_0 отримуємо відому формулу, яка встановлює зв'язок між усталеним кутом повороту поплавка і сталою вхідною величиною ω_0 (циркуляцією фюзеляжу):

$$\omega_0 \approx -\frac{c}{H}\beta_0. \tag{5.18}$$

В іншому випадку, до формули (5.18) додається ще один доданок, тобто:

$$\omega_{0} \approx -\frac{c}{H}\beta_{0} + \frac{P_{0}^{2}}{\sin\beta_{0}}\frac{B^{2}}{R}\frac{\omega_{a}^{4}}{H^{3}R_{T}}\{I_{II}[\rho_{\tau}V(z,\varphi,\delta,t) + \rho_{r}\pi W(z,\varphi,\delta,t)] + \rho_{T}m_{T}R_{T}LW_{T}(x,y,t)\}.$$
(5.19)

Саме другий доданок тут враховує вплив акустичного випромінювання на похибку приладу за усталеного значення вхідної величини ω_0 . У формулі (5.19) величина $W_T(x, y, t)$ являє собою закономірність згинного руху торця поплавка під дією проникного акустичного випромінювання.

Розглянемо тепер більш загальний випадок, коли ω_x, ω_y та ω_z не дорівнюють нулю, а визначаються формулами (5.5), причому кути ψ та θ малі, разом зі своїми похідними, а кутова швидкість рискання окреслена формулою (5.6).

Таким чином, нехтуючи складовими вище другого порядку мализни, з виразу (5.5) отримуємо –

$$\omega_{x} = \dot{\theta} - \dot{\phi}\sin\psi \approx \dot{\theta} - \omega_{0}\psi - \omega_{z}\psi;$$

$$\omega_{y} = \dot{\phi}\sin\theta\cos\psi + \dot{\psi}\cos\theta \approx \omega_{0}\theta + \dot{\psi} + \omega_{z}\theta;$$

$$\omega_{z} = \dot{\phi}\cos\theta\cos\psi - \dot{\psi}\sin\theta \approx \omega_{0} + \omega_{z} + \frac{1}{2}\omega_{0}(\theta^{2} + \psi^{2}) - \dot{\psi}\theta.$$
(5.20)

Або в такій формі:

$$\omega_{x} = \omega_{1x} + \omega_{2x};$$

$$\omega_{y} = \omega_{1y} + \omega_{2y};$$

$$\omega_{z} = \omega_{0} + \omega_{1z} + \omega_{2z},$$

(5.21)

 $\text{дe} \qquad \omega_{1x} = \dot{\theta} - \omega_0 \psi; \qquad \omega_{2x} = -\omega_z \psi; \qquad \omega_{1y} = \dot{\psi} + \omega_0 \theta; \qquad \omega_{2y} = \omega_z \theta; \qquad \omega_{1z} = \omega_z;$

$$\omega_{2z} = \frac{1}{2}\omega_0(\theta^2 + \psi^2) - \dot{\psi}\theta; \quad \omega_{ij}(i=1,2; j=x, y, z) - відповідно складові кутової швидкості ω_i першого (*i*=1) і другого (*i*=2) порядку мализни.$$

Перш ніж підставити вираз (5.21) в рівняння (5.9), здійснимо розклад функції β і тригонометричних функцій в ряди в околі значення β_0 , яке задовольняє (5.12):

$$\begin{split} \beta &= \beta_{0} + \beta_{1} + \beta_{1} + ...; \\ \sin \beta &= \sin \beta_{0} + \beta_{1} \cos \beta_{0} - \frac{1}{2} \beta_{1}^{2} \sin \beta_{0} + \beta_{2} \cos \beta_{0} + ...; \\ \cos \beta &= \cos \beta_{0} - \beta_{1} \sin \beta_{0} - \frac{1}{2} \beta_{1}^{2} \cos \beta_{0} - \beta_{2} \sin \beta_{0} + ...; \\ \sin 2\beta &= \sin 2\beta_{0} + 2\beta_{1} \cos 2\beta_{0} - 2\beta_{1}^{2} \sin 2\beta_{0} + 2\beta_{2} \cos 2\beta_{0} + ...; \\ \cos 2\beta &= \cos 2\beta_{0} - 2\beta_{1} \sin 2\beta_{0} - 2\beta_{1}^{2} \cos 2\beta_{0} - 2\beta_{2} \sin 2\beta_{0} + ...; \\ \cos 2\beta &= \cos 2\beta_{0} - 2\beta_{1} \sin 2\beta_{0} - 2\beta_{1}^{2} \cos 2\beta_{0} - 2\beta_{2} \sin 2\beta_{0} + ...; \\ (5.22) \\ \text{Рівняння (5.9), після підстановки співвідношень (5.22), набудуть вигляду - \\ B(\ddot{\beta}_{1} + + \ddot{\beta}_{2}) + K \left[\frac{1}{2} \omega_{0}^{2} \sin 2\beta_{0} + \omega_{0}^{2}\beta_{1} \cos 2\beta_{0} + \omega_{0}\omega_{1,x} \sin 2\beta_{0} + 2\omega_{0}\omega_{1,x}\beta_{1} \cos 2\beta_{0} - \\ - 2\omega_{0}^{2}\beta_{1}^{2} \sin 2\beta_{0} + \frac{1}{2} (\omega_{1x}^{2} + 2\omega_{0}\omega_{2,x} + 2\omega_{0}\omega_{2,y}Q_{1} \cos \beta_{0} + \omega_{1,y}^{2}Q_{1}^{2} \cos^{2}\beta_{0}) + \\ + \omega_{0}^{2}\beta_{2} \cos 2\beta_{0} - \frac{1}{2} \omega_{1,x}^{2} \sin 2\beta_{0} - \omega_{0}\omega_{1,x} \cos 2\beta_{0} + \omega_{0}\omega_{1,y}Q_{1} \sin 2\beta_{0} \cos \beta_{0} + \\ + 2\omega_{0}\omega_{1,x}\beta_{1} \sin 2\beta_{0} + 2\omega_{0}\omega_{1,y}\beta_{1}Q_{1} (\cos 2\beta_{0} \cos \beta_{0} - \frac{1}{2} \sin 2\beta_{0} \sin \beta_{0}) - \\ - (\omega_{0}\omega_{2,x} + \omega_{1,x}\omega_{1,z} + \omega_{1,x}\omega_{1,z}Q_{1} \cos \beta_{0} - \omega_{1,y}\omega_{1,z}Q_{1} g_{2}\beta_{0} \cos \beta_{0})] + \\ + H(\omega_{1,x} \sin \beta_{0} + \omega_{0} \cos \beta_{0} + \omega_{1,z} \cos \beta_{0} - \omega_{0,\beta_{1}} \sin \beta_{0} + \omega_{2,x} \sin \beta_{0} + \\ + \omega_{2,x} \cos \beta_{0} + \omega_{1,\beta}\beta_{1} \cos \beta_{0} - \omega_{1,\beta}\beta_{1} \sin \beta_{0} - \frac{1}{2} \omega_{0}\beta_{1}^{2} \cos \beta_{0} - \omega_{0}\beta_{2} \sin \beta_{0} + \\ + B[\dot{\omega}_{1,y} + \dot{\omega}_{2,y} + Q\omega_{y}i\omega_{x} \cos \beta_{0} + (\dot{\omega}_{1,z} - \omega_{1,z}i\omega_{x})Q \cos \beta_{0} - \\ - \omega_{0}(\dot{\beta}_{1} + \beta_{1}i\omega_{x})Q \sin \beta_{0} - \omega_{1,2}Q \sin \beta_{0}(\dot{\mu}_{x}\beta_{1} + 2\dot{\beta}_{1}) + Q \cos \beta_{0}(\dot{\omega}_{2,x} + \omega_{2,x}i\omega_{x}) - \\ - Q\omega_{0} \cos \beta_{0} \left(\frac{1}{2} \beta_{1}^{2}i\omega_{a} + \dot{\beta}_{1} \right) - Q\omega_{0} \sin \beta_{0} (\beta_{2}i\omega_{a} + \dot{\beta}_{2}) \right] + \\ + b(\dot{\beta}_{1} + \dot{\beta}_{2}) + c(\beta_{1} + \beta_{2}) = 0, \end{split}$$

де
$$Q_1 = \frac{4\rho_r}{HR} I_\Pi \dot{W}(t) = \frac{4P_0}{HR} i\omega_a I_\Pi \rho_r; \quad Q = \frac{2P_0}{HR} i\omega_a \left[I_\Pi \left(\rho_\tau + \rho_r \pi \right) + \rho_T m_T R_T L \right] \dots$$
(5.24)

5.2.1. Перше наближення

Рівняння першого наближення буде мати вигляд:

$$B\ddot{\beta}_{1} + (b - \omega_{0}Q\sin\beta_{0})\dot{\beta}_{1} + (c + \omega_{0}r_{1} - i\omega_{a}\omega_{0}Q\sin\beta_{0})\beta_{1} = r_{1}\omega_{1x} - (q_{1} - i\omega_{a}Q\cos\beta_{0})\omega_{1z} - B\dot{\omega}_{1y} + q_{1}Q_{1}\cos\beta_{0}\omega_{1y} + Q\cos\beta_{0}\dot{\omega}_{1z}, \qquad (5.25)$$

$$\text{дe} \qquad r_1 = R\omega_0 \cos 2\beta_0 - H\sin \beta_0; \qquad q_1 = R\omega_0 \sin 2\beta_0 + H\cos \beta_0; \qquad b^a = \omega_0 Q\sin \beta_0;$$

$$r_1^a = i\omega_a Q \sin\beta_0; \quad q_1^a = i\omega_a Q \cos\beta_0.$$

Задаючи величини ψ, θ і ω_z як функції часу, можна із (5.20) знайти значення $\omega_{1x}, \omega_{1y}, \omega_{1z}, \dot{\omega}_{1y}$ та $\dot{\omega}_{1z}$, а після підстановки в рівняння (5.20) – обчислити β_1 .

Рівняння другого наближення витікає з (5.23) після зрівнювання в його лівій і правій частинах членів другого порядку мализни. При цьому з'ясовується, що ліва частина рівняння має такий же вигляд як і (5.25) для першого наближення. Відрізняються тільки праві частини:

$$B\ddot{\beta}_{2} + (b - \omega_{0}Q\sin\beta_{0})\dot{\beta}_{2} + (c + \omega_{0}r_{1} - i\omega_{a}\omega_{0}Q\sin\beta_{0})\beta_{2} = r_{1}\omega_{2x} + (2R\omega_{0} + H\cos\beta_{0})Q_{1}\cos\beta_{0}\omega_{2y} - (q_{1} + q_{1}' + 2i\omega_{a}Q\cos\beta_{0})\omega_{2z} + r_{1}'\beta_{1}\omega_{1x} + [R\omega_{0}\cos2\beta_{0}\cos\beta_{0}(2 - tq2\beta_{0}tq\beta_{0}) - H\sin2\beta_{0}]Q_{1}\beta_{1}\omega_{1y} - q_{1}'\beta_{1}\omega_{1z} + Q\cos\beta_{0}\omega_{0}\beta_{1}\dot{\beta}_{1} - 2Q\sin\beta_{0}\dot{\beta}_{1}\omega_{1z} - \frac{1}{2}\omega_{0}(q_{1}'' + i\omega_{a}Q\cos\beta_{0})\beta_{1}^{2} + \frac{1}{2}R[(\omega_{1x}^{2} - \omega_{1z}^{2})\sin2\beta_{0} + 2\omega_{1y}^{2}Q_{1}^{2}\cos^{2}\beta_{0} + 2\omega_{1x}\omega_{1z}\cos2\beta_{0} + 2\omega_{1x}\omega_{1y}Q_{1}\cos\beta_{0} - 2\omega_{1y}\omega_{1z}tg2\beta_{0}\cos\beta_{0}] - B\dot{\omega}_{2y} + \dot{\omega}_{2z}Q\cos\beta_{0},$$
(5.26)

Введемо наступні позначення -

$$\omega_0 Q \sin \beta_0 = b^a$$
; $i\omega_a Q \sin \beta_0 = r_1^a$; $i\omega_a Q \cos \beta_0 = q_1^a$; $Q_1 \cos \beta_0 = \lambda$;

$$Q\cos\beta_{0} = \mu^{a}; \ \frac{c}{B} = k^{2}; \ \frac{r_{1}}{B} = r; \ \frac{q_{1}}{B} = q; \ \frac{q_{1}^{a}}{B} = q^{a}; \ \frac{r_{1}^{a}}{B} = r^{a};$$
$$n^{2} = k^{2} + \omega_{0}(r - r^{a}); \ \frac{\mu^{a}}{B} = \mu; \ \frac{b}{B} = 2h; \ \frac{b^{a}}{B} = 2h^{a}.$$

Тоді рівняння (5.25) набуде вигляду

$$B\ddot{\beta}_{1} + (b - b^{a})\dot{\beta}_{1} + (c + \omega_{0}r_{1} - \omega_{0}r_{1}^{a})\beta_{1} =$$

= $r_{1}\omega_{1x} - (q_{1} - q_{1}^{a})\omega_{1z} + q_{1}\lambda\omega_{1y} + \mu^{a}\dot{\omega}_{1z} - B\dot{\omega}_{1y}.$ (5.27)

Після поділу на величину В, остаточно отримаємо:

$$\ddot{\beta}_{1} + (2h - 2h^{a})\dot{\beta}_{1} + n^{2}\beta_{1} = r\omega_{1x} - (q - q^{a})\omega_{1z} + q\lambda\omega_{1y} + \mu\dot{\omega}_{1z} - \dot{\omega}_{1y}.$$
(5.28)

Аналогічно для рівняння (5.26) другого наближення:

$$\ddot{\beta}_{2} + (2h - 2h^{a})\dot{\beta}_{2} + n^{2}\beta_{2} = r\omega_{2x} + S\lambda\omega_{2y} - (q + q' + q^{a})\omega_{2z} + \beta_{1}r'\omega_{1x} + + l'\beta_{1}\omega_{1y} - q'\beta_{1}\omega_{1z} + \mu\omega_{0}\beta_{1}\dot{\beta}_{1} + 2\mu'\dot{\beta}_{1}\omega_{1z} - \frac{1}{2}\omega_{0}(q'' + q^{a})\beta_{1}^{2} + + \frac{a}{2}[(\omega_{1x}^{2} - \omega_{1z}^{2})\sin 2\beta_{0} + 2\omega_{1y}^{2}\lambda^{2} + 2\omega_{1x}\omega_{1z}\cos 2\beta_{0} + 2\omega_{1x}\omega_{1y}\lambda - - 2\omega_{1y}\omega_{1z}tg2\beta_{0}\cdot\cos\beta_{0}] - \dot{\omega}_{2y} + \mu\dot{\omega}_{2z}.$$
(5.29)

Або в такій формі –

$$\ddot{\beta}_{2} + (2h - 2h^{a})\dot{\beta}_{2} + n^{2}\beta_{2} = r\omega_{2x} + S\lambda\omega_{2y} - (q + q' + q^{a})\omega_{2z} + + \beta_{1}(r'\omega_{1x} + l'\omega_{1y} - q'\omega_{1z}) + \dot{\beta}_{1}(\mu\omega_{0}\beta_{1} + 2\mu'\omega_{1z}) - \frac{1}{2}\omega_{0}(q'' + q^{a})\beta_{1}^{2} + + \frac{a}{2}[(\omega_{1x}^{2} - \omega_{1z}^{2})\sin 2\beta_{0} + 2\lambda^{2}\omega_{1y}^{2} + 2\omega_{1x}\omega_{1z}\cos 2\beta_{0} + + 2\lambda\omega_{1x}\omega_{1y} - 2tg2\beta_{0}\omega_{1y}\omega_{1z} \cdot \cos \beta_{0}] - \dot{\omega}_{2y} + \mu\dot{\omega}_{2z},$$
(5.30)

де

$$(2R\omega_{0} + H\cos\beta_{0}) = S^{a}; \quad \frac{S^{a}}{B} = S \quad ; \quad \frac{q'_{1}}{B} = q'; \quad \frac{r'_{1}}{B} = r';$$
$$\left[R\omega_{0}\cos 2\beta_{0}\cos\beta_{0}\left(2 - tg 2\beta_{0}tg\beta_{0}\right) - H\sin 2\beta_{0}\right]Q_{1} = l^{a}; \quad \frac{l^{a}}{B} = l';$$

$$(\mu^{a})' = -Q\sin\beta_{0}; \quad \frac{(\mu^{a})'}{B} = \mu'; \quad \frac{q_{1}''}{B} = q''; \quad \frac{R}{B} = a$$

Загальний розв'язок рівняння (5.28) першого наближення можна навести у вигляді суми загального розв'язку однорідного рівняння і часткового розв'язку неоднорідного рівняння, тобто

$$\beta_{1} = C \exp\left[-\left(h - h^{a}\right)\sin\left(\sqrt{n^{2}\left(h - h^{a}\right)^{2}t} + \varepsilon\right) + \tilde{\beta}_{1}\right].$$
(5.31)

Очевидно, що з часом, перший доданок тут зменшується і за $t \to \infty$ прямує до нуля. Тому усталене значення буде визначатися частковим розв'язком $\tilde{\beta}_1$.

Проаналізуємо реакцію поплавкового гіроскопа на гармонічне коливання фюзеляжу. Припустимо спочатку, що права частина рівняння (5.28) являє собою гармонічну функцію, наприклад, виду

$$f(t) = \rho \sin(\nu t + \delta),$$

тобто

$$\ddot{\beta}_{1} + 2(h - h^{a})\dot{\beta}_{1} + n^{2}\beta_{1} = \rho \sin(\nu t + \delta).$$
(5.32)

(5.34)

Усталений рух в цьому випадку також буде періодичним. Він визначається як розв'язок рівняння (5.32):

$$\beta_{1} = \left\{ \left[n^{2} - v^{2} \right]^{2} + 4 \left(h - h^{a} \right)^{2} v^{2} \right\}^{-\frac{1}{2}} \rho \sin \left(vt + \delta - \varepsilon \right),$$
(5.33)

де $\varepsilon = \operatorname{arctg} \frac{2(h-h^a)}{n^2-v^2}$, якщо n > v;

$$\varepsilon = \pi + \operatorname{arctg} \frac{2(h - h^a)v}{n^2 - v^2}, \text{ якщо } n < v.$$
(5.35)

Зауважимо, якщо в правій частині рівняння (5.32) періодична функція є косинус, тоді

$$\beta_{1} = \left\{ \left[n^{2} - v^{2} \right]^{2} - 4 \left(h - h^{a} \right)^{2} v^{2} \right\}^{-\frac{1}{2}} \rho \cos \left(vt + \delta - \varepsilon \right).$$

Припустимо, що коливання фюзеляжу ЛА чиняться по гармонічному закону, тобто

$$\theta = \rho_{\theta} \sin\left(vt + \delta_{\theta}\right); \quad \psi = \rho_{\psi} \sin\left(vt + \delta_{\psi}\right); \\ \omega_{1z} = v\rho_{\phi} \sin\left(vt + \delta_{\phi}\right), \quad (5.36)$$

а акустична вібрація поверхні поплавка також відбувається по гармонічному закону –

$$V(t) = \rho_{\tau} \cos(\omega_{a}t + \delta_{V}); \quad W(t) = \rho_{r} \cos(\omega_{a}t + \delta_{W});$$
$$W_{T}(t) = \rho_{T} \cos(\omega_{a}t + \delta_{W_{T}}). \quad (5.37)$$

В акустиці, дуже часто користуються тільки косинусною складовою і, при цьому, минається уявна складова – синусна.

Права частина рівняння (5.25) в цьому випадку має вигляд:

$$\begin{split} r\omega_{1x} - (q - q^{a})\omega_{1z} + q\lambda\omega_{1y} + \mu\dot{\omega}_{1z} - \dot{\omega}_{1y} &= (r - \omega_{0})\nu\rho_{\theta}\cos(vt + \delta_{\theta}) - \\ - (r\omega_{0} - v^{2})\rho_{\psi}\sin(vt + \delta_{\psi}) - q\nu\rho_{\phi}\cos(vt + \delta_{\phi}) - \frac{2P_{0}}{BHR}\omega_{x}^{2}\cos\beta_{0} \times \\ \times [I_{\pi}(\rho_{\tau}\cos(\omega_{a}t + \delta_{v})) + \pi\rho_{\tau}\cos(\omega_{a}t + \delta_{w}) + m_{\tau}R_{\tau}L\rho_{\tau}\cos(\omega_{a}t + \delta_{w_{\tau}}) \times \\ \times v\rho_{\phi}\cos(vt + \delta_{\phi}) + \frac{4P_{0}}{HBR}(R\omega_{0}\sin2\beta_{0} + H\cos\beta_{0})i\omega_{a}\cos^{2}\beta_{0}I_{H}\rho_{\tau}\cos(\omega_{a}t + \delta_{w}) \times \\ \times \left[\nu\rho_{\psi}\cos(vt + \delta_{\psi}) + \omega_{0}\rho_{\theta}\sin(vt + \delta_{\theta})\right] + \frac{2P_{0}i\omega_{a}\cos\beta_{0}}{HBR}\left[I_{\pi}(\rho_{\tau}\cos(\omega_{a}t + \delta_{v}) + \\ +\rho_{\tau}\pi\cos(\omega_{a}t + \delta_{w}) + \rho_{\tau}m_{\tau}R_{\tau}L\cos(\omega_{a}t + \delta_{w_{\tau}})]v^{2}\rho_{\phi}\sin(vt + \delta_{\phi}) + \\ +v^{2}\rho_{\psi}\sin(vt + \delta_{\psi}) - \nu\omega_{0}\rho_{\theta}\cos(vt + \delta_{\theta}) = \\ = (r - \omega_{0})\nu\rho_{\theta}\cos(vt + \delta_{\theta}) - (r\omega_{0} - v^{2})\rho_{\psi}\sin(vt + \delta_{\psi}) - q\nu\rho_{\phi}\cos(vt + \delta_{\phi}) - \\ - \frac{P_{0}\omega_{a}^{2}\cos\beta_{0}}{BHR}\{I_{\pi}v\rho_{\tau}\rho_{\phi}\cos[(\omega_{a} - v)t + \delta_{v} - \delta_{\phi}] + \\ +I_{\mu}v\rho_{\tau}\rho_{\phi}\cos[(\omega_{a} + v)t + \delta_{w} + \delta_{\phi}] + m_{\tau}R_{\tau}Lv\rho_{\tau}\rho_{\phi}\cos[(\omega_{a} - v)t + \delta_{w_{\tau}} - \delta_{\phi}] + \\ +m_{\tau}R_{\tau}Lv\rho_{\tau}\rho_{\phi}\cos[(\omega_{a} + v)t + \delta_{w_{\tau}} + \delta_{\phi}] + m_{\tau}R_{\tau}Lv\rho_{\tau}\rho_{\phi}\cos[(\omega_{a} - v)t + \delta_{w_{\tau}} - \delta_{\phi}] + \end{split}$$

$$+\frac{2P_{0}i\omega_{a}\cos^{2}\beta_{0}I_{T}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\left\{\nu\rho_{r}\rho_{\psi}\cos\left[(\omega_{a}-\nu)t+\delta_{w}-\delta_{\psi}\right]+\right.\\\left.+\nu\rho_{r}\rho_{\psi}\cos\left[(\omega_{a}+\nu)t+\delta_{w}+\delta_{\psi}\right]+\omega_{0}\rho_{r}\rho_{\theta}\sin\left[(\omega_{a}-\nu)t+\delta_{w}-\delta_{\theta}\right]+\right.\\\left.+\omega_{0}\rho_{r}\rho_{\theta}\sin\left[(\omega_{a}+\nu)t+\delta_{w}+\delta_{\theta}\right]\right\}+\\\left.+\frac{P_{0}i\omega_{a}\cos\beta_{0}}{HBR}\left\{I_{\pi}\nu^{2}\rho_{r}\rho_{\phi}\sin\left[(\omega_{a}-\nu)t+\delta_{v}-\delta_{\phi}\right]+\right.\\\left.+I_{\pi}\nu^{2}\rho_{r}\rho_{\phi}\sin\left[(\omega_{a}+\nu)t+\delta_{v}+\delta_{\phi}\right]+\nu^{2}m_{T}R_{T}L\rho_{T}\rho_{\phi}\sin\left[(\omega_{a}-\nu)t+\delta_{w_{T}}-\delta_{\phi}\right]+\\\left.+\nu^{2}m_{T}R_{T}L\rho_{T}\rho_{\phi}\sin\left[(\omega_{a}+\nu)t+\delta_{w_{T}}+\delta_{\phi}\right]\right\}+\nu^{2}\rho_{\psi}\sin\left(\nu t+\delta_{\psi}\right)-\\\left.-\nu\omega_{0}\rho_{\theta}\cos\left(\nu t+\delta_{\theta}\right).\right.$$
(5.38)

Тепер можна скористатися розв'язком (5.33) і визначити β_1 для того випадку, коли права частина рівняння (5.32) представлена у вигляді (5.38).

Як походить з виразу (5.38), права частина рівняння першого наближення буде містити доданки, які являють собою періодичні функції часу. Причому, деякі залежать тільки від частоти ν кутового руху фюзеляжу ЛА, інші – від суми (або різності) частоти акустичного випромінювання ω_a та кінематичного збурення ν . Перші, зрозуміло, спричинять вимушені коливання рухомої частини приладу відносно рівновісного положення $\beta = \beta_0$ з частотою ν . Інші – сумарної частоти ($\omega_a + \nu$) – також викличуть коливання поплавка відносно вихідної осі, але вже внаслідок спільної дії двох збурюючих чинників – кінематичного і акустичного.

Особливої уваги заслуговують складові різностної частоти ($\omega_a - v$):

$$-\frac{P_{0}\omega_{a}^{2}\cos\beta_{0}}{HBR}\left\{I_{\Pi}\nu\rho_{\tau}\delta_{\varphi}\cos\left[\left(\omega_{a}-\nu\right)t+\delta_{V}-\delta_{\varphi}\right]+\right.\\\left.+\pi\nu\rho_{r}\rho_{\varphi}\cos\left[\left(\omega_{a}-\nu\right)t+\delta_{W}-\delta_{\varphi}\right]+\nu m_{T}R_{T}L\rho_{T}\rho_{\varphi}\cos\left[\left(\omega_{a}-\nu\right)t+\delta_{WT}-\delta_{\varphi}\right]\right\}+\\\left.+\frac{2P_{0}i\omega_{a}\cos^{2}\beta_{0}I_{\Pi}(R\omega_{0}\sin2\beta_{0}+H\cos\beta_{0})}{HBR}\left\{\nu\rho_{r}\rho_{\psi}\cos\left[\left(\omega_{a}-\nu\right)t+\delta_{W}-\delta_{\psi}\right]\right\}+\\\left.+\frac{P_{0}i\omega_{a}\cos\beta_{0}}{HBR}\left\{\nu^{2}I_{\Pi}\rho_{\tau}\rho_{\varphi}\sin\left[\left(\omega_{a}-\nu\right)t+\delta_{V}-\delta_{\varphi}\right]\right\}+\right.$$

$$+\nu^2 m_T R_T L \rho_T \rho_{\varphi} \sin[(\omega_a - \nu)t + \delta_{W_T} - \delta_{\varphi}] \Big\}.$$
(5.39)

Являє неабиякий інтерес для практики випадок співпадання частот, тобто коли $\omega_a = v$. Як походить з формули (5.38), доданки, які містять $\sin(\omega_a - v)t$, щезнуть, а доданки, які містять $\cos(\omega_a - v)t$, обернуться на одиницю і вираз (5.38) стане іншим:

$$-\frac{P_{0}\omega_{x}^{2}\cos\beta_{0}}{HBR}v\{I_{\Pi}\rho_{\tau}\delta_{\varphi}\cos(\delta_{v}-\delta_{\varphi})+$$

$$+\pi\rho_{r}\rho_{\varphi}\cos(\delta_{w}-\delta_{\varphi})+m_{r}R_{r}L\rho_{\tau}\rho_{\varphi}\cos(\delta_{w_{T}}-\delta_{\varphi})\}+$$

$$+\frac{2P_{0}i\omega_{x}\cos^{2}\beta_{0}I_{\Pi}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\{v\rho_{r}\rho_{\psi}\cos(\delta_{w}-\delta_{\psi})+$$

$$+\omega_{0}\rho_{r}\rho_{\psi}\sin(\delta_{w}-\delta_{\psi})\}+\frac{P_{0}i\omega_{x}\cos\beta_{0}}{HBR}v^{2}\{I_{\Pi}\rho_{r}\rho_{\varphi}\sin(\delta_{v}-\delta_{\varphi})+$$

$$+m_{r}R_{r}L\rho_{\tau}\rho_{\varphi}\sin(\delta_{w_{T}}-\delta_{\varphi})\}=-\frac{P_{0}\omega_{x}^{2}\cos\beta_{0}}{HBR}v\rho_{\varphi}\times$$

$$\times[I_{\Pi}\rho_{\tau}\cos(\delta_{v}-\delta_{\varphi})+\pi\rho_{r}\cos(\delta_{w}-\delta_{\varphi})+m_{r}R_{r}L\rho_{T}\cos(\delta_{w_{T}}-\delta_{\varphi})]+$$

$$+\frac{2P_{0}i\omega_{x}\cos^{2}\beta_{0}I_{\Pi}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\rho_{r}\rho_{\psi}[v\cos(\delta_{w}-\delta_{\psi})+$$

$$+\omega_{0}\cos(\delta_{w}-\delta_{\psi})]+\frac{P_{0}i\omega_{x}\cos\beta_{0}}{HBR}v^{2}\rho_{\varphi}[I_{\Pi}\rho_{\tau}\sin(\delta_{v}-\delta_{\varphi})+$$

$$+m_{r}R_{r}L\rho_{T}\sin(\delta_{w_{T}}-\delta_{\varphi})]. (5.40)$$

Очевидно, що кінематичне збурення буде, свого роду, фільтром, здійснюючи вибірковість смуги частот акустичного збурення. Наявність сталих величин в правій частині рівняння призведе до виявлення, вже в першому наближенні, систематичних складових у вихідному сигналі приладу.

Відтепер, можна скористатися розв'язком (5.33) і визначити β_1 для випадку, коли права частина рівняння (5.32) має структуру (5.38):

$$\beta_{1} = \left[\left(n^{2} - v^{2} \right)^{2} + 4 \left(h - h^{a} \right)^{2} v^{2} \right]^{\frac{1}{2}} \times \\ \times \left\{ \left\{ \left(r - \omega_{0} \right) v \rho_{\theta} \cos\left(vt + \delta_{\theta} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) - \left(r \omega_{0} - v^{2} \right) \rho_{\psi} \sin\left(vt + \delta_{\psi} - \varepsilon \right) \right]$$

$$-q\nu\rho_{\varphi}\cos(\nu t+\delta_{\varphi}-\varepsilon)-\frac{P_{0}\omega_{a}^{2}\cos\beta_{0}}{HBR}\nu\rho_{\varphi}\left\{I_{\Pi}\rho_{\tau}\cos[(\omega_{a}-\nu)t+\delta_{v}-\delta_{\varphi}-\varepsilon]\right]+$$

$$+I_{\Pi}\rho_{\tau}\cos[(\omega_{a}+\nu)t+\delta_{v}+\delta_{\varphi}-\varepsilon]+\pi\rho_{\tau}I_{\Pi}\cos[(\omega_{a}-\nu)t+\delta_{w}-\delta_{\varphi}-\varepsilon]+$$

$$+\pi\rho_{\tau}I_{\Pi}\cos[(\omega_{a}+\nu)t+\delta_{w}+\delta_{\varphi}-\varepsilon]+m_{T}R_{T}L\rho_{\tau}\cos[(\omega_{a}-\nu)t+\delta_{w\tau}-\delta_{\varphi}-\varepsilon]+$$

$$+\frac{2P_{0}i\omega_{a}\cos^{2}\beta_{0}I_{\Pi}(R\omega_{0}\sin2\beta_{0}+H\cos\beta_{0})}{HBR}\{\nu\rho_{\tau}\rho_{\psi}\cos[(\omega_{a}-\nu)t+\delta_{w}-\delta_{\psi}-\varepsilon]+$$

$$+\nu\rho_{\tau}\rho_{\psi}\cos[(\omega_{a}+\nu)t+\delta_{w}+\delta_{\psi}-\varepsilon]+\omega_{0}\rho_{\tau}\rho_{\theta}\sin[(\omega_{a}-\nu)t+\delta_{w}-\delta_{\theta}-\varepsilon]+$$

$$+\frac{P_{0}i\omega_{a}\cos\beta_{0}}{HBR}\nu^{2}\rho_{\varphi}\{I_{\Pi}\rho_{\tau}\sin[(\omega_{a}-\nu)t+\delta_{v}-\delta_{\varphi}-\varepsilon]+$$

$$+I_{\Pi}\rho_{\tau}\sin[(\omega_{a}+\nu)t+\delta_{v}+\delta_{\varphi}-\varepsilon]+m_{T}R_{\tau}L\rho_{T}\sin[(\omega_{a}-\nu)t+\delta_{w\tau}-\delta_{\varphi}-\varepsilon]+$$

$$+m_{\tau}R_{\tau}L\rho_{T}\sin[(\omega_{a}+\nu)t+\delta_{v}+\delta_{\varphi}-\varepsilon]+m_{\tau}R_{\tau}L\rho_{\tau}\sin[(\omega_{a}-\nu)t+\delta_{w\tau}-\delta_{\varphi}-\varepsilon]+$$

$$(5.41)$$

Три перші доданки в правій частині (5.41) відображають вплив тільки кутового руху фюзеляжу на вихідний сигнал, інші – спільний вплив акустичного і кінематичного збурень.

