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INTRODUCTION 
 
 

Practical training for electrical engineering and electronics 
is one of important components of the process of forming future 
specialist of a high qualification on the respective directions. 
Practical skills allow to master the knowledge of the theory, to 
formulate the conclusions using the results of experiment. 

As a rule, mastering by the alphabet of the knowledge from 
the electrical engineering and the electronics does not do the 
student by well – qualified specialist. For this purpose it is 
necessary to learn the more specialized literature and have the 
experience of solving concrete problems. Improvement of the 
knowledge may be continued without assistance in the industrial 
or scientific activity. 

Achievements in the computer engineering sphere leaded to 
appearance of many scientific and technical directions, among of 
which the direction of mathematical and computer modeling is 
emphasized. Modern technical devices of automation and 
informational measuring equipment are created on the base of this 
direction. The special software is designed to provide the solution 
of the different problems in this sphere. The future specialists 
must be able use the worked out application programs and expand 
these programs by own ones to reach the respective purposes. As 
a rule, the application packages have the module structure. For 
example, some numerical method of calculus mathematic may 
represent the module by the respective program (Newton’s 
method for the numerical solution of the system of nonlinear 
algebraic equations, Runge – Kutt’s method of the numerical 
solution of the system of the differential equations, the least – 
squares method, ets.). 

The given training book is the component of the training 
literature on the disciplines: 

• Electrical engineering theory; 
• Electric circuit theory; 
• Electric and magnetic circuit theory; 
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• Electrical engineering and foundations of 
electronics;  

• Electrical engineering and electronics; 
• Foundations of electric circuits; 
• Electrical engineering in building. 

The complex of literature contains the following training 
books: 

• ZELENKOV A.A. Theory of Electrical 
Engineering: Manual / A.A.Zelenkov, A.A.Bunchuk, A.P.Golik. – 
K.: NAU, 2006. – p.136. (in Ukrainian). 

• ZELENKOV A.A. Linear Circuits of DC and AC: 
Manual / A.A.Zelenkov, A.V.Kudinenko. – K.: KIECA, 1992. – 
p.148. (in Russian). 

•  ZELENKOV A.A. Three – Phase Systems. 
Nonlinear Electric and Magnetic Circuits Under Steady – State: 
Manual / A.A.Zelenkov, A.V.Kudinenko. – K.: KIUCA, 1994. – 
p.148. (in Russian). 

• ZELENKOV A.A. Transients in Linear and 
Nonlinear Electric Circuits: Manual / A.A.Zelenkov, 
A.V.Kudinenko. – K.: KIUCA, 1995. – p.244. (in Russian). 

• ZELENKOV A.A. Matrix and Topological Methods 
of Analysis and Modeling Electric Circuits: Manual / 
A.A.Zelenkov, A.V.Kudinenko. – K.: KIUCA, 1996. – p.196. (in 
Russian). 

• ZELENKOV A.A. Theory of Electrical Engineering. 
Electric Circuits with the Distributed Parameters. Theory of 
Electromagnetic Field: Manual / A.A.Zelenkov, A.A.Bunchuk. – 
K.: NAU, 2012. – p.336. (in Ukrainian). 

• ZELENKOV A.A. Linear Circuits of DC and AC: 
Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. – K.: NAU, 
2003. – p.156. (in Ukrainian). 

• ZELENKOV A.A. Linear and Nonlinear Electric 
Circuits: Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. – 
K.: NAU, 2003. – p.168. (in Ukrainian). 

• ZELENKOV A.A. Transients in Linear Electric 
Circuits: Manual / A.A.Zelenkov, V.P.Shahov, A.A.Bunchuk. – 
K.: NAU, 2003. – p.132. (in Ukrainian). 
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• ZELENKOV A.A. Examples and Problems of the 
Electrical Engineering Using the PC: Manual / A.A.Zelenkov, 
O.Y.Kravchuk. – K.: NAU, 2001. – p.160.(in English). 

• ZELENKOV A.A. Principle and Applications of 
Electrical Engineering: Manual / A.A.Zelenkov, O.Y.Kravchuk. – 
K.: NAU, 2005. – p.256. (in English). 

• ZELENKOV A.A. Analysis and Synthesis of the 
Discrete – Time Systems : Manual / A.A.Zelenkov, V.M. 
Sineglazov, P.S.Sochenko – K.: NAU, 2004. – p.168. (in 
English). 

• ZELENKOV A.A. Electronics: Manual / 
A.A.Zelenkov, P.S.Sochenko, O.Y.Kravchuk – K.: NAU, 2007. – 
p.84. (in English). 

 
 The training book will be useful for the students of the 

following teaching directions: 
• 6.050701 Electrical engineering and electrical 

technologies 
• 6.051103 Avionics 
• 6.050201 System engineering 
• 6.050101 Computer engineering 
• 6.050202 Automation and computer – integrated 

technologies 
• 6.050902 Radio – electronic devices 
• 6.050901 Radio engineering 
• 6.050802 Electronic facilities and systems 
• 6.050801 Micro – and nanoelectronics. 
 

The training book helps to master the designated above 
disciplines, using the respective software MathCAD, Electronic 
Workbench, Multisim. 
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1.TRANSMISSION OF ELECTRIC ENERGY BY DC LINE 
 

The transmission line of electric energy may be shown by 

the equivalent scheme (Fig. 1.1), where 
2
lineR

- resistance of the 

direct and inverse conductors of the transmission line, 1V  - the 
voltage of the energy source, connected to the line input, 2V  - the 
voltage on the output of the line, that is 2V  is the voltage across 
the load resistance loadR . 
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Fig. 1.1 
Let’s assume, that the transmission line transmits the energy 

with the power (under the condition that the internal resistance of 
the generator equals zero), equaled 
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Next we solve this equation with respect to loadR : 
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We don’t take into account a sign “-“ before square root, 
because it corresponds the curve )(IPload  with a small value of 
the efficiency η . It follows from the dependencies: 
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Graphs of the dependencies )(IPload  and )(Iη are shown 
in Fig. 1.2. 
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Fig. 1.2 

 
Thus, the efficiency of the transmission line is equal to 
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If the value of the transmitted power loadP  is the same, 
then the value of the efficiency increases if the value 1V increases 
as well. 

To get the great values of the efficiency η  in the power 
electric systems, the transmission lines are designed as lines with 
high voltage. In this case the energy is transmitted over great 
distances with small losses. 

 
 
In case when the power loadP  must have a maximum value 

at the load the condition 
lineload RR =  

must be satisfied. 
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To verify this statement we take the derivative 
load

load
dR
dP

. 

Since 
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It is evident that the condition of a maximum value of the 

power is 
lineload RR = , 

because the second derivative 

load
load

load RE
dR

Pd 2
2

2
2−=  

has a “-“ sign and the function )( loadload RfP = reaches the 
maximum value. 

In this case the efficiency is 

.5,0=
+

=η
loadline
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Such low value of efficiency is not admitted if the energy is 
transmitted with a great power. However, if the power has a small 
value (for instance, in sensors of the automatic devices), then a 
small value of efficiency makes no difference. In this case it is 
important to transmit maximum power to the load and to get a 
maximum value of the ratio 

noise

load
P
P

. 
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The condition lineload RR =  is called accordance of the 
load. Then 
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Practical training and modeling 

 
1. Construct the equivalent scheme of modeling the electric 

energy transmission line, taking into account the internal 
resistance sourceR  of the DC voltage source E and the line 
resistance lineR . 

The transmission line and the voltage source parameters are 
given in the table 1.1. 

2. Find the energy characteristics of the transmission line 

for the given value of the load equaled max2
1

loadR , where 

maxloadR  is a maximum value of the load resistance from the 
given range: 

• current I in the line, 
• input voltage 1V , 
• voltage across the load loadV , 
• load power loadP , 
• source power sourceP , 
• input power 1P , 
• efficiency η , 
• line voltage losses VΔ . 

Table 1.1 
 
 

Variant 

 

lineR , Ω  
 

sourceR , Ω  
 

Е, kV 
Range of the 

load 
],0[ max loadR

Ω  
1 3 0,2 2 0-50 
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2 2 0,1 5 0-40 
3 4 0,25 4 0-100 
4 2 0,15 1 0-30 
5 1 0,1 2 0-20 
6 1,5 0,3 5 0-25 
7 2,5 0,25 1 0-50 
8 3 0,1 2 0-90 
9 4 0,15 3 0-100 

10 2,5 0,2 6 0-60 
11 3,5 0,25 5 0-80 
12 1,5 0,2 10 0-45 
 
3. Find the value of efficiency ηunder the condition that 

input voltage 1V  is 5 times greater for the same value loadP . 
4. Carry out the modeling of functioning transmission line 

of the energy for various values of the load resistances according 
to the given range, Fig. 1.3. Fill in the table 1.2 according to the 
obtained results. 

 
 
 

Тable 1.2 
 

loadR  I  1V  2V  loadP  η  

0 
max 1,0 loadR  

max 2,0 loadR  
. 
. 
. 

max loadR  

     

 
5. Construct the dependencies of energy characteristics 

from the load resistance. 
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Fig. 1.3 

 
6. Calculate the energy characteristics according to p.p. 4 

and 5, using the software MathCAD. 
 

Review questions 
 

1. Draw the equivalent scheme of the electric energy 
transmission line. 

2. What is the efficiency of the transmission line? 
3. Verify the following formulas: 
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4. How can the efficiency of the transmission line be 
increased? 

5. What functioning modes of the transmission line may be 
used? 
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6. Verify the statement maxloadload PP =  under the 
condition lineload RR = . 

7. When can the mode of the transmission of the electric 
energy with a maximum power be used? 

8. What is the efficiency η if the power equals a maximum 
value? 

9. Explain the graph )( loadload RfP = . 
10. How can the resistance lineR be found? 
11. How can the resistance sourceR  be taken into account? 
 

2. TRANSFORMATION OF LINEAR PASSIVE ELECTRIC 
CIRCUITS 

 
Research and calculation of the complex electric circuit 

may be simplified by means of the transformation of the branches. 
As a rule, the transformation is used if the number of nodes and 
branches may be decreased. In this case the number of equations 
of the system decreases as well. 

However it is necessary to remember: transformation of the 
electric circuit into the equivalent scheme must not change the 
values of the currents and the voltages in the part of the scheme, 
which is not transformed. For example, equivalent transformation 
of the passive part of the scheme (Fig. 2.1, a) into the equivalent 
resistance eqR  (Fig. 2.1, b) doesn’t change the value I of the 
current, which is defined by the expression 

eRR
EI
+

= . 

As a rule, in the circuit calculations the transformation 
of star-connected resistances into delta-connected 
resistances (or, on the contrary, delta-connected into a star-
connected resistances) is widely used, Fig. 2.2. 

The basic formulas of the transformation: 
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Fig. 2.1 

 
Expediency of such transformations may be explained, for 

example, by the schemes in Fig. 2.3, a and b. The transformation 
Δ  →Y is shown in Fig. 2.3, b. After transformation calculation 
of the currents is simplified (the number of nodes decreases to 2 
and we may use the method of two nodes). The transformation    
Y Δ→  is shown in Fig. 2.3, b, after that the equivalent scheme 
has the parallel and series connections of the resistances and the 
calculation of the given circuit is simplified as well. 