Для асинхронних коливань, коли

$$\theta = \rho_{\theta} \sin(v_{1}t + \delta_{\theta}); \quad \psi = \rho_{\psi} \sin(v_{2}t + \delta_{\psi}); \quad \omega_{1z} = v_{3}\rho_{\phi} \cos(v_{3}t + \delta_{\phi});$$
$$V(t) = \rho_{\tau} \cos(\omega_{a}t + \delta_{v}); \quad W(t) = \rho_{r} \cos(\omega_{a}t + \delta_{w});$$
$$W_{T}(t) = \rho_{T} \cos(\omega_{a}t + \delta_{w_{T}}), \quad (5.42)$$

вираз (5.41) зміниться:

$$\beta_{1} =$$

$$= (r - \omega_{0})D(v_{1})v_{1}\rho_{\theta}\cos(v_{1}t + \delta_{\theta} - \varepsilon_{1}) + (r\omega_{0} - v_{2}^{2})\rho_{\psi}\sin(v_{2}t + \delta_{\psi} - \varepsilon_{2})D(v_{2}) -$$

$$-qD(v_{3})v_{3}\rho_{\varphi}\cos(v_{3}t + \delta_{\varphi} - \varepsilon_{3}) - \omega_{0}D(v_{2})v_{2}^{2}\rho_{\psi}\sin(v_{2}t + \delta_{\psi} - \varepsilon_{2}) -$$

$$-\omega_{0}D(v_{1})v_{1}\rho_{\theta}\sin(v_{1}t + \delta_{\theta} - \varepsilon_{1}) - \frac{P_{0}\omega_{a}^{2}\cos\beta_{0}}{HBR}D(v_{3})v_{3}\rho_{\varphi} \times$$

$$\times \left\{ I_{II}\rho_{\tau}\cos[(\omega_{a}-v_{3})t+\delta_{V}-\delta_{\varphi}-\varepsilon_{3}]+I_{II}\rho_{\tau}\cos[(\omega_{a}+v_{3})t+\delta_{V}+\delta_{\varphi}-\varepsilon_{3}]+\right.\\\left.+\pi\rho_{r}\cos[(\omega_{a}-v_{3})t+\delta_{W}-\delta_{\varphi}-\varepsilon_{3}]+\pi\rho_{r}\cos[(\omega_{a}+v_{3})t+\delta_{W}+\delta_{\varphi}-\varepsilon_{3}]+\right.\\\left.+m_{r}R_{r}L\rho_{r}\cos[(\omega_{a}-v_{3})t+\delta_{Wr}-\delta_{\varphi}-\varepsilon_{3}]+\right.\\\left.+m_{r}R_{r}L\rho_{r}\cos[(\omega_{a}+v_{3})t+\delta_{Wr}+\delta_{\varphi}-\varepsilon_{3}]\right]+\right.\\\left.+\frac{2P_{0}i\omega_{a}\cos^{2}\beta_{0}I_{II}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\times\right]$$
$$\times \left\{D(v_{2})v_{2}\rho_{r}\rho_{\psi}\cos[(\omega_{a}-v_{2})t+\delta_{W}-\delta_{\psi}-\varepsilon_{2}]+\right.\\\left.+D(v_{1})\omega_{0}\rho_{r}\rho_{\theta}\sin[(\omega_{a}-v_{1})t+\delta_{W}-\delta_{\theta}-\varepsilon_{1}]+\right.\\\left.+D(v_{1})\omega_{0}\rho_{r}\rho_{\theta}\sin[(\omega_{a}+v_{1})t+\delta_{W}+\delta_{\theta}-\varepsilon_{1}]\right\}+\right.\\\left.+\frac{P_{0}D(v_{3})i\omega_{a}\cos\beta_{0}}{HBR}v_{3}^{2}\rho_{\varphi}\left\{I_{II}\rho_{\tau}\sin[(\omega_{a}-v_{3})t+\delta_{V}-\delta_{\varphi}-\varepsilon_{3}]+\right.\\\left.+m_{r}R_{r}L\rho_{r}\sin[(\omega_{a}+v_{3})t+\delta_{Wr}-\delta_{\varphi}-\varepsilon_{3}]+\right.\\\left.+m_{r}R_{r}L\rho_{r}\sin[(\omega_{a}+v_{3})t+\delta_{Wr}+\delta_{\varphi}-\varepsilon_{3}]\right\},$$

$$D(v_{1})\int \left[v_{2}^{2}-v_{2}^{2}F+A(t-te^{2})^{2}v_{2}^{2}\frac{1}{2}}-c_{2}-v_{2}^{2}(t-h^{a})v_{2}-v_{2}-v_{2}^{2}(t-h^{a})v_{2}-v_{2}^{2}(t-h^$$

де
$$D(\mathbf{v}_i) = \left\{ \left[n^2 - \mathbf{v}_i^2 \right]^2 + 4 \left(h - h^a \right)^2 \mathbf{v}_i^2 \right\}^{\frac{1}{2}}; \quad \varepsilon_i = \operatorname{arctg} \frac{2(h - h^a)}{n^2 - v_i^2} v_i, \quad i = 1, 2, 3.$$

Таким чином, на відміну від дії тільки хитавиці, за спільної дії звукових хвиль і кутового руху фюзеляжу, вже в першому наближенні вдається виявити умови виникнення резонансних явищ і оцінити їх характер.

Найбільший інтерес являє стала складова у виразі (5.41). Очевидно, що хитавиця до цього не призведе, вона спричинить тільки періодичним складовим частоти v хитавиці фюзеляжу (перші три доданки у виразі (5.41)). В той же час, за співпадання частот проникаючого акустичного випромінювання ω_a і хитавиці ЛА,

тобто якщо $\omega_a = v$, в правій частині виразу (5.41) з'являться періодичні складові сумарної ($\omega_a + v$) частоти і стала складова β_1^0 :

$$\begin{split} & \beta_{1}^{0} = \left\{ \left[n^{2} - v^{2} \right]^{2} + 4 \left(h - h^{a} \right)^{2} v^{2} \right\}^{\frac{1}{2}} \times \\ & \times \left\{ - \frac{P_{0} \omega_{x}^{2} \cos \beta_{0}}{HBR} v \rho_{\varphi} [I_{\Pi} \rho_{\tau} \cos \left(\delta_{v} - \delta_{\varphi} - \varepsilon \right) + \pi \rho_{\tau} \cos \left(\delta_{w} - \delta_{\varphi} - \varepsilon \right) + \right. \\ & + m_{r} R_{r} L \rho_{\tau} \cos \left(\delta_{w_{T}} - \delta_{\varphi} - \varepsilon \right)] + \frac{2P_{0} i \omega_{x} \cos^{2} \beta_{0} I_{\Pi} (R \omega_{0} \sin 2\beta_{0} + H \cos \beta_{0})}{HBR} \times \\ & \times \left[v \rho_{\tau} \rho_{\psi} \cos \left(\delta_{w} - \delta_{\psi} - \varepsilon \right) + \omega_{0} \rho_{\tau} \rho_{\theta} \sin \left(\delta_{w} - \delta_{\theta} - \varepsilon \right) \right] + \frac{P_{0} i \omega_{x} \cos \beta_{0}}{HBR} v^{2} \rho_{\phi} \times \\ & \times \left[I_{\Pi} \rho_{\tau} \sin \left(\delta_{v} - \delta_{\varphi} - \varepsilon \right) + m_{T} R_{r} L \rho_{\tau} \sin \left(\delta_{w_{T}} - \delta_{\varphi} - \varepsilon \right) \right] \right\} = \\ & = \left\{ \left[n^{2} - v^{2} \right]^{2} + 4 \left(h - h^{a} \right)^{2} v^{2} \right\}^{\frac{1}{2}} \times \\ & \times \frac{P_{0} \omega_{a} \cos \beta_{0}}{HBR} \left\{ -\omega_{a} v \rho_{\varphi} \left[I_{\Pi} \rho_{\tau} \cos \left(\delta_{v} - \delta_{\varphi} - \varepsilon \right) + \pi \rho_{r} \cos \left(\delta_{w} - \delta_{\varphi} - \varepsilon \right) + \right. \\ & + m_{r} R_{r} L \rho_{r} \cos \left(\delta_{w_{T}} - \delta_{\varphi} - \varepsilon \right) \right] + 2i \cos \beta_{0} I_{\Pi} (R \omega_{0} \sin 2\beta_{0} + H \cos \beta_{0}) \rho_{\tau} \times \\ & \times \left[v \rho_{\psi} \cos \left(\delta_{w} - \delta_{\psi} - \varepsilon \right) + \omega_{0} \rho_{\theta} \sin \left(\delta_{w} - \delta_{\theta} - \varepsilon \right) \right] + \\ & + i v^{2} \rho_{\varphi} \left[I_{\Pi} \rho_{\tau} \sin \left(\delta_{v} - \delta_{\varphi} - \varepsilon \right) + m_{T} R_{r} L \rho_{\tau} \sin \left(\delta_{w_{T}} - \delta_{\varphi} - \varepsilon \right) \right] \right\}. \end{split}$$

$$(5.44)$$

Таким чином, за співпадання частот звукових хвиль і хитавиці, вихідний сигнал приладу буде містити:

$$\beta = \beta_0 + \beta_1^{(0)},$$

що походить вже з першого наближення. Іншими словами, хитавиця ЛА буде підкреслювати частоти звукового поля ω_a . Інші складові поповнять спектр періодичних складових

5.2.2. Друге наближення

Синхронна хитавиця фюзеляжу. Переходимо до рівняння другого наближення (5.30). Права частина тут містить гармонічні складові і сталі складові. Зрозуміло, що гармонічні складові за асинхронної хитавиці фюзеляжу будуть мати частоти $v_{ij} = \pm v_i + v_j$ за різної комбінації знаків і індексів *i* та *j*. Причому, амплітуди коливань будуть вже другого порядку мализни. Найбільший практичний інтерес являє стала складова в правій частині (5.30), бо в усталеному режимі цій сталій *C* буде відповідним певний "зсуву нуля" вихідного сигналу $\beta_2^{(0)}$ приладу, який визначається як частковий розв'язок рівняння (5.25):

$$n^{2}\beta_{2}^{(0)} = C; \quad \beta_{2}^{(0)} = \frac{C}{n^{2}}.$$
 (5.45)

Таким чином, вихідний сигнал β буде містити

$$\beta = \beta_0 + \beta_1^{(0)} + \beta_2^{(0)}$$

а потому і замість кутової швидкості, що вимірюється, буде

$$\omega_0 + \Delta \omega_1 + \Delta \omega_2$$

де два останніх доданки відповідають "хибній" кутовій швидкості.

Перейдемо до обчислення сталої *С*. За *синхронної* хитавиці фюзеляжу ЛА маємо:

$$\begin{split} \left\langle \omega_{2x} \right\rangle &= -\left\langle \omega_{x}\psi \right\rangle = -\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \omega_{x}\psi dt = -v\rho_{\varphi}\rho_{\psi} \lim_{T \to \infty} \left(\frac{1}{T} \int_{0}^{T} \sin\left(vt + \delta_{\psi}\right) \times \\ &\times \cos\left(vt + \delta_{\varphi}\right) dt \right) = -\frac{1}{2} v\rho_{\varphi}\rho_{\psi} \sin\left(\delta_{\psi} - \delta_{\varphi}\right); \\ \left\langle \omega_{2z} \right\rangle &= \left\langle \frac{\omega_{0}}{2} \left(\theta^{2} + \psi^{2}\right) - \dot{\psi}\theta \right\rangle = \frac{\omega_{0}}{2} \left\langle \left(\theta^{2} + \psi^{2}\right) \right\rangle - \left\langle \dot{\psi}\theta \right\rangle = \\ &= \frac{1}{2} \omega_{0} \left\langle \left[\rho_{\theta}^{2} \sin^{2}\left(vt + \delta_{\theta}\right) + \rho_{\psi}^{2} \sin^{2}\left(vt + \delta_{\psi}\right)\right] \right\rangle - v\rho_{\theta}\rho_{\psi} \left\langle \left[\cos\left(vt + \delta_{\psi}\right)\sin\left(vt + \delta_{\theta}\right)\right] \right\rangle = \\ &= \frac{1}{4} \omega_{0} \left(\rho_{\theta}^{2} + \rho_{\psi}^{2}\right) - \frac{1}{2} v\rho_{\theta}\rho_{\psi} \sin\left(\delta_{\theta} - \delta_{\psi}\right); \end{split}$$

$$\begin{split} \left\langle \omega_{2\nu} \right\rangle &= \left\langle \omega_{l}, \theta \right\rangle = \left\langle \nu \rho_{v} \cos(\nu t + \delta_{v}) \rho_{v} \sin(\nu t + \delta_{v}) \right\rangle = \frac{1}{2} \nu \rho_{v} \rho_{v} \sin(\delta_{v} - \delta_{v}); \\ \left\langle \beta_{l} \omega_{lx} \right\rangle &= \left\langle \beta_{l} \dot{\theta} \right\rangle - \omega_{0} \left\langle \beta_{l} \psi \right\rangle = \\ &= \frac{1}{2} \left[\left[n^{2} - v^{2} \right]^{2} + 4 \left(h - h^{a} \right)^{2} v^{2} \right]^{\frac{1}{2}} \left[\left[\left(r - \omega_{0} \right) v^{2} \rho_{v}^{2} \cos \varepsilon - \left(\omega_{0} r - v^{2} \right) \nu \rho_{v} \rho_{v} \times \\ &\times \sin \left(\delta_{v} - \delta_{v} - \varepsilon \right) - q v^{2} \rho_{o} \rho_{v} \cos \left(\delta_{v} - \delta_{v} - \varepsilon \right) \right] - \frac{1}{2} \left[\left(r - \omega_{0} \right) v \rho_{o} \rho_{v} \times \\ &\times \sin \left(\delta_{v} - \delta_{v} + \varepsilon \right) - \left(\omega_{0} r - v^{2} \right) \rho_{v}^{2} \cos \varepsilon - q v \rho_{v} \rho_{v} \sin \left(\delta_{v} - \delta_{v} + \varepsilon \right) \right] \right]; \\ \left\langle \beta_{l} \omega_{lx} \right\rangle &= \frac{1}{2} \left[\left(r - \omega_{0} \right) v^{2} \rho_{v} \rho_{v} \cos \left(\delta_{v} - \delta_{v} + \varepsilon \right) - \left(\omega_{0} r - v^{2} \right) v \rho_{v} \rho_{v} \sin \left(\delta_{v} - \delta_{v} - \varepsilon \right) - \right. \\ \left. - q v^{2} \rho_{v}^{2} \cos \varepsilon \right] \left[\left(n^{2} - v^{2} \right)^{2} + 4 \left(h - h^{e} \right)^{2} v^{2} \right]^{-\frac{1}{2}}; \\ \left\langle \beta_{l} I \omega_{lx} \right\rangle &= \frac{1}{2} \left[\left(n^{2} - v^{2} \right)^{2} + 4 \left(h - h^{e} \right)^{2} v^{2} \right]^{-\frac{1}{2}}; \\ \left\langle \beta_{l} I \omega_{lx} \right\rangle &= \frac{1}{2} \left[\left(n^{2} - v^{2} \right)^{2} + 4 \left(h - h^{e} \right)^{2} v^{2} \right]^{-\frac{1}{2}}; \\ \left\langle \beta_{l} I \omega_{lx} \right\rangle &: \\ I = \frac{I}{B} = \frac{R \omega_{0} \cos 2 \beta_{0} \cos \beta_{0} \left(2 - t g 2 \beta_{0} t g \beta_{0} \right) - H \sin 2 \beta_{0}}{HBR} \times \\ \times 4 P_{0} i \omega_{z} I_{n} \rho_{r} \cos \left(\omega_{z} t + \delta_{w} \right); \\ I \omega_{ly} &= \frac{R \omega_{0} \cos 2 \beta_{0} \cos \beta_{0} \left(2 - t g 2 \beta_{0} t g \beta_{0} \right) - H \sin 2 \beta_{0}}{HBR} 2 P_{0} i \omega_{z} I_{n} \rho_{r} \times \\ \times \left\{ \nu \rho_{v} \sin \left[\left(\omega_{x} - v \right) t + \delta_{w} - \delta_{v} \right] + v \rho_{w} \sin \left[\left(\omega_{x} + v \right) t + \delta_{w} + \delta_{v} \right] \right]; \\ \left\langle \beta_{l} I \omega_{ly} \right\rangle &= \\ &= \left[\left(n^{2} - v^{2} \right)^{2} + 4 \left(h - h^{e} \right)^{2} v^{2} \right]^{\frac{1}{2}} \frac{R \omega_{0} \cos 2 \beta_{0} \cos \beta_{0} \left(2 - t g 2 \beta_{0} t g \beta_{0} \right) - H \sin 2 \beta_{0}}{HBR} \times \\ \times 2 P_{0} i \omega_{v} I_{n} \rho_{r} \sin \left(\delta_{w} - \delta_{v} - \delta_{w} + \delta_{v} + \varepsilon \right) + v \rho_{w} \pi R_{r} L \rho_{r} \sin \left(\delta_{w} - \delta_{v} - \delta_{w} + \delta_{v} + \varepsilon \right) \\ + v \rho_{v} \pi I_{n} \rho_{r} \sin \left(\delta_{w} - \delta_{v} - \delta_{w} + \delta_{v} + \varepsilon \right) + v \rho_{w} \pi I_{n} \rho_{r} \sin \left(\delta_{w} - \delta_{v} - \delta_{w} + \delta_{v} + \varepsilon \right) \\ + v \rho_{v} \sigma I_{n} \rho_{r} \sin \left(\delta_{w} - \delta_{v} - \delta_{w} + \delta_{w} + \varepsilon \right) + v \rho_{w} \pi I_{$$

 $+ v \rho_{\psi} m_{T} R_{T} L \rho_{T} \sin (\delta_{W} + \delta_{\psi} - \delta_{W_{T}} - \delta_{\varphi} + \varepsilon) +$

$$\begin{split} &+\omega_{0}\rho_{\sigma}I_{n}\rho_{r}\sin(\delta_{w}+\delta_{\sigma}-\delta_{v}-\delta_{\varphi}+\varepsilon)+\omega_{0}\rho_{\sigma}\pi I_{n}\rho_{r}\sin(\delta_{w}+\delta_{\sigma}-\delta_{w}-\delta_{\varphi}+\varepsilon)+\\ &+\omega_{v}\rho_{\sigma}m_{r}R_{r}L\rho_{r}\sin(\delta_{w}+\delta_{\sigma}-\delta_{w_{r}}-\delta_{\varphi}+\varepsilon)]_{r}+\\ &+\frac{P_{r}i\omega_{s}\cos^{2}\beta_{0}I_{n}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\times\\ &\times\left\{v^{2}\rho_{y}^{2}\rho_{r}\sin(\delta_{w}-\delta_{v}-\delta_{w}+\delta_{y}+\varepsilon)+v\rho_{v}\omega_{0}\rho_{r}\rho_{\sigma}\cos(\delta_{w}-\delta_{v}-\delta_{w}+\delta_{\sigma}+\varepsilon)-\\ &-\omega_{0}\rho_{v}\nu\rho_{r}\rho_{v}\sin(\delta_{w}-\delta_{v}-\delta_{w}+\delta_{y}+\varepsilon)+v\rho_{v}\omega_{0}\rho_{r}\rho_{s}\cos(\delta_{w}-\delta_{v}+\delta_{w}+\delta_{z}+\varepsilon)+\\ &+v^{2}\rho_{y}^{2}\rho_{r}\sin(\delta_{w}+\delta_{v}-\delta_{w}-\delta_{v}+\varepsilon)+v\rho_{v}\omega_{0}\rho_{r}\rho_{s}\cos(\delta_{w}+\delta_{v}-\delta_{w}-\delta_{z}+\varepsilon)+\\ &+v^{2}\rho_{w}^{2}\rho_{r}\sin(\delta_{w}+\delta_{v}-\delta_{w}-\delta_{v}+\varepsilon)+v\rho_{v}\omega_{0}\rho_{r}\rho_{s}\cos(\delta_{w}+\delta_{v}-\delta_{w}-\delta_{v}+\varepsilon)+\\ &+\frac{P_{0}i\omega_{n}\cos\beta_{0}}{2HBR}v^{2}\rho_{q}\left\{v\rho_{v}I_{n}\rho_{r}\cos(\delta_{w}-\delta_{v}-\delta_{v}+\delta_{v}+\varepsilon)+v\rho_{v}m_{r}R_{r}L\rho_{T}\times\\ &\times\cos(\delta_{w}-\delta_{v}-\delta_{w_{r}}+\delta_{\phi}+\varepsilon)-\omega_{0}\rho_{0}I_{n}\rho_{r}\cos(\delta_{w}-\delta_{0}-\delta_{v}+\delta_{\phi}+\varepsilon)-\\ &-\omega_{0}\rho_{\sigma}m_{r}R_{r}L\rho_{r}\cos(\delta_{w}-\delta_{\sigma}-\delta_{w_{r}}+\delta_{\phi}+\varepsilon)+v\rho_{v}I_{n}\rho_{r}\cos(\delta_{w}+\delta_{v}-\delta_{v}-\\ &-\delta_{v}+\varepsilon)+v\rho_{w}m_{r}R_{r}L\rho_{r}\cos(\delta_{w}+\delta_{v}-\delta_{w_{r}}-\delta_{\phi}+\varepsilon)+\omega_{0}\rho_{0}I_{n}\rho_{r}\times\\ &\times\cos(\delta_{w}+\delta_{\sigma}-\delta_{v}-\delta_{\phi}+\varepsilon)+\omega_{0}\rho_{\sigma}m_{r}R_{r}L\rho_{r}\cos(\delta_{w}+\delta_{\sigma}-\delta_{w_{r}}-\delta_{\phi}+\varepsilon)\right)\}\}$$

$$\begin{split} &\times \sin(\frac{\pi}{4} - \delta_{v} + \delta_{v} - \varepsilon)\} + \frac{P_{0}i\omega_{s}\cos\beta_{v}}{2HBR}v^{2}\rho_{v}\{2v\rho_{v}\rho, I_{n}\cos(\delta_{w} - \delta_{v} + \varepsilon)\times \\ &\times \cos(\delta_{v} - \delta_{v}) + 2v\rho_{v}\rho_{r}m_{r}R_{r}L\cos(\delta_{w} - \delta_{w_{r}} + \varepsilon)\cos(\delta_{v} - \delta_{v}) + 2\omega_{s}I_{n}\rho_{o}\rho, \times \\ &\times \sin(\delta_{w} - \delta_{v} + \varepsilon)\sin(\delta_{v} - \delta_{v}) + 2\omega_{v}m_{r}R_{r}L\rho_{o}\rho_{r}\sin(\delta_{w} - \delta_{w_{r}} + \varepsilon)\sin(\delta_{v} - \delta_{v})\}\} = \\ &= \left[\left(a^{2} - v^{2}\right)^{2} + 4\left(b - b^{*}\right)^{2}v^{2}\right]^{\frac{1}{2}} \times \\ &\times \frac{R\omega_{v}\cos 2\beta_{v}\cos\beta_{v}(2 - tg2\beta_{v}tg\beta_{v}) - H\sin 2\beta_{v}}{HBR} 2P_{v}i\omega_{s}I_{n}\rho_{r} \times \\ &\times \left\{\left\{-\frac{P_{v}\omega_{v}^{2}\cos\beta_{v}}{HBR}v\rho_{v}\left(M_{n}\rho_{v}\rho,\sin(\delta_{w} - \delta_{v} + \varepsilon)\cos(\delta_{v} - \delta_{v})\right) + \\ &+ \omega_{v}I_{n}\rho_{v}\rho_{r}\sin(\delta_{w} - \delta_{v} + \varepsilon)\cos(\delta_{v} - \delta_{v}) + \pi\omega_{v}I_{n}\rho_{v}\rho_{r}\cos\varepsilon\sin(\delta_{v} - \delta_{v}) + \\ &+ wm_{r}R_{r}L\rho_{r}\rho_{v}\sin(\delta_{w} - \delta_{w_{r}} + \varepsilon)\sin(\delta_{v} - \delta_{v}) + \pi\omega_{v}I_{n}\rho_{v}\rho_{v}\cos\varepsilon\sin(\delta_{v} - \delta_{v}) + \\ &+ \omega_{o}m_{r}R_{r}L\rho_{a}\rho_{r}\cos(\delta_{w} - \delta_{w_{r}} + \varepsilon)\sin(\delta_{v} - \delta_{v})\} + \\ &+ \frac{2P_{v}i\omega_{u}\cos^{2}\beta_{v}I_{n}(R\omega_{v}\sin2\beta_{v} + H\cos\beta_{v})}{HBR}v\rho_{v}\rho_{v}[v\rho_{v}\sin\varepsilon + \omega_{v}\rho_{v} \times \\ &\times \cos(\delta_{v} - \delta_{v} + \varepsilon) + \omega_{v}\rho_{v}\sin(\frac{\pi}{4} - \delta_{v} + \delta_{v} - \varepsilon)\cos(\frac{\pi}{4}] + \\ &+ \frac{P_{v}i\omega_{v}\cos\beta_{v}}{HBR}v^{2}\rho_{v}[vI_{n}\rho_{r}\rho_{v}\cos(\delta_{w} - \delta_{w} + \varepsilon)\sin(\delta_{v} - \delta_{v})] \}; \\ &\times \sin(\delta_{v} - \delta_{v}) + \omega_{v}m_{r}R_{r}L\rho_{v}\rho_{r}\sin(\delta_{w} - \delta_{w_{r}} + \varepsilon)\sin(\delta_{v} - \delta_{w}) + \\ &+ v\rho_{v}\rho_{r}m_{r}R_{r}L\cos(\delta_{w} - \delta_{w_{r}} + \varepsilon)\cos(\delta_{v} - \delta_{w} + \varepsilon)\sin(\delta_{v} - \delta_{v})] \}; \\ &\times \sin(\delta_{v} - \delta_{v}) + \omega_{v}m_{r}R_{v}L\rho_{v}\rho_{r}\sin(\delta_{w} - \delta_{w_{r}} + \varepsilon)\sin(\delta_{v} - \delta_{v})] \}; \\ &\times \left\{ \frac{\left\{ \frac{P_{v}\omega_{v}^{2}\cos\beta_{v}}{2HBR}v\rho_{v}\left\{ -2\omega_{a}(I_{m}^{2}\rho_{r}^{2} + \pi^{2}I_{m}^{2}\rho_{r}^{2} + m_{r}^{2}R_{r}^{2}L^{2})\sin\varepsilon + \\ \\ &+ 2\omega_{v}m_{r}R_{r}L\rho_{r}\pi I_{n}\rho_{r}\sin(\delta_{w} - \delta_{w_{r}} - \varepsilon) + \\ &+ 2\omega_{v}m_{r}R_{r}L\rho_{r}\pi I_{n}\rho_{r}\sin(\delta_{w} - \delta_{w_{r}} - \varepsilon) + \\ \\ &+ 2\omega_{v}m_{r}R_{r}L\rho_{r}\pi I_{n}\rho_{r}\sin(\delta_{w} - \delta_{w_{r}} - \varepsilon) + \\ &+ 2\omega_{v}m_{r}R_{r}L\rho_{r}\pi I_{n}\rho_{r}\sin(\delta_{w} - \delta_{w_{r}} - \varepsilon) + \\ &+ 2\omega_{v}m_{r}R_{v}L\rho_{r}(m_{r}\rho_{v} + m_{v}R_{v}L\rho_{v}) + \\ \end{bmatrix} \right\}$$

$$\begin{split} &+\pi l_{\pi}^{2}\rho, \rho, (\omega_{a}+\nu)\sin(\delta_{v}-\delta_{w}-\varepsilon)+I_{\pi}\rho, m_{r}R_{r}L\rho_{r}(\omega_{a}+\nu)\sin(\delta_{v}-\delta_{w_{r}}-\varepsilon)\}-\\ &-\frac{P_{a}i\omega_{a}\cos^{2}\beta_{a}I_{n}(R\omega_{a}\sin 2\beta_{a}+H\cos\beta_{a})}{HBR}\times\\ &\times \{I_{\pi}\rho, \rho, \rho, \rho_{w}\nu(\omega_{a}-\nu)\sin(\delta_{w}-\delta_{v}-\delta_{w}+\delta_{\varphi}-\varepsilon)-\\ &-I_{\mu}\rho, \rho, \rho_{w}\omega_{a}(\omega_{a}-\nu)\cos(\delta_{w}-\delta_{v}-\delta_{x}-\delta_{\varphi}-\varepsilon)+\\ &+I_{\pi}\rho, \rho, \rho_{w}\psi(\omega_{a}+\nu)\sin(\delta_{w}+\delta_{v}-\delta_{v}-\delta_{\varphi}-\varepsilon)-\\ &-I_{\mu}\rho, \rho, \rho_{w}\psi(\omega_{a}+\nu)\sin(\delta_{v}-\delta_{v}-\delta_{v}-\delta_{\varphi}-\varepsilon)+\\ &+I_{\mu}\rho_{r}^{2}\rho_{v}\nu(\omega_{a}-\nu)\sin(\delta_{v}-\delta_{w}-\varepsilon)-\pi I_{\mu}\rho_{r}^{2}\rho_{w}\omega_{a}(\omega_{x}-\nu)\cos(\delta_{\varphi}-\delta_{\varphi}-\varepsilon)+\\ &+\pi I_{\mu}\rho_{r}^{2}\rho_{v}\nu(\omega_{x}+\nu)\sin(\delta_{v}-\delta_{w}-\delta_{v}-\delta_{z}-\varepsilon)-\\ &-m_{r}R_{r}L\rho, \rho_{v}\rho_{v}\psi(\omega_{x}-\nu)\sin(\delta_{w}-\delta_{w_{r}}-\delta_{y}-\varepsilon)-\\ &-m_{r}R_{r}L\rho, \rho_{v}\rho_{v}\psi(\omega_{x}+\nu)\sin(\delta_{w}-\delta_{w_{r}}-\delta_{y}-\varepsilon)-\\ &-m_{r}R_{r}L\rho, \rho_{v}\rho_{r}\psi(\omega_{x}+\nu)\cos(\delta_{w}-\delta_{w_{r}}+\delta_{v}-\delta_{\varphi}-\varepsilon)+\\ &+m_{r}R_{r}L\rho, \rho_{v}\rho_{r}\psi(\omega_{x}+\nu)\cos(\delta_{w}-\delta_{w_{r}}+\delta_{v}-\delta_{\varphi}-\varepsilon)]+\\ &+\frac{2P_{v}(\omega_{x}^{2}\cos\beta_{0}}{HBR}\nu^{2}\rho_{\varphi}\{(I_{\pi}^{2}\rho_{r}^{2}+m_{r}^{2}R_{r}^{2}L^{2}\rho_{r}^{2})\cos\varepsilon+\pi I_{\mu}^{2}\rho, \rho, \cos(\delta_{v}-\delta_{w}-\varepsilon)+\\ &+m_{r}R_{r}LI_{\mu}\rho, \rho, \cos(\delta_{w}-\delta_{w}-\varepsilon)\}\};\\ &\langle\dot{\beta}_{\mu}\omega_{0}\beta_{1}\rangle &=\omega_{0}\langle\dot{\beta}_{1}\beta_{\mu}\rangle &=0;\\ &\langle \frac{1}{2}\omega_{0}q^{a}\beta_{1}^{2}\rangle &=\frac{1}{2}\omega_{0}\langle q^{a}\beta_{1}^{2}\rangle &=0;\\ &\frac{1}{2}\omega_{0}\langle q^{r}\beta_{1}^{2}\rangle; \quad q^{*}=\frac{q_{1}^{*}}{B}=\frac{(-2R\omega_{o}\sin2\beta_{0}+H\cos\beta_{0})}{B};\\ &\frac{1}{2}\omega_{0}\langle q^{r}\beta_{1}^{2}\rangle; \quad q^{*}=\frac{q_{1}^{*}}{B}=\frac{(-2R\omega_{o}\sin2\beta_{0}+H\cos\beta_{0})}{B}; \end{aligned}$$

$$\times \{\{(r-\omega_{0})^{2}v^{2}\rho_{\theta}^{2}\cos^{2}(vt+\delta_{\theta}-\varepsilon)-(r\omega_{0}-v^{2})^{2}\rho_{\psi}^{2}\sin(vt+\delta_{\psi}-\varepsilon)- -q^{2}v^{2}\rho_{\varphi}^{2}\cos^{2}(vt+\delta_{\varphi}-\varepsilon)-(r\omega_{0}-v^{2})vq\rho_{\psi}\rho_{\varphi}[\sin(\delta_{\psi}-\delta_{\varphi})+ \cos(2vt+\delta_{\psi}+\delta_{\varphi}-2\varepsilon)]-(r-\omega_{0})(r\omega_{0}-v^{2})v\rho_{\theta}\rho_{\psi}[\sin(\delta_{\psi}-\delta_{\theta})+ \cos(2vt+\delta_{\psi}+\delta_{\theta}-2\varepsilon)]-(r-\omega_{0})v^{2}q\rho_{\theta}\rho_{\varphi}[\cos(\delta_{\varphi}-\delta_{\theta})+ \cos(2vt+\delta_{\theta}+\delta_{\varphi}-2\varepsilon)]-(r-\omega_{0})v^{2}q\rho_{\theta}\rho_{\varphi}[\cos(\delta_{\varphi}-\delta_{\theta})+ \cos(\delta_{\varphi}-\delta_{\theta})+ \cos(\delta_{\varphi}-\delta_{\theta})]-(r-\omega_{0})v^{2}q\rho_{\varphi}[\cos(\delta_{\varphi}-\delta_{\theta})+ \cos(\delta_{\varphi}-\delta_{\theta})+ \cos(\delta_{\varphi}-\delta_{\theta})]-(r-\omega_{0})v^{2}q\rho_{\varphi}[\cos(\delta_{\varphi}-\delta_{\theta$$

$$-\frac{P_{0}\omega_{x}^{2}\cos\beta_{0}}{HBR}v\rho_{\varphi}\frac{2P_{0}i\omega_{x}\cos^{2}\beta_{0}I_{\pi}(R\omega_{0}\sin2\beta_{0}+H\cos\beta_{0})}{HBR}\rho_{\tau}\times \\\times \{I_{\pi}\rho_{\tau}[v\rho_{\psi}\cos(\delta_{v}-\delta_{\varphi}-\delta_{w}+\delta_{\psi})-\omega_{0}\rho_{\theta}\sin(\delta_{w}-\delta_{\theta}-\delta_{v}+\delta_{\varphi})+ \\+v\rho_{\psi}\cos(\delta_{v}+\delta_{\varphi}-\delta_{w}-\delta_{\psi})+\omega_{0}\rho_{\theta}\sin(\delta_{w}-\delta_{\theta}-\delta_{v}-\delta_{\varphi})]+ \\+\pi I_{\pi}[v\rho_{\psi}\cos(\delta_{\psi}-\delta_{\varphi})+\omega_{0}\rho_{\theta}\sin(\delta_{\varphi}-\delta_{\theta})+v\rho_{\psi}\cos(\delta_{\varphi}-\delta_{\psi})+\omega_{0}\rho_{\theta}\times \\\times \sin(\delta_{\theta}-\delta_{\varphi})]+m_{\tau}R_{\tau}L\rho_{\tau}[v\rho_{\psi}\cos(\delta_{w\tau}-\delta_{\varphi}-\delta_{w}+\delta_{\psi})+\omega_{0}\rho_{\theta}\sin(\delta_{w}-\delta_{\theta}-\delta_{\psi}-\delta_{\psi})]+ \\-\delta_{w\tau}+\delta_{\varphi})+v\rho_{\psi}\cos(\delta_{w\tau}+\delta_{\varphi}-\delta_{w}-\delta_{\psi})+\omega_{0}\rho_{\theta}\sin(\delta_{w}+\delta_{\theta}-\delta_{w\tau}-\delta_{\varphi})]\}- \\-\frac{P_{0}\omega_{x}^{2}\cos\beta_{0}}{HBR}v\rho_{\varphi}\frac{P_{0}i\omega_{x}\cos\beta_{0}}{HBR}v^{2}\rho_{\varphi}\times \\\times \{I_{n}\rho_{\tau}\rho_{\tau}m_{\tau}R_{\tau}L\sin(\delta_{w\tau}-\delta_{v})+\pi I_{n}\rho_{\tau}[I_{n}\rho_{\tau}\sin(\delta_{v}-\delta_{w})+ \\+m_{\tau}R_{\tau}L\rho_{\tau}\sin(\delta_{w\tau}-\delta_{w})]+m_{\tau}R_{\tau}L\rho_{\tau}I_{n}\rho_{\tau}\sin(\delta_{v}-\delta_{w\tau})+ \\+m_{\tau}R_{\tau}L\rho_{\tau}\sin(\delta_{w\tau}-\delta_{w})+m_{\tau}R_{\tau}L\rho_{\tau}\sin(\delta_{w}-\delta_{w}-\delta_{w})]+ \\+\frac{P_{0}i\omega_{x}\cos^{2}\beta_{0}I_{n}(R\omega_{0}\sin2\beta_{0}+H\cos\beta_{0})}{HBR}P_{0}i\omega_{x}\cos\beta_{0}}v^{2}\rho_{\varphi}\rho_{\tau}\times \\\times \{v\rho_{\psi}I_{n}\rho_{\tau}[\sin(\delta_{v}-\delta_{\varphi}-\delta_{w}+\delta_{\psi})+\sin(\delta_{v}+\delta_{\varphi}-\delta_{w}-\delta_{\psi})]+ \\+m_{\tau}R_{\tau}L\rho_{\tau}v\rho_{\psi}[\sin(\delta_{w\tau}-\delta_{\varphi}-\delta_{w}+\delta_{\psi})+\cos(\delta_{w}+\delta_{\theta}-\delta_{w}-\delta_{\psi})]+ \\+m_{\tau}R_{\tau}L\rho_{\tau}v\rho_{\phi}[\cos(\delta_{w}-\delta_{\theta}-\delta_{w}+\delta_{\psi})+\cos(\delta_{w}+\delta_{\theta}-\delta_{w}-\delta_{\psi})]+ \\+\frac{P_{0}^{2}\omega_{x}^{4}\cos^{2}\beta_{0}}{H^{2}R^{2}}v^{2}\rho_{\varphi}^{2}\times$$

$$\begin{split} &\times \left\{ \left\{ l_{\pi}^{2} \rho_{\tau}^{2} \left\{ \cos^{2} \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] + \cos^{2} \left[\left(\omega_{a} + v \right) t + \delta_{v} + \delta_{\varphi} - \varepsilon \right] \right\} + \right. \\ &+ 2 \cos \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} + v \right) t + \delta_{v} + \delta_{\varphi} - \varepsilon \right] \right\} + \\ &+ \pi^{2} I_{\pi}^{2} \rho_{\tau}^{2} \left\{ \cos^{2} \left[\left(\omega_{a} - v \right) t + \delta_{w} - \delta_{\varphi} - \varepsilon \right] + \cos^{2} \left[\left(\omega_{a} + v \right) t + \delta_{w} + \delta_{\varphi} - \varepsilon \right] \right\} + \\ &+ \pi^{2} R_{\pi}^{2} L^{2} \rho_{\tau}^{2} \left\{ \cos^{2} \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \cos^{2} \left[\left(\omega_{a} + v \right) t + \delta_{w\tau} + \delta_{\varphi} - \varepsilon \right] \right\} + \\ &+ 2 \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} + v \right) t + \delta_{w\tau} + \delta_{\varphi} - \varepsilon \right] \right\} + \\ &+ 2 \pi l_{\pi}^{2} \rho_{\tau} \rho_{\tau} \left\{ \cos^{2} \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} + v \right) t + \delta_{w\tau} + \delta_{\varphi} - \varepsilon \right] \right\} + \\ &+ 2 \pi l_{\pi}^{2} \rho_{\tau} \rho_{\tau} \left\{ \cos \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} + v \right) t + \delta_{w} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} + v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{v} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{w} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{w} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{w} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{w} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} - v \right) t + \delta_{w\tau} - \delta_{\varphi} - \varepsilon \right] + \\ &+ \cos \left[\left(\omega_{a} - v \right) t + \delta_{w} - \delta_{\varphi} - \varepsilon \right] \cos \left[\left(\omega_{a} + v \right) t + \delta_{w} + \delta_{\varphi} - \varepsilon \right] \right] + \\ &+ 2 \cos \left[\left(\omega_{a} - v \right) t + \delta_{$$

$$\begin{split} +2\nu \rho_{\nu} \omega_{0} \rho_{\theta} \left\{ \cos\left[\left(\omega_{a}-\nu\right)t+\delta_{w}-\delta_{v}-\varepsilon\right] \cos\left[\left(\omega_{a}-\nu\right)t+\delta_{w}-\delta_{\theta}-\varepsilon\right]+\right.\\ &+\cos\left[\left(\omega_{a}-\nu\right)t+\delta_{w}-\delta_{v}-\varepsilon\right] \cos\left[\left(\omega_{a}+\nu\right)t+\delta_{w}+\delta_{\theta}-\varepsilon\right]+\\ &+\cos\left[\left(\omega_{a}+\nu\right)t+\delta_{w}+\delta_{v}-\varepsilon\right] \cos\left[\left(\omega_{a}-\nu\right)t+\delta_{w}-\delta_{\theta}-\varepsilon\right]+\\ &+\cos\left[\left(\omega_{a}+\nu\right)t+\delta_{w}+\delta_{v}-\varepsilon\right] \cos\left[\left(\omega_{a}+\nu\right)t+\delta_{w}+\delta_{\theta}-\varepsilon\right]\right]\right\}\right)-\\ &-\frac{P_{0}^{2}\omega_{v}^{2}\cos^{2}\beta_{0}}{H^{2}B^{2}r^{2}}\nu^{4}\rho_{v}^{2}\times\\ &\times\left\{\left\{I_{a}^{2}\rho_{\tau}^{2}\left\{\sin^{2}\left[\left(\omega_{a}-\nu\right)t+\delta_{v}-\delta_{\phi}-\varepsilon\right]+\sin^{2}\left[\left(\omega_{a}+\nu\right)t+\delta_{v}+\delta_{\phi}-\varepsilon\right]\right\}\right\}-\\ &+2\sin\left[\left(\omega_{a}-\nu\right)t+\delta_{v}-\delta_{\phi}-\varepsilon\right]\sin\left[\left(\omega_{a}+\nu\right)t+\delta_{v}+\delta_{\phi}-\varepsilon\right]\right\}+m_{\tau}^{2}R_{\tau}^{2}L^{2}\rho_{\tau}^{2}\times\\ &\times\left\{\sin^{2}\left[\left(\omega_{a}-\nu\right)t+\delta_{v}-\sigma_{\phi}-\varepsilon\right]+\sin^{2}\left[\left(\omega_{a}+\nu\right)t+\delta_{w}+\delta_{\phi}-\varepsilon\right]+2\sin\left[\left(\omega_{a}-\nu\right)t+\varepsilon\right]\right]\right\}\right\}\right\}\right\} \left[\left(\frac{1}{2}\left(r-\omega_{0}\right)^{2}\nu^{2}\rho_{\theta}^{2}-\frac{1}{2}q^{2}\nu^{2}\rho_{\phi}^{2}-\left(r\omega_{0}-\nu^{2}\right)\nu q\rho_{v}\rho_{\phi}\sin\left(\delta_{v}-\delta_{\phi}\right)-\\ &-\left(r-\omega_{0}\right)\left(r\omega_{0}-\nu^{2}\right)\nu\rho_{\theta}\rho_{v}\sin\left(\delta_{v}-\delta_{\theta}\right)-\left(r-\omega_{0}\right)\nu^{2}q\rho_{\theta}\rho_{v}\cos\left(\delta_{v}-\delta_{\theta}\right)-\\ &-\left(\frac{4P_{0}^{2}\omega_{s}^{2}\cos^{3}\beta_{0}}{H^{2}B^{2}R^{2}}\nu\rho_{\phi}A_{a}M_{a}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})\times\right]\\ &\times\left\{I_{n}\rho_{v}\left[\nu\phi_{v}\cos\left(\delta_{v}-\delta_{v}\right)\right]+m_{r}R_{v}L\rho_{v}\left[\nu\phi_{v}\cos\left(\delta_{v}-\delta_{v}-\delta_{v}\right)\sin\delta_{v}\right]+\\ &+\pi I_{a}\left[\nu\rho_{v}\cos\left(\delta_{v}-\delta_{v}\right)\right]+m_{r}R_{v}L\rho_{v}\left[\nu\rho_{v}\cos\left(\delta_{v}-\delta_{v}\right)+m_{v}R_{v}L\rho_{v}\sin\left(\delta_{v}-\delta_{w}\right)\right]-\\ &-\frac{2P_{0}^{2}\omega_{s}^{2}\cos^{3}\beta_{0}}{H^{2}B^{2}R^{2}}\nu^{2}\rho_{v}cs\left(\delta_{v}-\delta_{v}\right)+2m_{v}R_{v}L\rho_{v}cs\left(\delta_{v}-\delta_{w}\right)\right]+2m_{v}R_{v}L\rho_{v}v_{w}\times\\ &\times\cos\left(\delta_{v}-\delta_{v}\right)+2\omega_{0}I_{a}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})\nu^{2}\rho_{v}\rho_{v}\left\{2\nu I_{a}\rho_{v}\rho_{v}\sin\left(\delta_{v}-\delta_{w}\right)\right\}+\\ &\times\cos\left(\delta_{v}-\delta_{v}\right)+2\omega_{0}I_{a}\rho_{v}\rho_{v}\cos\left(\delta_{w}-\delta_{v}\right)+2m_{v}R_{v}L\rho_{v}\rho_{v}\sin\left(\delta_{v}-\delta_{w}\right)\right\}+\\ &\times\cos\left(\delta_{v}-\delta_{v}\right)+2\omega_{0}I_{a}\rho_{v}\rho_{v}\cos\left(\delta_{w}-\delta_{v}\right)+2m_{v}R_{v}\rho_{v}\cos\left(\delta_{w}-\delta_{w}\right)+2m_{v}R_{v}\rho_{v}\cos\left(\delta_{v}-\delta_{w}\right)\right\}+\\ &\times\sin\left(\delta_{w}-\delta_{w}\right)\cos\left(\delta_{v}-\delta_{v}\right)+2\omega_{w}m_{v}R_{v}R_{v}\rho_{v}\cos\left(\delta_{w}-\delta_{w}\right)+2m_{v}\rho_{v}\cos\left(\delta_{v}-\delta_{w}\right)\right\}+\\ &\times\sin\left(\delta_{w}-\delta_{w}\right)\cos\left(\delta_{v}-\delta_{v}\right)+2\omega_{w}m_{v}R_{v}R_{v}\rho_{v}\cos\left(\delta_{w}-\delta_{w}\right)\right)\right\}$$

$$\begin{split} & + \frac{P_{i}^{2}\omega_{v}^{4}\cos^{2}\beta_{0}}{H^{2}B^{2}R^{2}}v^{2}\rho_{\varphi}\Big[I_{n}^{2}\rho_{r}^{2} + \pi^{2}I_{n}^{2}\rho_{r}^{2} + m_{r}^{2}R_{r}^{2}L^{2}\rho_{r}^{2} + \pi I_{n}^{2}\rho_{r}\rho_{r}\times \\ & \times\cos(\delta_{v}-\delta_{w}) + I_{n}\rho_{r}\rho_{r}m_{r}R_{r}L\cos(\delta_{v}-\delta_{w_{r}}) + \pi I_{n}\rho_{r}\rho_{r}m_{r}R_{r}L\cos(\delta_{w}-\delta_{w_{r}})\Big] - \\ & - \frac{4P_{o}^{2}\omega_{v}^{2}\cos^{4}\beta_{0}I_{n}^{2}(R\omega_{0}\sin 2\beta_{0} + H\cos\beta_{0})^{2}}{H^{2}B^{2}R^{2}}\rho_{r}^{2}\Big[V^{2}\rho_{v}^{2} + \omega_{0}^{2}\rho_{o}^{2} + 2v\omega_{0}\rho_{w}\rho_{\theta}\times \\ & \times\cos(\delta_{w}-\delta_{w})\Big] - \frac{P_{o}^{2}\omega_{v}^{2}\cos^{2}\beta_{0}}{2H^{2}B^{2}R^{2}}v^{4}\rho_{v}^{2}\Big[I_{n}^{2}\rho_{r}^{2} + m_{r}^{2}R_{r}^{2}I^{2}\rho_{r}^{2}\Big]\Big\}; \\ & \frac{1}{2}\omega_{0}\langle q^{w}\beta_{1}^{2}\rangle = \frac{\omega_{0}(-2R\omega_{0}\sin 2\beta_{0} + H\cos\beta_{0})}{2B}\langle \beta_{1}^{2}\rangle; \\ & \frac{1}{2}\omega_{0}\langle q^{w}\beta_{1}^{2}\rangle = 0; \quad q^{a} = \frac{q_{1}^{a}}{B} = \frac{i\omega_{w}\sin\beta_{0}}{B}Q = \\ & = \frac{i\omega_{w}\sin\beta_{0}}{HR}\Big[I_{n}\big(\rho_{r}\cos(\omega_{v}t + \delta_{v}) + \pi\rho_{r}\cos(\omega_{u}t + \delta_{w})\big) + \\ & +m_{r}R_{r}L\rho_{r}\cos(\omega_{u}t + \delta_{w_{r}})\Big]; \\ & \langle \phi_{1x}^{2} \rangle = \langle \dot{\phi}^{2} \rangle + \omega_{0}^{2}\langle \psi^{2} \rangle - 2\omega_{0}\langle \dot{\phi}\psi \rangle = \frac{1}{2}v^{2}\rho_{v}^{2} + \frac{1}{2}\omega_{0}^{2}\rho_{w}^{2} + \omega_{0}\rho_{v}\rho_{w}v\sin(\delta_{\sigma} - \delta_{w}); \\ & \langle \phi_{1x}^{2} \rangle = \frac{1}{2}v^{2}\rho_{w}^{2}; \\ & \langle \lambda^{2}\omega_{1y}^{2} \rangle; \quad \lambda = Q_{r}\cos\beta_{0} = \frac{4P_{0}i\omega_{u}\cos\beta_{0}I_{n}\rho_{r}}{HR}\cos(\omega_{u}t + \delta_{w}); \\ & \omega_{1x}^{2} = \frac{-16P_{0}^{2}\omega_{w}^{2}\cos^{2}\beta_{0}}{H^{2}R^{2}}I_{n}^{2}\rho_{r}^{2}\cos^{2}(\omega_{u}t + \delta_{w}); \\ & \omega_{1y}^{2} = \psi^{2}\rho_{w}^{2}\cos^{2}(vt + \delta_{w}) + \omega_{0}^{2}\rho_{v}^{2}\sin^{2}(vt + \delta_{v}) + v\omega_{0}\rho_{v}\rho_{w}\left[\sin(\delta_{\sigma} - \delta_{w}\right) + \\ & +\cos(2vt + \delta_{\sigma} + \delta_{w})\Big]; \\ & \langle \lambda^{2}\omega_{1y}^{2} \rangle = \frac{-16P_{0}^{2}\omega_{w}^{2}\cos^{2}\beta_{0}}{H^{2}R^{2}}I_{n}^{2}\rho_{r}^{2}\langle v^{2}\rho_{w}^{2}\cos^{2}(\omega_{u}t + \delta_{w}) + v\omega_{0}\rho_{\sigma}\rho_{w}\sin(\delta_{\sigma} - \delta_{w}) \times \\ \end{array}$$

$$\begin{split} & \times \cos^{2}\left(\omega_{e}t + \delta_{w}\right) + v\omega_{0}\rho_{\rho}\rho_{v}\cos^{2}\left(\omega_{e}t + \delta_{w}\right)\cos\left(2vt + \delta_{\varphi} + \delta_{w}\right)\right) = \\ &= \frac{-4P_{o}^{2}\omega_{v}^{2}\cos^{2}\beta_{0}}{H^{2}r^{2}}I_{\mu}^{2}\rho_{v}^{2}\left[v^{2}\rho_{v}^{2} + \omega_{0}^{2}\rho_{\rho}^{2} + 2v\omega_{0}\rho_{\rho}\rho_{v}\sin\left(\delta_{\varphi} - \delta_{w}\right)\right]; \\ & \left\langle S\lambda\omega_{2v}\right\rangle; \quad \lambda = Q_{1}\cos\beta_{0} = \frac{4P_{0}^{4}\omega_{e}\cos\beta_{0}I_{H}}{HR}\rho_{r}\cos\left(\omega_{e}t + \delta_{w}\right); \\ & \omega_{2v} = v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)\rho_{\varphi}\sin\left(vt + \delta_{\theta}\right); \\ & S = \frac{S^{a}}{B} = \frac{(2R\omega_{0} + H\cos\beta_{0})}{B}; \\ & \left\langle S\lambda\omega_{2v}\right\rangle = \frac{4P_{0}^{4}\omega_{e}\cos\beta_{0}I_{H}\rho_{r}\left(2R\omega_{0} + H\cos\beta_{0}\right)}{HBR}\left\langle v\rho_{\rho}\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)\sin\left(vt + \delta_{\theta}\right)\times \\ & \times\cos\left(\omega_{e}t + \delta_{w}\right) = 0; \\ & \left\langle 2\omega_{1,x}\omega_{1z}\cos2\beta_{0}\right\rangle = 2\cos2\beta_{0}\left\langle \omega_{1,x}\omega_{1z}\right\rangle = 2\cos2\beta_{0}\left\langle \left(\dot{\theta} - \omega_{0}\psi\right)v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)\right\rangle = \\ & = 2\cos2\beta_{0}\left[\left[v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right) - \omega_{0}\rho_{v}\sin\left(vt + \delta_{w}\right)\right]v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)\right\rangle = \\ & = 2v\rho_{v}\cos2\beta_{0}\left[\left[v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right) - \omega_{0}\rho_{v}\sin\left(vt + \delta_{\varphi}\right)\right]; \\ & \left\langle 2\lambda\omega_{1,x}\omega_{1z}\right\rangle = \\ & = \frac{8P_{0}^{4}\omega_{a}\cos\beta_{0}I_{H}}{HR}\rho_{r}\left\langle\cos\left(\omega_{e}t + \delta_{w}\right)\left[v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right) - \omega_{0}\rho_{v}\sin\left(vt + \delta_{w}\right)\right]\right\rangle \\ & \times\left[v\rho_{v}\cos\left(vt + \delta_{v}\right) + \omega_{a}\rho_{v}\sin\left(vt + \delta_{w}\right)\right]\right\rangle = 0; \\ & \left\langle -2tg2\beta_{0}\omega_{1z}\cos\beta_{0}\omega_{1y}\right\rangle = -2tg2\beta_{0}\cos\beta_{0}\left\langle\omega_{1,x}\omega_{1y}\right\rangle = \\ & = -2tg2\beta_{0}\cos\beta_{0}\left\langle v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)\left[v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right) + \omega_{0}\rho_{v}\sin\left(vt + \delta_{w}\right)\right]\right\rangle = \\ & = -tg2\beta_{0}\cos\beta_{0}v\rho_{v}\left[v\rho_{\psi}\cos\left(vt + \delta_{\varphi}\right)\left[v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right) - \omega_{0}\rho_{v}\sin\left(vt + \delta_{\varphi}\right)\right]\right) = \\ & = -tg2\beta_{0}\cos\beta_{0}v\rho_{v}\left[v\rho_{\psi}\cos\left(vt + \delta_{\varphi}\right) - \omega_{0}\rho_{v}\sin\left(\delta_{\varphi} - \delta_{\varphi}\right)\right]; \\ & \left\langle \dot{\omega}_{2v}\right\rangle = \left\langle \dot{\omega}_{1,}\theta + \omega_{1,}\dot{\theta}\right\rangle = \left\langle \left[-v^{2}\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)\rho_{\theta}\sin\left(vt + \delta_{\varphi}\right) + v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)x\right\rangle + \\ & \left\langle \omega_{2v}\right\rangle = \left\langle \dot{\omega}_{1,}\theta + \omega_{0}\dot{\theta}\right\rangle = \left\langle \left[-v^{2}\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)\rho_{\varphi}\sin\left(vt + \delta_{\varphi}\right) + v\rho_{\varphi}\cos\left(vt + \delta_{\varphi}\right)\rho_{\psi}\right]; \end{aligned}$$

$$\times v \rho_{\theta} \cos(vt + \delta_{\theta}) \Big] \Big\rangle = \frac{1}{2} v^{2} \rho_{\theta} \rho_{\varphi} \Big[\cos(\delta_{\theta} - \delta_{\varphi}) - \sin(\delta_{\theta} - \delta_{\varphi}) \Big];$$

$$\langle \mu \dot{\omega}_{2z} \rangle = 0;$$

$$\mu = \frac{\mu^{a}}{B} = \frac{Q \cos \beta_{0}}{B} = \frac{2P_{0}i\omega_{a}}{HBR} \Big\{ I_{II} \Big[\rho_{\tau} \cos(\omega_{a}t + \delta_{V}) + \pi \rho_{r} \cos(\omega_{a}t + \delta_{W}) \Big] + m_{T} R_{T} L \rho_{T} \cos(\omega_{a}t + \delta_{W_{T}}) \Big\}.$$

Підставляючи отримані значення в праву частину рівняння (5.30), обчислимо величину "*зсуву нуля*" приладу:

$$n^{2}\beta_{2}^{(0)} =$$

$$= -\frac{1}{2}rv\rho_{\varphi}\rho_{\psi}\sin\left(\delta_{\psi}-\delta_{\varphi}\right) - \frac{1}{4}\left[\omega_{b}\left(\rho_{\theta}^{2}+\rho_{\psi}^{2}\right) - 2v\rho_{\theta}\rho_{\psi}\sin\left(\delta_{\theta}-\delta_{\psi}\right)\right]\left(q+q'+q^{a}\right) +$$

$$+r'\left[\left(n^{2}-v^{2}\right)^{2}+4\left(h-h^{a}\right)^{2}v^{2}\right]^{\frac{1}{2}}\left\{v\rho_{\theta}\left[\left(r-\omega_{0}\right)v\rho_{\theta}\cos\varepsilon-\left(r\omega_{0}-v^{2}\right)\rho_{\psi}\times\right.\right.\right.\right.\right.\right.$$

$$\times\sin\left(\delta_{\psi}-\delta_{\theta}-\varepsilon\right) -$$

$$-vq\rho_{\varphi}\cos\left(\delta_{\theta}-\delta_{\varphi}+\varepsilon\right)\left] - \frac{1}{2}\rho_{\psi}\left[\left(r-\omega_{0}\right)v\rho_{\theta}\sin\left(\delta_{\psi}-\delta_{\theta}+\varepsilon\right) - \left(r\omega_{0}-v^{2}\right)\rho_{\psi}\cos\varepsilon-\right.\right.\right.$$

$$\left.-q\rho_{\varphi}\rho_{\psi}\sin\left(\delta_{\psi}-\delta_{\varphi}+\varepsilon\right)\right]\right\} - \frac{1}{2}vq'\rho_{\varphi}\left[\left(r-\omega_{0}\right)v\rho_{\theta}\sin\left(\delta_{\varphi}-\delta_{\theta}+\varepsilon\right) - \left(r\omega_{0}-v^{2}\right)\rho_{\psi}\times\right.\right.$$

$$\times\sin\left(\delta_{\psi}-\delta_{\varphi}-\varepsilon\right) - qv\rho_{\varphi}\cos\varepsilon\right]\left[\left(n^{2}-v^{2}\right)^{2}+4\left(h-h^{a}\right)^{2}v^{2}\right]^{-\frac{1}{2}} +$$

$$\left.+\left[\left(n^{2}-v^{2}\right)^{2}+4\left(h-h^{a}\right)^{2}v^{2}\right]^{-\frac{1}{2}}\frac{R\omega_{0}\cos2\beta_{0}\cos\beta_{0}\left(2-tg2\beta_{0}tg\beta_{0}\right) - H\sin\beta_{0}}{HBR}\times\right]$$

$$\times2P_{0}i\omega_{a}I_{II}\rho_{r}\left\{-\frac{P_{0}\omega_{a}^{2}\cos\beta_{0}}{HBR}v\rho_{\varphi}\left[vI_{II}\rho_{\psi}\rho_{r}\sin\left(\delta_{W}-\delta_{V}+\varepsilon\right)\cos\left(\delta_{\varphi}-\delta_{\psi}\right) +$$

$$+\omega_{0}I_{II}\rho_{\theta}\rho_{r}\sin\left(\delta_{W}-\delta_{W_{T}}+\varepsilon\right)\sin\left(\delta_{\theta}-\delta_{\varphi}\right) + \pi\omega_{0}I_{II}\rho_{\theta}\rho_{r}\cos\varepsilon\sin\left(\delta_{\theta}-\delta_{\varphi}\right) +$$

$$+\omega_{0}m_{r}R_{r}L\rho_{\sigma}\rho_{r}\cos\left(\delta_{w}-\delta_{W_{T}}+\varepsilon\right)\sin\left(\delta_{\theta}-\delta_{\varphi}\right)\right]+$$

$$+m_{T}R_{T}LI_{\Pi}\rho_{\tau}\rho_{T}\cos\left(\delta_{V}-\delta_{W_{T}}-\varepsilon\right)+m_{T}R_{T}LI_{\Pi}\rho_{\tau}\rho_{T}\cos\left(\delta_{W_{T}}-\delta_{V}-\varepsilon\right)+$$

$$+\pi m_{T}R_{T}LI_{\Pi}\rho_{r}\rho_{T}\cos\left(\delta_{W_{T}}-\delta_{W}-\varepsilon\right)]\bigg\}-\frac{\omega_{0}\left(-2R\omega_{0}\sin 2\beta_{0}+H\cos \beta_{0}\right)}{2B}\times$$

$$\times\bigg[\left(n^{2}-v^{2}\right)^{2}+4\left(h-h^{a}\right)^{2}v^{2}\bigg]\bigg\{\bigg\{\frac{1}{2}\left(r-\omega_{0}\right)^{2}v^{2}\rho_{\theta}^{2}-\frac{1}{2}q^{2}v^{2}\rho_{\varphi}^{2}-\left(r\omega_{0}-v^{2}\right)vq\rho_{\psi}\rho_{\varphi}\times$$

$$\times\sin\left(\delta_{\psi}-\delta_{\varphi}\right)-\left(r-\omega_{0}\right)\left(\omega_{0}r-v^{2}\right)v\rho_{\theta}\rho_{\psi}\sin\left(\delta_{\psi}-\delta_{\theta}\right)-\left(r-\omega_{0}\right)v^{2}q\rho_{\theta}\rho_{\varphi}\times$$

$$\times\cos\left(\delta_{\varphi}-\delta_{\theta}\right)-\frac{4P_{0}^{2}\omega_{a}^{2}\cos^{3}\beta_{0}}{H^{2}B^{2}R^{2}}v\rho_{\varphi}\rho_{r}i\omega_{a}I_{\Pi}\left(R\omega_{0}\sin 2\beta_{0}+H\cos \beta_{0}\right)\times$$

$$\times\left\{I_{\Pi}\rho_{\tau}\left[v\rho_{\psi}\cos\left(\delta_{V}-\delta_{W}\right)\sin\left(\delta_{\psi}-\delta_{\varphi}\right)-\omega_{0}\rho_{\theta}\cos\left(\delta_{W}-\delta_{V}-\delta_{\theta}\right)\sin\delta_{\varphi}\right]+$$

$$+\pi I_{\Pi}v\rho_{\psi}\cos\left(\delta_{\psi}-\delta_{\varphi}\right)+m_{T}R_{T}L\rho_{T}\left[v\rho_{\psi}\cos\left(\delta_{WT}-\delta_{W}\right)\cos\left(\delta_{W}-\delta_{\varphi}\right)+$$

$$+\omega_{0}\rho_{\theta}\sin\left(\delta_{W}-\delta_{W_{T}}\right)\cos\left(\delta_{\varphi}-\delta_{\theta}\right)\right]\bigg\}-\frac{2P_{0}^{2}i\omega_{a}^{3}\cos^{2}\beta_{0}}{H^{2}B^{2}R^{2}}v^{3}\rho_{\varphi}^{2}\pi I_{\Pi}\rho_{\tau}\left[I_{\Pi}\rho_{\tau}\sin\left(\delta_{V}-\delta_{W}\right)+$$

$$+m_{T}R_{T}L\rho_{T}\sin\left(\delta_{W_{T}}-\delta_{W}\right)\Big]-\frac{P_{0}^{2}\omega_{a}^{2}\cos^{3}\beta_{0}I_{\Pi}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{H^{2}B^{2}R^{2}}v^{2}\rho_{r}\rho_{\phi}\times\\\times\Big[2vI_{\Pi}\rho_{\psi}\rho_{\tau}\sin\left(\delta_{v}-\delta_{w}\right)\cos\left(\delta_{\psi}-\delta_{\phi}\right)+2\omega_{0}I_{\Pi}\rho_{\theta}\rho_{\tau}\cos\left(\delta_{w}-\delta_{v}\right)\cos\left(\delta_{\phi}-\delta_{\phi}\right)+\\+2m_{T}R_{T}L\rho_{T}v\rho_{\psi}\sin\left(\delta_{W_{T}}-\delta_{w}\right)\cos\left(\delta_{\psi}-\delta_{\phi}\right)+2\omega_{0}m_{T}R_{T}L\rho_{T}\rho_{\theta}\cos\left(\delta_{w}-\delta_{W_{T}}\right)\times\\\times\cos\left(\delta_{\phi}-\delta_{\theta}\right)\Big]+\frac{P_{0}^{2}\omega_{a}^{4}\cos^{2}\beta_{0}}{H^{2}B^{2}R^{2}}v^{2}\rho_{\phi}\Big[I_{\Pi}^{2}\rho_{\tau}^{2}+\pi^{2}I_{\Pi}^{2}\rho_{\tau}^{2}+m_{T}^{2}R_{T}^{2}L^{2}\rho_{\tau}^{2}+\\+\pi I_{\Pi}^{2}\rho_{\tau}\rho_{r}\cos\left(\delta_{v}-\delta_{w}\right)+I_{\Pi}\rho_{\tau}\rho_{T}m_{T}R_{T}L\cos\left(\delta_{v}-\delta_{W_{T}}\right)+\pi I_{\Pi}\rho_{r}\rho_{T}m_{T}R_{T}L\times\\\times\cos\left(\delta_{w}-\delta_{w_{T}}\right)\Big]-\frac{4P_{0}^{2}\omega_{a}^{2}\cos^{4}\beta_{0}I_{\Pi}^{2}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})^{2}}{H^{2}B^{2}R^{2}}\rho_{r}^{2}\Big[v^{2}\rho_{\psi}^{2}+\omega_{0}^{2}\rho_{\theta}^{2}+\\+2v\omega_{0}\rho_{\theta}\rho_{\psi}\cos\left(\delta_{\theta}-\delta_{\psi}\right)\Big]-\frac{P_{0}^{2}\omega_{a}^{2}\cos^{2}\beta_{0}}{2H^{2}B^{2}R^{2}}v^{4}\rho_{\phi}^{2}\Big[I_{\Pi}^{2}\rho_{\tau}^{2}+m_{T}^{2}R_{T}^{2}L^{2}\rho_{T}^{2}\Big]\Big\}+\\+\frac{a}{4}\Big[v^{2}\rho_{\theta}^{2}+\omega_{0}^{2}\rho_{\psi}^{2}+2v\omega_{0}\rho_{\theta}\rho_{\psi}\sin\left(\delta_{\theta}-\delta_{\psi}\right)+v^{2}\rho_{\psi}^{2}\Big]\sin 2\beta_{0}-aI_{\Pi}^{2}\rho_{r}^{2}\frac{2P_{0}^{2}\omega_{a}^{2}\cos^{2}\beta_{0}}{H^{2}R^{2}}\times$$

$$\times \left[v^{2} \rho_{\psi}^{2} + \omega_{0}^{2} \rho_{\theta}^{2} + 2v \omega_{0} \rho_{\theta} \rho_{\psi} \sin\left(\delta_{\theta} - \delta_{\psi}\right) \right] + \frac{a}{2} v \rho_{\varphi} \cos 2\beta_{0} \left[v \rho_{\theta} \cos\left(\delta_{\theta} - \delta_{\varphi}\right) - \omega_{0} \rho_{\psi} \sin\left(\delta_{\psi} - \delta_{\theta}\right) \right] + \frac{a}{2} v \rho_{\varphi} \cos \beta_{0} t g 2\beta_{0} \left[v \rho_{\psi} \cos\left(\delta_{\varphi} - \delta_{\psi}\right) - \omega_{0} \rho_{\theta} \sin\left(\delta_{\varphi} - \delta_{\theta}\right) \right] - \frac{1}{2} v^{2} \rho_{\theta} \rho_{\varphi} \times \left[\cos\left(\delta_{\theta} - \delta_{\varphi}\right) - \sin\left(\delta_{\theta} - \delta_{\varphi}\right) \right].$$
(5.46)