It is necessary to note, that after these transformations the 
values of the currents 21, II  and 3I  don’t change. 
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Fig. 2.2 
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Fig. 2.3 
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If the given circuit contains the star-connected resistances 
(or delta-connected) with the voltage source in one of them, then 
the rule of transfer of the voltage source may be used to simplify 
the calculation of the circuit by the transformation method. 

Let’s consider the node formed by the three branches and 
let’s assume that the first branch contains the voltage source with 
electromotive force E. In this case the distribution of the currents 
doesn’t change if the voltage sources of the same value E and the 
same direction with respect to the considered node will be 
connected into each branch. 

For example, the star-connected resistances 321 ,, RRR  
(branch with 3R  contains the voltage source E), shown in Fig. 
2.4, a, may be transformed into passive “star”, using the rule of 
transfer of the voltage sources, Fig. 2.4, b. After such 
transformation the passive “star” 321 ,, RRR  may be transformed 
into the passive “delta” 2313,12 , RRR . 

 

a

3

E
R3

R2

R1

2

1
E

R3

R2

R1

2

1

3

E

b

 
 

Fig. 2.4 
 

Practical training and modeling 
 
1. Construct the equivalent scheme for modeling the given 

electric circuit, the scheme of which is shown in Fig. 2.5, a. 
Circuit parameters are given in the Table 2.1. 
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Table 2.1 
№ 

variant Ω
,1R  

Ω
,2R  

Ω
,3R  

Ω
,4R  

Ω
,5R  

Ω
,6R  

V
,E
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

10 
5 
15 
10 
30 
5 
12 
6 
8 
5 
9 
4 

10 
5 
15 
30 
15 
10 
6 
9 
8 
8 
6 
6 

10 
5 
15 
20 
10 
15 
6 
6 
4 
6 
6 
8 

30 
15 
45 
20 
30 
10 
18 
15 
12 
12 
18 
12 

30 
15 
45 
30 
10 
30 
12 
15 
12 
16 
18 
18 

30 
15 
45 
10 
20 
20 
24 
18 
16 
12 
18 
12 

300 
150 
180 
90 
120 
150 
360 
320 
120 
90 
180 
210 

 
2. Find the currents flowing in the branches with resistances 

321 ,, RRR , using the rule of transformation Δ→Y  , Ohm’s law 
and KCL. 

 

 
a 
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b 
 
Fig. 2.5 

 
3. Carry out modeling of the given electric circuit before 

and after transformation Δ→Y  (Fig. 2.5, b). Write down the 
results of modeling into the table 2.2. 

 
Table 2.2 

Type of 
transformation 

Calculation Modeling 

Δ→Υ  1I  2I  3I  4I  5I  6I  
       
Υ→Δ        
Δ→Υ  

with the voltage 
source 

      

 
4. Fulfill the p.p. 2 and 3, using the rule of transformation 
Y→Δ , Fig. 2.6, a and b. 
5. Fulfill the p.p. 2 and 3, using the rule of transformation 
Δ→Y  and the rule of transfer of the voltage source, Fig. 2.7, a 

and b. 
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a 
 
 

 
 

b 
Fig. 2.6 
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b 

Fig. 2.7 
 

Review questions 
 

1. Give the example of expediency of the transformation 
Δ→Y . 
2. Give the example of expediency of the transformation 
Y→Δ . 
3. Write down the general formulas of transformation 
Δ→Y . 
4. Write down the general formulas of transformation 
Y→Δ . 
5. Write down the general formulas of transformation 
Δ→Y  and Y→Δ  if the resistances of  Y and Δ  are the same. 
6. Explain the rule of transfer of the voltage source in the 

electric circuit. 
7. Give the example of expediency of transfer of the voltage 

source. 
8. Calculate the value of the current 1I  in the scheme of 

Fig. 2.5, a, if  Ω=== 30321 RRR ,  Ω=== 10654 RRR ,          
E = 90 V. 

9. Calculate the value of the current 1I  in the scheme of 
Fig. 2.6, a, if  Ω=== 30321 RRR ,  Ω=== 10654 RRR ,          
E = 90 V. 
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3. INPUT RESISTANCE OF THE PASSIVE TWO – TERMINAL 
NETWORK 

 
The electric circuit having one pair of external terminals is 

called the two-terminal network. It means that a two-terminals 
network is the generalized scheme which is connected to the 
chosen branch or the energy source by means of the two input 
terminals. If the network doesn’t contain the energy source, then 
the two- terminal network is the passive one. 

Any passive two-terminal is the consumer of the electric 
energy and is characterized by the single value-input resistance 

inR .  That’s why a passive two- terminal network may by 
represented by one element inR  in the equivalent scheme, Fig. 
3.1. 

P

P

Rin Rin
Vin

E

Iin

Re =Rin

 
 

Fig. 3.1. 
 

The input resistance may be calculated with two ways. 
The first way is an experimental one. It allows to find 

inR according to the expression 

in

in
in I

V
R = , 

where inV  is arbitrary value of the voltage at the input terminals 
of the two-terminal network, inI  is the input current (the current 
of the energy source which creates the input voltage). 

The second way is the analytical one. In this case the input 
resistance is defined by the transformation of the passive circuit 
with respect to the given terminals, using the needed formulas 
(series, parallel connection and star- or delta connected elements) 
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so that, the electric circuit is represented by the equivalent 
resistance eqR , which equals inR , Fig. 3.1.  

For example, the input resistance of the two – terminal 
network, the scheme of which is shown in Fig. 3.2, is defined by 
the transformation of the series – parallel connected resistances 
into the equivalent resistance eqR : 

1543
21

21
1 =++

+
= RR

RR
RRReq Ω , 

1876
51

51 =++
+

= RR
RR

RR
R

eq

eq
eq  Ω . 

Thus 
18== eqin RR  Ω . 

R110

R2
10

5

R3

R4

5
R530

3

R6

R7

5

Rin

 
Fig. 3.2 

The scheme of modeling the electric circuit shown in Fig. 
3.2, is shown in Fig. 3.3. 

 
Fig. 3.3 
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To find the input resistance the value of the input current is 
measured for arbitrary given the input voltage (for example, 90 
V). It is evident that 

18
5

90
===

in

in
in I

V
R  Ω . 

 
 

Practical training and modeling 
 

1. Construct the equivalent scheme of modeling the electric 
circuit, the scheme of which is chosen according to the variant 
(Fig. 3.4). The parameters of the scheme are given in the table 
3.1. 

 
Тable 3.1 

№ 
variant 

Ω
,1R

 
Ω

,2R  
Ω

,3R  
Ω

,4R  
Ω

,5R  
Ω

,6R  
Ω

,7R  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

10 
5 
8 
15 
12 
10 
20 
30 
25 
10 
10 
6 

10 
8 
10 
30 
9 
5 
20 
30 
20 
15 
10 
8 

20 
10 
10 
30 
18 
15 
20 
30 
20 
15 
10 
12 

20 
6 
4 
15 
10 
30 
10 
15 
5 
10 
30 
9 

10 
12 
6 
10 
12 
15 
10 
15 
8 
20 
30 
6 

20 
8 
9 
10 
6 
10 
10 
15 
5 
25 
30 
6 

10 
4 
8 
30 
12 
30 
10 
10 
5 
15 
15 
9 

 
2. Carry out the analytical calculation of the input resistance 

of the given electric circuit. 
3. Carry out the modeling and the measurement of the input 

resistance of the electric circuit. 



 23 

4. Disconnect the branch with resistor 5R  and carry out p.p. 
2 and 3 with respect to terminals of the open – circuit branch. 

R1

R4

R2

R5

R3

R1

R5

R3

R2

R4

R7

R6Rin

21

43

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5
R6R6

R7

R1
R2

R5

R6

R7

R4

R3

R1

R2

R3

R4

R5

R6

65

R1

R1

R2 R2

R3

R3

R4 R4

R5

R5

R6 R6

7 8

Rin

Rin

Rin

Rin

Rin

Rin
Rin

 
 

Fig. 3.4 
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continuation of Fig. 3.4 

R1

R2

R3

R4

R5

R6
R1

R2

R3

R4
R5

R6

R2

R5

R6

R7

R4

R3

R1

R2

R3

R4

R5

R6

R7

9

11

10

12

Rin

Rin

Rin

Rin

 
 

 
Fig. 3.4 

 
Review questions 

 
1. Give the definition of the two – terminal network and 

show an example. 
2. What is the basic characteristic of the two – terminal 

network? Give the examples of its application. 
3. What methods of the calculation of the two – terminal 

network input resistance do you know? Give the examples. 
4. What type of the two – terminal networks do you know? 

Give the examples. 
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4. DISTRIBUTION OF VOLTAGES AND CURRENTS IN 
THE ELECTRIC CIRCUITS 

 
If the electric circuit consists of the resistors and is supplied 

from the direct voltage source, then the responses (the voltages 
across and the current in the branches) are directly proportional to 
the input signals.  

For example, the output voltage across the resistance 2R  
may be defined as (see Fig. 4.1): 
         the current in the circuit 

21

in
RR

VI
+

= , 

         the voltage across 2R  

21

2
in2out RR

R
VIRV

+
== , 

that is 
inout kVV = , 

where  

21

2
RR

Rk
+

=  

so that the output voltage outV  is the directly proportional to the 
input voltage inV . 

ba

VoutVin

I

R2

R1

R2

Vout

0

Vin

 
Fig. 4.1 

  
It is evident that the input voltage is distributed between the 

resistances 1R  and 2R , the part of this voltage outV  is 
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proportional to 2R . It is necessary to remember that inout VV <  
for the passive electric circuit. 

In general case the electric circuit having two pairs of 
terminals is called the four – terminal network. The transfer 
constant is its important characteristic, because we may find the 
output voltage for the given input voltage, using this constant. 

The four – terminal network has the input and the output 
terminals, Fig. 4.2. 

 

V in

Vout
Vin Vout

 
 

Fig. 4.2 
 

The transfer constant doesn’t depend on the input voltage. It 
is defined by the circuit element parameters (from which the four 
– terminal network is constructed), by the ways of their 
connections. The voltage transfer constant is defined as 

in

out
V V

V
K = . 

To calculate the transfer constant it is necessary: 
• give arbitrary value of the input voltage, 
• calculate the output voltage be any method, 
• find the value VK . 

As an example let’s consider the four – terminal network, 
the scheme of which is shown in Fig. 4.3, a. The given scheme 
may be shown by the following way (Fig. 4.3, b). 

It is evident, that the input voltage is applied both to the 
first branch and to the second one (across the parallel branches the 
voltage is the same). Since the four – terminal network is 
unloaded (the output terminals are opened), and then the Ohm’s 
law defines the current of the second branch: 



 27 

32

in
RR

VI
+

= , 

the output voltage is found as 
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3
in3out RR

R
VIRV

+
== . 

Vin
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Fig. 4.3 
 

Thus, the voltage transfer constant of the unloaded four – 
terminal network is 

6,0
25
15

32

3

in

out ==
+

==
RR

R
V
V

KV . 