Асинхронна хитавиця фюзеляжу. Для *асинхронних* коливань формула (5.46) суттєво спрощується:

$$n^2\beta_2^{(0)} =$$

$$= -\frac{1}{4}\omega_{0}\left(\rho_{\theta}^{2} + \rho_{\psi}^{2}\right)\left(q + q' + q^{a}\right) + r'\left[\left(n^{2} - v^{2}\right)^{2} + 4\left(h - h^{a}\right)^{2}v^{2}\right]^{-\frac{1}{2}}\left[v^{2}\rho_{\theta}^{2}\left(r - \omega_{0}\right)\cos\varepsilon + \frac{1}{2}\rho_{\psi}^{2}\cos\varepsilon + \frac{1}{2}v^{2}q'q\rho_{\varphi}^{2}\cos\varepsilon\right] + \left[\left(n^{2} - v^{2}\right)^{2} + 4\left(h - h^{a}\right)^{2}v^{2}\right]^{-\frac{1}{2}}\times \\\times \left[\frac{2P_{0}i\omega_{a}\cos^{2}\beta_{0}I_{\Pi}\left(R\omega_{0}\sin2\beta_{0} + H\cos\beta_{0}\right)}{HBR}v^{2}\rho_{\psi}^{2}\rho_{r}\sin\varepsilon - \frac{2P_{0}i\omega_{a}^{3}\cos\beta_{0}}{HBR}\times \right]$$

$$\times \left(I_{\Pi}^{2}\rho_{\tau}^{2} + \pi^{2}I_{\Pi}^{2}\rho_{r}^{2} + m_{T}^{2}R_{T}^{2}L^{2}\rho_{T}^{2}\right)\nu\rho_{\varphi}\sin\varepsilon + \frac{4P_{0}i\omega_{a}^{2}\cos\beta_{0}}{HBR}\left(I_{\Pi}^{2}\rho_{\tau}^{2} + m_{T}^{2}R_{T}^{2}L^{2}\rho_{T}^{2}\right) \times \\ \times \nu^{2}\rho_{\varphi}\cos\varepsilon\right] - \left[\left(n^{2} - \nu^{2}\right)^{2} + 4\left(h - h^{a}\right)^{2}\nu^{2}\right]\frac{\left(-2R\omega_{0}\sin2\beta_{0} + H\cos\beta_{0}\right)}{2B} \times \\ \times \left[\frac{1}{2}\left(r - \omega_{0}\right)^{2}\nu^{2}\rho_{\theta}^{2} - \frac{1}{2}q^{2}\nu^{2}\rho_{\varphi}^{2} + \frac{P_{0}^{2}\omega_{a}^{4}\cos^{2}\beta_{0}}{H^{2}B^{2}R^{2}}\nu^{2}\rho_{\varphi}\left(I_{\Pi}^{2}\rho_{\tau}^{2} + \pi^{2}I_{\Pi}^{2}\rho_{r}^{2} + m_{T}^{2}R_{T}^{2}L^{2}\rho_{T}^{2}\right) - \\ - \frac{4P_{0}^{2}\omega_{a}^{2}\cos^{4}\beta_{0}I_{\Pi}^{2}\left(R\omega_{0}\sin2\beta_{0} + H\cos\beta_{0}\right)^{2}}{H^{2}B^{2}R^{2}}\rho_{r}^{2}\left(\nu^{2}\rho_{\psi}^{2} + \omega_{0}^{2}\rho_{\theta}^{2}\right) - \\ - \frac{P_{0}^{2}\omega_{a}^{2}\cos^{2}\beta_{0}}{2H^{2}B^{2}R^{2}}\nu^{4}\rho_{\varphi}^{2}\left(I_{\Pi}^{2}\rho_{\tau}^{2} + m_{T}^{2}R_{T}^{2}L^{2}\rho_{\tau}^{2}\right)\right] + \frac{a}{4}\left(\nu^{2}\rho_{\theta}^{2} + \omega_{0}^{2}\rho_{\psi}^{2} + \nu^{2}\rho_{\psi}^{2}\right)\sin2\beta_{0} - \\ -aI_{\Pi}^{2}\rho_{r}^{2}\frac{2P_{0}^{2}\omega_{a}^{2}\cos^{2}\beta_{0}}{H^{2}R^{2}}\left(\nu^{2}\rho_{\psi}^{2} + \omega_{0}^{2}\rho_{\theta}^{2}\right).$$

Являє інтерес "*зсув нуля*" приладу (за відсутності циркуляції). Для цього досить покласти $\omega_0 = 0$ і, природно, $\beta_0 = 0$, що відповідає відсутності вхідного сигналу поплавкового гіроскопа. Тоді, за *синхронної* хитавиці маємо:

 $B^{(0)} -$

$$\begin{split} & \left[\mu_{2} - \mu_{2}$$

$$-\frac{1}{k^2}aI_{\Pi}^2\rho_r^2\frac{2P_0^2\omega_a^2}{H^2R^2}v^2\rho_{\psi}+\frac{1}{k^2}\frac{a}{2}v^2\rho_{\varphi}\rho_{\theta}\cos\left(\delta_{\theta}-\delta_{\varphi}\right)-\frac{1}{2k^2}v^2\rho_{\theta}\rho_{\varphi}\left[\cos\left(\delta_{\theta}-\delta_{\varphi}\right)-\sin\left(\delta_{\theta}-\delta_{\varphi}\right)\right]$$
$$-\sin\left(\delta_{\theta}-\delta_{\varphi}\right)\right].$$

За асинхроної хитавиці. З виразу (5.44) маємо:

$$\beta_{2}^{(0)} = \frac{1}{k^{2}} \Big[\Big(n^{2} - v^{2} \Big)^{2} + 4h^{2}v^{2} \Big]^{-\frac{1}{2}} \Big[\frac{2P_{0}i\omega_{a}I_{\Pi}}{BR} v^{2}\rho_{\psi}^{2}\rho_{r}\sin\varepsilon - \frac{2P_{0}\omega_{a}^{3}}{HBR} \Big(I_{\Pi}^{2}\rho_{\tau}^{2} + \pi^{2}I_{\Pi}^{2}\rho_{r}^{2} + \pi^{2}I_{\Pi}^{2}\rho_{r}^{2} + m_{T}^{2}R_{T}^{2}L^{2}\rho_{\tau}^{2} \Big) v\rho_{\phi}\sin\varepsilon + \frac{4P_{0}i\omega_{a}^{2}}{HBR} \Big(I_{\Pi}^{2}\rho_{\tau}^{2} + m_{T}^{2}R_{T}^{2}L^{2}\rho_{\tau}^{2} \Big) v^{2}\rho_{\phi}\cos\varepsilon \Big] - \frac{1}{k^{2}} \Big[\Big(n^{2} - v^{2} \Big)^{2} + 4h^{2}v^{2} \Big] \frac{H}{2B} \Big[-\frac{1}{2}v^{2}q^{2}\rho_{\phi}^{2} + \frac{P_{0}^{2}\omega_{a}^{4}}{H^{2}B^{2}R^{2}}v^{2}\rho_{\phi} \Big(I_{\Pi}^{2}\rho_{\tau}^{2} + \pi^{2}I_{\Pi}^{2}\rho_{r}^{2} + m_{T}^{2}R_{T}^{2}L^{2}\rho_{\tau}^{2} \Big) - \frac{4P_{0}^{2}\omega_{a}^{2}I_{\Pi}^{2}}{B^{2}R^{2}}\rho_{r}^{2} \Big(v^{2}\rho_{\psi}^{2} \Big) - \frac{P_{0}^{2}\omega_{a}^{2}}{2H^{2}B^{2}R^{2}}v^{4}\rho_{\phi} \Big(I_{\Pi}^{2}\rho_{\tau}^{2} + m_{T}^{2}R_{T}^{2}L^{2}\rho_{\tau}^{2} \Big) \Big] - \frac{1}{k^{2}}aI_{\Pi}^{2}\rho_{r}^{2} \frac{2P_{0}^{2}\omega_{a}^{2}}{H^{2}R^{2}} \Big(v^{2}\rho_{\psi}^{2} \Big).$$
(5.47)

Похибка виміру кутової швидкості внаслідок "*зсуву нуля*" $\beta_2^{(0)}$ може бути обчислена за формулою, яка витікає з (5.9):

$$\frac{\Delta\omega \approx}{\frac{P_0^2 \omega_a^4 B^2}{H^3 R R_T^2 \beta_2^{(0)}} \left\{ I_{\Pi} \left[\rho_\tau \cos\left(\omega_a t + \delta_V\right) + \rho_r \pi \cos\left(\omega_a t + \delta_W\right) \right] + m_T R_T L \rho_T \cos\left(\omega_a t + \delta_{W_T}\right) \right\}.$$
(5.48)

§ 5.3. Стохастична структура збурюючих чинників

Вважаючи зовнішні збурення – кінематичне і акустичне – детермінованими у часі процесами, аналітичне забезпечення задачі відповідності параметрів гіроскопічних приладів паспортним вимогам в експлуатаційних умовах задовольнялося двома диференціальними рівняннями, першого і другого наближення:
$$\ddot{\beta}_{1} + (2h - 2h^{a})\dot{\beta}_{1} + n^{2}\beta_{1} = f_{1}(t); \qquad (5.49)$$

$$\ddot{\beta}_{2} + (2h - 2h^{a})\dot{\beta}_{2} + n^{2}\beta_{2} = f_{2}(t).$$
(5.50)

При цьому, права частина рівняння (5.49) містила параметри кутового руху фюзеляжу і акустичну вібрацію поверхні поплавка в явній формі, тобто і акустичну вібрацію поверхні поплавка –

$$f_{1}(t) = r\omega_{1x} - (q - q^{a})\omega_{1z} + q\lambda\omega_{1y} + \mu\dot{\omega}_{1z} - \dot{\omega}_{1y}, \qquad (5.51)$$

або більш докладно –

$$f_1(t) = \left(\frac{R}{B}\omega_0\cos 2\beta_0 - \frac{H}{B}\sin\beta_0\right)\left(\dot{\theta} - \omega_0\psi\right) - \dot{\phi}\left\{\left\{\frac{R}{B}\omega_0\sin 2\beta_0 + \frac{H}{B}\cos\beta_0 - \frac{H}{B}\cos\beta_0\right\}\right\}$$

$$-\frac{2P_0i\omega_a\sin\beta_0}{HBR}\left\{I_{\Pi}\left[\rho_{\tau}(t)+\pi\rho_r\right]+m_TR_TL\rho_T\right\}\right\}+\frac{4P_0i\omega_aI_{\Pi}}{HBR}\left(R\omega_0\sin 2\beta_0+\frac{4P_0i\omega_aI_{\Pi}}{HBR}\right)$$

$$+H\cos\beta_0\big)\rho_r\big(\dot{\psi}+\omega_0\theta\big)+\frac{2P_0i\omega_a\cos\beta_0}{HB}\big\{I_{\Pi}\big[\rho_{\tau}+\pi\rho_r\big]+m_TR_TL\rho_T\big\}\ddot{\varphi}-\ddot{\psi}-\omega_0\dot{\theta},$$

де $\dot{\phi} = \omega_{1z}$ – похідна у часі від кута повороту навколо осі чутливості приладу.

В свою чергу, права частина рівнянь (5.50) містить не тільки функції хитавиці ЛА і акустичної вібрації поверхні поплавка, але і розв'язки рівняння (5.49). Використовуючи вираз (5.30), праву частину можна записати наступним чином –

 $f_2(t) =$

$$= -r\dot{\phi}\psi + \frac{4P_{0}i\omega_{a}\left(2R\omega_{0} + H\cos\beta_{0}\right)}{HBR}I_{\Pi}\rho_{r}\dot{\phi}\theta - \left\{\left\{q + q' + \frac{2P_{0}i\omega_{a}\sin\beta_{0}}{HBR}\left\{I_{\Pi}\left[\rho_{\tau} + \pi\rho_{r}\right] + m_{T}R_{T}L\rho_{T}\right\}\right\}\right\}\left[\frac{1}{2}\omega_{0}\left(\theta^{2} + \psi^{2}\right) - \dot{\psi}\theta\right] + \beta_{1}\left\{\left\{r'\left(\dot{\theta} - \omega_{0}\psi\right) + \frac{R\omega_{0}\cos2\beta_{0}\cos\beta_{0}\left(2 - tg2\beta_{0}tg\beta_{0}\right) - H\sin2\beta_{0}}{B}\frac{4P_{0}i\omega_{0}}{HR}I_{\Pi}\rho_{r} - q'\dot{\phi}\right\}\right\} + (5.52)$$

$$+\dot{\beta}_{1}\left\{\left\{\beta_{1}\,\omega_{o}\,\frac{2P_{0}i\omega_{a}\,\cos\beta_{0}}{B}\left\{I_{\Pi}\left[\rho_{\tau}+\pi\,\rho_{r}\right]+m_{T}R_{T}L\,\rho_{T}\right\}-\frac{4P_{0}i\omega_{a}\,\sin\beta_{0}}{HBR}\left\{I_{\Pi}\left[\rho_{\tau}+\pi\,\rho_{r}\right]+m_{T}R_{r}\rho_{r}\right]+m_{T}R_{T}L\,\rho_{T}\right\}\right\}\right\}+$$

$$+m_{T}R_{T}L\,\rho_{T}\left\{\dot{\phi}\right\}\right\}-\frac{1}{2}\,\omega_{0}\beta_{1}^{2}\left\{\left\{q''+\frac{2P_{0}i\omega_{a}\,\sin\beta_{0}}{HBR}\left\{I_{\Pi}\left[\rho_{\tau}+\pi\,\rho_{r}\right]+m_{T}R_{T}L\,\rho_{T}\right\}\right\}\right\}+$$

$$+\frac{a}{2}\left\{\left\{\left[\left(\dot{\theta}-\omega_{0}\psi\right)^{2}-\dot{\phi}^{2}\right]\sin2\beta_{0}-2\frac{16P_{0}^{2}\omega_{a}^{2}\cos^{2}\beta_{0}}{H^{2}R^{2}}I_{\Pi}^{2}\rho_{r}^{2}\left(\dot{\psi}+\omega_{0}\theta\right)^{2}+2\left(\dot{\theta}-\omega_{0}\psi\right)\times\right.\right.\right\}\right\}$$

$$\times\dot{\phi}\cos2\beta_{0}+2\frac{4P_{0}i\omega_{a}\cos\beta_{0}}{HR}I_{\Pi}\rho_{r}\left(\dot{\theta}-\omega_{0}\psi\right)\dot{\phi}-2tg2\beta_{0}\cos\beta_{0}\left(\dot{\psi}+\omega_{0}\theta\right)^{2}\dot{\phi}\}\right\}-$$

$$-\frac{d}{dt}(\dot{\phi}\theta)+\frac{2P_{0}i\omega_{a}\cos\beta_{0}}{HB}\left\{I_{\Pi}\left[\rho_{\tau}+\pi\,\rho_{r}\right]+m_{T}R_{T}L\,\rho_{T}\right\}\left[\omega_{0}\left(\dot{\theta}\theta+\dot{\psi}\psi\right)-\ddot{\psi}\theta-\dot{\psi}\dot{\theta}\right].$$

За детермінованого характеру зовнішніх збурюючих чинників, задача зводилася до визначення сталої складової правої частини виразу (5.52), тобто

$$\langle f_j(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_0^T f_j(t) dt$$
, $j = 1, 2$ – номер наближення,

а систематична похибка ДУС обчислювалася за формулою –

$$\beta_j^{(0)} = \frac{1}{n^2} \langle f_j(t) \rangle.$$
(5.53)

Напроти, коли хитавиця ЛА і акустична вібрація поверхні поплавка мають стохастичну структуру, слід вести мову про математичне очікування похибки приладу. Отже,

$$\langle \overline{\beta_j^{(0)}} \rangle = \frac{1}{n^2} \langle \overline{f_j(t)} \rangle.$$
 (5.54)

Припустимо, що математичне очікування величин $\varphi, \psi, \theta, \rho_{\tau}, \rho_{r}, \rho_{T}$ та їх похідних у часі дорівнює нулю. Математичне очікування добутків цих величин, разом з тим, може містити сталі складові.

Введемо для позначення математичного очікування величин $f_1(t), f_2(t), \theta, \dot{\psi}\theta, \rho_{\tau}, \rho_r$ і т.д. символи $\overline{f}_1, \overline{f}_2, \overline{\theta}, \dot{\psi}\theta, \overline{\rho_{\tau}}, \overline{\rho_r}$. Відтепер можна скористатися формулою (5.54) і обчислити похибку приладу в момент часу t. Математичне очікування добутків $\overline{\psi}\theta, \overline{\theta^2}, \overline{\psi^2}, \overline{\phi}\overline{\rho_{\tau}}, \overline{\phi}\overline{\rho_r}, \overline{\phi}\overline{\rho_r}, \overline{\phi}\overline{\rho_r}, \overline{\phi}\overline{\rho_r}, \overline{\phi}\overline{\rho_r}, \overline{\phi}\overline{\rho_r}, \overline{\phi}\overline{\rho_r}$ З теорії ймовірностей відомо, якщо $\overline{U} = \overline{V} = 0$, тоді математичне очікування добутків двох цих функцій, обчислених у різні моменти часу, іменують кореляційною функцією зв'язку:

$$\overline{U(t_1)V(t_2)} = K_{uv}(t_1, t_2).$$

Якщо U = V, тоді ця функція називається автокореляційною функцією стохастичного процесу –

$$\overline{U(t_1)U(t_2)} = K_{uu}(t_1, t_2).$$

При $t_1 = t_2 = t$ отримуємо дисперсію стохастичного процесу $D_u(t)$:

$$\overline{U^2(t)} = K_{uu}(t,t) = D_u(t).$$

За умови стаціонарності процесу, маємо -

$$K_{uu}(t,t+\tau) = K_{u}(\tau);$$

$$K_{uu}(t,t) = K_{uv}(0) = D_{u}(0).$$

Дисперсія стаціонарного процесу є величиною сталою. Надалі не будемо вимагати обов'язкової стаціонарності процесу.

Таким чином, маємо:

$$f_1(t) =$$

$$=\frac{4P_{0}i\omega_{a}I_{\Pi}}{HBR}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})\rho_{r}(\dot{\psi}+\omega_{0}\theta)+\frac{2P_{0}i\omega_{a}\cos\beta_{0}}{HB}\left\{I_{\Pi}\left[\rho_{\tau}+\pi\rho_{r}\right]+m_{r}R_{r}L\rho_{T}\right\}\ddot{\varphi}.$$

 $f_1(t) =$

Тоді

$$=\frac{4P_{0}i\omega_{a}I_{\Pi}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\left[K_{\psi\rho_{r}}(t,t)+\omega_{0}K_{\theta\rho_{r}}(t,t)\right]+\frac{2P_{0}i\omega_{a}\cos\beta_{0}}{HBR}\times\left[I_{\Pi}K_{\phi\rho_{T}}(t,t)+\pi I_{\Pi}K_{\phi\rho_{r}}(t,t)+m_{T}R_{T}LK_{\phi\rho_{T}}(t,t)\right].$$
(5.55)

Осереднення функції $\langle f_1(t) \rangle$ можна отримати без зайвих зусиль, якщо відомі кореляційні функції зв'язку зустрічаючихся у виразі (5.55) комбінацій $K_{\psi\rho_r}(t,t), K_{\theta\rho_r}(t,t), K_{\theta\rho_r}(t,t), K_{\theta\rho_r}(t,t), K_{\theta\rho_r}(t,t)$

Використаємо отримане співвідношення для обчислення "зсуву нуля" у першому наближенні. Для цього слід прийняти $\omega_0 = 0$ й $\beta_0 = 0$. Тобто, припустити відсутність систематичного обертання основи відносоно вхідної осі приладу. Звідси походять явні рівності –

$$r = 0; \ q = \frac{H}{B}; \ r' = -\frac{H}{B}; \ q' = 0; \ q'' = -\frac{H}{B}.$$
 (5.56)

Осереднення у часі математичного очікування "*зсуву нуля*" визначиться за формулою

$$\langle \overline{\beta_1^0} \rangle = n^{-2} \langle \overline{f_1} \rangle =$$

$$=\left\langle \frac{4P_{0}i\omega_{a}I_{\Pi}}{n^{2}BR}K_{\psi\rho_{T}}(t,t)+\frac{2P_{0}i\omega_{a}}{n^{2}BH}\left[I_{\Pi}K_{\phi\rho_{T}}(t,t)+\pi I_{\Pi}K_{\phi\rho_{T}}(t,t)+m_{T}R_{T}LK_{\phi\rho_{T}}(t,t)\right]\right\rangle.$$
 (5.57)

Якщо скористуватися відомими співвідношеннями

$$\begin{split} K_{\dot{U}V}(t_1,t_2) &= \frac{\partial K_{UV}(t_1,t_2)}{\partial t_1}; \\ K_{U\dot{V}}(t_1,t_2) &= \frac{\partial K_{UV}(t_1,t_2)}{\partial t_2}; \\ K_{\dot{U}\dot{V}}(t_1,t_2) &= \frac{\partial^2 K_{UV}(t_1,t_2)}{\partial t_2}, \end{split}$$

вираз (5.57) можна буде записати дещо інакше:

$$\langle \overline{\beta_{1}^{(0)}} \rangle =$$

$$= \left\langle \frac{4P_{0}i\omega_{a}I_{\Pi}}{n^{2}BR} \frac{\partial K_{\psi\rho_{r}}(t_{1},t_{2})}{\partial t_{1}} + \frac{2P_{0}i\omega_{a}}{n^{2}BH} \left[I_{\Pi} \frac{\partial^{2}K_{\varphi\rho_{r}}(t_{1},t_{2})}{\partial t_{1}^{2}} + \pi I_{\Pi} \frac{\partial^{2}K_{\varphi\rho_{r}}(t_{1},t_{2})}{\partial t_{1}^{2}} + m_{T}R_{T}L \frac{\partial^{2}K_{\varphi\rho_{T}}(t_{1},t_{2})}{\partial t_{1}^{2}} \right] \right\rangle.$$

$$(5.58)$$

Таким чином, для визначення "зсуву нуля" у першому наближенні, доволі знати кореляційні функції зв'язку між кутом тангажа $\psi(t)$ і пружними радіальними переміщеннями бічної поверхні поплавка $\rho_r(t)$, а також між кутом рискання $\phi(t)$ і радіальними $\rho_r(t)$ та тангенціальними $\rho_\tau(t)$ переміщеннями бічної поверхні поплавка. Крім того, повинна бути відомою кореляційна функція зв'язку між кутом рискання $\phi(t)$ і згинними коливаннями торця поплавка під дією акустичної хвилі. Ці функції можуть бути визначені експериментально.

Якщо прийняти кути хитавиці ЛА і пружні переміщення поплавка під дією проникаючого акустичного випромінювання випадковими і стаціонарно зв'язаними функціями, тобто такими, для яких взаємні кореляційні функції залежать тільки від різниці моментів часу $\tau = (t_2 - t_1)$, тоді можна буде записати наступні співвідношення –:

$$K_{\psi\rho_{r}} = \frac{\partial}{\partial t_{1}} K_{\psi\rho_{r}} = -\frac{d}{d\tau} K_{\psi\rho_{r}} (\tau) \big|_{\tau=t_{2}-t_{1}};$$

$$K_{\bar{\varphi}\rho_{\tau}} = \frac{\partial^{2}}{\partial t_{1}\partial t_{2}} K_{\varphi\rho_{\tau}} = \frac{d}{d\tau} K_{\varphi\rho_{\tau}} (\tau) \big|_{\tau=t_{2}-t_{1}};$$

$$K_{\bar{\varphi}\rho_{r}} = \frac{d}{d\tau} K_{\varphi\rho_{r}} (\tau) \big|_{\tau=t_{2}-t_{1}}; \quad K_{\bar{\varphi}\rho_{T}} = \frac{d}{d\tau} K_{\varphi\rho_{T}} (\tau) \big|_{\tau=t_{2}-t_{1}}.$$
(5.59)

"Зсув нуля" обчислимо з (5.58), використовуючи співвідношення (5.59):

$$\langle \overline{\beta_{1}^{(0)}} \rangle = \left\{ \frac{-4P_{0}i\omega_{a}I_{\Pi}}{n^{2}BR} \dot{K}_{\psi\rho_{r}}(0) + \frac{2P_{0}i\omega_{a}}{n^{2}BH} \left[I_{\Pi}\ddot{K}_{\varphi\rho_{r}}(0) + \pi I_{\Pi}\ddot{K}_{\varphi\rho_{r}}(0) + m_{T}R_{T}L\ddot{K}_{\varphi\rho_{T}}(0) \right] \right\}.$$
(5.60)

Проілюструємо доведене. Обчислимо "*зсув нуля*", наприклад, за такого виду кореляційних функцій зв'язку –

$$K_{ij} = \frac{1}{2}\rho_{ij}^2\cos(\gamma\tau + \delta_{ij}).$$

Тоді

$$\dot{K}_{ij}(0) = -\rho_{ij}^2 \gamma \sin \delta_{ij}; \quad \ddot{K}_{ij}(0) = -\rho_{ij}^2 \gamma^2 \cos \delta_{ij}.$$

Після підстановки у формулу (5.60), маємо:

$$\left\langle \overline{\beta_{1}^{(0)}} \right\rangle = \frac{4P_{0}i\omega_{a}I_{\Pi}}{n^{2}BR} \rho_{\psi\rho_{r}}^{2} \gamma \sin\left(\delta_{\psi\rho_{r}}\right) - \frac{2P_{0}i\omega_{a}}{n^{2}BH} [I_{\Pi}\rho_{\phi\rho_{\tau}}^{2} \gamma^{2}\cos\left(\delta_{\phi\rho_{\tau}}\right) + \pi I_{\Pi}\rho_{\phi\rho_{r}}^{2} \gamma^{2}\cos\left(\delta_{\phi\rho_{r}}\right) + m_{T}R_{T}L\rho_{\phi\rho_{T}}^{2} \gamma^{2}\cos\left(\delta_{\phi\rho_{T}}\right)].$$

$$(5.61)$$

Перейдемо до *другого наближення*. Права частина рівняння (5.50) містить два види доданків – таких, які не містять розв'язок рівняння першого наближення β_1 і, навпаки, таких, які містять цей розв'язок. Функцію $f_2(t)$ запишемо, таким чином, у вигляді –

$$f_2(t) = U(t) + V(t) =$$

$$= -r\phi\psi + \frac{4P_{0}i\omega_{a}(2R\omega_{0} + H\cos\beta_{0})I_{II}}{HBR}\phi\theta\rho_{r} - \left\{q + q' + \frac{2P_{0}i\omega_{a}\sin\beta_{0}}{HBR} \times \left[I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}\right]\right\}\left[\frac{1}{2}\omega_{0}(\theta^{2} + \psi^{2}) - \dot{\psi}\theta\right] + \beta_{1}[r'(\dot{\theta} - \omega_{0}\psi) - q'\phi + \frac{R\omega_{0}\cos2\beta_{0}\cos\beta_{0}(2 - tg2\beta_{0}tg\beta_{0}) - H\sin2\beta_{0}}{HBR}4P_{0}i\omega_{a}I_{II}\rho_{r}] + \frac{\dot{\rho}_{1}}{HBR}\left\{\frac{2P_{0}i\omega_{a}\cos\beta_{0}\omega_{a}}{HBR}\beta_{1}[I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}] - \frac{4P_{0}i\omega_{a}\sin\beta_{0}}{HBR} \times \left[I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}\right] - \frac{4P_{0}i\omega_{a}\sin\beta_{0}}{HBR}(I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}]\right] + \frac{a}{2}\left[\left(\dot{\theta} - \omega_{0}\psi\right)^{2} - \dot{\phi}^{2}\right]\sin2\beta_{0} + 2\dot{\phi}(\dot{\theta} - \omega_{0}\psi)\cos2\beta_{0} - \frac{216P_{0}^{2}\omega_{a}^{2}\cos^{2}\beta_{0}I_{II}^{2}}{H^{2}R^{2}}(\dot{\psi} + \omega_{0}\theta)^{2}\rho_{r}^{2} + 2\frac{4P_{0}i\omega_{a}\cos\beta_{0}I_{II}}{HR}(\dot{\theta} - \omega_{0}\psi)\phi\rho_{r} - \frac{2tg2\beta_{0}\cos\beta_{0}(\dot{\psi} + \omega_{0}\theta)^{2}\dot{\phi}\right] + \frac{2P_{0}i\omega_{a}\cos\beta_{0}}{HBR}[I_{II}(\rho_{\tau} + \pi\rho_{r})] + m_{T}R_{T}L\rho_{T}] \times \left[\omega_{0}(\dot{\theta}\theta + \dot{\psi}\psi) - \ddot{\psi}\theta - \dot{\psi}\dot{\theta}\right] - \frac{d}{dt}(\dot{\phi}\theta).$$
(5.62)

Отже, отримаємо:

$$U(t) = -r\dot{\varphi}\psi + \frac{4P_0i\omega_a(2R\omega_0 + H\cos\beta_0)I_{\Pi}}{HBR}\dot{\varphi}\theta\rho_r - \left\{q + q' + \frac{2P_0i\omega_a\sin\beta_0}{HBR}\times\right\}$$

$$\times [I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}] \{ [\frac{1}{2}\omega_{0}(\theta^{2} + \psi^{2}) - \dot{\psi}\theta] + \frac{a}{2} \{ [(\dot{\theta} - \omega_{0}\psi)^{2} - \dot{\phi}^{2}] \times \\ \times \sin 2\beta_{0} + 2\dot{\phi}(\dot{\theta} - \omega_{0}\psi)\cos 2\beta_{0} - 2\frac{16P_{0}^{2}\omega_{a}^{2}\cos^{2}\beta_{0}I_{II}^{2}}{H^{2}R^{2}}(\dot{\psi} + \omega_{0}\theta)^{2}\rho_{r}^{2} + \\ + 2\frac{4P_{0}i\omega_{a}\cos\beta_{0}I_{II}}{HR}(\dot{\theta} - \omega_{0}\psi)\dot{\phi}\rho_{r} - 2tg2\beta_{0}\cos\beta_{0}(\dot{\psi} + \omega_{0}\theta)^{2}\dot{\phi} \} + \frac{2P_{0}i\omega_{a}\cos\beta_{0}}{HBR} \times \\ \times [I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}][\omega_{0}(\dot{\theta}\theta + \psi\dot{\psi}) - \ddot{\psi}\theta - \dot{\psi}\dot{\theta}] - \frac{d}{dt}(\dot{\phi}\theta); \\ V(t) = \beta_{1}[(r'(\dot{\theta} - \omega_{0}\psi) - q'\dot{\phi} + \frac{R\omega_{0}\cos 2\beta_{0}\cos\beta_{0}(2 - tg2\beta_{0}tg\beta_{0}) - H\sin\beta_{0}}{HBR} \times \\ \times 4P_{0}i\omega_{a}I_{II}\rho_{r}] - \frac{1}{2}\omega_{0}\beta_{1}^{2}\{q'' + \frac{2P_{0}i\omega_{a}\sin\beta_{0}}{HBR}[I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}]\} + \\ + \dot{\beta}_{1}\{\beta_{1}\frac{2P_{0}i\omega_{a}\omega_{0}\cos\beta_{0}}{HBR}[I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}] - \frac{4P_{0}i\omega_{a}\sin\beta_{0}}{HBR} \times \\ \times [I_{II}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}]\dot{\phi}\}.$$

Математичне очікування функції $f_2(t)$ можна навести тепер у вигляді суми двох доданків

$$\overline{f_2(t)} = \overline{U(t)} + \overline{V(t)}$$

і надалі продовжити обчислення. За необхідності, можна визначити третє і т.д. наближення.

Для вирішення поставленої задачі обмежимося аналізом тільки першого наближення.

§ 5.4. Інтегруючий гіроскоп

Інтегруючий гіроскоп призначений для виміру кута повороту літального апарату відносно вимірювальної (вхідний) осі приладу. На відміну від датчика кутової швидкості, не містить пружини, а функції демпфера виконує рідинностатична складова підвісу. Рівняння першого і другого наближень можна отримати із відповідних рівнянь ДУСУ (5.28) і (5.30), якщо в них прийняти –

$$n^2 = 0; r = 0; q = \frac{H}{B}; \omega_0 = 0; r' = -\frac{H}{B}; q' = 0; q'' = -\frac{H}{B},$$

тобто

$$\ddot{\beta}_1 + 2h\dot{\beta}_1 =$$

$$= -\left\{\frac{H}{B} + \frac{2P_{0}i\omega_{a}}{HBR}[I_{\Pi}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}]\right\}\dot{\phi} - \ddot{\psi} + \frac{4P_{0}i\omega_{a}I_{\Pi}}{HBR}\rho_{r}\dot{\psi} + \frac{2P_{0}i\omega_{a}}{HBR}[I_{\Pi}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}]\dot{\phi}; \qquad (5.63)$$
$$\ddot{\beta}_{2} + 2h\dot{\beta}_{2} = \\= \left\{\frac{H}{B} + \frac{2P_{0}i\omega_{a}}{HBR}[I_{\Pi}(\rho_{\tau} + \pi\rho_{r}) + m_{T}R_{T}L\rho_{T}]\right\}\dot{\psi}\theta - \frac{H}{B}\beta_{1}\dot{\theta} + a\dot{\theta}\dot{\phi} - \frac{d}{dt}(\dot{\phi}\theta) - 4Bi\phi_{T}dt$$

$$\frac{4P_{0}i\omega_{a}}{HBR}[I_{\Pi}(\rho_{\tau}+\pi\rho_{r})+m_{T}R_{T}L\rho_{T}]\dot{\beta}_{1}\dot{\phi}-a\frac{16P_{0}i\omega_{a}}{HBR}I_{\Pi}\rho_{r}+a\frac{4P_{0}i\omega_{a}I_{\Pi}}{HBR}\dot{\theta}\dot{\psi}\rho_{\tau}+\\+\frac{2P_{0}i\omega_{a}}{HBR}[I_{\Pi}(\rho_{\tau}+\pi\rho_{r})+m_{T}R_{T}L\rho_{T}](\ddot{\phi}\theta+\dot{\phi}\dot{\theta}).$$
(5.64)

Розв'язок цих рівнянь для *синхронних* та *асинхронних* гармонічних коливань ЛА можна отримати з раніше визначених результатів. Для *синхронних коливань* фюзеляжу – вирази (5.41) та (5.46), для *асинхронних коливань* ЛА – вирази (5.54) та (5.48):

$$2h\dot{\beta}_{1}^{(c)} = \left[v^{4} + 4h^{2}v^{2}\right]^{\frac{1}{2}} \times$$

$$\times \{\{[v^{2}\rho_{\psi}\sin(vt+\delta_{\psi}-\varepsilon)-\frac{H}{B}v\rho_{\varphi}\cos(vt+\delta_{\varphi}-\varepsilon)]-\frac{P_{0}\omega_{a}^{2}}{HBR}v\rho_{\varphi}\{I_{\Pi}\rho_{\tau}\times \\\times \cos[(\omega_{a}-v)t+\delta_{V}-\delta_{\varphi}-\varepsilon]+I_{\Pi}\rho_{\tau}\cos[(\omega_{a}+v)t+\delta_{V}+\delta_{\varphi}-\varepsilon]+\pi\rho_{r}I_{\Pi}\times \\\times \cos[(\omega_{a}-v)t+\delta_{W}-\delta_{\varphi}-\varepsilon]+\pi I_{\Pi}\rho_{r}\cos[(\omega_{a}+v)t+\delta_{W}+\delta_{\varphi}-\varepsilon]+m_{T}R_{T}L\rho_{T}\times \\\times \cos[(\omega_{a}-v)t+\delta_{W_{T}}-\delta_{\varphi}-\varepsilon]+m_{T}R_{T}L\rho_{T}\cos[(\omega_{a}+v)t+\delta_{W_{T}}+\delta_{\varphi}-\varepsilon]\}+ \\+\frac{2P_{0}i\omega_{a}I_{\Pi}H}{HBR}\{v\rho_{r}\rho_{\psi}\cos[(\omega_{a}-v)t+\delta_{W}-\delta_{\psi}+\varepsilon]+v\rho_{r}\rho_{\psi}\cos[(\omega_{a}+v)t+\delta_{W}+\delta_{W}+\delta_{W}+\varepsilon]\}$$

$$\begin{split} +\delta_{\psi} - \varepsilon]\} + \frac{P_{0}i\omega_{a}}{HBR} v^{2} \rho_{\phi} \{I_{\Pi}\rho_{\tau} \sin[(\omega_{a} - v)t + \delta_{V} - \delta_{\phi} - \varepsilon] + I_{\Pi}\rho_{\tau} \sin[(\omega_{a} + v)t + \\ +\delta_{V} + \delta_{\phi} - \varepsilon] - m_{\tau}R_{\tau}L\rho_{\tau} \sin[(\omega_{a} - v)t + \delta_{W_{T}} - \delta_{\phi} - \varepsilon] + m_{\tau}R_{\tau}L\rho_{\tau} \sin[(\omega_{a} + v)t + \\ +\delta_{W_{T}} + \delta_{\phi} - \varepsilon]\}\}\}. \end{split}$$
(5.65)
$$2h\dot{\beta}_{1}^{(ac)} = -v_{2}^{2}\rho_{\psi} \sin(v_{2}t + \delta_{\psi} - \varepsilon_{2})D(v_{2}) - \frac{H}{B}D(v_{3})v_{3}\rho_{\phi} \cos(v_{3}t + \delta_{\phi} - \varepsilon_{3}) - \\ -\frac{P_{0}\omega_{a}^{2}}{HBR}\{D(v_{3})v_{3}\rho_{\phi}\{I_{\Pi}\rho_{\tau} \cos[(\omega_{a} - v_{3})t + \delta_{V} - \delta_{\phi} - \varepsilon_{3}] + I_{\Pi}\rho_{\tau} \cos[(\omega_{a} + v_{3})t + \\ +\delta_{V} + \delta_{\phi} - \varepsilon_{3}] + \pi\rho_{\tau} \cos[(\omega_{a} - v_{3})t + \delta_{W} - \delta_{\phi} - \varepsilon_{3}] + \pi\rho_{\tau} \cos[(\omega_{a} + v_{3})t + \\ +\delta_{\psi} - \varepsilon_{3}] + m_{\tau}R_{\tau}L\rho_{\tau} \cos[(\omega_{a} - v_{3})t + \delta_{W_{\tau}} - \delta_{\phi} - \varepsilon_{3}] + m_{\tau}R_{\tau}L\rho_{\tau} \cos[(\omega_{a} + v_{3})t + \\ +\delta_{W_{T}} + \delta_{\phi} - \varepsilon_{3}]\} + \frac{2P_{0}i\omega_{a}I_{\Pi}H}{HBR}\{D(v_{2})v_{2}\rho_{\tau}\rho_{\psi} \cos[(\omega_{a} - v_{2})t + \delta_{W} - \delta_{\psi} - \varepsilon_{2}] + \\ +D(v_{2})v_{2}\rho_{\tau}\rho_{\psi} \cos[(\omega_{a} + v_{2})t + \delta_{\psi} - \varepsilon_{2}]\} + \frac{P_{0}D(v_{3}i\omega_{a}}{HBR}v_{3}^{2}\rho_{\phi}\{I_{\Pi}\rho_{\tau} \sin[(\omega_{a} - v_{3})t + \\ +\delta_{W_{\tau}} - \delta_{\phi} - \varepsilon_{3}] + I_{\Pi}\rho_{\tau} \sin[(\omega_{a} + v_{3})t + \delta_{V} + \delta_{\phi} - \varepsilon_{3}] + m_{\tau}R_{\tau}L\rho_{\tau} \sin[(\omega_{a} - v_{3})t + \\ +\delta_{W_{T}} - \delta_{\phi} - \varepsilon_{3}] + m_{\tau}R_{\tau}L\rho_{\tau} \sin[(\omega_{a} + v_{3})t + \delta_{W_{\tau}} + \delta_{\phi} - \varepsilon_{3}]\},$$
(5.66)

$$\text{Altermatical determinants} = 2h(v_{1}) + \left(\frac{1}{v_{1}^{2}}\right) + \frac{1}{v_{1}^{2}} + \frac{1}{v_{1}^$$

Аналогічно записується друге наближення для *синхронної* та *асинхронної* хитавиці.

З наведених співвідношень походить, що за спільної дії на прилад кінематичного і акустичного збурень, вже у першому наближенні можна з'ясувати систематичний дрейф вихідного сигналу гіроскопа. Це має місце при рівності частот кінематичного і акустичного збурень, тобто при виконанні умови $\omega_a = v$. Причому систематичний дрейф осі приладу має місце як за *синхронної*, так і за *асинхронній* хитавиці фюзеляжу ЛА.

Найбільший практичний інтерес являють сталі складові у правій частині виразів (5.65) та (5.66). Усталене значення вихідного сигналу приладу буде дорівнювати

$$2h\beta = C;$$
$$\dot{\beta} = \frac{C}{2h}.$$

З'ясуємо сталу складову *С*. Осереднення у часі позначимо символом (). Тоді в правій частині виразу (5.65) виділимо сталі значення, тобто здійснимо наступну процедуру –

$$\langle x \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x(t) dt.$$

У підсумку маємо для синхронних коливань –

$$2h\beta_1 =$$

$$= -\frac{P_{0}\omega_{a}^{2}\cos^{2}\beta_{0}}{HBR}v\rho_{\varphi}[I_{\Pi}\rho_{\tau}\cos(\delta_{V}-\delta_{\varphi}) + \pi\rho_{r}\cos(\delta_{W}-\delta_{\varphi}) + m_{T}R_{T}L\rho_{T}\times$$

$$\times\cos(\delta_{W_{T}}-\delta_{\varphi})] + \frac{2P_{0}i\omega_{a}\cos^{2}\beta_{0}I_{\Pi}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\rho_{r}\rho_{\psi}\times$$

$$\times[v\cos(\delta_{W}-\delta_{\psi}) + \omega_{0}\cos(\delta_{W}-\delta_{\psi})] + \frac{P_{0}i\omega_{a}\cos\beta_{0}}{HBR}v^{2}\rho_{\varphi}[I_{\Pi}\rho_{\tau}\sin(\delta_{V}-\delta_{\varphi}) + m_{T}R_{T}L\rho_{T}\sin(\delta_{W_{T}}-\delta_{\varphi}). \qquad (5.67)$$

Аналогічно для асинхронних коливань –

$$2h\dot{\beta}_1 =$$

$$= -\frac{P_{0}\omega_{a}^{2}\cos\beta_{0}}{HBR}v_{3}\rho_{\varphi}[I_{\Pi}\rho_{\tau}\cos(\delta_{V}-\delta_{\varphi}-\varepsilon_{3})+\pi\rho_{r}\cos(\delta_{W}-\delta_{\varphi}-\varepsilon_{3})+m_{T}R_{T}L\rho_{T}\times$$

$$\times\cos(\delta_{W_{T}}-\delta_{\varphi}-\varepsilon_{3})]+\frac{P_{0}i\omega_{a}\cos\beta_{0}}{HBR}v_{3}^{2}\rho_{\varphi}[I_{\Pi}\rho_{\tau}\sin(\delta_{V}-\delta_{\varphi}-\varepsilon_{3})+m_{T}R_{T}L\rho_{T}\times$$

$$\times\sin(\delta_{W_{T}}-\delta_{\varphi}-\varepsilon_{3})]; \qquad (5.68)$$

$$2h\dot{\beta}_{1} =$$

$$=\frac{2P_{0}i\omega_{a}\cos^{2}\beta_{0}I_{\Pi}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\nu_{2}\rho_{r}\rho_{\psi}\cos(\delta_{W}-\delta_{\psi}-\varepsilon_{2})]; \quad (5.69)$$

$$=\frac{2P_{0}i\omega_{a}\cos^{2}\beta_{0}I_{\Pi}(R\omega_{0}\sin 2\beta_{0}+H\cos\beta_{0})}{HBR}\omega_{0}\rho_{r}\rho_{\theta}\sin(\delta_{W}-\delta_{\theta}-\varepsilon_{1})]; \quad (5.70)$$

Тут вираз (5.68) визначає систематичний дрейф інтегруючого гіроскопа якщо $\omega_a = v_3$, формула (5.69) – якщо $\omega_a = v_2$, формула (5.70) – якщо $\omega_a = v_1$. Таким чином, за спільної дії кінематичного і акустичного збурень, при *асинхронній* хитавиці також мають місце дрейфи нуля приладу.

В чому особливість одержаних результатів.

Класична прикладна гіроскопія стверджує, що за асинхронної хитавиці основи систематичного зсуву нуля (або дрейфу нуля у інтегруючого гіроскопа) бути не може. В той же час, досліди і стендова атестація приладів підтвердили протилежне. В чому ж причина.

А причина в тому, що за асинхронної хитавиці літального апарату в акустичних полях під час експлуатаційного використання ЛА, металеві комплектуючі переходять із стану абсолютно твердих в імпедансні. Таким чином формуються в матеріалі Ейлерові сили інерції, точніше моменти сил інерції Коріоліса, які призводять до прецесії рухомої частини підвісу навколо вихідної осі. Стала складова девіації осі гіроскопа (або дрейфу осі) є прояв ефекту вибірковості – частоти кінематичного збурення підкреслюють такі ж частоти в акустичній вібрації підвісу внаслідок дифракційних явищ, що породжує сталі складові збурюючих моментів сил інерції Коріоліса. Література до розділу 5

- 1. Крылов, А.Н. Общая теория гироскопов и некоторых технических ее применений [Текст]: моногр. / А.Н. Крылов, Ю.А. Крутков. Л.: Изд-во АН СССР, 1932. 134 с.
- Ривкин, С.С. Теория гироскопических устройств. Ч. І. [Текст]: учеб. пособ. / С.С. Ривкин. – Л.: Судпромгиз, 1962. – 507с.
- Ройтенберг, Я.Н. Гироскопы [Текст]: моногр. /Я.Н. Ройтенберг. М.: Наука, 1966. – 312с.
- Анфимов, Н.А. Методология формирования целевой программы пилотируемого космического комплекса (ПКК) [Текст] / Н.А. Анфимов, М.В. Синельщиков, В.В. Суворов, М.М. Цымбалюк // Первая Украинская конференция по перспективным космическим исследованиям: сб. науч. тр. – Киев, 2001. – С. 11-15.
- Зиненко, В.А. О систематических уходах трехосной гироскопической платформы, вызванных ее угловыми колебаниями [Текст] / В.А. Зиненко // Изв. АН СССР. Механика и машиностроение. – 1964, №3. – С. 75-78.
- Карачун, В.В. О влиянии акустического излучения на динамику чувствительных элементов гиростабилизированных платформ [Текст] / В.В. Карачун, В.Г. Лозовик // Космічна наука і технологія. – 1995. – Т. 1, № 2-6. – С. 72-75.
- Павлов, В.А. Теория гироскопа и гироскопических приборов [Текст]: моногр.
 / В.А. Павлов. Л.: Судостроение, 1964. 314с.
- Пельпор, Д.С. Гироскопические приборы и автопилоты [Текст]: моногр. / Д.С. Пельпор. – М.: Машиностроение, 1964. – 531с.
- Зельдович, С.М. Автокомпенсация инструментальных погрешностей гиросистем [Текст]: моногр. / С.М. Зельдович, М.И. Малтинский, И.М. Окон и др. Л.: Судостроение, 1976. 255с.
- Бесекерский, В.А. Динамический синтез систем гироскопической стабилизации [Текст]: моногр. / В.А. Бесекерский, Е.Н. Фабрикант; Ленинградский гос. ун-т. – Л.: Судостроение, 1968. – 478 с.
- 11. Павловский, М.А. Теория гироскопов [Текст]: учеб. для вузов / М.А.

Павловский. – К.: Вища шк., 1986. – 303 с.

- Арутюнов, С.С. К вопросу о погрешностях двухстепенного интегрирующего гироскопа, вызванных угловыми колебаниями основания [Текст] / С.С. Арутюнов // Изв. ВУЗов СССР, «Приборостроение». – 1960. – Т. 3, №3. – С. 11-15.
- Будняцкий, И.М. К обратной задаче теории гиростабилизаторов [Текст] / И.М. Будняцкий, Я.Л. Лунц // Изв. ВУЗов СССР, «Приборостроение». 1966.
 Т. 9, №6. С. 41-45.
- Коржов, Л.П. О систематических «уводах» в некоторых гироскопических приборах. [Текст] / Л.П. Коржов // Вопросы прикладной гироскопии: сб. науч. тр. – Вып. 1. – М., 1958. – С. 31-34.
- 15. Карачун, В.В. Дифракция звуковых волн на подвесе гироскопа [Текст]: моногр. / В.В. Карачун, В.Г. Лозовик, В.Н. Мельник; Нац. техн. ун-т Украины. «КПИ». – К.: «Корнейчук», 2000. – 176 с.
- 16. Potapova, E.R. Problems of Acoustic Elasticity of Carriers' Board Equipment. [Текст] / E.R. Potapova, V.V. Karachun, V.N. Melnik // THE FIFTH CHINA-RUSSIAN-UKRAIN SIMPOSIUM ON SPACE SCIENCE AND TECHNOLOGY Held Jointly THE FIRST INTERNATIONAL FORUM ON ASTRONAUTICS. 6th – 9th June, 2000. Harbin Institute of Technology, Harbin. P.R. China. – P. 350-355.
- Сайдов, П.И. Вопросы прикладной теории гироскопов [Текст]: моногр. / П.И. Сайдов, Э.И. Слив, Р.И. Чертков; Ленингр. электро-техн. ин-т. – Л.: Судпромгиз, 1961. – 198 с.
- 18 Karachun, V.V. Vibration of Porous. Plates under the Action of Acoustic [Текст] / V.V. Karachun // SOVIET APPLIED MECHANICS. 1987. Vol. 22, №3. Р. 236-238.
- 19 Карачун, В.В. Нестационарная задача взаимодействия акустического излучения ракет-носителей с двухстепенным гироскопом [Текст] / В.В. Карачун, В.Г. Лозовик, В.Н. Мельник, Е.К. Кундеревич // Космічна наука і технологія. – 2001. – Т. 7, №5/6. – С. 21-25.

РОЗДІЛ 6. НЕЛІНІЙНІ КОЛИВАННЯ РУХОМОЇ ЧАСТИНИ ГІРОСКОПА ВНАСЛІДОК РОЗВИВАЮЧОЇСЯ АНІЗОТРОПНОСТІ РІДИННОСТАТИЧНОЇ СКЛАДОВОЇ ПІДВІСУ

Оцінка параметрів польоту широкого класу надзвукових літальних апаратів здійснюється на борту літака-носія і тому питання точності побудови опорної системи координат, що зв'язана з носієм, набуває виняткової важливості.

Проаналізуємо, на відміну від вже відомих, причини додатково виникаючих похибок поплавкових приладів.

Нелінійні коливання рухомої частини гіроскопа внаслідок неоднорідності рідиннофазної частини підвісу. За натурних умов, через ударні впливи, вібрацію, температурні та інші чинники, в рідинностатичній частині підвісу можуть виникати газові бульбашки, які під дією акустичного випромінювання будуть рухатися у бік розповсюдження звукової хвилі, тобто в зону акустичної тіні (рис. 6.1). Скупчуючись в одному місці, вони в змозі порушити рівновагу вихідної системи гідростатичних і масових сил і привести до виникнення збурюючого моменту М відносно осі поплавкового підвісу.

Закономірності руху бульбашок газу в гідростатичному підвісі під дією звукової хвилі. Залишаючи осторонь аналіз причин і природи утворення бульбашок, визначимо їх переміщення з огляду на їх пружно-деформуєму поверхню. Оцінимо ступінь впливу деформованої поверхні, а також незалежних від часу властивостей рідини, наприклад, в'язкості, на величину остаточних переміщень бульбашок. Припущень щодо форми акустичної хвилі робити не будемо.

Лінійність задачі дозволяє навести рівняння руху, наприклад, однієї бульбашки, в проекціях на її головні центральні осі інерції у вигляді [1] –

$$m_{ii} U_{*i} + Q_i = F_i$$
, $i = 1, 2, ..., 6;$ (6.1)

$$m_{ii} \ddot{U}_{*i} + c_i U_{*i} + Q_i = F_i ; (6.2)$$

$$m_{ii} \ddot{U}_{*i} + b_i \dot{U}_{*i} + Q_i = F_i , \qquad (6.3)$$

де m_{ii} – маса бульбашки (за кутового руху – момент інерції); \ddot{U}_{*i} – прискорення центру мас (лінійне чи кутове); F_i – сила, з якою хвиля, що розповсюджується у рідині, діє на недеформуєму поверхню бульбашки; Q_i – додаткова сила взаємодії бульбашки з середовищем, яка обумовлена деформацією її поверхні. Якщо вивчається кутовий рух, тоді всі сили слід замінити моментами.

Рис. 6.1. Механізм дії акустичної хвилі на бульбашки газу

Сила Q_i визначається формулою [2] –

$$Q_i = \iint_{s} \vec{q} \left(k, y, t\right) \cdot \vec{\tau}_i \left(x, y\right) dS , \qquad (6.4)$$

де \vec{q} – тиск, породжений переміщенням бульбашки; $\vec{\tau}_i$ – одиничний вектор відповідної осі координат; x, y – координати на поверхні бульбашки; t – час; S – поверхня бульбашки. Залежність узагальненої сили Q_i від переміщення поверхні може бути наведена в явному виді, для чого достатньо представити переміщення поверхні бульбашки в наступній формі –

$$\vec{W}(x, y, t) = \sum_{k} U_{k}(t) \vec{V}_{k}(x, y) , \qquad k=1,2,$$
 (6.5)

де $\vec{V}_k(x, y)$ – досить повна система векторних функцій, причому за k=1,..., 6 ці функції співпадають з визначеними вище $\vec{\tau}_i$, тобто відповідають переміщенням поверхні в цілому, а решта (k=7, 8,...) позначають деформації поверхні; $U_k(t)$ – узагальнена координата. Зрозуміло, що за відсутності деформацій, $U_k = U_{*k}$ якщо k=1,..., 6 і $U_k = 0$, якщо k = 7, 8,...

Коли поверхня бульбашки переміщується (або деформується) таким чином, що узагальнена координата зростає з одиничною швидкістю

$$\dot{U}_k|_{t>0} = 1;$$
 $U_k|_{t<0} = 0;$ $U_m|_{m\neq k} = 0$

тоді на поверхні бульбашки, кажучи взагалі, виникає тиск із складовими по всім напрямкам $\vec{\tau}_i$. Співвідношення (6.4) позначить узагальнену силу $f_{ik}(t)$, яка відповідає цим умовам.

З огляду на лінійність задачі, узагальнена сила $Q_i(t)$, яка виникає при довільному переміщенні поверхні, визначається рівністю, яка безпосередньо витікає з принципу суперпозиції –

$$Q_{i}\left(t\right) = \sum_{k} Q_{ik}\left(t\right) = \sum_{k} \int_{0}^{t} f_{ik}\left(t-\tau\right) \ddot{U}_{k}\left(\tau\right) d\tau.$$
(6.6)

Тут і надалі передбачається, що $U_{k|_{t\leq 0}} = 0$, а \ddot{U}_k , взагалі, містить імпульсні функції. Зокрема, $U_k \neq 0$, якщо $t \rightarrow +0$.

Залежність узагальнених сил F_i від параметрів хвилі тиску також може бути наведена за допомогою функцій f_{ik} . Отримати таку залежність дозволяє уявлення руху частини рідини, обмеженої поверхнею бульбашки. Динамічна рівновага одержаного у такий спосіб "фіктивного" тіла може бути описана рівняннями, аналогічними (6.1 – 6.3). Якщо при цьому "фіктивне" тіло знаходиться на місці вивчаємої бульбашки, а динамічна рівновага його розглядається відносно обраних вище осей, тоді складові зовнішнього впливу на незміщену поверхню і функції f_{ik} для "*фіктивного*" тіла будуть тими ж самими, що і для бульбашки, тому рівняння мають вигляд –

$$F_{i} = \sum_{n} m_{ni}^{\phi} \ddot{U}_{*n}^{\phi} + \sum_{k} \int_{0}^{t} f_{ik} (t - \tau) \ddot{U}_{k}^{\phi} (\tau) d\tau ; \qquad (6.7)$$

$$F_{i} = \sum_{n} m_{ni}^{\phi} \ddot{U}_{*n}^{\phi} + \sum_{k} \int_{0}^{t} f_{ik} (t - \tau) \ddot{U}_{k}^{\phi} (\tau) d\tau + c_{n} U_{*n} ; \qquad (6.8)$$

$$F_{i} = \sum_{n} m_{ni}^{\phi} \ddot{U}_{*n}^{\phi} + \sum_{k} \int_{0}^{t} f_{ik} (t - \tau) \ddot{U}_{k}^{\phi} (\tau) d\tau + b_{n} \dot{U}_{*n} , \qquad (6.9)$$

де m_{ni}^{ϕ} – маса (статичний момент, або момент інерції "фіктивного" тіла відносно обраних осей); індекс " ϕ " позначає належність до " ϕ *іктивного*" тіла. Передбачається, що бульбашка не відділена від рідини. Це означає, що коли вона знаходиться в реальній рідині, тоді переміщення середовища на її поверхні співпадають з її переміщеннями.

В той же час, якщо бульбашка знаходиться в ідеальній (без урахування в'язкості) рідини, тоді ця теза стосується нормальних переміщень.

Момент сил інерції представлений тут сумою моментів, які виникають внаслідок узагальнених переміщень U_{*n}^{ϕ} як при n = i, так і при $n \neq i$, оскільки осі, відносно котрих вивчається динамічна рівновага " ϕ *іктивного*" тіла, взагалі не являється для нього головними центральними осями інерції.

"Фіктивне" тіло не вносить збурень у хвилю, що розповсюджується в рідині. Тому, необхідні дані про його зміщення (U_k^{ϕ} , U_{*n}^{ϕ}) можуть бути одержаними після інтегрування певним чином спроектованих зміщень рідини по поверхні і об'єму бульбашки. Таким чином, рівняння (6.7 – 6.9) можна вважати як рівняння, що визначають сили F_i .

3 огляду на співвідношення (6.6), (6.7), рівняння (6.1 – 6.3) руху бульбашки можуть бути записаними у вигляді інтегро-диференціальних співвідношень:

$$m_{ii}\ddot{U}_{*i} + \sum_{k} \int_{0}^{t} f_{ik}(t-\tau) \ddot{U}_{k}(\tau) d\tau = \sum_{n} m_{ni}^{\phi} \ddot{U}_{*n}^{\phi} + \sum_{k} \int_{0}^{t} f_{ik}(t-\tau) \ddot{U}_{k}^{\phi}(\tau) d\tau ; \quad (6.10)$$

$$m_{ii}\ddot{U}_{*i} + \sum_{k} \int_{0}^{t} f_{ik} (t-\tau) \ddot{U}_{k} (\tau) d\tau + c_{i} U_{*i} = \sum_{n} m_{ni}^{\phi} \ddot{U}_{*n}^{\phi} + \sum_{k} \int_{0}^{t} f_{ik} (t-\tau) \ddot{U}_{k}^{\phi} (\tau) d\tau + c_{n} U_{*n};$$
(6.11)

$$m_{ii}\ddot{U}_{*i} + \sum_{k} \int_{0}^{t} f_{ik}(t-\tau)\ddot{U}_{k}(\tau)d\tau + b_{i}\dot{U}_{*i} = \sum_{n} m_{ni}^{\phi}\ddot{U}_{*n}^{\phi} + \sum_{k} \int_{0}^{t} f_{ik}(t-\tau)\ddot{U}_{k}^{\phi}(\tau)d\tau + b_{n}\dot{U}_{*n}.$$
(6.12)

Аналіз цих рівнянь надає можливість зробити деякі висновки стосовно остаточних переміщень бульбашки. Перетворення Лапласа дає змогу привести ці рівняння до виду [3, 4] –

$$m_{ii} p^2 U_{*i}^+ + \sum_k f_{ik}^+ p^2 U_k^+ = \sum_n m_{ni}^{\phi} p^2 U_{*n}^{\phi_+} + \sum_k f_{ik}^+ p^2 U_k^{\phi_+} ; \qquad (6.13)$$

$$m_{ii} p^{2} U_{*i}^{+} + \sum_{k} f_{ik}^{+} p^{2} U_{k}^{+} + c_{i} U_{*i}^{+} = \sum_{n} m_{ni}^{\phi} p^{2} U_{*n}^{\phi_{+}} + \sum_{k} f_{ik}^{+} p^{2} U_{k}^{\phi_{+}} + c_{n} U_{*n}^{+}; \quad (6.14)$$

$$m_{ii} p^2 U_{*i}^+ + \sum_k f_{ik}^+ p^2 U_k^+ + b_i p U_{*i}^+ = \sum_n m_{ni}^\phi p^2 U_{*n}^{\phi+} + \sum_k f_{ik}^+ p^2 U_k^{\phi+} + b_n p U_{*n}^+ , \quad (6.15)$$

де індекс "+" і параметра р зв'язані співвідношенням

$$\int_{0}^{\infty} \Phi(t) txp(-p t) dt = \Phi^{+}(p) .$$

Тоді:

$$\begin{split} U_{*i}(t) \to U_{*i}(p) \to U_{*i}^{+} ; & U_{*i}(0) = 0 ; & \dot{U}_{*i}(0) = 0 ; \\ \ddot{U}_{*i}(t) \to p^{2} U_{*i}^{+} ; & f_{ik}(t) \to f_{ik}^{+} ; & \ddot{U}_{k}(t) \to p^{2} U_{k}^{+} ; \\ \int_{0}^{t} f_{ik}(t-\tau) \ddot{U}_{k}(\tau) d\tau &= f_{ik} \ddot{U}_{k} \to f_{ik}^{+} p^{2} U_{k}^{+} - \textit{відповідно до теореми Бореля;} \\ U_{*n}^{\phi}(t) \to U_{*n}^{\phi+} ; & \ddot{U}_{*n}^{\phi}(t) \to p^{2} U_{*n}^{\phi+} ; & \int_{0}^{t} f_{ik}(t-\tau) \ddot{U}_{k}^{\phi}(\tau) d\tau \to f_{ik}^{+} p^{2} U_{k}^{\phi+} \end{split}$$

Для того, щоб з рівнянь (6.13 – 6.15) віднайти значення величини остаточних переміщень бульбашки, достатньо скористатися формулою [3] –

$$\lim_{t \to \infty} \Phi(t) = \Phi_{\infty} = \lim_{p \to 0} p \Phi^{+}(p), \qquad (6.16)$$

слушної, якщо границя (не обов'язково обмежена) в її лівій частині існує і виконується умова –

$$\left[\lim_{t\to\infty}\Phi(t)\exp(-pt)\right]_{p>0}=0.$$

Вплив фізико-механічних властивостей гідростатичного підвісу. За тих умов, коли акустична хвиля обмежена у часі (або затухає), а рідина нескінченна, можна стверджувати, що рух бульбашок буде задовольняти означеним умовам. Дійсно, випромінювання збурюючих хвиль під час коливань бульбашки у нескінченному середовищі спричиняє затухання коливань. Тому, якщо вони і будуть мати місце, все ж, з припиненням звукового впливу будуть затухати і, таким чином, переміщення у підсумку теж будуть прямувати до якоїсь межі. Крім того, обмеження зовнішнього збурення виключає експоненціальне збільшення величини переміщень бульбашки, якщо $t \to \infty$ [2].