For example, if 120=inV  V, then 
V. 721206,0inout =⋅== VKV V  

Let’s find the four – terminal network transfer constant VK , 
which is loaded on the resistance 30=loadR  Ω , Fig. 4.3, c. 

In this case the resistances 3R  and loadR  are connected in 
parallel and 
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load3

load3
RR

RR
Req +

= , 

Then 

eqRR
VI
+

=
2

in , 
eq

eq
eq RR

R
VIRV

+
==

2
inout , 

.5,0
2

=
+

=
q

eq
V RR

R
K  

If the input voltage is 120=inV  V, then the voltage across 
the load is equal to 

V. 601205,0inout =⋅== VKV V  
By analogy the current transfer constant IK  may be 

calculated, but we have to consider only the loaded four – 
terminal network: 

in

out
I
I

K I = . 

For example, for the four – terminal network shown in Fig. 
4.3, c we may write: 

eqRR
V

I
+

=
2

in ,  eqIRV =out ,  
loadload

out
out R

R
I

R
V

I eq== . 

If the input voltage is 120=inV  V, then the input current 

inI  is defined as 

À, 8
15

120

in

in
in ===

R
V

I  

where 

.
)(

21

21
in

eq

eq

RRR
RRR

R
++

+
=  

It is evident that the current transfer constant IK  is 
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25,0
8
2

in

out ===
I
I

K I . 

Thus, the basic formulas of the voltage distribution (voltage 
divider, Fig. 4.4, a) are: 

∑
=

==
n

k
keq

eq

k RR
R
R

VV
1

inout       , , 

current distribution (current divider, Fig. 4.4, b) 
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Fig. 4.4 
 

The case  n = 2 is often used: 

.       ,
21

1
inout

21

2
inout RR

RII
RR

RVV
+

=
+

=  
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Practical training and modeling 
 
1. Construct the equivalent scheme of modeling the four – 

terminal network, the scheme of which is chosen according to the 
variant (Fig. 4.5). The parameters of the scheme are given in the 
table 4.1. 

2. Calculate the voltage transfer constant of the unloaded 
four – terminal network. 

Тable 4.1. 
№ variant R, Ω  Ω ,loadR  V ,inV  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

10 
12 
6 
15 
8 
9 
12 
4 
5 
8 
4 
10 

10 
8 
9 
10 
4 
6 
12 
6 
10 
6 
4 
20 

100 
90 
120 
150 
80 
90 
180 
60 
75 
72 
80 
120 

 
3. Calculate the voltage and current transfer constants of the 

loaded four – terminal network. Write down the results in the 
table 4.2. 

Table 4.2 
 

Mode 
Calculation Measurement 

 VK  IK inV  outV inI outI VK IK
 

unloaded 
 

 _   _ _  _ 

loaded 
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Fig. 4.5 
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4. Carry out the measurement of the needed currents and 
voltages in both modes (Fig. 4.6). Write down the results in the 
table 4.2. 

 

 
Fig. 4.6 

 
Review questions 

 
1. Give the definition of the four – terminal network and its 

examples. 
2. How do you determine the voltage transfer constant? 

Give the examples? 
3. How do you determine the current transfer constant? 

Give the examples? 
4. How do you determine the transfer constants VK  and 

IK , using the measurements? 
5. Give the example of the calculation of the voltage 

transfer constant VK  of the loaded four – terminal network. 
6. Give the example of the calculation of the current 

transfer constant IK  of the loaded four – terminal network. 
7. Write down the general expression to find the output 

voltage outV  of the voltage divider. Explain by the example. 
8. Write down the general expression to find the output 

current outI  of the current divider. Explain by the example. 
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5. ANALYSIS OF THE COMPLEX  DC  ELECTRIC 
CIRCUITS 

 
To calculate the complex electric circuits it is necessary to 

take into account some peculiar properties their configuration. 
Let’s consider some properties. 

The value of the current flowing through the resistances 3R  
and 5R  in the electric circuit, shown in the Fig. 5.1, a, is the 
same. It means that these resistances are connected in series. 
Indeed, we may write KCL for the first node: 

,0321 =−− III  
so that 

213 III −= . 
For the fourth node KCL states: 

0521 =++− III , 
wherefrom it follows 

215 III −= . 
It is evident that 53 II = . It means that the resistances 3R  

and 5R  are connected in series and may be shown by the single 
element of the equivalent resistance 53 RRReq += . It simplifies 
the electric scheme because the number of nodes decreases by 1, 
Fig. 5.1, b. 

R1
R4

R3

R2

R6

R5
E1 E2

1 2

4 3

R1
R4

Re
R2

R6

E1
E2

1 2

3

а b  
 

Fig. 5.1 
 

To transform the real current source and to apply the loop 
current method to calculate the complex electric circuit it is 
necessary to remember that the ideal current source has infinite 
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internal resistance. It means that the resistor connected to the 
current source in series doesn’t change the distribution of the 
currents in the electric circuit and may be excepted from the 
calculation. However if we find the voltage across the current 
source, then we have to take into account this element and apply 
KVL. For example, we may write the equation for the scheme 
shown in Fig. 5.2, a : 

,053322 =+++ JVJRRIRI  
wherefrom it follows 

).( 53322 JRRIRIVJ ++−=  
 

R 1

R4

R2

R3

R5

E I

1
2

3

4

1 3

2

60
20

2А

20
20

20

R4

R 3

R 2

R
R1E1

а

E2

I2

b  
Fig. 5.2 

 
Presence of the ideal current source in the branch with the 

resistor 5R  allows to decrease the number of equations written by 
the loop current methods if we will choose the loops with loop 
currents as shown in Fig. 5.2, a. In this case the loop current 33I  
is known and is equal to the current  J  of the source, that is 

JI =33 = 2 A. To calculate the scheme it is necessary to write 
two equations with respect to loop currents 11I  and 22I , but we 
have to take into account the known current 33I  flowing through 
mutual resistances 2R  and 3R . 

Presence of the ideal voltage source with known EMF in 
some branch of the electric circuit (the internal resistance of the 
ideal voltage source is equal to zero) allows to decrease the 
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number of equations written by the node potential method. For 
example, assuming the node 4 as the grounded one ( 04 =V ) we 
defined the potential of the first node as 601 == EV  V. To 
determine the potentials 2V  and 3V  it is necessary to write only 
two equations. 

The considered above properties are illustrated by means of 
the examples of calculation of the electric circuit shown in Fig. 
5.2, a. 

Loop current method 
 

It is evident, that 233 == JI  A, so that we have two 
equations with respect to currents 11I  and  22I : 

.0)(
,)(

23342122111

3331223111

=++++−
=+−+

RIRRRIRI
ERIRIRRI

 

 
The solution of the system gives the values of the loop 

currents: 
,A 6,0      ,A 2,0 2211 −== II  

and the branch currents are: 

.A 2,0    ;A 6,0   ;A 2,2
;A 4,1     ;A 8,0          

1122433113

3322222111

==−===+=
=+==−=

IIIIIII
IIIIII

E
 

 
Node potential method 

 
It is evident, that the potential of the first node 

B 601 == EV , so that we have two equations with respect to 
potentials 2V  and 3V : 

.1111

,011111

42
3

2
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⎠
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The solution of the system of the equations gives the values 
of the potentials: 

,V 72     ;V 44 32 == VV  
the branch currents are defined by the Ohm’s law: 

A. 6,0                             

;A 2,2    ;A 4,1   ;A 8,0

4

31
4

3

2
3

2

23
2

1

21
1

−=
−

=

===
−

==
−

=

R
VV

I

R
V

I
R

VV
I

R
VV

I
 

The current of the voltage source is found by the KCL: 
A. 2,041 =+= III E  

 
Practical training and modeling 

 
1. Construct the equivalent scheme of modeling the electric 

circuit, shown in Fig. 5.2, b. The parameters of the scheme are 
given in the table 5.1. 

Table 5.1 
N 

variant 
1R , 
Ω  

2R , 
Ω  

3R , 
Ω

4R , 
Ω  

5R ,
Ω

1E , 
 V 

2E , 
V 

J ,  
А 

1 10 10 10 5 10 50 50 1,0 
2 20 10 20 10 20 40 50 1,2 
3 12 8 9 12 10 60 60 2,0 
4 6 9 15 9 12 75 60 1,8 
5 50 10 16 8 10 80 80 3,6 
6 5 5 10 10 5 50 50 3,0 
7 10 10 10 10 10 90 80 1,2 
8 30 30 30 15 20 75 50 2,4 
9 20 10 10 20 12 80 60 2,0 

10 15 15 15 15 10 90 75 3,0 
11 30 30 30 15 15 90 90 3,6 
12 15 15 15 30 30 90 60 1,6 

 
2. Carry out the calculation of the given electric circuit by 

the loop current and node potential methods. Write down the 
results in the table 5.2. 
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The solution of the system of the equations gives the values 
of the potentials: 

V, 72     ;V 44 32 == VV  
the branch currents are defined by the Ohm’s law: 

  A. 6,0                               

  A; 2,2  A; 4,1  A; 8,0

4

31
4

3

2
3

2

23
2

1

21
1

−=
−

=

===
−

==
−

=

R
VV

I

R
VI

R
VV

I
R

VVI

The current of the voltage source is found by the KCL: 
A. 2,041 =+= III E  

 
Practical training and modeling 

 
1. Construct the equivalent scheme of modeling the electric 

circuit, shown in Fig. 5.2, b. The parameters of the scheme are 
given in the table 5.1. 

Таблиця 5.1 
N 

variant 1R , 
Ω  

2R , 
Ω  

3R , 

Ω
4R , 
Ω  

5R ,

Ω
1E , 
V 

2E , 
V 

J , 
А 

1 10 10 10 5 10 50 100 1,0 
2 20 10 20 10 20 100 50 1,2 
3 12 8 9 12 10 60 120 2,0 
4 6 9 15 9 12 120 60 1,8 
5 50 10 16 8 10 80 80 3,6 
6 5 5 10 10 5 50 50 3,0 
7 10 10 10 10 10 100 100 1,2 
8 30 30 30 15 20 120 120 2,4 
9 20 10 10 20 12 80 60 2,0 

10 15 15 15 15 10 90 120 3,0 
11 30 30 30 15 15 180 90 3,6 
12 15 15 15 30 30 90 60 1,6 

2. Carry out the calculation of the given electric circuit by 
the loop current and node potential methods. Write down the 
results in the table 5.2. 
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Table 5.2 
Modes 1I  2I  3I  EI  2V  

Calculation 
LCM 

    _ 

Calculation 
NPM 

     

Modeling      
 

3. Carry out the measurement of the currents and the 
voltages with respect to the grounded node (node potentials), Fig. 
5.3. Write down the results in the table 5.2 . 

 
 

Fig. 5.3 
 

Review questions 
 

1. What methods can we use in the complex circuit 
calculation? 

2. How are the KCL and KVL equations written? 
3. How can you check the results of the electric circuit 

calculation? 
4. In which cases is the node potential method used? 
5. In which cases is the loop current method used? 
6. Explain the principle of the branch current calculation by 

the superposition method. 
7. In which cases is the method of two nodes used? Give the 

example. 
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8. Give the general characteristic of advantages and 
shortcomings of the calculation of the DC electric circuits. 

 
6. ANALYSIS OF PROCESSES IN THE BRANCH WITH 

SERIES CONNECTION OF R, L, C 
 

In general case any branch of the AC electric circuit has 
three series connected elements: resistor of resistance R, inductive 
element (inductor) of inductance L and capacitor of capacitance 
C, Fig. 6.1, a. 

R

C

Le( t )

R1

C

L

e( t)

R2

i1

i2

i3

а b

vR(t)

vL(t)

vC (t)

v(t)

 
Fig. 6.1 

 
Analysis processes in this branch allows to master the 

methods of the complex AC circuit calculation. 
As a rule, in the power engineering the external energy 

sources provide the voltage or current changing at the sinusoidal 
law: 

).sin()(
),sin()(

),sin()(

im

vm

m

tIti
tVtv
tEte

ψ+ω=
ψ+ω=
ψ+ω=

 

The functions e(t), v(t) and i(t) are cold the instantaneous 
values (for example, i(t) is  the instantaneous current), having the 
information about its parameters at any instant of time. The basic 
characteristics of the oscillation (for example, for the 
instantaneous voltage v(t)): the amplitude mV  or the root mean 
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square (RMS) value V  ⎥
⎦

⎤
⎢
⎣

⎡
=

2
mV

V , the angular frequency ω  or 

the cyclic frequency f ⎥⎦
⎤

⎢⎣
⎡

π
ω

=
2

f , the initial phase vψ . 

The basic relationships between the instantaneous values 
v(t) and i(t) for the basic elements of the AC electric circuit are: 

.
)(

)(   ,)(1)(

,)()(

, )()(

dt
dv

C
dt

tdv
Ctidtti

C
tv

dt
diL

dt
tdiLtv
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===

==

==

∫
∞−

 

The basic laws may be written in the instantaneous form: 
 

,    )()(    ,0)( ttetvti
k

k
k

k
k

k ∀== ∑∑∑  

that is these relationships are satisfied at any instant of time. 
Thus, the complex AC electric circuit in general case is 

characterized by the system of differential equations. For instance, 
the electric circuit, the scheme of which is shown in Fig. 6.1, b is 
completely described by the Kirchhoff’s laws: 

,0321 =−− iii  
,11 evRi C =+  

,11
3

23 eRi
dt
di

LRi =++  

or 
,0321 =−− iii  

,)(1
211 edtti

C
Ri

t
=+ ∫

∞−

 

.11
3

23 eRi
dt
di

LRi =++  
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The solution of the system of equations gives the values of 
the instantaneous currents, which have the sinusoidal form, 
because the linear elements of the circuit R, L and C can not 
change the shape of oscillations, which is given by the voltage 
source e(t). 

As a rule, the system of differential equations is written 
with respect to the first derivatives of the variables, which 
characterizes the energy state of the electric circuit     (the currents 
flowing through the inductors and the voltages across the 
capacitors). For the electric circuit in Fig. 6.1, b such variables are 
the current 3iiL =  and the voltage Cv  (state variables). 

Taking into account that 
dt

dv
Ci C=2 , 321 iii += , we may 

write the system of differential equations with respect to Li  and 

Cv : 

,131 evRi
dt

dv
CR C

C =++  

,03
23 =−+ Cv

dt
di

LRi  

or 

,11

1
3

1

2

1
C

C v
CR

i
CR

Re
CRdt

dv
−−=  

.1
3

23
Cv

L
i

L
R

dt
di

+−=  

 
The obtained system of equations may be solved by means 

of the respective software (for example, MathCAD) under the 
initial conditions: 
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Solve 
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To determine the matrix Z the function rkfixed uses such 

parameters: a is the initial time of integration; b is completion 
time of integration; k is the number of the calculated points over 
the interval of integration, )(   ),( 130 tvytiy C== . 

The solution Z is the matrix (fig. 6.2), which has k rows, 
zero column corresponds to the current time, the first column 
corresponds the first state variable 0y , the second column 
corresponds the second state variable 1y . 

 
Fig. 6.2 
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Practical training and modeling 
 

1. Construct the scheme of modeling the circuit, shown in 
Fig. 6.1, a. The circuit parameters are given in the Table 6.1. 

Table 6.1 
N 

variant 
V,  

V 
ω , 

rad/s 
R, 
Ω  

L ,  
H 

C , 
Fμ  

1 100 100 10 0,2 1000 
2 100 200 20 0,25 500 
3 120 200 15 0,15 750 
4 150 300 25 0,1 400 
5 180 100 20 0,25 500 
6 200 150 30 0,2 800 
7 100 250 20 0,1 500 
8 120 300 10 0,05 300 
9 180 200 15 0,15 400 
10 150 100 15 0,3 1200 
11 200 300 25 0,08 400 
12 250 300 20 0,06 500 

2. Solve the system of differential equations, which describe 
the series electric circuit with respect to state variables  i(t)  and  

)(tvC . Use the respective software. 
3. Construct the graphs {v(t), i(t)}. It is necessary to show 

the graph i(t) in the respective scale to determine the phase shift 
ϕ between the applied voltage v(t) and the current i(t). 

The graphs may be constructed using the relationships : 

0,:         199..0: jj Ztj ==  

2:     20:      : 1, VVIiZI mjjjj =⋅==  

)sin(: jmj tVv ⋅ω=  

4. Construct the graphs { )(tvR , i(t)}, taking into account 
p.3. Determine the phase shift between )(tvR  and i(t). 

5. Construct the graphs { )(tvL , i(t)}, taking into account 
p.3. Calculate the function )(tvL using the expression 
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,:  jCjjLj vRivv −−=    .: 2, jjC Zv =  

Determine the phase shift between )(tvL  and i(t). 
6. Construct the graphs { )(tvC , i(t)} and determine the 

phase shift between them. 
7. Construct the graphs { )(tvL , )(tvC } and determine the 

phase shift between them. 
8. Determine the RMS values of the voltages across the 

elements and the RMS current flowing in the circuit: 

IRV
Z
VI

C
LRZ R ==⎟

⎠
⎞

⎜
⎝
⎛

ω
−ω+=      ,      ,1 2

2  

( ) .    ,1     , 22
CLRCL VVVVI

C
VLIV −+=

ω
=ω=  

9. Carry out the modeling the series electric circuit (Fig. 
6.3). Measure the values of the current in the circuit and the 
voltages across elements. Compare the results of measurement 
and results of calculation in p.8. 

Measure the phase shifts between i(t) and the voltages 
)(tvR , )(tvL  and )(tvC ,using the virtual oscillograph. 
10. Construct the phasor diagram of the voltages for the 

series electric circuit using the results of modeling. 
 

 
 

Fig. 6.3 
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Review questions 
 

1. Obtain the second – order differential equations with 
respect to the current i(t), the voltage across the capacitor )(tvC  
and the voltage across the inductor )(tvL  for the series electric 
circuit. 

2. Obtain the system of the first – order differential 
equations with respect to state variables i(t) and )(tvC  of the 
series electric circuit. 

3. How can you calculate the impedance Z of the branch, 
containing the series connected elements R, L and C? 

4. Write down the differential relationships between the 
current and the voltage for each element. 

5. How can you define the RMS voltages across the 
elements of the series electric circuit? 

6. How is the RMS voltage across the branch of the electric 
circuit calculated? 

7. How can you construct the phasor diagram of the 
voltages? 

8. What is the impedance triangle? 
9. What is the voltage triangle? 

 
7. ANALYSIS OF PROCESSES IN THE ELECTRIC 

BRANCH WITH PARALLEL CONNECTION OF R, L, C 
 

For the parallel – connected elements the input current 
)(tiin is distributed between the parallel branches of the electric 

circuit by analogy with distribution of the currents in DC circuit, 
Fig. 7.1. 

ve

i in

iR iL iC
 

Fig. 7.1 
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If each branch contains only one element and the voltage 
v(t) is the same across all branches, then we may use the 
differential relationships, assuming tVtv m ω= sin)( : 

,sin)()(
)( t

R
V

R
tv

R
tv

ti mR
R ω===  

).90sin(cos)( o+ωω=ωω=== tCVtCV
dt
dvC

dt
dv

Cti mm
C

C

          Since 
dt

di
Lv L

L = , then the current )(tiL may be found by 

the integration: 

=ω=== ∫∫∫ tdt
L

V
dttv

L
dttv

L
ti m

LL sin)(1)(1)(  

).90sin(cos o−ω
ω

=ω
ω

−= t
L

V
t

L
V mm  

 
It is evident, that the RMS values of the currents in the 

branches are defined as: 

.1     ,     ,1 V
L

ICVIV
R

I LCR ω
=ω==  

The input current )(tiin  is calculated by the KCL: 
).()()()( titititi CLRin ++=  

 
 

Practical training and modeling 
 

1. Construct the scheme of modeling the given electric 
circuit, shown in Fig. 7.1. The circuit parameters are given in the 
Table 6.1. 

2. Construct the graphs {v(t), )(tiin }. It is necessary to 
show the graph )(tiin  in the respective scale to determine the   
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phase shift ϕ  between the applied voltage v(t) and the current 
)(tiin . 
3. Construct the graphs { )(tv , )(tiR }, taking into account 

p.2. Determine the phase shift between )(tv  and )(tiR . 
4. Construct the graphs { )(tv , )(tiL }. Determine the phase 

shift between them.  
5. Construct the graphs { )(tv , )(tiC } and determine the 

phase shift between them. 
6. Construct the graphs { )(tiL , )(tiC } and determine the 

phase shift between them. 
7. Determine the RMS values of the currents LR II ,  and 

CI  the RMS value of the input current: 

.)( 22
CLRin IIII −+=  

8. Carry out the modeling the parallel electric circuit (Fig. 
7.2). Measure the values of the currents in the circuit and compare 
the results of measurement and results of calculation in p.7. 

Measure the phase shifts between v(t) and the currents 
)(tiR , )(tiL  and )(tiC ,using the virtual oscillograph. 

10. Construct the phasor diagram of the currents for the 
parallel electric circuit using the results of modeling. 

 
 

Fig. 7.2 
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Review questions 
 

1. Write down the relationships for the instantaneous values 
of the currents in each branch of the parallel electric circuit. 

2. What formulas may you use to find the RMS values of 
the currents in each branch? 

3. What formula may you use to find the RMS value of the 
input current? 

4. Write down the differential relationships between the 
current and the voltage for each element. 

5. How is the phasor diagram of the currents constructed? 
6. What is the current triangle? 
7. How can you find the admittances of each element? 
 

8. ANALYSIS OF PROCESSES IN THE SERIES OSCILLTORY 
CIRCUIT 

 
The oscillatory circuits (both the series and the parallel 

circuits) are used to construct the so-called frequency – sensitive 
electronic circuits, which are widely used in radio engineering and 
electronics. 

The basic parameters of the series oscillatory circuit (Fig. 