Характер взаємозв'язку остаточних переміщень бульбашок від остаточних переміщень "фіктивного" тіла, тобто рідини за відсутності бульбашки, як походить із співвідношень (6.13 – 6.16), істотно залежить від поведінки функції $[f_{ik}^{+}(p)]_{p \to 0}$, або, що те ж саме, $[f_{ik}(t)]_{t \to \infty}$.

Коли бульбашки обмежених розмірів, тоді в залежності від властивостей підтримуючої поплавок рідини (нескінченної) можна наступним чином класифікувати функції f_{ik} .

Ідеальна (без урахування в'язкості) **зважуваюча рідина.** Нехай при t > 0 бульбашка переміщується (або деформується) у нескінченному середовищі з одиничною швидкістю

$$U_{k} = 1$$
, $U_{k}|_{t(0)} = 0.$

Через досить тривалий час, коли обтікання стане усталеним, стискання рідини вже не буде чинити впливу на поле швидкостей у досить великому довкіллю бульбашки, а кількість руху рідини буде характеризуватися приєднаними масами m_{ik}^0 . Рух рідини породжується силами f_{ik} при $\dot{U}_k = 1$. Тому кількість руху при $t \to \infty$ буде дорівнювати m_{ik}^0 , бо $m_{ik}^0 \dot{U}_k(t)|_{t\to\infty} = m_{ik}^0 \cdot 1 = m_{ik}^0$.

З урахуванням цього, маємо:

$$\frac{d}{dt} \left[m_{ik}^{0} \dot{U}_{k}(t) \right]_{t \to \infty} = f_{ik}(t)|_{t \to \infty} ;$$

$$\int_{0}^{t} \frac{d}{dt} \left[m_{ik}^{0} \dot{U}_{k}(t) \right]_{t \to \infty} = \int_{0}^{t} f_{ik}(\tau) d\tau|_{t \to \infty} ;$$

$$m_{ik}^{0} = \int_{0}^{t} f_{ik}(\tau) d\tau|_{t \to \infty} ; m_{ik}^{o} = \lim_{t \to \infty} \int_{0}^{t} f_{ik}(\tau) d\tau ;$$

$$m_{ik}^{0} = \int_{0}^{\infty} f_{ik}(\tau) d\tau |_{t \to \infty} ; m_{ik}^{o} = \lim_{t \to \infty} \int_{0}^{t} f_{ik}(\tau) d\tau ;$$

Застосуємо однобічне перетворення Лапласа:

$$f_{ik}(t) \rightarrow f_{ik}^{+}(p) = \int_{0}^{\infty} \exp(-pt) f_{ik}(\tau) d\tau ;$$

$$\lim_{p \to 0} f_{ik}^{+}(p) = \lim_{p \to 0} \int_{0}^{\infty} \exp(-pt) f_{ik}(\tau) d\tau ;$$

$$\lim_{p \to 0} f_{ik}^{+}(p) = \int_{0}^{\infty} f_{ik}(\tau) d\tau = m_{ik}^{0} .$$
(6.17)

Це значить, що коли рідина **ідеальна**, функції *f*_{*ik*} інтегруємі, а застосування співвідношень (6.16) дає:

$$\lim_{p \to 0} f_{ik}^{+}(p) = \int_{0}^{\infty} f_{ik}(\tau) d\tau = m_{ik}^{0}.$$
(6.18)

Реальна (з урахуванням в'язкості) **зважуваюча рідина.** Рівномірний рух в рідині буде зустрічати опір α_{ik} , тому

$$\lim_{t \to \infty} f_{ik}(t) = \alpha_{ik} .$$
(6.19)

Можна стверджувати, що $\alpha_{ik} > 0$. Крім того, зрозуміло, що всі величини опору α_{ik} скінченні.

У відповідності до формули (6.16):

$$\lim_{n \to 0} p f_{ik}^{+} = \alpha_{ik}.$$
 (6.20)

Приймаючи до уваги, що

$$U_{*_i} \mid_{t \to \infty} = const$$
,

тоді

$$\tilde{U}_{*_i}|_{t\to\infty}=0.$$

За усталеного переміщення бульбашок, тобто при $t \to \infty$, сили f_{ik} врівноважуються силами опору α_{ik} :

$$\lim_{t\to\infty}f_{ik}=\alpha_{ik} \qquad \left(\begin{array}{c} \alpha_{ik} > 0 \end{array} \right), \qquad \alpha_{ik} < M_{odmemory M} \right) .$$

Виконані попередні перетворення дозволяють оцінити границі, тобто за умови $p \rightarrow 0$, співвідношень, які походять з виразів (6.13 – 6.15), і надають можливість для обчислення остаточних переміщень бульбашок. Помножимо всі члени рівнянь (6.13 – 6.15) на величину p^q (тут q = -1, 0 відповідає вивченим вище двом випадкам стану зважуваючої гіровузол рідини) і спрямуємо величину p до нуля. Тоді граничні співвідношення отримають вид:

вільний від закріплень гіровузол

ідеальна рідина

$$m_{ii}U_{i\infty} + \sum_{k=1}^{6} m_{ik}^{0}U_{k\infty} + \left[m_{ii}\left(U_{*i\infty} - U_{i\infty}\right)\right] + \left[\sum_{k=7}^{\infty} m_{ik}^{o}U_{k\infty}\right] =$$

$$= \sum_{n} m_{ni}^{\phi}U_{n\infty}^{\phi} + \sum_{k=1}^{6} m_{ik}^{o}U_{k\infty}^{\phi} + \left[\sum_{n} m_{ni}^{\phi}\left(U_{*n\infty}^{\phi} - U_{n\infty}^{\phi}\right)\right] + \left[\sum_{k=7}^{\infty} m_{ik}^{0}U_{k\infty}^{\phi}\right];$$
(6.21)

реальна рідина

$$\sum_{k=1}^{6} \alpha_{ik} U_{k\infty} + \left[\sum_{k=7}^{\infty} \alpha_{ik} U_{k\infty}\right] = \sum_{k=1}^{6} \alpha_{ik} U_{k\infty}^{\phi} + \left[\sum_{k=7}^{\infty} \alpha_{ik} U_{k\infty}^{\phi}\right]; \qquad (6.22)$$

лінійно-пружний, безгістерезисний підвіс гіровузла

ідеальна рідина

незатухаючі коливання бульбашки (остаточні переміщення відсутні);

реальна рідина

незатухаючі коливання бульбашки (остаточні переміщення відсутні);

в'язко-пружний підвіс гіровузла

ідеальна рідина

незатухаючі коливання бульбашки (остаточні переміщення відсутні);

реальна рідина

$$\sum_{k=1}^{6} \alpha_{ik} U_{k\infty} + \left[\sum_{k=7}^{\infty} \alpha_{ik} U_{k\infty}\right] + b_i U_{k\infty} = \sum_{k=1}^{6} \alpha_{ik} U_{k\infty}^{\phi} + \left[\sum_{k=7}^{\infty} \alpha_{ik} U_{k\infty}^{\phi}\right] + b_n U_{k\infty}^{\phi}.$$
 (6.23)

В квадратних дужках наведені остаточні деформації поверхні бульбашки (ліва частина рівнянь) і "*фіктивного*" тіла (права частина рівнянь).

Аналіз переконує, що пружні деформації не впливають на величину остаточного переміщення бульбашки, тому що величини m_{ii} , m_{ik}^0 , α_{ik} обмежені, а остаточні деформації дорівнюють нулю, внаслідок чого дорівнюють нулю також відповідні їм члени.

Якщо функції *f_{ik}* не інтегруємі (реальна рідина), маса бульбашки і деформації його поверхні не впливають на остаточні переміщення. Цей висновок походить з формул (6.21 – 6.23), які не містять узагальнених мас бульбашок.

Коли деформації обох тіл пружні, головні центральні осі, а також їх маси (моменти інерції), відповідно співпадають і остаточні переміщення бульбашки і "фіктивного" тіла (рідини за відсутності бульбашки) дорівнюють між собою. Деформації "фіктивного" тіла будуть пружними, наприклад, у випадку плоскої акустичної хвилі, коли всі частки рідини переміщуються на одну і ту ж відстань.

Відсутність остаточного переміщення за лінійно-пружного та в'язко-пружного підвісу гіровузла означає наявність незатухаючих коливань.

Припустимо, що в рідині внаслідок або ударних, або теплових градієнтів (або тих і других разом), виникли бульбашки газу (рис. 6.2). Проаналізуємо природу виникнення моменту гідростатичних сил, обумовлених рухом бульбашок.

У вихідному стані масові сили гіровузла $M\vec{g}$ і архімедова сила \vec{F} напрямлені по одній вертикальній прямій в протилежних напрямках, так що має місце рівність

$$\vec{F} = -M\vec{g}$$

Утворення бульбашок, природно, призведе до паралельного зміщення вектора \vec{F} і виникнення збурюючого моменту відносно вихідної осі O_y .

Рис. 6.2. Природа виникнення збурюючого моменту при переміщенні бульбашок газу

Величина цього моменту обчислюється за формулою –

$$M^{a} = x_{A} F_{Z} = \frac{m_{k}}{m_{\infty}} \left[r + \int_{0}^{t} \dot{U}_{k}(\tau) d\tau \right] \sin\left(\hat{n, x}\right) F =$$

$$= \frac{m_{k} M^{0}}{m_{\infty}} g \left[r + \int_{0}^{t} \dot{U}_{k}(\tau) d\tau \right] \sin\left(\hat{n, x}\right),$$
(6.24)

де $F = M^{\circ}g$; m_k , M° , m_{sc} – відповідно маси k - i бульбашки; g – прискорення вільного падіння; $m_k r$ – статичний момент маси бульбашки.

Якщо бульбашка не переміщується $(\dot{U}_{k}(\tau)=0)$, тоді вираз (6.24) спрощується –

$$M^{a} = \frac{m_{k} M^{o}}{m_{\infty}} g r \sin\left(n, x\right).$$
(6.25)

204

Тут передбачається, що радіус бульбашки r₀ набагато менший за радіус поплавка, тобто

 $r_0 \langle \langle r \rangle$.

Якщо в площині шпангоута знаходиться *n* бульбашок, тоді формула (6.24) набуває виду –

$$M^{a} = \frac{M^{0}}{m_{\omega}}g\sum_{k=1}^{n} \left[m_{k}r + m_{k}\int_{0}^{t}\dot{U}_{k}(\tau)d\tau\right]\sin\left(n,x\right).$$
(6.26)

Припустимо, що бульбашки газу збираються в *m* площинах шпангоутів (рис. 6.3). Тоді отримуємо –

$$M^{a} = \frac{M^{0}}{m_{\mathcal{M}}}g\sum_{l=1}^{m}\sum_{k=1}^{n}\left[m_{k}r\sin\left(n,x\right) + m_{l}r\sin\left(n,x\right) + m_{k}r\sin\left(n,x\right) + m_{k}\int_{0}^{t}\dot{U}_{k}(\tau)\sin\left(n,x\right)d\tau + m_{l}\int_{0}^{t}\dot{U}_{l}(\tau)\sin\left(n,x\right)d\tau\right].$$
(6.27)

Якщо радіус бульбашки досить значний, тоді можна формулу (6.27) дещо уточнити:

$$M^{a} = \frac{M^{0}}{m_{\mathcal{H}}}g\sum_{l=1}^{m}\sum_{k=1}^{n}\left[m_{k}\left(r+r_{0k}\right)\sin\left(\stackrel{\wedge}{n,x}\right)+m_{l}\left(r+r_{0l}\right)\sin\left(\stackrel{\wedge}{n,x}\right)+m_{k}\int_{0}^{t}\dot{U}_{k}\left(\tau\right)\sin\left(\stackrel{\wedge}{n,x}\right)d\tau+m_{l}\int_{0}^{t}\dot{U}_{l}\left(\tau\right)\sin\left(\stackrel{\wedge}{n,x}\right)d\tau\right].$$
(6.28)

Як було вже зазначено, акустичне випромінювання сягає свого максимуму під час старту ЛА з відкритих стартових позицій, з платформ мобільного базування, або з іншого апарату. З ростом висоти польоту, ця величина суто зменшується. Тому можна вважати повний імпульс акустичного тиску обмеженим за величиною. В цьому випадку бульбашки газу пройдуть на деяку величину і зупиняться, коли дія акустичного випромінювання стане нечутливою.

Для з'ясування закону руху U(t) бульбашок газу з урахуванням тільки тертя о рідину, скористаємося інтегро-диференціальними співвідношеннями (6.10 – 6.12) [5]:

$$m_{k}\ddot{U}_{k}(t) + \int_{0}^{t} \left[m_{k0}\delta_{1}(t-\tau) + \alpha\right] \ddot{U}_{k}(\tau)d\tau = m_{k}^{0} \left[\delta_{1}(t) - \delta_{1}(t-1)\right] + \int_{0}^{t} \left[m_{k0}\delta_{1}(t-\tau) + \alpha\right] \left[\delta_{1}(\tau) - \delta_{1}(\tau-1)\right] d\tau , \qquad (6.29)$$

де m_k^0 – маса витиснутої бульбашкою рідини; m_{k0} – приєднані маси; α – коефіцієнт в'язкого опору при рухові бульбашки; $\delta_1(t)$ – дельта-функція Дірака (*Dirac*).

Рис. 6.3. Місцезнаходження бульбашок газу в рідинностатичній частині підвісу

Застосуємо одностороннє перетворення Лапласа за нульових початкових умов. В результаті, вираз (6.29) запишемо в операторній формі:

$$(m_k + m_{k0}) p^2 U_k(p) + \alpha p U_k(p) = (m_k^0 + m_{k0}) (1 - e^{-p}) + \alpha \left(\frac{1}{p} - \frac{1}{p} e^{-p}\right).$$

Або так –

$$p[(m_k+m_{k0})p+\alpha]U_k(p)=(1-e^{-p})(m_k^0+m_{k0}+\alpha\frac{1}{p}).$$

Звідкіля знаходимо:

$$U_{k}(p) = \frac{\left(1 - e^{-p}\right)\left(m_{k}^{0} + m_{k0} + \frac{\alpha}{p}\right)}{p\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(1 - e^{-p}\right)\left[\left(m_{k}^{0} + m_{k0}\right)p + \alpha\right]}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha\right]} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha} = \frac{\left(m_{k}^{0} + m_{k0}\right)p + \alpha}{p^{2}\left[\left(m_{k} + m_{k0}\right)p + \alpha} = \frac{$$

Перший дріб наведемо іншим чином –

$$\frac{\left(m_{k}^{0}+m_{k0}\right)p+\alpha}{p^{2}\left[\left(m_{k}+m_{k0}\right)p+\alpha\right]}=\frac{a_{1}}{p^{2}}+\frac{a_{2}}{p}+\frac{a_{3}}{\left(m_{k}+m_{k0}\right)p+\alpha}.$$

Тоді,

$$(m_k^0 + m_{k0})p + \alpha = a_1 [(m_k + m_{k0})p + \alpha] + a_2 p [(m_k + m_{k0})p + \alpha] + a_3 p^2.$$

Це співвідношення дозволяє з'ясувати значення величин a_1, a_2 та a_3 :

$$\begin{array}{c|c} p=0 \\ p^{2} \\ p \\ m_{k}^{0}+m_{k0}=m_{k}+m_{k0}+\alpha a_{2}; \\ m_{k}^{0}+m_{k0}=m_{k}+m_{k0}+\alpha a_{2}; \\ \end{array} \\ a_{2}=\frac{1}{\alpha}\left(m_{k}^{0}-m_{k0}\right); \\ a_{3}=\frac{\left(m_{k}-m_{k}^{0}\right)\left(m_{k}+m_{k0}\right)}{\alpha}$$

А з урахуванням обчислених значень величин *a_i*, переміщення бульбашки в операторній формі набуде вигляду –

$$U_{k}(p) = \frac{1}{p^{2}} - \frac{1}{p} \cdot \frac{m_{k} - m_{k}^{0}}{\alpha} + \frac{m_{k} - m_{k}^{0}}{\alpha} \cdot \frac{1}{p + \frac{\alpha}{m_{k} + m_{k0}}} - e^{-p} \left(\frac{1}{p^{2}} - \frac{1}{p} \cdot \frac{m_{k} - m_{k}^{0}}{\alpha} + \frac{m_{k} - m_{k}^{0}}{\alpha} \cdot \frac{1}{p + \frac{\alpha}{m_{k} + m_{k0}}} \right).$$

Введемо позначення $v_1 = \frac{\alpha}{m_k + m_{k0}}$ і перейдемо до оригіналу. Отримаємо закон

руху бульбашки –

$$U_{k}(t) = \left[t - \frac{1}{\alpha} \left(m_{k} - m_{k}^{0} \right) \left(1 - e^{-\nu_{1}t} \right) \right] \delta_{0}(t) - \left[t - 1 - \frac{1}{\alpha} \left(m_{k} - m_{k}^{0} \right) \left(1 - e^{-\nu_{1}(t-1)} \right) \right] \delta_{0}(t-1).$$
(6.30)

Якщо співмножники $(1-e^{-v_{1}t})$ та $(1-e^{-v_{1}(t-1)})$ навести у вигляді розкладу в ряд, за умови що $1 \le t$, тоді отримаємо:

$$U_{k}(t) = \frac{m_{k}^{0} + m_{k0}}{m_{k} + m_{k0}} + \frac{m_{k} - m_{k}^{0}}{m_{k} + m_{k0}} \sum_{n=1}^{\infty} (-1)^{n+1} v_{1}^{n} \frac{t^{n+1} - (t-1)^{n+1}}{(n+1)!}, \quad 1 \le t.$$
(6.31)

За тих обставин, коли в'язкий опір невеличкий за величиною, а час T достатньо великий ($v_1T \ll 1$), за час руху $1 \le t \le T$ переміщення бульбашки буде окреслене тільки першим доданком.

Проведемо оцінку величини граничного переміщення бульбашки. Для цього у виразі (6.31) достатньо прийняти *t*→∞. Тоді отримаємо:

$$\lim_{t \to \infty} U_k(t) = \frac{m_k^0 + m_{k0}}{m_k + m_{k0}}, \quad \text{якщо } v_1 T \ll 1.$$
 (6.32)

Наведені співвідношення отримані для однієї бульбашки. Узагальнимо ці результати на довільну їх кількість.

Найбільший інтерес, як правило, представляє значення усталеного "*зсуву нуля*" (у датчика кутової швидкості), або "*дрейфу нуля*" (в інтегруючого гіроскопа). Тому спочатку зробимо їх кількісну оцінку.

Нехай, за деякий фіксований час дія акустичного випромінювання припинилася. Тоді, якщо бульбашки знаходяться в площині одного шпангоута, збурюючий момент *M^a* буде визначатися формулою –

$$M^{a} = \frac{M^{0}}{m_{\mathcal{H}}} g \sum_{k=1}^{n} \left[m_{k} r + m_{k} \frac{m_{k}^{0} + m_{k0}}{m_{k} + m_{k0}} U_{k\infty} \right] \sin\left(\stackrel{\wedge}{n, x} \right), \tag{6.33}$$

якщо ж бульбашки знаходяться в декількох площинах, тоді формула ускладнюється –

$$M^{a} = \frac{M^{0}}{m_{xc}}g\sum_{l=1}^{m}\sum_{k=1}^{n}\left[\left(m_{k}+m_{l}\right)r\sin\left(\hat{n},x\right)+\right.\\\left.+\left(m_{k}\frac{m_{k}^{0}+m_{k0}}{m_{k}+m_{k0}}U_{k\infty}+m_{l}\frac{m_{l}^{0}+m_{l0}}{m_{l}+m_{l0}}U_{l\infty}\right)\sin\left(\hat{n},x\right)\right].$$
(6.34)

Зрозуміло, що коли бульбашки газу залишаться на поверхні поплавка, тоді збурюючий момент *М^a* буде дорівнювати –

$$M^{a} = \frac{M^{0}}{m_{\mathcal{H}}} g \sum_{l=1}^{m} \sum_{k=1}^{n} (m_{k} + m_{l}) r \sin\left(n, x\right).$$
(6.35)

Одержані співвідношення дозволяють з'ясувати величину систематичної складової "*зсуву нуля*" диференціючого гіроскопа –

$$\beta_{ycm} = \frac{M^{0}}{c_{1} m_{xc}} g \sum_{l=1}^{m} \sum_{k=1}^{n} \left[(m_{k} + m_{l}) r \sin\left(\hat{n}, x\right) + \left(m_{k} \frac{m_{k}^{0} + m_{k0}}{m_{k} + m_{k0}} U_{k\infty} + m_{l} \frac{m_{l}^{0} + m_{l0}}{m_{l} + m_{l0}} U_{l\infty} \right) \sin\left(\hat{n}, x\right) \right],$$

$$(6.36)$$

а також з'ясувати систематичний "дрейф нуля" інтегруючого гіроскопа –

$$\dot{\beta}_{ycm} = \frac{M^{0}}{b m_{xc}} g \sum_{l=1}^{m} \sum_{k=1}^{n} \left[\left(m_{k} + m_{l} \right) r + \left(m_{k} \frac{m_{k}^{0} + m_{k0}}{m_{k} + m_{k0}} U_{k\infty} + m_{l} \frac{m_{l}^{0} + m_{l0}}{m_{l} + m_{l0}} U_{l\infty} \right) \right] \sin\left(n, x \right).$$
(6.37)

Для того, щоб кількісно і якісно оцінити вплив руху утворених бульбашок газу на похибку приладу, наприклад, інтегруючого гіроскопа, достатньо скористатися рівнянням [6]:

$$B\ddot{\beta} + R\left[\left(\omega_z^2 - \omega_x^2\right)\sin\beta\cos\beta - \omega_x\omega_z\cos2\beta\right] + H\left(\omega_x\sin\beta + \omega_z\cos\beta\right) + B\dot{\omega}_y + b\dot{\beta} + M + \frac{M^0}{m_{\mathcal{H}}}g\sum_{l=1}^m\sum_{n=1}^n\left[\left(m_k + m_l\right)r + m_kU_k\left(t\right) + m_lU_l\left(t\right)\right]\sin\left(\stackrel{\wedge}{n,x}\right) = 0, \quad (6.38)$$

де $B = I_0 + I_y$; $R = I_0 + I_z - I_x$; I_x, I_y, I_z – моменти інерції поплавка; I, I_0 – полярний та екваторіальний моменти інерції ротора; H – кінетичний момент гіроскопа; β – кут повороту поплавка навколо вихідної осі Oy; $\omega_x, \omega_y, \omega_z$ – кутові швидкості фюзеляжу відносно центру мас; *М* – інші моменти-перешкоди (дебаланс, тертя, тяжіння струмоподводів тощо).

Обмежимося рамками прецесійної теорії. Рівняння (6.38) можна записати у скороченому вигляді –

$$b\dot{\beta} = -H\omega_{z}\cos\beta - H\omega_{x}\sin\beta - B\dot{\omega}_{y} + M + \frac{M^{0}}{m_{\mathcal{H}}}g\sum_{l=1}^{n}\sum_{k=1}^{n}\left\{ (m_{k}+m_{l})r + m_{k}\left[t - \frac{1}{\alpha}\left(m_{k}-m_{k}^{0}\right)\left(1-e^{-\nu_{1}t}\right)\right]\delta_{0}(t) - m_{k}\left[t - 1 - \frac{1}{\alpha}\left(m_{k}-m_{k}^{0}\right)\left(1-e^{-\nu_{1}(t-1)}\right)\right]\times \delta_{0}(t-1) + m_{l}\left[t - \frac{1}{\alpha}\left(m_{l}-m_{l}^{0}\right)\left(1-e^{-\nu_{1}t}\right)\right]\delta_{0}(t) - m_{l}\left[t - \frac{1}{\alpha}\left(m_{l}-m_{l}^{0}\right)\left(1-e^{-\nu_{1}(t-1)}\right)\right]\delta_{0}(t-1) \right\}\sin\left(n,x\right).$$

$$(6.39)$$

Звідкіля не складає труднощів обчислити кут повороту рухомої частини приладу:

$$\beta = -\int_{0}^{t} \frac{H\omega_{z}\cos\beta}{b} d\tau - \int_{0}^{t} \frac{H\omega_{x}\sin\beta}{b} d\tau + \int_{0}^{t} \frac{B\dot{\omega}y}{b} d\tau + \int_{0}^{t} \frac{M}{b} d\tau + \frac{M}{b} d\tau + \frac{M}{m} \int_{\infty}^{0} g \int_{0}^{t} \sum_{l=1}^{m} \sum_{k=1}^{n} \{(m_{k} + m_{l})r + m_{k} \left[\tau - \frac{1}{\alpha} (m_{k} - m_{k}^{0})(1 - e^{-\nu_{1}\tau})\right] \delta_{0}(\tau) - m_{k} \left[\tau - 1 - \frac{1}{\alpha} (m_{k} - m_{k}^{0})(1 - e^{-\nu_{1}(\tau-1)})\right] \delta_{0}(\tau-1) + m_{l} \left[\tau - \frac{1}{\alpha} (m_{l} - m_{l}^{0})(1 - e^{-\nu_{1}\tau})\right] \times \delta_{0}(\tau) - m_{l} \left[\tau - 1 - \frac{1}{\alpha} (m_{l} - m_{l}^{0})(1 - e^{-\nu_{1}(\tau-1)})\right] \delta_{0}(\tau-1) + M_{l} \left[\tau - \frac{1}{\alpha} (m_{l} - m_{l}^{0})(1 - e^{-\nu_{1}\tau})\right] \times \delta_{0}(\tau) - m_{l} \left[\tau - 1 - \frac{1}{\alpha} (m_{l} - m_{l}^{0})(1 - e^{-\nu_{1}(\tau-1)})\right] \delta_{0}(\tau-1) + M_{l} \left[\tau - \frac{1}{\alpha} (m_{l} - m_{l}^{0})(1 - e^{-\nu_{1}\tau})\right] \times \delta_{0}(\tau) - M_{l} \left[\tau - 1 - \frac{1}{\alpha} (m_{l} - m_{l}^{0})(1 - e^{-\nu_{1}(\tau-1)})\right] \delta_{0}(\tau-1) + \delta_{0}(\tau-1) + \delta_{0}(\tau) + \delta$$

Сенс перших чотирьох доданків в правій частині цього виразу відомий:

 $\frac{H\omega_z\cos\beta}{b}$ – корисний сигнал, пропорційний до вимірюваної кутової швидкості ω_z

ЛА;

 $\frac{H\omega_x \sin \beta}{b}$ – методична похибка приладу внаслідок дії перехресної кутової швидкості ω_x ;

 $\frac{B\dot{\omega}_{y}}{b}$ – похибка, обумовлена впливом кутового прискорення $\dot{\omega}_{y}$ ЛА;

 $\frac{M}{h}$ – похибка від впливу інших моментів-перешкод.

Останній доданок в правій частині виразу (6.40) є продукт обміркування природи впливу рухомих бульбашок газу в рідинностатичній частині підвісу на похибку вимірів. Зрозуміло, деякі спрощення розрахункової моделі не дозволили врахувати всі особливості явища, але і в такій, лінійній, будові стає можливим зробити конкретні висновки стосовно структури цієї похибки приладу і синтезувати ефективні засоби і методи боротьби з нею.

Проведений аналіз явища не претендує на абсолютну різнобічність. Зрозуміло, що поза увагою залишилися питання впливу сил молекулярної взаємодії рідини з металічним поплавком. Залишилися поза увагою також питання налипання рідини. Не розкриті процеси об'єднання невеликих бульбашок у більш габаритні і, зрозуміло, не окреслені ці додаткові нюанси на похибку приладу в експлуатаційних умовах.

Нарешті, винятковий інтерес являє аналіз впливу градієнта температури у рідинностатичній частині підвісу на похибки гіроскопа. Особливо розвиток їх у часі і просторі.

Нарешті, безсумнівно важливим є питання оптимальної товщини рідинноскладової. Оптимальної з точки зору впливу на похибки гіроскопа.

Література до розділу б

- Карачун, В.В. Волновые процессы в механических системах космического аппарата под влиянием акустического излучения [Текст] / В.В. Карачун, Н.В. Гнатейко // Космічна наука і технологія. – 1996. – Т. 2, №3-4. – С. 55-57.
- Слепян, Л.И. О перемещении деформируемого тела в акустической среде [Текст] / Л.И. Слепян // Прикл. матем. и мех. – 1963. – Т. XXVII. – Вып. 5. – С. 918 – 923.
- Диткин, В.А. Операционное исчисление: [Текст]: справочник / В.А. Диткин, П.И. Кузнецов. – М.: Гостехиздат, 1951. – 354 с.
- Мартыненко, В.С. Операционное исчисление [Текст]: уч. пособ. / В.С. Мартыненко. – К.: Вища шк., 1990.– 359 с.
- Кочин, Н.Е. Теоретическая гидромеханика. Ч. І. [Текст]: моногр. / Н.Е. Кочин, Н.А. Кибель, Н.В. Розе. – Л. – М.: ОГИЗ, Государственное издательство технико-теоретической литературы, 1948. – 535 с.
- Лунц, Я.Л. О систематических уходах платформы трехосного гиростабилизатора при колебаниях основания [Текст] / Я.Л. Лунц // Изв. ВУЗов СССР. "Приборостроение". 1967. Т. 7, № 4. С. 47-51.

РОЗДІЛ 7. АВТОКОМПЕНСАЦІЯ ВПЛИВУ ДИФРАКЦІЙНИХ ЯВИЩ

Проведемо оцінку одного з методів автокомпенсації, які знайшли використання в гіроскопії, а саме – метода автокомпенсації впливу зовнішніх збурюючих чинників. Технічну основу метода складає принцип двохканальності Б.М. Петрова [1, 2].