8.1) are: the resonant frequency ⎟
⎠
⎞

⎜
⎝
⎛

π
ω

=ω
2

or  0
00 f , 

characteristic impedance ρ  and quality – factor Q (Q – factor), 
which are defined by means of the parameters R, L, C of the 
oscillatory circuit.  

E VCo

R
L

I

Vin

0

C

I0

I0
2

а

b

VLo

0ω1 2
ω ω

ωΔωΔ

ω

 
Fig. 8.1 
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At the resonance frequency the phase shift between the 
current and the applied voltage equals zero (the initial phases 
coincide) and the current reaches a maximum value. 

For the series oscillatory circuit the resonant frequency is 

.1
0 LC
=ω  

Characteristic impedance is defined by the reactance of 
each reactive element at the resonant frequency: 

.1

0
000 C

L
C

xLx CL =
ω

==ω==ρ  

The Q – factor is the occurrence of the sharp increase of the 
oscillatory amplitude in the circuit, when the natural frequency of 
the series oscillatory circuit 0ω and the frequency ωof the 
external applied voltage coincide, that is 0ω=ω . 

The Q – factor is defined by the ratio of the characteristic 
impedance and the loss resistance R: 

.1

0

0
RCR

L
R

Q
ω

=
ω

=
ρ

=  

The resonance condition is the equality of the reactive 
component of the complex input impedance to zero, that is 

.0=−= CLin xxx  
At the resonant frequency the input impedance RZin =  

and the current reaches a maximum value equaled 

R
V

I in=0 . 

The voltages across the reactive elements at the resonant 
frequency are: 

,0
000 ininL QV

R
L

VLIV =
ω

=ω=  
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,11

0
0

0
0 ininC QV

RC
VI

C
V =

ω
=

ω
=  

that is inCL QVVV == 00  and their values are Q times 
greater than the applied voltage. 

The important characteristics of the series oscillatory circuit 
are the resonant characteristics )(  ),(  ),( ωωω CL VVI  and )(ωZ . 

The resonant characteristic of the current )(ωI  may be 
determined by means of Ohm’s law: 

=
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⎠
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⎞

⎜
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2
0

1 ξ+
=

I
, 

where the value ξ  equaled 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω
ω

−
ω
ω

=ξ 0

0
Q  

is called the generalized mistuning of the oscillatory circuit. 
By analogy we may find the expressions for other 

characteristics: 

.1      ,
1

)(      ,
1

)( 2

2

0

20
ξ+=

ξ+
ω
ω

=ω
ξ+

ω
ω

=ω RZ
QV

V
QV

V in
C

in
L  

For the neighbour frequencies (small mistuning) we 
may write: 
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.22
2)(

00

0

0

0

0

2
0

2

ω
ωΔ

=
ω
ω−ω

=
ωω

ω⋅ω−ω
≈

ωω
ω−ω

=ξ QQQQ  

The frequencies 1ω  and  2ω , for which the RMS value 
of the current (or the output voltage) decreases by 3 decibels 
( 2  times) with respect to the resonant current 0I , are 
called the boundary frequencies. In this case 1=ξ , because 

2
1

1

1
20
=

ξ+
=

I
I . 

The range of frequencies bωΔ≈ω−ω 12 is called the 
absolute bandwidth of the oscillatory circuit: 

.2B 0
Qb
ω

=ωΔ= . 

On the boundary of the bandwidth the generalized 
mistuning is 1±=ξ . 

Practical training and modeling 
 

1. Construct the scheme of modeling the series oscillatory 
circuit, shown in Fig. 8.1, a. The circuit parameters are given in 
the table 8.1. 

Table 8.1 
N 

variant 
0ω , 

rad/s 
inV , 
V 

R, 
Ω  

L ,  
H 

C , 
μF 

1 100 200 8 0,2 500 
2 200 200 4 0,1 250 
3 200 300 2,5 0,05 500 
4 100 500 4 0,1 1000 
5 500 500 5 0,04 100 
6 500 400 2 0,02 200 
7 400 200 4 0,05 125 
8 500 100 2 0,01 400 
9 400 100 2 0,025 250 
10 200 200 16 0,4 62,5 
11 100 100 10 0,4 250 
12 100 500 16 0,8 125 
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2. Calculate the value of the Q – factor, the characteristic 

impedance ρ and RMS values of the current and the voltages 
across the reactive elements. 

3. Construct the graphs of the resonant characteristic of the 
current )(ωI for the Q – factor values 10   ,1 21 == QQ . 

4. Construct the graphs of the resonant characteristic of the 
voltages )(  ),( ωω CL VV and the impedance )(ωZ . 

5. Calculate the value of the bandwidth of the circuit. 
6. Carry out the modeling the series oscillatory circuit (Fig. 

6.3). Measure the values of the current and the voltages across the 
elements for various values of the Q – factor: 10  ,1 21 == QQ . 
Measure the phase shift between the current i(t) and the applied 
voltage v(t) by means of the virtual oscillograph. Measure the 
amplitudes of the voltages. 

 
Review questions 

 
1. What is the general resonance condition of the series 

oscillatory circuit? 
2. Verify the relationships for the resonant characteristics 

)(  ),( ωω CL VV . 
3. How is the resonant characteristic of the current )(ωI  

changed for varies values of the Q – factor? 
4. How is the bandwidth calculated? 
5. How are the boundary frequencies of the oscillatory 

circuit calculated? 
6. Chose the values R, L and C to provide 50 =f  kHz,    

Q = 50. 
 
9. ANALYSIS OF PROCESSES IN THE PARALLEL 

OSCILLTORY CIRCUIT 
 

The resonant frequency 0ω , the characteristic impedance 
ρ , Q – factor of the parallel oscillatory circuit (Fig. 9.1) may be 
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defined by the same formulas as for the series circuit if the Q – 
factor is greater than (3÷5). 

Ri

C

L

R

Vin

E
Vout

Iin
ICIL

 
 

Fig. 9.1 
 

If the oscillatory circuit consists of the elements of high 

quality factor, that is  LRL ω<< , 
C

RC ω
<<

1 , then the 

complex input impedance may be defined as: 

=
+
ρ

=
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⎠
⎞

⎜
⎝
⎛

ω
−ω+

=

ω
+ω+

ω
ω

=
jxR

C
LjR

C
L

Cj
LjR

Cj
Lj

Z in

2

11

1

 

,22

2

22

2
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−

+

ρ
=  

where 
C

Lx
ω

−ω=
1 , .CL RRR +=  

The resonance condition is equality 0=inx , that is: 

,022

2
=

+

ρ x
xR

 

then x = 0 and the input impedance at the resonance frequency is 
the real value and equal to: 
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.
2

0 ρ=
ρ

= Q
R

Zin  

It is evident, that the input impedance reaches a maximum 
value and Q times greater than the value of the characteristic 
impedance ρ . 

The input current has a minimum value: 

,
Z 0 

0 ρ
==

Q
VV

I in

in

in  

and the currents flowing in the branches of the parallel oscillatory 
circuit have the maximum values at the resonant frequency: 

,0
0

0 QI
Q
QV

L
V

I inin
L =

ρ
=

ω
≈  

,000 QI
Q
QV

CVI in
inC =

ρ
=ω≈  

so that 000 QIII CL == , that is the current in each reactive 
element is Q times greater than the input current at the resonant 
frequency. 

The resonant characteristic of the input current )(ωI is 
defined as: 

=⎟⎟
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The input impedance and its components, the currents 
flowing in the branches of the parallel oscillatory circuit depend 
on the frequency as: 

2
0 
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2
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2
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ρ
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ρ
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+
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=ω in
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ω=ω=ω QIÑVÑVI ininÑ . 

If the RMS value of the input current inI  doesn’t change 
depending on the frequency of the applied voltage, then the RMS 
value of the output voltage outV  will be change depending on the 
frequency to get the frequency – sensitive properties of the 
parallel oscillatory circuit. 

To obtain such mode the resistor of resistance iR  is 
connected in series with the voltage source under the condition 

that 0 ini ZR >> . In this case 
i

in R
EI ≈  and the equivalent Q – 

factor of the oscillatory circuit is defined as 

,
1 0 

i

in
e

R
Z
QQ

+
=  

and the output voltage at the resonant frequency is: 

.
0 

0 
0 00 

ini

in
inout ZR

EZ
ZIV

+
==  

It is said in this case that the oscillatory circuit is connected 
to the generator of the infinity power with the infinity internal 
impedance (such generator is called the current source). Under the 
condition constII in ==gen , the output voltage outV  depends 
on the frequency by analogy with the input impedance. 
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Indeed, the ratio of the RMS value of the output voltage at 
the terminals of the detuned circuit to RMS value of the voltage at 
the resonant frequency is: 

,
)()()(

0 0 0 in

in

ingen

ingen

out

out
Z

Z
ZI

ZI
V

V ω
=

ω
=

ω
 

so that the resonant characteristic of the output voltage of the 
oscillatory circuit is defined as: 

)()()(
0 0 

0 ω
+

=ω=ω in
ini

in
in

out
out Z

ZR
EZ

Z
V

V . 

 
Practical training and modeling 

 
1. Construct the scheme of modeling the parallel oscillatory 

circuit, shown in Fig. 9.1, a. The circuit parameters are given in 
the table 8.1. 

2. Calculate the value of the Q – factor, the characteristic 
impedance ρ and RMS values of the input current and the 
currents flowing in the branches at the resonant frequency. 

3. Construct the graphs of the resonant characteristics 
)(ωinZ , )(ωinR and )(ωinx . 

 4. Construct the graphs of the resonant characteristic of the 
input current )(ωI and the branch currents  ),(ωLI  )(ωCI . 

5. Construct the graphs of the resonant characteristic of the 
output voltage )(ωoutV . 

6. Carry out the modeling the parallel oscillatory circuit 
(Fig. 9.2). Measure the values of the currents in all branches at the 
resonant frequency. Carry out the needed measurement to 
construct the resonant characteristics )(ωinZ  and )(ωoutV . 
Measure the phase shift between the current i(t) and the applied 
voltage )(1 tv by means of the virtual oscillograph. Compare the 
results of the measurement and calculation. 
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Fig. 9.2 

 
Review questions 

 
1. What is the general resonance condition of the parallel 

oscillatory circuit? 
2. Verify the relationships for the resonant characteristics of 

the input impedance )(ωinZ and its components )(ωinR , )(ωinx . 
3. Verify the relationships for the resonant characteristics of 

the currents )(ωI , )(  ),( ωω CL II . 
4. Verify the relationship for the resonant characteristics of 

the output voltage )(ωoutV . 
5. Construct the phasor diagram of the currents of the 

parallel oscillatory circuit. 
6. How can you calculate the Q – factor of the loaded 

parallel oscillatory circuit? 
7. How can you find the input impedance of the parallel 

oscillatory circuit? 
8. How are the characteristics of the parallel oscillatory 

circuit changed, if the capacitance C increases 2 times? 
9. What will be the resistance R to increase 2 times the 

bandwidth of the resonant curve? 
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10. ANALYSIS OF THE COMPLEX MONOPHASE AC 

ELECTRIC CIRCUITS 
 

To analyze the processes in AC electric circuits we have to 
take into account such elements as the inductors and the 
capacitors. As a rule, any AC electric circuit contains these 
elements. That’s why the study of AC electric circuits is more 
complex problem, then the analysis of DC electric circuits. 

To substantively simplify the analysis of AC circuits in the 
steady – state mode we will use the complex representation of the 
currents and the voltages. Such representation is based on the 
Euler’s formula:  

. sincos α+α=α je j  
To calculate the electric circuits in the steady – state mode 

we will use the following concepts (as an example we will 
consider the sinusoidal current )sin()( im tIti ψ+ω= ): 

• the instantaneous complex current 
,)( tj

meIti ω=  
so that the instantaneous current )(ti  is defined as the 
imaginary part of the instantaneous complex current (Fig. 
10.1): 

{ } { } { }==== ψ+ωωψω )(IMIMIM)( ii tj
m

tjj
m

tj
m eIeeIeIti
{ }

).sin(                            
)sin()cos(IM          

im

imim

tI
tjItI

ψ+ω=
=ψ+ω+ψ+ω=

 

• the complex amplitude (or the RMS current) 
 

.2      ,     , IIIeIeII m
jj

mm
ii === ψψ  

The function )(ti is the complex representation of the 
instantaneous value of the sinusoidal oscillation. The complex 
number ijIeI ψ=  is the constant value and does not depend on 
time. This value is shown by the fixed phasor of the length I, 
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which is disposed on the complex plane at angle of iψ to the real 
axis. The magnitude of the complex value is equal to the RMS 
value, that is II =|| . 

Re

Im

Im

IMv(t)

v(t)

ω
π

=
2T

 
Fig. 10.1 

 
Thus, the sinusoidal oscillation is completely defined by the 

RMS value I and by the initial phase iψ  at the given frequency 
ω . That’s why, to describe the sinusoidal process (for the given 
frequency) it is sufficient to know the RMS complex current 

ijIeI ψ= without calculation of the instantaneous values )(ti and 
)(ti . 

It is evident that the complex representation excepts the 
time (“kills the time”), that is the angular frequency ω  is 
excepted from the AC electric circuit calculation, because this 
value is known and is given by the voltage (or the current) source. 
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It is necessary to remember that the algebraic operations 
(addition, multiplication and division) use the complex 
representation, which may be written either in the polar form or in 
the algebraic form: 

• in the polar form: 
,ijIeI ψ=  

• in the algebraic form 
. sincos ii jIII ψ+ψ=  

It is evident, that the impedance of any branch (in general, 
the branch contains the series connected resistor, the inductor and 
the capacitor) is given by the complex number: 

• in the polar form: 

,      ,     , iv
j

I
VZZeZ ψ−ψ=φ== φ  

where V is the voltage applied to the branch, I is the current 
flowing through the branch; 

• in the algebraic form: 

( ) .1 jxRxxjR
C

LjRZ CL +=−+=⎟
⎠
⎞

⎜
⎝
⎛

ω
−ω+=  

 
Basic laws in the complex form: 

 
• Ohm’s laws: 

, 1                      

 ,1     ,     ,

I
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I
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VILjVIRV
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CLR

ω
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• Kirchhoff’s current law (KCL): 

, 0
1

=∑
=

n

k
kI  

• Kirchhoff’s voltage law (KVL): 
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To calculate the AC electric circuit it is necessary to 
construct the equivalent scheme with respect to the RMS complex 
currents, in which the complex impedance Z  represents each 
branch. 

For example, the AC circuit shown in Fig. 10.2, a may be 
represented its equivalent scheme (Fig. 10.2, b), for which the 
system of algebraic equations may be written by means of the 
Kirchhoff’s laws: 

, 0321 =−− III  
, 3311 EZIZI =+  
. 03322 =− ZIZI  

L

Ce(t)

R1

R3

R2

i1(t)

i2(t )

i3( t)

1Z

3Z

2Z

E

1I

а b

2I

3I

 
Fig. 10.2 

 
It is evident, that the system of equations may be obtained 

by means of the loop current method or the node potential 
method. To calculate the current in any branch of the electric 
circuit the transformation method may be used. 

 
Practical training and modeling 

 
1. Construct the scheme of modeling the electric circuit, 

shown in Fig. 10.3. The circuit parameters are given in the table 
10.1. 

2. Calculate the branch currents of the given circuit. Write 
down the results of calculation in the table 10.2. 
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Fig. 10.3 
 

3. Measure the values of the currents and the voltages with 
respect to the grounded node, Fig. 10.4. Write down the results of 
measurement in the table 10.2. 

Table 10.1 
 

N
 v

ar
ia

nt
 

V
,1E

  

V
,2E

 

V
 ,3E

 

ω

, r
ad

/s
 

 Ω
,R

 

Ω
,1Lx

 

Ω
2Lx

  
Ω 

,1Cx

 

Ω 
2Cx

 

M
et

ho
d  

1 100 100 90 300 10 8 6 10 5 LС 
2 120 150 100 300 15 10 8 6 4 NP 
3 150 120 90 400 20 15 10 10 10 LС 
4 100 200 100 400 20 8 5 12 8 NP 
5 200 100 100 500 8 12 10 6 8 LC 
6 150 100 180 500 12 9 6 10 6 NP 
7 100 150 90 300 10 6 12 8 10 LС 
8 120 90 60 400 5 10 6 6 4 NP 
9 150 150 75 400 15 8 6 5 5 LС 

10 200 200 180 300 12 6 10 8 12 NP 
11 200 300 100 500 10 8 5 5 8 LС 
12 300 120 90 500 12 10 8 6 4 NP 
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Table 10.2 
Mode 1I  2I  3I  4I  5I  1ϕ  2ϕ  

Calculation        
Modeling        

 
Fig. 10.4 

 
Review questions 

 
1. What methods are used in the complex AC circuit 

calculation? 
2. How can you check the correctness of the results of the 

circuit calculation? 
3. How can you calculate the complex impedances of the 

electric branches? 
4. How can you determine the RMS voltage across the 

branch, if the RMS voltages across each element are known? 
5. Write down the KCL and KVL in the complex form and 

explain their application by means of examples. 
6. Write down the Ohm’s laws in the complex form for the 

resistor, the inductor and the capacitor. Determine the respective 
phase relationships. 

7. What are the triangles of the voltages and the 
impedances?  

8. What is the instantaneous current? 
9. What is the RMS complex current? 
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11. TRANSMISSION OF ENERGY BY THE AC LINE 

 
The transmission line uses two basic modes to transmit the 

energy like the DC line: transmission of the energy with a 
maximum powers to the load (under the condition that the internal 
resistance of the generator equals zero) and transmission the 
energy with the maximum efficiency. Let’s consider the both 
modes. 

Assuming that the complex impedances of the line and the 
load equaled 

,    , loadloadloadlinelineline jxRZjxRZ +=+=  
we may find the current as 

( ) ( )22
lineloadlineload xxRR

EI
+++

= . 

Since, the true power is defined as loadload RIP 2= , then 
for lineload xx −= the power increases and for loadline RR = the 
power reaches a maximum value. Thus, the condition of the 
transmission of the energy with a maximum true power is: 

∗= lineload ZZ , 

where ∗
lineZ  is a conjugate value of the line complex impedance. 

The value of the efficiency is 

. 
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It is evident that the value of the efficiency is equal to 
5,0=η  in the considered mode. In the devices of automation and 

telecommunication the power of the received signals is negligible. 
That’s why it is necessary to receive the signals with a maximum 
power, that is the receiver has to use the respective mode. A small 



 65 

value of the efficiency makes no difference, because a negligible 
energy is transmitted to the load. 

In the electric power systems this mode is unprofitable, 
because the energy of great power is transmitted over substantial 
distances with great losses. 

It is evident that we have to decrease the losses in the 
transmission line assuming that the given power loadP  doesn’t 
change. 

In this case the transformers are used: step-up transformer is 
connected to the input of the line (close to the energy source) and 
the step-down transformer, which I connected to the output of the 
line (close to the consumer). The step-up transformer increases 
the voltage up to a few hundred thousands volts. The step-down 
transformer decreases the voltage to the needed value to get the 
given power, Fig. 11.1. 

Voltage
generator

Step - up
transformer

Transmission
line

Step - down
transformer

Consumer

I1

V1

I2

V2

 
 

Fig. 11.1 
 

Taking into account the relationships for voltages and 
currents of the step-up transformer ( 12 ww >> ), we may write: 

,     ,
1
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2

1
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w
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V

≈≈  

so that 222111 IVSIVS === , that is the current on the output 

of the step-up transformer decreases 
1

2
w
w

 times for the same value 

of the apparent power. It means, that the power of losses in the 

transmission line decreases 
2

1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
w
w

times, because the losses are 

defined as lineRI 2 . 
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The expression for the efficiency may be written in the 
form: 

,

cos
1

1cos
1

1
2

loadload

line
loadloadload
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line
V
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ϕ
+

=ϕ==

+

=η

from which it follows that the value of the efficiency depends on 
the value loadϕcos . The value η  reaches a maximum for the 
case 1cos =ϕload  (that is for 0=ϕload ). 

In the most cases the consumers have the inductive 
properties. That’s why the parallel connection of the capacitor 
increases the value loadϕcos , Fig. 11.2. 
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Fig. 11.2 

 
The capacitance C is calculated from the condition of the 

equality CL bb = : 

,2 C
Z

x

load

L ω=  

from which it follows 

( )222
Lloadload

Lload

load

Lload

xR
x

Z
x

C
+ω

=
ω

= . 

In this case the total susceptance equals zero ( 0=−= CL bbb ) 
and the consumer is characterized by the conductance 
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2
load

load
load

Z
R

g =  and 1cos =ϕload . The value of the efficiency is 

defined by the expression: 

load

load

gV
rI

2

2
1

1

+

=η . 

 
Practical training and modeling 

 
1. Determine the power characteristics of the transmission 

line for the given parameters according to the variant (Table 
11.1): 

• current in the line I, 
• true power of the load loadP , 
• efficiency η , 
• voltage across the load loadV , 
• power factor loadϕcos . 

                                                         Table 11.1 
N  

variant 
E , kV lineZ , 

Ω  
loadZ , 
Ω

ω , 
rad/sec 

1 10 5 + j 0.8 50 + j 32 400 
2 10 4 + j 0.1 40 + j 36 400 
3 20 5 + j 1.2 50 + j 30 400 
4 20 5 + j 1 45 + j 25 500 
5 30 3 + j 0.6 40 + j 20 500 
6 30 3 + j 0.5 50 + j 50 300 
7 40 4 + j 1 40 + j 25 300 
8 40 4 + j 1.2 30 + j 30 200 
9 50 5 + j 1.2 30 + j 60 500 

10 50 5 + j 1 50 + j 40 300 
11 60 6 + j 0.8 30 + j 40 400 
12 60 6 + j 1.2 40 + j 10 500 
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2. Calculate the dependencies of the current ( )loadRI  and 
the true power of the load ( )loadload RP  from the active 
component of the load complex impedance for several values of 
the reactive component loadloadload xxx 2  ,  ,5,0 . Construct the 
respective dependencies: 

 

loadloadload

loadlineloadline
load

loadload

RRIRP

xxRR

ERI

Rx

⋅=

+++
=

==

2

22

)(:)(               

)()(
:)(       

50..1,0:            20:            

 

 
3. Calculate the capacitance of the capacitor, which is 

connected to the load in parallel to increase the efficiency η . Find 
its value. 