§ 7.1. Диференціальні рівняння руху тривісного гіростабілізатора

Лінеаризовані диференціальні рівняння руху платформи можна записати наступним чином [3].

$$\begin{aligned} A\dot{\omega}_{x} + A\dot{\omega}_{21}^{a} - H_{1}\dot{\beta}_{1} - k_{1}F_{1}(\beta_{1}) &= M_{x}; \\ I_{1}\ddot{\beta}_{1} + f_{1}\dot{\beta}_{1} + H_{1}\omega_{x} + H_{1}\omega_{21}^{a} &= M_{z1} - H_{1}\beta_{1}\omega_{y} - H_{1}\beta_{1}\omega_{22}^{a}; \\ B\dot{\omega}_{y} + B\dot{\omega}_{22}^{a} + H_{2}\dot{\beta}_{2} + k_{2}F_{2}(\beta_{2}) &= M_{y}; \\ I_{2}\ddot{\beta}_{2} + f_{2}\dot{\beta}_{2} - H_{2}\omega_{y} - H_{2}\omega_{22}^{a} &= M_{z2} - H_{2}\beta_{2}\omega_{x} - H_{2}\beta_{2}\omega_{21}^{a}; \\ C\dot{\omega}_{z} + C\dot{\omega}_{23}^{a} + H_{3}\dot{\beta}_{1} + k_{3}F_{3}(\beta_{3}) &= M_{z}; \\ I_{3}\ddot{\beta}_{3} + f_{3}\dot{\beta}_{3} - H_{3}\omega_{z} - H_{3}\omega_{23}^{a} &= M_{x3} - H_{3}\beta_{3}\omega_{y} - H_{3}\beta_{3}\omega_{22}^{a}, \end{aligned}$$
(7.1)

де *А В*, *С* – моменти інерції ГСП спільно з підвісом відносно осей X_{II} , Y_{II} , Z_{II} відповідно; f_x , f_y , f_z – коефіцієнти моментів сил в'язкого тертя; ω_x , ω_y , ω_z – проекції кутової швидкості платформи на осі стабілізації; I_1 , I_2 , I_3 – моменти інерції рухомої частини гіроскопів відносно осей прецесії; β_1 , β_2 , β_3 – кути прецесії гіроскопів; M_x , M_y , M_z – проекції зовнішніх моментів на осі стабілізації; H_1 , H_2 , H_3 – кінетичні моменти роторів гіроскопів; f_1 , f_2 , f_3 – коефіцієнти в'язкого тертя підвісу поплавкових чутливих елементів; M_{Z1} , M_{Z2} , M_{X3} – проекції зовнішніх моментів на осі стабілізації; арактеризують залежність між моментами стабілізуючих двигунів і відповідними

кутами прецесії; ω_{2i}^{a} (*i* = 1, 2, 3) — *"хибна*" кутова швидкість, на яку реагує поплавковий чутливий елемент ГСП, обумовлена впливом акустичного випромінювання на підвіс гіроскопа;

$$M_{Z1} = -I_{1}\dot{\omega}_{z} - I_{1}\dot{\omega}_{11}^{a} - M_{T1}sign\beta_{1} + M_{A\delta 1};$$

$$M_{Z2} = -I_{2}\dot{\omega}_{z} - I_{2}\dot{\omega}_{12}^{a} - M_{T2}sign\dot{\beta}_{2} + M_{A\delta 2};$$

$$M_{X3} = -I_{3}\dot{\omega}_{x} - I_{3}\dot{\omega}_{13}^{a} - M_{T3}sign\dot{\beta}_{3} + M_{A\delta 3},$$
(7.2)

де M_{T1} , M_{T2} , M_{T3} – моменти тертя на осях прецесії гіроскопів; M_{A01} , M_{A02} , M_{A03} – моменти дебалансу гіроскопів; $\dot{\omega}_{11}^{a}$, $\dot{\omega}_{12}^{a}$, $\dot{\omega}_{13}^{a}$ – додаткове кутове прискорення рухомої частини поплавкових чутливих елементів внаслідок дифракційних явищ на підвісі гіроскопу [4]:

$$\begin{split} \omega_{21}^{s} &= \frac{4I_{III}\omega_{x}\dot{W}(t)}{H_{1}R_{1}}; \quad \omega_{22}^{s} &= \frac{4I_{II2}\omega_{y}\dot{W}(t)}{H_{2}R_{2}}; \quad \omega_{23}^{s} &= \frac{4I_{II3}\omega_{x}\dot{W}(t)}{H_{3}R_{3}}; \\ \dot{\omega}_{11}^{a} &= \frac{2I_{1}}{H_{1}R_{1}} \Big\{ \Big[\dot{\omega}_{y}\sin\beta_{1} + \dot{\omega}_{x}\cos\beta_{1} + \dot{\beta}_{1} \Big(\omega_{y}\cos\beta_{1} - \omega_{x}\sin\beta_{1} \Big) \Big] \times \\ &\times \Big[m_{T1}R_{1}L_{1}\dot{W}_{T1}(t) + I_{II1} \Big(\dot{V}_{1}(t) + \pi \dot{W}_{1}(t) \Big) \Big] + \\ &+ \Big(\omega_{y}\sin\beta_{1} + \omega_{x}\cos\beta_{1} \Big) \Big[m_{T1}R_{1}L_{1}\ddot{W}_{T1}(t) + I_{II1} \Big(\ddot{V}_{1}(t) + \pi \ddot{W}_{1}(t) \Big) \Big] \Big\}; \\ \dot{\omega}_{12}^{a} &= \frac{2I_{2}}{H_{2}R_{2}} \Big\{ \Big[\dot{\omega}_{x}\sin\beta_{2} + \dot{\omega}_{z}\cos\beta_{2} + \dot{\beta}_{2} \Big(\omega_{x}\cos\beta_{2} - \omega_{z}\sin\beta_{2} \Big) \Big] \times \\ &\times \Big[m_{T2}R_{2}L_{2}\dot{W}_{T2}(t) + I_{II2} \Big(\dot{V}_{2}(t) + \pi \dot{W}_{2}(t) \Big) \Big] + \\ &+ \Big(\omega_{x}\sin\beta_{2} + \omega_{z}\cos\beta_{2} \Big) \Big[m_{T2}R_{2}L_{2}\ddot{W}_{T2}(t) + I_{II2} \Big(\ddot{V}_{2}(t) + \pi \ddot{W}_{2}(t) \Big) \Big] \Big\}; \\ \dot{\omega}_{13}^{a} &= \frac{2I_{3}}{H_{3}R_{3}} \Big\{ \Big[\dot{\omega}_{y}\sin\beta_{3} + \dot{\omega}_{z}\cos\beta_{3} + \dot{\beta}_{3} \Big(\omega_{y}\cos\beta_{3} - \omega_{z}\sin\beta_{3} \Big) \Big] \times \\ &\times \Big[m_{T3}R_{3}L_{3}\dot{W}_{T3}(t) + I_{II3} \Big(\dot{V}_{3}(t) + \pi \dot{W}_{3}(t) \Big) \Big] + \\ &+ \Big(\omega_{y}\sin\beta_{3} + \omega_{z}\cos\beta_{3} \Big) \Big[m_{T3}R_{3}L_{3}\ddot{W}_{T3}(t) + I_{II3} \Big(\ddot{V}_{3}(t) + \pi \ddot{W}_{3}(t) \Big) \Big] \Big\}, \end{split}$$
(7.3)

де R_i – радіуси поплавків і-го гіроскопа; L – довжини поплавків; $I_{\Pi i}$ – моменти інерції рухомої частини поплавків відносно вхідної осі гіроскопів; m_{Ti} – маси

торців поплавка; $W_{Ti}(t)$ – згини торців під дією акустичного випромінювання; $V_i(t)$, $W_i(t)$ – переміщення елементів бічної поверхні поплавка в площині шпангоута (V_i – тангенціальні складові, W_i – радіальні складові); $\dot{V}_i = i\omega V_i$; $\ddot{V}_i = -\omega^2 V_i$; $\dot{W}_i = i\omega W_i$; $\ddot{W}_i = -\omega^2 W_i$; $\dot{W}_{Ti} = i\omega W_{Ti}$; $\ddot{W}_{Ti} = -\omega^2 W_{Ti}$;

$$V_{i} = \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} V_{mni} \exp(im\beta_{\Pi i}) \sin\frac{n\pi z}{L_{i}} ; \qquad W_{i} = \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} W_{mni} \exp(im\beta_{\Pi i}) \sin\frac{n\pi z}{L_{i}} ;$$
$$V_{mni} = -im\frac{F_{mni}}{\Delta_{mni}} ; \qquad W_{mni} = \left[\omega^{2}\rho - m^{2} - \frac{1-\sigma}{2}\left(\frac{n\pi}{Li}\right)^{2}\right] \frac{F_{mni}}{\Delta_{mni}} ;$$

$$\Delta_{mni} = m^2 + \left[\omega^2 \rho - m^2 - \frac{1 - \sigma}{2} \left(\frac{n\pi}{L}\right)^2\right] \left\{ \left(\omega^2 \rho + 1\right) + c^2 \left[\left(\frac{m}{R_i}\right)^2 + \left(\frac{n\pi}{L_i}\right)^2\right] \right\}; (7.4)$$

$$m = 0, \pm 1, \pm 2, \dots; n = 0, 1, 2, 3 \dots;$$

$$F_{mni} = l_{mni} P_0 \exp(i\omega t);$$

$$l_{mni} = \frac{2n\pi \left[1 - \left(-1\right)^{n}\right]}{\left(n\pi\right)^{2} - \left(k_{0}L_{i}\right)^{2}} \begin{cases} 1, & \text{якщо } k_{0}R_{i}q = -m; \\ i\frac{\exp i\left[-2\pi k_{0}R_{i}\left(q + \cos\beta_{\Pi i}\cos\varepsilon_{1}\right)\right] - 1}{2\pi \left[k_{0}R_{i}\left(q + \cos\beta_{\Pi i}\cos\varepsilon_{1}\right) + m\right]}, & \text{якщо } k_{0}R_{i}q \neq -m; \\ i\frac{2\pi \left[k_{0}R_{i}\left(q + \cos\beta_{\Pi i}\cos\varepsilon_{1}\right) + m\right]}{2\pi \left[k_{0}R_{i}\left(q + \cos\beta_{\Pi i}\cos\varepsilon_{1}\right) + m\right]}, & \text{якщо } k_{0}R_{i}q \neq -m; \end{cases}$$

 β_{IIi} – центральний кут у площині шпангоута; $k_0 = \frac{\omega}{330} = \frac{\omega}{c_0}$, $[M^{-1}]$ – хвильове число; P_0 – тиск в падаючій звуковій хвилі, ∂E ; $W_{Ti} = W_{T_0i} \exp(i\omega t)$ (рис. 7.1), де $W_{T0i} = c^j u_j$, $j = \overline{1,6}$ [5];

$$u_{1} = \left(1 - \frac{x^{2}}{R_{i}^{2}} - \frac{y^{2}}{R_{i}^{2}}\right)^{2}; u_{2} = \frac{x}{R_{i}}u_{1}; u_{3} = \frac{y}{R_{i}}u_{1}; u_{4} = \frac{x^{2}}{R_{i}^{2}}u_{1}; u_{5} = \frac{y^{2}}{R_{i}^{2}}u_{1}; u_{6} = \frac{xy}{R_{i}^{2}}u_{1}; u_{6} = \frac{xy}{R_{i}^{2}}u_{1}; u_{7} = \frac{y}{R_{i}^{2}}u_{1}; u_{7} = \frac{y}{R_{i}^{2}}u_{1};$$

$$C = \left(\begin{array}{ccc} c^{1} & c^{2} & \dots & c^{N} \end{array} \right)^{T} = G^{-1}F =$$

$$= \frac{R_{i}^{4}}{64D_{i}}P_{0} \begin{vmatrix} 4 & 0 & 0 & 5 & 5 & 0 \\ 0 & 9 & 0 & 0 & 0 & 0 \\ 5 & 0 & 0 & 19 & 7 & 0 \\ 5 & 0 & 0 & 7 & 19 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 \end{vmatrix} = \begin{vmatrix} 4 - 2\left(\frac{\lambda_{i}}{2}\right)^{2} \\ i6 \cdot \frac{\lambda_{i}}{2}\cos\varepsilon \\ -i6 \cdot \frac{\lambda_{i}}{2}\sin\varepsilon \\ 5 - 2(2 + \cos 2\varepsilon)\left(\frac{\lambda_{i}}{2}\right)^{2} \\ 5 - 2(2 - \cos 2\varepsilon)\left(\frac{\lambda_{i}}{2}\right)^{2} \\ 5 - 2(2 - \cos 2\varepsilon)\left(\frac{\lambda_{i}}{2}\right)^{2} \\ 2 \cdot \left(\frac{\lambda_{i}}{2}\right)^{2}\sin 2\varepsilon \end{vmatrix} ;$$

Рис. 7.1. Схема проходження звукової хвилі через торець поплавкового підвісу: 1 – падаюча хвиля; 2 – відбита хвиля; 3 – пройдешня хвиля

 $D_i = \frac{E_i h_i}{12(1-\sigma)}$ – циліндрична жорсткість торця;

$$\left(\frac{\lambda_i}{2}\right)^2 = \frac{1}{4} \left(\cos^2\theta_1 \sin^2\theta + \sin^2\theta_1\right) \left(k_0 R_i\right)^2 <<1.$$

Припустимо, що фюзеляж ЛА створює детерміноване збурення, періодичне із сталою частотою і амплітудою і задане невипадковими функціями часу (рис. 7.1) –

$$M_{x} = M_{x}^{*} + M_{x}^{0} \sin \gamma_{1} t;$$

$$M_{y} = M_{y}^{*} + M_{y}^{0} \sin(\gamma_{2} t + \eta_{2});$$

$$M_{z} = M_{z}^{*} + M_{z}^{0} \sin(\gamma_{3} t + \eta_{3}),$$
(7.5)

де M_x^0 , M_y^0 , M_z^0 – амплітудні значення моментів; M_x^* , M_y^* , M_z^* – сталі складові.

Не складає труднощів, що врахування сталих складових моментів не внесе істотних змін в остаточні результати. Тому, припустимо, що $M_x^* = M_y^* = M_z^* = 0$.

Розв'язок системи рівнянь (7.1) будемо шукати методом послідовних наближень.

§ 7.2. Похибки стабілізації

Лінійне наближення

$$\left(\omega_x + \omega_{21}^a \right) = \omega_x^0 + X_1 + \cdots;$$

$$\left(\omega_y + \omega_{22}^a \right) = \omega_y^0 + Y_1 + \cdots;$$

$$\left(\omega_z + \omega_{23}^a \right) = \omega_z^0 + Z_1 + \cdots;$$

$$\beta_1 = \beta_1^0 + \delta_1 + \cdots;$$

$$\beta_2 = \beta_2^0 + \delta_2 + \cdots;$$

$$\beta_3 = \beta_3^0 + \delta_3 + \cdots.$$

$$(7.6)$$

Тут ω_x^0 , ω_y^0 , ω_z^0 , β_1^0 , β_2^0 , β_3^0 – розв'язки лінійного наближення, які не враховували нелінійних членів – гіроскопічних моментів перехресних зв'язків;
$X_1, Y_1, Z_1, \delta_1, \delta_2, \delta_3$ – додання до рішень відповідно першого і т.д. порядку мализни.

При відкиданні нелінійних членів $H_1\beta_1\omega_y$, $H_2\beta_2\omega_x$, $H_3\beta_3\omega_y$, рівняння системи (7.1) можуть попарно розглядатися як рівняння трьох незалежних систем стабілізації, що знаходяться під дією збурень M_x , M_y та M_z . Реакція систем на ці збурення і є розв'язок лінійного наближення ω_x^0 , ω_y^0 , ω_z^0 , β_1^0 , β_2^0 й β_3^0 .

Після підстановки виразів (7.5) в рівняння (7.1), знову отримуємо лінійні рівняння, але відносно змінних X_1 , Y_1 , Z_1 , δ_1 , δ_2 та δ_3 , за структурою аналогічні рівнянням лінійного наближення, хоча в правих частинах вже будуть присутні члени $H_1(\beta_1^0 + \delta_1)(\omega_y^0 + Y_1)$, $H_2(\beta_2^0 + \delta_2)(\omega_x^0 + X_1)$ та $H_3(\beta_3^0 + \delta_3)(\omega_y^0 + Y_1)$.

Приймаючи, що величини X_1 , Y_1 , Z_1 , δ_1 , δ_2 та δ_3 значно менші за відповідні розв'язки лінійного наближення, можна записати –

$$H_{1}(\beta_{1}^{0} + \delta_{1})(\omega_{y}^{0} + Y_{1}) \approx H_{1}\beta_{1}^{0}\omega_{y}^{0} = M_{Z1}^{\Pi};$$

$$H_{2}(\beta_{2}^{0} + \delta_{2})(\omega_{x}^{0} + X_{1}) \approx H_{2}\beta_{2}^{0}\omega_{x}^{0} = M_{Z2}^{\Pi};$$

$$H_{3}(\beta_{3}^{0} + \delta_{3})(\omega_{y}^{0} + Y_{1}) \approx H_{3}\beta_{3}^{0}\omega_{y}^{0} = M_{X3}^{\Pi}.$$
(7.7)

Таким чином, завдання находження розв'язків першого наближення зводиться знову до визначення реакцій двох незалежних лінійних систем на збурення M_{Z1}^{Π} та M_{Z2}^{Π} , які є наслідком перехресного впливу каналів стабілізації.

Аналогічно, за необхідності, можуть бути знайдені друге, третє і т.д. наступні наближення.

Перші чотири рівняння системи (7.1) можуть розв'язуватися незалежно від двох останніх, тому надалі будемо аналізувати систему з перших чотирьох рівнянь без вивчення динаміки ГСП як замкнутої системи. Кола стабілізації умовно вважаємо розімкнутими, разом з тим, будемо враховувати малі коливання платформи відносно осей X_{Π} , Y_{Π} , Z_{Π} , які відповідають похибкам стабілізації.

В лінійному наближенні рівняння двох каналів стабілізації розпадаються на наступні дві не зв'язані підсистеми –

$$A\dot{\omega}_{x}^{0} + f_{x}\omega_{x}^{0} - H_{1}\dot{\beta}_{1}^{0} - k_{1}F_{1}(\beta_{1}^{0}) = M_{x};$$

$$I_{1}\ddot{\beta}_{1}^{0} + f_{1}\dot{\beta}_{1}^{0} + H_{1}\omega_{x}^{0} + H_{1}\omega_{21}^{a} = 0;$$
(7.8)

$$B\dot{\omega}_{y}^{0} + f_{y}\omega_{y}^{0} + H_{2}\dot{\beta}_{2}^{0} + k_{2}F_{2}(\beta_{2}^{0}) = M_{y} ;$$

$$I_{2}\ddot{\beta}_{2}^{0} + f_{2}\dot{\beta}_{2}^{0} - H_{2}\omega_{y}^{0} - H_{2}\omega_{22}^{a} = 0 .$$
(7.9)

Реакція ГСП на періодичні збурення буде містити вимушені і власні коливання. Приймемо, що останні швидко затухають.

Тоді розв'язки систем (7.8) та (7.9) за гармонічних збурень легко отримати використовуючи частотні характеристики системи:

$$\omega_{x}^{0} = M_{x}^{0} A_{1}(\gamma_{1}) \sin[\gamma_{1}t + \varphi_{1}(\gamma_{1})];$$

$$\beta_{1}^{0} = M_{x}^{0} A_{2}(\gamma_{1}) \sin[\gamma_{1}t + \varphi_{2}(\gamma_{1})];$$

$$\omega_{y}^{0} = M_{y}^{0} A_{3}(\gamma_{2}) \sin[\gamma_{2}t + \varphi_{3}(\gamma_{2}) + \eta_{2}];$$

$$\beta_{2}^{0} = M_{y}^{0} A_{4}(\gamma_{2}) \sin[\gamma_{2}t + \varphi_{4}(\gamma_{2}) + \eta_{2}],$$
(7.10)

де $A_i(\gamma_1)$, $A_j(\gamma_2)$, $\varphi_i(\gamma_1)$, $\varphi_j(\gamma_2)$ – відповідно амплітудно-частотні і фазовочастотні характеристики тракту між вхідним впливом і розглядаємою вихідною величиною; i = 1, 2; j = 3, 4

Структурні схеми платформи в лінійному наближенні наведені на рис. 7.2. Відповідні їм передатні функції платформи окреслюються співвідношеннями –

$$\Phi_{1}(p) = \frac{\left[\omega_{x}(p) + \omega_{21}^{a}(p)\right]}{M_{x}(p)} = \frac{I_{1}p^{2} + f_{1}p}{\Delta_{1}}; \qquad \Phi_{2}(p) = \frac{\beta_{1}(p)}{M_{x}(p)} = \frac{H_{1}}{\Delta_{1}};$$

$$\Phi_{3}(p) = \frac{\left[\omega_{y}(p) + \omega_{22}^{a}(p)\right]}{M_{y}(p)} = \frac{I_{2}p^{2} + f_{2}p}{\Delta_{2}}; \qquad \Phi_{4}(p) = \frac{\beta_{2}(p)}{M_{y}(p)} = \frac{H_{2}}{\Delta_{2}};$$

$$\Phi_{5}(p) = \frac{\left[\omega_{x}(p) + \omega_{21}^{a}(p)\right]}{P + M_{Z1}(p)} = \frac{-H_{1}p - k_{1}W_{1}(p)}{\Delta_{1}};$$

$$\Phi_{6}(p) = \frac{\left[\omega_{y}(p) + \omega_{22}^{a}(p)\right]}{P + M_{Z2}(p)} = \frac{H_{2}p + k_{2}W_{2}(p)}{\Delta_{2}},$$
(7.11)

де

$$\Delta_{1} = AI_{1}p^{3} + (I_{1}f_{x} + Af_{1})p^{2} + (f_{x}f_{1} + H_{1}^{2})p + k_{1}H_{1}W_{1}(p) ;$$

$$\Delta_{2} = BI_{2}p^{3} + (I_{2}f_{y} + Bf_{2})p^{2} + (f_{y}f_{2} + H_{2}^{2})p + k_{2}H_{2}W_{2}(p) .$$
(7.12)

З виразу (7.11) походить, що сталих складових кутових швидкостей $(\omega_x + \omega_{21}^a)$ і $(\omega_y + \omega_{22}^a)$ лінійне наближення не виявляє.

Рис. 7.2. Структурна схема гіростабілізованої платформи в лінійному наближенні

Оцінка похибки стабілізації в першому наближенні. Перейдемо до розгляду першого наближення. Підставляючи (7.6) в систему (7.1), та враховуючи (7.8) і (7.9), отримуємо систему лінійних рівнянь, де M_{Z1}^{Π} і M_{Z2}^{Π} визначаються співвідношеннями (7.7):

$$A\dot{X}_{1} + f_{x}X_{1} - H_{1}\dot{\delta}_{1} - k_{1}F_{1}(\delta_{1}) = 0;$$

$$I_{1}\ddot{\delta}_{1} + f_{1}\dot{\delta}_{1} + H_{1}X_{1} + H_{1}\omega_{21}^{a} = M_{Z1}^{\Pi};$$

$$B\dot{Y}_{1} + f_{y}Y_{1} + H_{2}\dot{\delta}_{2} - k_{2}F_{2}(\delta_{2}) = 0;$$

$$I_{2}\ddot{\delta}_{2} + f_{2}\dot{\delta}_{2} - H_{2}Y_{1} - H_{2}\omega_{22}^{a} = M_{Z2}^{\Pi}.$$
(7.13)

Підставляючи у вираз (7.7) розв'язок (7.6), знаходимо:

$$M_{Z1}^{\Pi} = -H_1 M_x^0 M_y^0 A_2(\gamma_1) A_3(\gamma_2) \sin(\gamma_1 t + \varphi_2) \sin(\gamma_2 t + \varphi_3 + \eta_2);$$

$$M_{Z2}^{\Pi} = -H_2 M_x^0 M_y^0 A_1(\gamma_1) A_4(\gamma_2) \sin(\gamma_1 t + \varphi_1) \sin(\gamma_2 t + \varphi_4 + \eta_2).$$

Елементарні перетворення дають можливість ці співвідношення записати наступним чином –

$$M_{Z1}^{\Pi} = -\frac{1}{2} H_1 M_x^0 M_y^0 A_2(\gamma_1) A_3(\gamma_2) \Big\{ \cos \Big[(\gamma_1 - \gamma_2) t + \varphi_2(\gamma_1) - \varphi_3(\gamma_2) - \eta_2 \Big] - \\ - \cos \Big[(\gamma_1 + \gamma_2) t + \varphi_2(\gamma_1) + \varphi_3(\gamma_2) - \eta_2 \Big] \Big\};$$

$$M_{Z2}^{\Pi} = -\frac{1}{2} H_2 M_x^0 M_y^0 A_1(\gamma_1) A_4(\gamma_2) \Big\{ \cos \Big[(\gamma_1 - \gamma_2) t + \varphi_1(\gamma_1) - \varphi_4(\gamma_2) - \eta_2 \Big] - \\ - \cos \Big[(\gamma_1 + \gamma_2) t + \varphi_1(\gamma_1) + \varphi_4(\gamma_2) - \eta_2 \Big] \Big\}.$$
 (7.14)

Збурення на осях прецесії чутливих елементів ГСП, таким чином, будуть являти собою періодичні моменти-перешкоди різностної $(\gamma_1 - \gamma_2)$ та сумарної $(\gamma_1 + \gamma_2)$ частот. Отже, і реакція платформи на ці збурення буде такої же структури (7.3, *a*).

За рівності частот, тобто, коли $\gamma_1 = \gamma_2 = \gamma$, вираз (7.14) змінюється –

$$M_{Z_1}^{\Pi} = -\frac{1}{2} H_1 M_x^0 M_y^0 A_2(\gamma) A_3(\gamma) \left\{ \cos\left[\varphi_2(\gamma) - \varphi_3(\gamma) - \eta_2\right] - \cos\left[\varphi_2(\gamma) + \varphi_3(\gamma) - \eta_2\right] + \sin 2\gamma t \sin\left[\varphi_2(\gamma) + \varphi_3(\gamma) - \eta_2\right] \right\} = -\frac{1}{2} \exp\left[\varphi_2(\gamma) + \varphi_3(\gamma) - \eta_2\right] + \frac{1}{2} \exp\left[\varphi_2(\gamma) - \eta_2\right] + \frac{1}{2} \exp\left[\varphi_2$$

$$= -\frac{1}{2}H_{1}M_{x}^{0}M_{y}^{0}A_{2}(\gamma)A_{3}(\gamma)\left\{\cos\left[\varphi_{2}(\gamma)-\varphi_{3}(\gamma)-\eta_{2}\right]-C_{1}\cos 2\gamma t+C_{2}\sin 2\gamma t\right\};$$

$$M_{Z2}^{\Pi} = -\frac{1}{2}H_{2}M_{x}^{0}M_{y}^{0}A_{1}(\gamma)A_{4}(\gamma)\left\{\cos\left[\varphi_{1}(\gamma)-\varphi_{4}(\gamma)-\eta_{2}\right]-\cos 2\gamma t\cos\left[\varphi_{1}(\gamma)-\varphi_{4}(\gamma)-\eta_{2}\right]+\sin 2\gamma t\sin\left[\varphi_{1}(\gamma)-\varphi_{4}(\gamma)-\eta_{2}\right]\right\}=$$

$$= -\frac{1}{2}H_{2}M_{x}^{0}M_{y}^{0}A_{1}(\gamma)A_{4}(\gamma)\left\{\cos\left[\varphi_{1}(\gamma)-\varphi_{4}(\gamma)-\eta_{2}\right]-C_{3}\cos 2\gamma t+C_{4}\sin 2\gamma t\right\}.$$

Очевидно, що тут присутні сталі складові збурюючих моментів відносно вихідних осей гіроблоків –

$$M_{(Z1)ycm}^{\Pi} = -\frac{1}{2} H_1 M_x^0 M_y^0 A_2(\gamma) A_3(\gamma) \cos \left[\varphi_2(\gamma) - \varphi_3(\gamma) - \eta_2 \right];$$

$$M_{(Z2)ycm}^{\Pi} = -\frac{1}{2} H_2 M_x^0 M_y^0 A_1(\gamma) A_4(\gamma) \cos \left[\varphi_1(\gamma) - \varphi_4(\gamma) - \eta_2 \right].$$
(7.15)

Рис. 7.3. Зміна кутів наклону платформи гіростабілізатора за різних частот збурень: *a*) $\gamma_1 \neq \gamma_2$; $T_1 = \frac{2\pi}{\gamma_1 + \gamma_2}$; $T_2 = \frac{2\pi}{\gamma_1 - \gamma_2}$; *б*) $\gamma_1 = \gamma_2$

Ці сталі складові спричинять систематичний дрейф платформи відносно осей стабілізації з кутовими швидкостями

$$\omega_{(x)ycm} = X_1^* = M_{(Z1)ycm}^{\Pi} \Phi_5(0) = \frac{M_{(Z1)ycm}^{\Pi}}{H_1} =$$

$$= -\frac{1}{2} M_{x}^{0} M_{y}^{0} A_{2}(\gamma) A_{3}(\gamma) \cos \left[\varphi_{2}(\gamma) - \varphi_{3}(\gamma) - \eta_{2} \right];$$

$$\omega_{(y)ycm} = Y_{1}^{*} = M_{(Z2)ycm}^{\Pi} \Phi_{6}(0) = \frac{M_{(Z2)ycm}^{\Pi}}{H_{2}} =$$

$$= -\frac{1}{2} M_{x}^{0} M_{y}^{0} A_{1}(\gamma) A_{4}(\gamma) \cos \left[\varphi_{1}(\gamma) - \varphi_{4}(\gamma) - \eta_{2} \right].$$
(7.16)

Характер руху ГСП коли $\gamma_1 = \gamma_2$ наведений на рис. 7.3, б. Очевидно, що акустична вібрація поверхні поплавка гіроскопічних чутливих елементів, маючи широкий частотний діапазон, буде містити у величинах ω_{21}^a , $\dot{\omega}_{11}^a$, ω_{22}^a , $\dot{\omega}_{12}^a$ також складові з частотами γ_i кінематичного збурення основи. Таким чином, буде мати місце вибірковість цих величин і систематичний дрейф платформи буде теж містити в собі величину тиску звукового випромінювання P_0 . Ті частоти, які не співпадають, поповнять спектр гармонічних складових.

Якщо різниця між частотами γ_1 і γ_2 велика, похибки ГСП мають характер коливань різностної і сумарної частот. Коли ж вони наближаються одна до одної, окрім суперпозиції довгоперіодної і короткоперіодної складових, можуть проявлятися биття.

За *синхронної* хитавиці, ГСП має систематичний дрейф навколо усіх трьох осей стабілізації. Їх величини залежать як від характеру збурень, так і від параметрів платформи, які містяться в амплітудно- і фазовочастотних характеристиках, а також у величинах зсуву фаз.

Оцінка другого наближення формує упевненість для твердження, що достатньо обмежуватися розглядом тільки першого наближення.

Дослідження довели наступне:

- за наявності хитавиці фюзеляжу, гіроскопічні чутливі елементи ГСП в акустичних полях надзвукового польоту мають похибки вимірів, які породжують похибки побудови триортогональної системи координат на ЛА;

- з'ясована структура похибок побудови системи координат за допомогою ГСП, яка дає можливість оцінити ступінь впливу кінематичного і акустичного збурень;

 розкритий механізм дифракції звукових хвиль на імпедансних механічних системах підвісу інерціальних приладів;

 одержані результати можуть слугувати теоретичною основою підвищення точності побудови орієнтирних напрямків на гіперзвукових літальних апаратах різного класу.

§ 7.3. Автокомпенсаційні методи зменшення впливу проникаючого акустичного випромінювання

Проаналізуємо можливості зменшення похибок поплавкових гіроскопічних приладів в системах ГСП під дією проникаючого акустичного випромінювання за допомогою автокомпенсаційних методів. Зокрема, розглянемо два методи – двохканальну схему та метод примусового обертання карданового підвісу навколо осі, паралельної до вектора \vec{H} кінетичного моменту.

Задача, таким чином, стоїть у виборі таких технічних рішень, коли буде забезпечуватися часткова інваріантність двохстепеневого гіроскопа по відношенню до силового акустичного навантаження.

Виникнення теорії компенсації (теорії інваріантності) в прикладній гироскопії зазвичай пов'язують з іменем Г.В. Щипанова [6, 7]. Велике значення для подальшого розвитку основ теорії незбуреності гіроскопічних систем, зокрема, гіромаятника і гірокомпасу, мала фундаментальна робота Б.В. Булгакова [8]. В публікаціях [9-13] також розглянуті окремі аспекти компенсації впливу збурюючих чинників на гіропристрої з позицій постулатів теорії інваріантності.

Безперечно, важливе значення набуло формулювання критерію Б.М. Петрова реалізуємості умов інваріантності, зокрема, в тій його частині, де підкреслюється необхідність, але не достатність, здійснення абсолютної інваріантності наявністю, як мінімум, двох каналів трансляції збурення між точкою прикладення збурення і точкою, відносно якої досягається інваріантність (принцип двохканальності) [1, 4].

Дещо докладніше про перший спосіб автокомпенсації впливу зовнішніх механічних збурень – двохканальний. Відомо, що в одноконтурних системах неможливо задовольнити умовам інваріантності (компенсації) без порушення умов стійкості. Для виконання умов стійкості відносно певних збурень, необхідно, щоб інформація про цей чинник надходила в контролюєму точку, відносно якої досягається інваріантність, щонайменше по двом каналам.