4. Construct the scheme of modeling the transmission line, 
measuring the current in the line for several values loadR . 
Calculate the energy characteristics of the transmission line using 
the readings of the virtual devices, Fig. 11.3. 

 

 
Fig. 11.3 

 
5. Carry out the modeling of the transmission line 

functioning in the mode of maximum value of the efficiency. 
6. Compare the results of calculation and modeling. 
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Review questions 
 

1. What properties do the transmission line have? 
2. How can you write the condition of the transmission of 

energy with a maximum power? 
3. How is it possible to increase the efficiency of the 

transmission line? 
4. How does the efficiency depend on the power factor 

ϕcos ? 
5. How can you find the value of capacitance to increase the 

efficiency? 
6. What is the formula defining the current in the line? 
7. How are the step-up transformers used in the 

transmission line? 
 

12. CHARACTERISTIC PARAMETERS OF THE PASSIVE 
FOUR –TERMINAL NETWORK 

 
In many cases the problems of the electrical engineering 

(designing the AC transmission lines) and radio engineering 
(analysis various digital filters, concordance of the devices) use 
the so-called characteristic parameters, namely: characteristic 
impedances, transformation ratio and transfer function. 

If the four – terminal network is connected (is loaded) to the 
complex impedance cZ 2  by the output terminals, so that its input 
impedance will be cZ1  and to the contrary, if the four – terminal 
network is connected to the complex impedance cZ1  by the input 
terminals, so that its output impedance will be cZ 2 , then such 
impedances are called the characteristic impedances (the input 
and the output characteristic impedances respectively, Fig. 12.1. 

If the coefficients of the four – terminal network are known, 
then the parameters cZ1  and cZ 2  are defined as: 

2111

2212
2

2221

1211
1      

AA
AA

Z
AA
AA

Z cc == . 
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Fig. 12.1 
 

If the internal scheme of the four – terminal network is 
unknown, then the characteristic parameters may be found by 
means of the experiment: 

ocsccocscc ZZZZZZ 222111       , == , 

where scZ1 , ocZ1 , scZ 2 , ocZ 2  are the input and the output 
impedances of the four – terminal network in the modes of the 
short circuit and the open circuit. 

It is evident, that for the symmetrical four – terminal 
network we have the equality ссс ZZZ == 21 . 

The symmetrical four – terminal network is called the 
symmetrical four – terminal network matched on the output, if the 
load impedance loadZ  is equal to cZ 2 . It is evident, that for the 
symmetrical four – terminal network matched on the output 
( ñload ZZ = ) its input complex impedance is equal to cZ . 

For example, for the four – terminal network, shown in Fig. 
12.2 we may calculate: 

R1 R2

R3

5 30
20 Rload

 
Fig. 12.2 
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Îì,  61,20415         

Îì,  25     Îì,  17

111

311
32

32
11

===

=+==
+

+=

ocscñ

ocsc

ZZZ

RRZ
RR

RR
RZ

 

Îì.  23,411700         

Îì,  50     Îì,  34

222

322
31

31
22

===

=+==
+

+=

ocscñ

ocsc

ZZZ

RRZ
RR

RR
RZ

 

 
Thus, if the four – terminal network is loaded on the 

impedance loadZ=23,41  on the output, then its input impedance 
will be 20,61 Ω . Indeed: 

,61,20
23,91

20)23,4130(51 =
+

+=inZ  

that is cin ZZ 11 = . 
The concept of the transformation ratio 

c

c
Z
Z

m
2

1
т =  

 is used in the calculation of the four – terminal network with the 
matched load. 

Since, the equality ñin ZZ 1=  is satisfied for the matched 
four – terminal network, then we may write 

loadñin ZmZmZ 2
ò2

2
ò == , 

that is the matched four – terminal network is the transformer of 
the impedance, transforming the load impedance 2

тm  times. It is 
evident, that the symmetrical four – terminal network ( 1т =m ) 
doesn’t transform the impedance in the matched mode 
( loadñin ZZZ == ). 
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Practical training and modeling 
 

1. Construct the scheme of modeling the four – terminal 
network, the scheme of which is shown in Fig. 12.3. The 
parameters of the scheme and the value of the input voltage inV  
are given in the table 12.1. 

Table 12.1 
N  

variant Lx  
Ω  

1Lx
 Ω  

2Lx
 Ω  

Cx  

Ω
1Cx

Ω  
2Cx

Ω

R 
Ω  

ω
rad/s inV

 В 
lZ  

Ω  
1 - 5 5 20 - - - 500 100 20 
2 5 - - - 20 10 - 500 120 20 
3 - 10 5 20 - - - 400 150 30 
4 8 - - - 10 15 - 400 180 30 
5 5 - - 20 - - 10 500 120 20 
6 10 - - 20 - - 20 300 100 20 
7 8 - - 10 - - 10 400 150 10 
8 10 - - 5 10 20 - 500 120 20 
9 12 5 10 8 - - - 400 180 30 

10 10 10 5 20 - - - 500 150 30 
11 8 - - 12 10 20 - 400 120 20 
12 10 10 20 20 15 10 - 500 100 20 

 
2. Calculate the characteristic parameters of the four – 

terminal network cZ1 , cZ 2 , тm . 
3. Calculate the input impedance of the four – terminal 

network loaded on the characteristic impedance cZ 2 . 
4. Calculate the input impedance of the four – terminal 

network loaded on the impedance loadZ . 
5. Carry out the p.p. 2 and 3 for the symmetrical four – 

terminal network (the needed modifications must be done in the 
given circuit). 

6. Carry out the modeling the given four – terminal network 
and calculate the impedances (the magnitudes of the complex 
impedances) scZ1 , ocZ1 , scZ2 , ocZ2 , cZ1 , cZ2  and the 
magnitude of the transformation ratio by means of the virtual 
devices reading, Fig. 12.4. 
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Fig. 12.4 
 

7. Carry out the modeling the given four – terminal network 
loaded on the characteristic impedance cZ 2  and calculate the 
input impedance inZ1  by means of the virtual devices reading. 

8. Carry out the modeling the given four – terminal network 
loaded on the characteristic impedance cZ1  and calculate the 
input impedance inZ2  by means of the virtual devices reading. 

9. Compare the results of the calculation and modeling. 
 

Review questions 
 

1. What is the active four – terminal network? Give the 
examples of the passive four – terminal networks. 

2. Write down the equations of the four – terminal network 
in “A” form. 

3. Give the physical matter of the four – terminal network 
coefficients. 

4. How can you find the characteristic impedances 
experimentally? 

5. How can you find the coefficients of the four – terminal 
network in “A” form experimentally? 

6. What is the symmetrical four – terminal network? 
7. How can you find the transformation ratio of the four – 

terminal network? 
8. What is the matched mode of the four – terminal network 

(the mode of the matched load)? 
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13. THREE – PHASE SYSTEMS.  
FOUR – WIRE THREE – PHASE SYSTEM OF ENERGY 

SUPPLY 
 

The three – phase systems are widely used in the power 
industry. It is explained by the most economy and a high degree 
of perfection. The three – phase systems contains the three – 
phase generator, the three – phase load (consumer) and the three – 
phase line. 

Application of the three – phase systems of energy supply 
allows substantively to decrease a mass of wires in the electric 
network system unlike the single – phase systems. But it is 
necessary to note, that the switchgear, the protection equipment, 
the voltage regulation in the three – phase system are more 
complex devices unlike the single – phase systems. 

The three – phase electric circuit is represented as the 
aggregate of three single – phase circuits containing the 
electromotive forces (EMF) of the same angular frequency, but 
their initial phases are shifted between each other by an angle 

0120 . These three components of the three – phase electric 
circuit are called phases, designated by letters A, B and C. 

To get the linked structure of three–phase electric circuit the 
single – phase generators don’t use. In this case the three – phase 
generator is used, so that the number of connecting wires from the 
generator to the consumer (load) decreases from 6 up to 3 or 4. It 
depends on the scheme of connection (Y or Δ ). 

The three – phase system may be constructed as the 
aggregate of three unlinked single – phase systems (Fig. 13.1), 
that is each single – phase generator is connected to its load by 
two isolated wires. Application of such system makes no sense 
according to economical point of view. That’s why the phase 
binding is made by a star (Y) or a (Δ ), Fig. 13.2. 

The three – phase system is called the symmetrical one if 
the complex impedances of all phases of the consumer are the 
same ( cba ZZZ ==  for a star connected load and 

cabcab ZZZ ==  for a delta connected load). 
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If the neutral wire has small impedance ( 0≈NZ ), then the 
potentials of the common points n and N are practically the same 
and these points make one node. In this case the three – phase 
system has three separate loops with the currents BA II ,  and CI . 
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To calculate the symmetrical mode it is sufficient to 
calculate only one phase (for example, the phase A). The needed 
formulas are given below: 

 
• phase currents 

,  ,   , 120120 oo j
AC

j
AB

A
A eIIeII

Z
E

I === −  

phCBACBAN IIIIIIII ====++=       ,0  
• phase voltages 

phcbaCcBbAa VVVVEVEVEV ======   ,  ,  ,  
• line voltages 

,   ,   , 120120 oo j
abca

j
abbcbaab eVVeVVVVV ==−= −  

o303 j
aab eVV = , 

linecabcab VVVV === ,     3phline VV = . 
 
For the unsymmetrical mode (under the condition that the 

impedance of the neutral wire equals zero) we have the following 
expressions: 

 
• phase currents 

,      ,     ,
c

C
C

b

B
B

a

A
A Z

E
I

Z
E

I
Z
E

I ===  

• current of the neutral wire 
CBAN IIII ++=  

• phase voltages 
phcbaCcBbAa VVVVEVEVEV ======   ,  ,  ,  

• line voltages 

,   ,   , 120120 oo j
abca

j
abbcbaab eVVeVVVVV ==−= −  

linecabcab VVVV === ,     3phline VV = . 
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The unsymmetrical mode in the three – phase system may 
be occurred to various causes, for example, unequal impedances 
of the load phases (unsymmetrical load), unsymmetrical short 
circuit (for example, the short circuit between two phases or 
between the phase and the neutral wire), open circuit (break of 
phase).  