В прикладній гироскопії, в роботах О.Ю. Ішлінского, Б.В. Булгакова, М.Д. Кондорського [15] та ін., розгорнуті пропозиції щодо зменшення впливу деяких збурень шляхом застосування двох гіроскопів, але зв'язаних кінематично. Однак, цей метод має суттєву ваду – наявність кінематичної в'язі між гіроскопами, яка навантажена гасимими в ній перешкодами, слугує росту моментів сил сухого тертя, тому він практично не пристосований для поплавкових гіроскопів.

Метод двохканальності має певну спільність з методом реверсування вектора кінетичного моменту. Обидва використовують залежність напрямку дрейфа гіроскопів під дією перешкод від знаку кінетичного моменту. Обидва передбачають наявність двох різнообертаючихся гіромоторів. Разом з тим, вони мають і суттєві розбіжності відносно повноти компенсації впливу усіх моментівперешкод. Так метод двохканальності лише осереднює прояв внутрішніх перешкод у двох гіроскопів, але не компенсує їх. З іншого боку, цей метод дозволяє компенсувати не тільки стаціонарні зовнішні перешкоди, але і нестаціонарні. До того ж, забезпечує компенсацію їх миттєвих значень, а не в середньому за період реверсу вектора кінетичного моменту. З точки зору технічної реалізації він також простіше [2].

Двохканальна автокомпенсація впливу акустичного випромінювання на гіроскоп досягається прямим використанням принципу двохканальності Б.М. Петрова і полягає в застосуванні двох зв'язаних електромеханічно однакових гіроскопів з протилежними за напрямком векторами кінетичних моментів. Досягнення поставленої мети здійснюється ідентифікацією початкової виставки приладів відносно спільної основи.

Можливість автокомпенсації впливу акустичного навантаження на ДУСУ в двохканальній схемі реалізується створенням замість одного – двох структурно однорідних каналів для одержання двох функціонально однакових проявів зовнішніх перешкод, які відрізняються тільки знаком. Однорідність каналів проходження акустичного збурення забезпечується використанням гіроскопів з однаковою кінематичною підвісу.

Схема електромеханічного зв'язку між гіроскопами, замість кінематичної, була вперше запропонована М.Д. Кондорским [15]. Можливість усунення впливу кутового прискорення основи при з'єднанні двох інтегруючих гіроскопів за диференціальною схемою занотована також у роботі В.О. Каракашева та інших його публікаціях [16].

Відома технічна реалізація примусового обертання підвісу гіроскопа навколо осі, паралельної до вектора кінетичного моменту, викладена, наприклад, у роботі [17, 18].

Стендові напівнатурні дослідження автокомпенсаційних схем проводилися на установці "Сирена" Інституту проблем міцності ім. Г.С. Писаренка НАН України.

Двохканальна схема автокомпенсації впливу перешкод. В ревербераційній камері установлювалися два різнообертаючихся датчики кутових швидкостей серії ДУСУ2-6AC з однаковою орієнтацією підвісу відносно встановленої на розтяжках основи.

Примусове обертання підвісу гіроскопа навколо паралельної до вектора кінетичного моменту осі. Гіроскоп встановлювався на платформі універсального поворотного столику серії УПГ-56 так, щоб забезпечувалася колінеарність векторів кінетичного моменту гіроскопів \vec{H}_i і вектора $\vec{\omega}$ кутової швидкості примусового обертання карданового підвісу.

Тестування показали, що похибки ДУСУ від впливу акустичного поля високого рівня (~163-165 дб), змінює знак при зміні напрямку обертання

гіромотора і має характер інструментальної похибки гіроскопа. Таким чином, двохканальна схема дозволяє лише усереднити величину цієї похибки, а друга схема – звести до нуля, але в середньому за період обертання.

Досліди твердять, що ефективним засобом компенсації впливу інтенсивних звукових полів є модуляція сталих збурюючих моментів періодичною функцією часу. Відома технічна реалізація цього способу полягає в автокомпенсації акустичної похибки шляхом примусового обертання підвісу гіроскопа відносно осі, паралельної до вектора кінетичного моменту гіроскопа.

Розширимо задачу аналізу і будемо вивчати роботу гіростабілізатора в експлуатаційних умовах ЛА, тобто за одночасного впливу інтенсивного акустичного збурення, а також вібрації носія, обумовлених роботою двигунів.

Пропонується на цей випадок, на наш погляд, перспективна схема силового (рис. 7.4) та індикаторного (рис. 7.5) гіростабілізаторів.

Двовісний силовий гіростабілізатор містить основу 1, на якій встановлені амортизатори 18, 19, 20 та 21 із закріпленими на них підшипниками осей прецесії двохстепеневих гіроскопів 22, 23 з однаковою кінематикою підвісу, паралельними між собою векторами кінетичних моментів \vec{H}_1 та \vec{H}_2 і взаємноперпендикулярними осями прецесії. Основа 1 примусово обертається з кутовою швидкістю ω спеціальним двигуном 6 навколо осі, перпендикулярної до площини стабілізованої платформи 5, на якій вона встановлена.

Вихідний сигнал датчиків кута 24 і 25 гіроскопів надходить на перетворювач координат 9, який механічно з'єднаний з основою 1. Вихідний сигнал перетворювача координат 9 надходить до узгоджуючого пристрою 14, а також на вхід підсилювачів 10 та 11, які управляють стабілізуючими двигунами 12 і 13. Для узгодження напрямків векторів кінетичних моментів \vec{H}_1 і \vec{H}_2 гіроскопів з вектором кутової швидкості $\vec{\omega}$ основи 1, здійснюється корекція їх положення відносно основи 5 шляхом подачі сигналів з датчиків кута 24 і 25 до підсилювачів 26 і 27, вихідний сигнал котрих надходить на датчики моменту 28 і 29, які встановлені на осях прецесії гіроскопів. Підшипники зовнішньої рами 15 гіростабілізатора встановлені на амортизаторах 16 і 17, жорстко закріплених на корпусі носія.

Індикаторний стабілізатор із примусовим обертанням підвісу гіроскопа (рис. 7.5) містить основу 1, на якій на амортизаторах 2 і 3 установлений тристепеневий автоматичний некоректируємий гіроскоп 4 в кардановому підвісі. У \overline{H} положенні. вектор кінетичного вихідному моменту гіроскопа перпендикулярний до площини стабілізованої платформи 5. Основа 1 примусово обертається з кутовою швидкістю ω спеціальним двигуном 6 навколо осі, перпендикулярної площині стабілізованої платформи 5, на якій вона розміщена. На осях підвісу гіроскопа знаходяться датчики кута 7 і 8, сигнали з яких надходять на перетворювач координат 9, а потім, попередньо посилені підсилювачами 10 та 11, на управляючі обмотки стабілізуючих двигунів 12 і 13. Узгоджуючий пристрій 14 електрично з'єднаний з перетворювачем координат 9. Підшипники зовнішньої рами 15 гіростабілізатора встановлені на амортизаторах 16 і 17, жорстко закріплених на корпусі носія.

Силовий гіростабілізатор за одночасної дії інтенсивних акустичних збурень і вібрації корпуса носія працює наступним чином.

Інтенсивні акустичні хвилі генерують в елементах конструкції гіроскопів коливання, які у своїй сукупності призводять до появи на певних частотах сталих за величиною і напрямком збурюючих моментів, які напрямлені уздовж осей прецесії, і, відповідно, слугують причиною виникнення систематичних похибок гіроприладів. Примусове обертання підвісів гіроскопів разом з основою 1 з кутовою швидкістю ω спеціальним двигуном 6 навколо осі, перпендикулярної до площини стабілізованої платформи 5 і паралельної до векторів кінетичних моментів \vec{H}_1 та \vec{H}_2 гіроскопів, дозволяє змодулювати вектор збурюючого моменту періодичною функцією часу sin ωt . Це призведе до такої ж модуляції у часі систематичної похибки двохстепеневого гіроскопа і, тим самим, дозволить звести до нуля її середнє значення за період обертання.

Усунення впливу вібрації основи 1, породженої дією інтенсивного акустичного збурення, здійснюється установкою підшипників осей прецесії на амортизатори 18,19, 20 і 21.

Зважаючи на те, що примусове обертання підвісів гіроскопів призводить до їх переорієнтації у просторі, в той час як стабілізована платформа 5 разом з двигунами 12 і 13 залишається нерухомою, сигнали датчиків кута 24, 25 гіроскопів надходять до підсилювачів 10 і 11 стабілізуючих двигунів 12 і 13 з перетворювача координат 9, механічно зв'язаного з основою 1 повторючого його обертання, а електрично з'єднані з датчиками кута 24 та 25. Якщо для вирішення задач управління ЛА потрібен буде сигнал двохстепеневого гіроскопа, його можна отримати в аналоговій чи цифровій формі за допомогою узгоджуючого пристрою 14, електрично з'єднаного з перетворювачем координат 9. В цьому випадку весь пристрій можна вважати за двохстепеневий гіроскоп, але маючий за інтенсивних акустичних збурень і вібрації корпуса ЛА менші похибки вимірів, ніж звичайний гіроскоп за тих же умов.

Спочатку вектори кінетичних моментів \vec{H}_1 і \vec{H}_2 гіроскопів паралельні до вектора $\vec{\omega}$ кутової швидкості обертання основи 1. З появою збурюючих чинників по осям стабілізації, коїться непогодження цих векторів, що породжує додаткові гіроскопічні моменти внаслідок дії перехресної складової вектора $\vec{\omega}$, паралельної осям чутливості гіроскопів 22, 23. Електричний сигнал датчиків кута 24, 25, пропорційний цієї швидкості, попередньо підсилений підсилювачами 26 і 27, надходить до датчиків моментів 28 і 29, які формують величину і напрямок моменту для забезпечення вихідної паралельності векторів \vec{H}_1, \vec{H}_2 і $\vec{\omega}$.

Для усунення впливу вібрації корпуса літального апарату на похибку стабілізації, підшипники зовнішньої рами силового стабілізатора встановлюють на амортизатори 16 і 17.

Індикаторний гіростабілізатор за інтенсивних акустичних збурень і вібрації фюзеляжу працює аналогічно. Однак треба зауважити, що за акустичного

навантаження вище за 160 *дб* некоректуємий гіроскоп, без прийнятих заходів шумоізоляції, непрацездатен.

Рис. 7.4. Кінематична схема силового гіростабілізатора

Подальшим вдосконаленням схеми силового гіростабілізатора є ГС з примусовим обертанням підвісів електрично зв'язаних двохстепеневих гіроскопів з протилежно напрямленими векторами кінетичних моментів і однаковою орієнтацією осей підвісу (рис. 7.6). В цьому випадку датчики кута гіроскопів через суматор і підсилювач з'єднуються з укріпленими на осях прецесії датчиками моменту, а через диференціальний підсилювач підключаються до перетворювача координат. Застосування механічного спарника тут недоцільне при високих рівнях звукового тиску – вище 160 *дб*. Крім того, механічний спарник практично виключає можливість використання в гіростабілізаторі поплавкових гіроскопів.

Формування вихідного сигналу двохстепеневого гіроскопа у вигляді різниці вихідних сигналів двох електрично зв'язаних приладів дозволяє скомпенсувати вплив миттєвих значень моментів-перешкод, які обумовлені бічною чутливістю гіроскопів і дією кутового прискорення фюзеляжу як за стаціонарного, так і за нестаціонарного характеру їх зміни у часі. Крім того, компенсується також зсув нуля (дрейф нуля в інтегруючому гіроскопі), який має місце за кінематичного збурення з боку основи навіть за кута повороту рухомої частини гіроскопа рівною нулю. Жорсткий від'ємний обернений зв'язок по сумі сигналів датчиків кута гіроскопів дозволяє здійснити взаємну корекцію їх положення між собою і з вектором $\vec{\omega}$ кутової швидкості основи 1 подачею сигналу на датчики моментів.

Рис. 7.5. Кінематична схема індикаторного гіростабілізатора

У вихідному положенні вектори кінетичних моментів *H*_i гіроскопів 10, 11, 12 і 13 паралельні між собою і перпендикулярні площини стабілізованої платформи 15. Акустична хвиля генерує в елементах конструкції гіроскопів згинні коливання і створює пружно напружений стан матеріалу, які у сукупності призводять до появи сталих збурюючих моментів і, таким чином, до систематичних похибок гіроскопів. Формування вихідного сигналу двохстепеневих гіроскопів у вигляді різниці вихідних сигналів двох електрично зв'язаних різнообертаючихся гіроскопів 10, 11 і 12, 13 дозволяє скомпенсувати вплив миттєвих значень моментів-перешкод внаслідок бічної чутливості гіроскопів і впливом кутового прискорення ЛА, причому, як за стаціонарного, так і за нестаціонарного їх розвитку у часі. Нарешті, компенсується також зсув нуля, який має місце навіть за відсутності кута повороту рухомої частини гіроскопа.

Жорсткий від'ємний обернений зв'язок по сумі сигналів датчиків кута 16, 17 та 18, 19 гіроскопів 10, 11 та 12, 13 дозволяє провести взаємну корекцію їх положення між собою і вектором $\vec{\omega}$ кутової швидкості основи платформи надходженням сигналу на датчики моментів 24, 25, 26 та 27.

Примусове обертання підвісів гіроскопів 10, 11, 12 і 13 разом з основою 1 з кутовою швидкістю ω двигуном 14 навколо осі, перпендикулярної до площини стабілізованої платформи 15, і паралельної до векторів кінетичних моментів \vec{H}_i гіроскопів, дозволяє змодулювати вектори збурюючих моментів, обумовлених впливом акустичного випромінювання, дебалансу гіроскопів, сил сухого тертя, а також інших інструментальних похибок періодичною функцією часу, наприклад sin ωt , що призведе до такої ж модуляції у часі систематичної похибки гіроскопів і, тим самим, дозволить звести до нуля її середнє значення за період обертання.

Усунення впливу вібрації основи 1 під дією акустичного збурення високої інтенсивності на елементи конструкції гіроскопів 10,11 та 12, 13 здійснюється установкою підшипників їх вихідних осей на амортизатори 2, 3, 4, 5, 6, 7, 8 і 9.

Внаслідок того, що примусове обертання підвісів гіроскопів призводить до їх переорієнтації у просторі, тоді як стабілізована платформа 15 з двигунами 34 і 35 залишається нерухомою, сигнали диференціальних підсилювачів 28 і 29 надходять на перетворювач координат 30, механічно з'єднаний з основою 1 і повторюючий її обертання, а потім, через підсилювачі 32 і 33 на управляючі обмотки стабілізуючих двигунів 34 і 35.

Якщо для вирішення задач управління рухом ЛА за інтенсивних акустичних збурень і вібрації фюзеляжу потрібен сигнал двохстепеневого гіроскопа, то його можна отримати у цифровій чи аналоговій формі за допомогою узгоджуючого пристрою 31, електрично з'єднаного з перетворювачем координат 30. В цьому випадку, пропонуємий пристрій можна розглядати як двохстепеневий гіроскоп, але вільний від вад звичайного двохстепеневого гіроскопа в інтенсивному акустичному полі і вібрації.

Рис. 7.6. Кінематична схема силового гіростабілізатора з двохканальною автокомпенсацією зменшення впливу зовнішніх механічних збурень

Експериментальні дослідження довели, що зразок пристрою для гіроскопічної стабілізації апаратури (ГСП), який за чутливі елементи використовує поплавкові прилади класу ДУСУ встановлені на амортизаторах і з'єднані по диференціальній схемі, або примусово обертаємі навколо осі, паралельної вектору кінетичного моменту, нормально функціонує при акустичному навантаженні інтенсивності 160 $\partial \delta$ у частотному діапазоні до 1 *кГц*.

Виконані стендові і теоретичні дослідження впливу інтенсивних звукових хвиль на поліагрегатні системи промислового зразка датчика кутових швидкостей модифікації ДУСУ дозволяють зробити деякі узагальнення для інших технічних рішень таких систем і сформулювати наступні висновки і рекомендації: поліагрегатні системи підвладні дії інтенсивних акустичних променів.
 Запропонована механічна модель пружно-деформуємої поліагрегатної системи у вигляді двох коаксіальних циліндричних оболонок, поділених рідиною, дозволяє зробити кількісну і якісну оцінку вивчаємих явищ;

 бортова гіроскопічна апаратура поліагрегатної структури в акустичних полях експлуатаційних умов ЛА може мати методичні і інструментальні похибки внаслідок виникаючих Ейлерових сил інерції;

- для боротьби з негативним впливом акустичної вібрації комплектуючих, як один з варіантів, можуть бути рекомендовані автокомпенсаційні методи, які пройшли стендову апробацію з позитивним результатом.

Інтегруючі гіроскопи знайшли широкого вжитку в ГСП як чутливі елементи. Тому декілька слів про особливості їх роботи.

Розглянемо найпростіший випадок – гармонічні коливання платформи відносно трьох осей, наприклад:

$$\psi_x = \psi_{xo} \sin(\omega_1 t + \varphi_1); \quad \psi_y = \psi_{yo} \sin(\omega_2 t + \varphi_2); \quad \psi_z = \psi_{zo} \sin\omega_3 t.$$

Для цього збурення кут повороту рухомої частини підвісу окреслюється виразом:

$$\beta \simeq \beta(0) - \beta(0)a\sin\omega_{3}t + b\sin(\omega_{1}t + \varphi_{1}) - c\cos(\omega_{2}t + \varphi_{2}) - \frac{\omega_{3}ab}{2} \left\{ \frac{\cos[(\omega_{3} - \omega_{1})t - \varphi_{1}]}{\omega_{3} - \omega_{1}} - \frac{\cos[(\omega_{3} + \omega_{1})t + \varphi_{1}]}{\omega_{3} + \omega_{1}} \right\} + \frac{\omega_{3}ac}{2} \left\{ \frac{\sin[(\omega_{3} - \omega_{2})t - \varphi_{2}]}{\omega_{3} - \omega_{2}} + \frac{\sin[(\omega_{3} + \omega_{2})t + \varphi_{2}]}{\omega_{3} + \omega_{2}} \right\},$$

де $a = k\psi_{zo}$; $b = k\psi_{xo}$; $c = Tk\psi_{yo}\omega_2$.

В інтегруючих гіроскопах коефіцієнт передачі k зазвичай близький до одиниці, а стала часу T складає декілька мілісекунд. Тому, за певних значень ω_2 справедлива нерівність

$$T\omega_2 \ll k$$
.

Якщо амплітуди коливань платформи навколо осей *x* та *y* практично однакові, наслідком нерівності буде співвідношення:

 $c \ll b$.

Тоді можна спростити і вираз для кута повороту –

$$\beta \simeq \beta(0) - \beta(0)a\sin\omega_3 t + b\sin(\omega_1 t + \varphi_1) - c\cos(\omega_2 t + \varphi_2) - \frac{\omega_3 ab}{2} \left\{ \frac{\cos[(\omega_3 - \omega_1)t - \varphi_1]}{\omega_3 - \omega_1} - \frac{\cos[(\omega_3 + \omega_1)t + \varphi_1]}{\omega_3 + \omega_1} \right\}.$$

З виразу видно, що за хитавиці відносно осей x і z з близькими частотами в сигналі приладу буде присутньою мінливозмінна складова похибки, яка може досягати і значних величин. Найбільш небажаною постає умова $\omega_1 = \omega_3$.

Для цього випадку кут повороту змінюється за законом –

$$\beta \simeq \beta(0) - \beta(0)a\sin\omega_{1}t + b\sin(\omega_{1}t + \varphi_{1}) - c\cos(\omega_{2}t + \varphi_{2}) - \frac{ab\omega_{1}\sin\varphi_{1}}{2}t + \frac{ab}{4}\cos(2\omega_{1}t + \varphi).$$

Складова, яка зростає пропорційно часу, і окреслює великий уход гіроскопа за цих умов. Наприклад, нехай

$$k = 1; \ \psi_{xo} = \psi_{zo} = 5,8 \cdot 10^{-4} \ pad; \ \omega_1 = \omega_3 = 10c^{-1}; \ \varphi = \frac{\pi}{2}; \ t = 3600c.$$

Тоді

$$\Delta \beta_t = \frac{ab\omega_1 \sin \varphi_1}{2} t = \frac{1 \cdot 5, 8^2 \cdot 10^{-8} \cdot 10 \cdot 3, 6 \cdot 10^3}{2} = 6,06 \cdot 10^{-3}.$$

Приклад підтверджує, що навіть за помірних умов хитавиці, складова уходу гіроскопа може бути суттєвою.

Тепер для ілюстрації доведемо, наскільки ефективним постає двохканальний метод автокомпенсації впливу хитавиці. Сигнал управління стабілізуючим двигуном повинен бути сформований у вигляді різниці електричних сигналів двох інтегруючих каналів на кожній осі, тобто

$$U_{y} = U_{\text{вых1}} - U_{\text{вых2}} = k_{\partial y1}\beta_{1} - k_{\partial y2}\beta_{2},$$

де $k_{\partial y1}$, $k_{\partial y2}$ – коефіцієнти передачі електричних датчиків кута двох приладів; β_1 , β_2 – кути повороту рухомих частин електрично з'єднаних гіроскопів.

З метою спрощення, всі параметри інтегруючих гіроскопів будемо вважати однаковими, за винятком знаків кінетичних моментів. Тоді, використовуючи вже наведену рівність, запишемо:

$$\beta_{1} \simeq \beta_{1}(0) - \beta_{1}(0)a\sin\omega_{1}t + b\sin(\omega_{1}t + \varphi_{1}) - c\cos(\omega_{2}t + \varphi_{2}) - \frac{ab\omega_{1}\sin\varphi_{1}}{2}t + \frac{ab}{4}\cos(2\omega_{1}t + \varphi);$$

$$\beta_{2} \simeq \beta_{2}(0) + \beta_{2}(0)a\sin\omega_{1}t - b\sin(\omega_{1}t + \varphi_{1}) - c\cos(\omega_{2}t + \varphi_{2}) - \frac{ab\omega_{1}\sin\varphi_{1}}{2}t + \frac{ab}{4}\cos(2\omega_{1}t + \varphi).$$

Кут повороту другого інтегруючого гіроскопа відрізняється від першого тільки за знаками коефіцієнтів a і b, що обумовлене зміною знака кінетичного момента гіромотора другого приладу.

Природно також припустити, що

$$\beta_2(0) \simeq -\beta_1(0) = -\beta(0)$$

Після підстановки значень β_1 та β_2 , з урахуванням останнього виразу і однаковості коефіцієнтів $k_{\partial y1}$ і $k_{\partial y2}$, отримаємо –

$$U_{y} = k_{\partial y} \Big[2\beta(0) + 2b\sin(\omega_{1}t + \varphi_{1}) \Big] .$$

Зовсім інша ситуація спостерігається, коли гіроскопічні прилади знаходяться в акустичних полях високого рівня – вище 150-160 *дб*. А саме такі рівні мають місце в експлуатаційних умовах гіперзвукового руху.

Проникаюче акустичне випромінювання "розгойдує" механічні системи приладів і комплектуючі. Виникаючий пружно напружений стан матеріалу підвісу породжує Ейлерові сили інерції, які створюють "*хибний*" сигнал і, відповідно, похибку вимірювань [19, 20]. Причина явища в переході матеріалу підвісу і корпуса приладу з категорії абсолютно твердої поверхні в категорію імпедансної конструкції [21, 22]. Ця теза має бути обов'язково присутньою при побудові розрахункових схем бортової апаратури гіперзвукових технологій [23, 24].

Література до розділу 7

- Петров, Б.Н. О реализуемости условий инвариантности [Текст] / Б.Н. Петров // Всесоюзн. совещ. по теории инвариантности, Киев, 1958: сб. науч. тр. К.: 1958. С. 56-64.
- Одинцов, А.А. Метод автокомпенсации влияния внешних помех, действующих на гироскопы и маятниковые акселерометры [Текст] / А.А. Одинцов // Автоматика и приборостроение: сб. научн. тр. Киев. полит. ин-та. – К., 1973. – С. 87-94.
- Одинцов, А.А. Об уменьшении погрешностей гиростабилизаторов от перекрестных связей [Текст] / А.А. Одинцов, В.В. Карачун // Прикл. механика. – 1973. – Т. IX, вып. 10. – С. 111-118.
- Карачун, В.В. Многомерные задачи нестационарной упругости подвеса поплавкового гироскопа [Текст] / В.В. Карачун, В.Г. Лозовик, Е.Р. Потапова, В.Н. Мельник; Нац. техн. ун-т Украины "КПИ". – К.: "Корнейчук", 2000. – 128 с.
- Karachun, V.V. Vibration of Porous. Plates under the Action of Acoustic [Teκcτ] / V.V. Karachun // SOVIET APPLIED MECHANICS. – 1987. – Vol. 22, №3. – P. 236-238.
- Щипанов, Г.В. Гироскопические приборы слепого полета [Текст]: моногр. / Г.В. Щипанов. – М.: Оборонгиз, 1938. – 116с.
- Щипанов, Г.В. Теория и методы проектирования автоматического регулятора [Текст] / Г.В. Щипанов // Автоматика и телемеханика: сб. науч. тр. Изд-во АН СССР, №1, 1939. – С. 27-34.
- Булгаков, Б.В. Прикладная теория гироскопов [Текст]: моногр. / Б.В.
 Булгаков. М.: Гостехиздат, 1955. 235с.
- 9. Ишлинский, А.Ю. Идеи теории инвариантности и инерциальная навигация [Текст] / А.Ю. Ишлинский // Всесоюзное совещание по

теории инвариантности, Киев, 1962: сб. научн. тр. – М.: Наука, 1964. – С. 1-8.

- Ишлинский, А.Ю. Полная компенсация внешних возмущений, вызванных маневрированием, в гироскопических системах // Всесоюзн. совещ. по теории инвариантности, Киев, 1958: сб. научн. тр. – К.: Изд-во АН УССР, 1959. – С. 12-24.
- Кухтенко, В.И. Проблемы инвариантности в автоматике [Текст]: моногр. / В.И. Кухтенко. – К.: Гостехиздат, 1963. – 143с.
- Коновалов, С.Ф. Влияние упругих деформаций сильфона и кронштейна выносного элемента на виброустойчивость поплавкового прибора [Текст] / С.Ф. Коновалов, А.А. Трунов // Тр. MBTУ. Сер. Прикладная гидромеханика поплавковых приборов: сб. научн. тр. – М.: MBTУ, №372, 1982. – С. 25-60.
- Сменковский, Е.Г. Применение теории инвариантности в автоматике [Текст] / Е.Г. Сменковский // Всесоюзн. Совещ. по теории инвариантности, Киев, 1962: сб. научн. тр. – К.: Наук. думка, 1964. – С. 78-81.
- 14. Кулебакин, В.С. Теория инвариантности автоматически регулируемых и управляемых систем [Текст] / В.С. Кулебакин // Первый международный конгресс ИФАК по автоматическому управлению: сб. научн. тр., М.: – Т. 1, 1961. – С. 71-76.
- Кондорский, И.Д. К теории некорректируемых гироскопических азимутов [Текст] / И.Д. Кондорский // Изв. ВУЗов "Приборостроение". – 1959. – Вып. 2. – С. 43-49.
- Каракашев, В.А. Влияние дрейфа гироскопов на движение гиростабилизированной платформы с *T*=84,4 мин [Текст] / В.А. Каракашев // Изв. ВУЗов СССР, "Приборостроение". – 1960. – Т. 3, № 5. – С. 37-44.
- 17. Каргу, Л.И. О характере движения астатического гироскопа во

вращающемся кардановом подвесе [Текст] / Л.И. Каргу, В.А. Яблонская // Изв. ВУЗов СССР "Приборостроение". – 1968. – Т.11, № 1. – С. 77-81.

- Каргу, Л.И. О движении свободного гироскопа с принудительным вращением опор [Текст] / Л.И. Каргу // Изв. ВУЗов СССР "Приборостроение". – 1962. – Т.5, № 4. – С. 54-62.
- Karachun, V.V. Influence of Diffraction Effects on the Inertial Sensors of a Gyroscopically Stabilized Platform: Three –Dimensional Problem [Текст] /V.V. Karachun, V.N. Mel'nick // International Applied Mechanics. - 2012.- T.48(4) P. 458-464.
- Mel'nick, V.N. Compensation of influence of day's movement of the Earth [Текст]: V.N. Mel'nick, V.V. Karachun // Věda a VZNIK – 2010/2011: Materialy VII Mezinarodni vědecko-practika conference, Прага.2011. – Str. 9-12.
- Karachun, V.V. The results of experimental research of gyroin float performance [Текст] / V.V. Karachun, V.N. Mel'nick // Materialy VII Miedzinarodowej Naukovi-Praktyccznej Konferencji «Aktualne problemy Nowoczesnych Nauk-2011» Praha: - 2011.- 27 Str. 24-28.
- Mel'nick, V.N. The loss of sound waves [Текст]: моногр. / V.N. Mel'nick, M.S. Trivailo, V.V. Karachun; Nat. Techn. Univ. Ukraine «КРІ». К. : "Корнійчук». 2010. -120 р.
- Mel'nick, V.N. Working features of navigation devices [Текст] / V.N. Mel'nick, V.V. Karachun, O.I. Levchenko // Materialy Mezinarodni Vědecko-Practika Konference «Efectivni Nastroje Modernich Věd-2010» Praha: Publishing House «Education and Science». – 2010. – Str. 16-20.
- Mel'nick, V.N. Determining Gyroscopic Integrator Errors to Diffraction of Sound Waves [Tekct] / V.N. Mel'nick, V.V. Karachun // International Applied Mechanics. -2004. –T. 40(3). – P. 328-336.

Карачун Володимир Володимирович – доктор технічних наук, професор, академік *Аерокосмічної академії України*, академік *Міжнародної академії Навігації і керування рухом*, фундатор кафедри біотехніки та інженерії і її перший завідувач з 2001р.

Має державні та відомчі нагороди, зокрема, відзначений Міністерством освіти і науки України почесними знаками «Відмінник освіти України», «За наукові досягнення», «Петро Могила», «Автор».

Має понад 600 наукових праць, з яких 22 - монографії, 8 – навчальні видання, в тому числі англійською мовою, 2 навчальних посібники з грифом МОН України, 48 авторських свідоцтва СРСР та Патентів України на

корисну модель.

Наукові інтереси охоплюють широке коло прикладних задач динаміки багатофазних механічних систем з носіями кінетичного моменту.

Ладогубець Наталія Віталіївна – кандидат педагогічних наук, доцент, член Society of Automotive Engineers International, декан механікоенергетичного факультету Національного авіаційного університету, академік Академії міжнародного співробітництва з креативної педагогіки. Коуч Leader Business Institute. Нагороджена *Почесною Грамотою МОН України. Відмінник освіти України*

Має понад 80 наукових праць, з яких 9 – навчальні видання, в тому числі англійською мовою, 3 підручники з грифом МОН України.

Наукові інтереси охоплюють широке коло прикладних задач параметричної ідентифікації неперервних і дискретних систем, дидактики вищої школи, теорії і методики професійної освіти.

Ме. про Нае Укр Пре Сти Від.

Мельник Вікторія Миколаївна – доктор технічних наук, завідувач професор кафедри біотехніки та інженерії, академік Міжнародної академії Навігації і керування рухом. Лауреат премії Національної академії наук України для молодих вчених. Нагороджена іменним годинником «Від Президента України». Нагороджена Почесною Грамотою МОН України. Стипендіат Кабінету Міністрів України у 2003-2005 р.р. та 2005-2007 р.р. Відмінник освіти України.

Автор біля 500 наукових праць, з яких 17 - монографії, один навчальний посібник з грифом МОН України, 36 Патентів України на корисну модель. Володар гранту *Президента України* для обдарованої

молоді, науковий керівник творчого колективу студентів-переможців Всеукраїнського конкурсу наукових проектів.

Наукові інтереси охоплюють низку прикладних задач пружної взаємодії механічних систем з силовими полями та кінематичним збуренням.

В.В. Карачун, Н.В. Ладогубець, В.М. Мельник

НАДЗВУКОВІ ЛІТАЛЬНІ АПАРАТИ

Монографія

Підп. до друку Папір тип № 2 Умов. друк. арк. 8,0 Тираж 30 Формат 60х84/16 Спосіб друку офсетний Умов. кр. - від 8,0 Зам. № 1065

ПП "Корнійчук", Київ, 04116, а/я 4 Свідоцтво про внесення до Державного реєстру суб'єктів видавничої справи ДК № 424 від 18.04.2001

Віддруковано ТОВ "НВП Поліграфсервіс". 09161, Білоцерківський р-н, м. Узин, вул. Фрунзе, 65 Свідоцтво про внесення до Державного реєстру серія ДК № 1777 від 05.05.2004 р. Зам. № 1065 ISBN 978-966-7599-83-6

67

599836