If the impedance of the neutral wire is not equal to zero, 
then at first we have to calculate the so-called neutral – point 
displacement voltage: 

.1      ,
Z

Y
YYYY

YEYEYE
V

Ncba

cCbBaA
nN =

+++
++

=  

After calculation nNV  we find the currents and the voltages 
of the consumer: 

 
• phase currents 

,  ,  ,
c

nNC
C

b

nNB
B

a

nNA
A Z

VE
I

Z
VE

I
Z

VE
I

−
=

−
=

−
=  

• current of the neutral wire 

N

nN
N Z

V
I = , 

• phase voltages 
,   ,   , cCcbBbaAa ZIVZIVZIV ===  

• line voltages 
.   ,   , accacbbcbaab VVVVVVVVV −=−=−=

 
 

If the three – phase system contains the single – phase 
consumers (electrical welding machines, single – phase motors, 
electrical lamps, various household electrical devices), then the 
voltage at the phases of the consumers must not change and not 
depend on the number of consumers. Such condition is satisfied 
for a star connected load with the neutral wire and for a delta 
connected load. 
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If the fuse burn in one of wires of the transmission line (for 
example, in the line wire A), then the voltages are absent at the 
consumers connected to this line wire. The needed voltages are 
present at other consumers. 

The three – phase system with the neutral wire has 
advantage because gives power supply the consumers having 
different working voltages (consumers may be connected to the 
phase voltage phV =220 V or to the line voltage lineV = 380 V for 
low – voltage systems. 

 
Practical training and modeling 

 
1. Draw the scheme of the four – wire three – phase system 

with the parameters according to the table 13.1. 
Table 13.1 

 
N 

variant
phE , V 

ω , rad/s
Z ,  
Ω  

aZ , bZ , cZ ,  
Ω  

0Z , 
Ω  

1 220 
1000 

10 + j5 2 + j 3, 3 + j4,  
2 - j2 

10 

2 380 
500 

5 - j5 2 - j5, 3 - j2,  
4 - j1 

10 

3 220 
600 

8 + j6 4-j 3, 4 + j3, 
 4 

15 

4 220 
600 

12 – j8 5 + j4, 4 + j5, 
 3 - j4 

20 

5 380 
1000 

20 + j15 10 - j10, 10 – j20, 
20 + j10 

10 

6 380 
2000 

15 - j15 8 + j6, 6 + j8,  
8 - j6 

25 

7 220 
1000 

8 + j8 12 - j10, 10 + j6, 
 8 + j6 

15 

8 220 
2000 

4 + j6 8 - j4, 8 - j8, 
4 + j6 

30 

9 380 
1500 

12 + j18 10 + j12, 12 - j6,  
6 + j8 

25 
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10 380 
1200 

14 - j18 8 - j6, 6 + j8,  
10 + j12 

20 

11 220 
1500 

6 + j8 8 + j6, 6 + j8,  
 10 + j12 

10 

12 220 
1000 

8 + j4 5 - j5, 5 - j10,  
6 + j8 

20 

 
2. Calculate the symmetrical mode of the 4 – wire three – 

phase system. Find the phase currents and the voltages, the line 
voltages of the load. 

3. Calculate the unsymmetrical mode of the 4 – wire three – 
phase system. Find the phase currents and the voltages, the line 
voltages of the load. 

4. Carry out the modeling three – phase system in the 
symmetrical and unsymmetrical modes, Fig. 13.3. 

 

 
Fig. 13.3 

 
5. Carry out the modeling unsymmetrical mode: break of 

the phase load, break of the line wire. Assume that the load is the 
symmetrical one with the impedance 0Z . 

6. Construct the phasor diagram of the given modes of 
the three – phase system functioning. 
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Review questions 
 

1. How can you get the three – phase current? 
2. How can you calculate the symmetrical mode of the 4 – 

wire three – phase system? 
3. Explain the destination of the neutral wire. 
4. How can you construct the phasor diagrams for the 

symmetrical mode? 
5. How is the distribution of the voltages changed at the 

load of the consumer for the broken line wire? 
6. How is the distribution of the voltages changed at the 

load of the consumer for the broken phase load? 
 

14. THREE – PHASE SYSTEMS.  
THREE – WIRE THREE – PHASE SYSTEM  

(STAR CONNECTED LOAD) 
 

As was noted above the unlinked three – phase system has 
six wires with the currents lineph II = . It is evident that the 
three – phase system with a star connected load without the 
neutral wire has only three wires with the same currents 

lineph II =  and with the line voltages, which are 3  times 
greater than the line voltages in the unlinked three – phase 
system for which lineph VV = . 

Calculation of the symmetrical mode of the three – wire 
system is carried out like the four – wire three – phase system. 
The phasor diagram of the voltages doesn’t change. 

As regards the unsymmetrical mode, then the neutral – 
point displacement voltage must be calculated according to the 
expression: 

,1      ,
Z

Y
YYY

YEYEYE
V

cba

cCbBaA
nN =

++
++

=  

 
because 0=NY . 
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Practical training and modeling 
 

1. Draw the scheme of the three – wire three – phase system 
with the parameters according to the table 13.1. 

2. Calculate the unsymmetrical mode of the 3 – wire three – 
phase system. Find the phase currents and the voltages, the line 
voltages of the load. 

3. Carry out the modeling three – phase system in the 
unsymmetrical modes, Fig. 14.1. 

 

 
Fig. 14.1 

 
4. Carry out the modeling unsymmetrical mode: break of 

the phase load, break of the line wire and short circuit of the phase 
load. Assume that the load is the symmetrical one with the 
impedance 0Z . 

5. Construct the phasor diagram of the given modes of the 
three – phase system functioning. 

 
Review questions 

 
1. How can you get the three – phase current? 
2. How can you calculate the unsymmetrical mode of the 3 

– wire three – phase system? 
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3. How can you construct the phasor diagrams for the 
unsymmetrical mode? 

4. How is the distribution of the voltages changed at the 
load of the consumer for the broken line wire? 

5. How is the distribution of the voltages changed at the 
load of the consumer for the broken phase load? 

6. How is the distribution of the voltages changed at the 
load of the consumer for the short circuit of the phase load? 

7. How can you calculate the neutral – point displacement 
voltage? 

8. How are the complex impedances of the line wires taken 
into account in the calculation of the three – phase system? 

9. What will be the line currents of the symmetrical three – 
phase system, if the complex impedances of the load connected in 
a star will be transformed in a delta? 

 
15. THREE – PHASE SYSTEMS.  

THREE – WIRE THREE – PHASE SYSTEM  
(DELTA CONNECTED LOAD) 

 
In this case it is sufficient to calculate only one phase load 

(for example, the phase ab), Fig. 15.1 
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Fig. 15.1 

 
The needed formulas are written in the form: 
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• phase voltages: 

,  ,  , 120120 oo j
abca

j
abbcBAABab eVVeVVEEVV ==−== −

linephcabcab VVVVV ==== ; 
• phase currents: 

,   ,   , 120120 oo j
abca

j
ab

bc
bc

ab
ab eIIeI

Z
V

I
Z

V
I ==== −  

;phcabcab IIII ===  
• line currents: 

,   ,   ,3 12012030 ooo j
AC

j
AB

j
abA eIIeIIeII === −−  

.lineCBA IIII ===  
 

Calculation of the unsymmetrical mode (for case 
0≈wireZ ) is carried out by the following way: 

 
• phase currents: 

,    ,    ,
ca

ca
ca

bc

bc
bc

ab

ab
ab Z

V
I

Z
V

I
Z
V

I ===  

• line currents: 
.    ,    , bccaCabbcBcaabA IIIIIIIII −=−=−=  

 
To take into account the impedances of the line wires (Fig. 

15.22, a), delta connected load may be transformed into the 
equivalent star connection, Fig. 15.2, b. Next the calculation of 
the symmetrical or the unsymmetrical three – phase system is 
carried out. At first, the line currents (the neutral – point 
displacement voltage is calculated for the unsymmetrical case) 
and the phase voltages of the load, connected by a star are found. 
At second, the phase currents of the load, connected by a delta. 

If the line wire is broken (for example, the wire A), then for 
a delta connected load the consumers connected between wires B 
and C, get the needed voltage. Other consumers will be connected 
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in series between the wires B and C. It means that the voltage 
across each of them will be decreased and distributed directly 
proportional their impedances. Thus, if the consumers have the 
single – phase devices, then the use of the three – phase system 
with the load connected in a delta is no purpose. It particularly 
concerns the lighting equipment of the consumers. 

lineZ

аbZ

bcZ
caZ

aZ

bZ

cZ

bа

lineZ

lineZ

lineZ

lineZ

lineZ

 
Fig. 15.2 

 
Practical training and modeling 

 
1. Draw the scheme of the three – wire three – phase system 

with the parameters according to the table 15.1. 
2. Calculate the unsymmetrical mode of the 3 – wire three – 

phase system. Find the phase and line currents, and the phase 
voltages of the load. 

3. Carry out the modeling three – phase system in the 
unsymmetrical mode, Fig. 15.3. 
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Table 15.1 
 

N 
variant 

phE , V 
ω , rad/s 

cabcab ZZZ ,, , 
Ω  

lineZ ,  
Ω  

0Z , 
Ω  

1 380 
1000 

6 + j4, 4 + j1,  
2 - j1 

1 + j1 20 

2 380 
1200 

6 - j6, 8 + j6,  
10 + j15 

1 + j1 10 

3 380 
1500 

8 + j4, 4 - j2,  
6 - j8 

1 + j0.8 15 

4 380 
2000 

4 + j2, 6 + j8,  
8 - j4 

1,2 + j1 20 

5 380 
2500 

6 + j6, 8 + j8,  
4 - j4 

0,8 + j1 25 

6 220 
1000 

2 + j2, 4 + j4,  
4 - j4 

0,8+j 1 20 

7 220 
1200 

4 + j6, 6 + j4, 
 4 - j6 

1,2 + j0.8 10 

8 220 
1500 

8 + j8, 12 + j16, 
 6 - j8 

1 + j1,2 15 

9 220 
2000 

15 + j15, 12- j10, 
 6 + j8 

1,4 + j1,6 10 

10 220 
2500 

10 + j10, 20+j12,  
10 - j5 

1 + j0,6 12 

11 220 
3000 

10 + j10, 10 + j5,  
6 - j8 

1,2 + j0.6 12 

12 380 
3000 

6 + j2, 2 + j6, 
 4 - j3 

1,4 + j1 10 

 
4. Carry out the modeling unsymmetrical mode: break of 

the phase load, break of the line wire Assume that the load is the 
symmetrical one with the impedance 0Z . 

5. Construct the phasor diagram of the given modes of the 
three – phase system functioning. 
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Review questions 

 
1. How can you calculate the unsymmetrical mode of the 3 

– wire three – phase system with the load, connected by a delta? 
2. How can you construct the phasor diagram of the 

currents for the unsymmetrical mode? 
3. How is the distribution of the currents changed at the 

load of the consumer for the broken line wire? 
4. How is the distribution of the currents changed at the 

load of the consumer for the broken phase load? 
6. How is the distribution of the currents changed at the 

load of the consumer for the short circuit of the phase load? 
8. How are the complex impedances of the line wires taken 

into account in the calculation of the three – phase system? 
9. What method of calculation is more optimal for the short 

circuit of the ab phase load? 
 

16. THREE – PHASE SYSTEMS.  
THREE – WIRE THREE – PHASE SYSTEM WITH SEVERAL 

CONSUMERS 
 

In practice, as a rule, the three – phase system contains 
several consumers, Fig. 16.1. 
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Fig. 16.1 
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Calculation of the symmetrical mode is simplified because 
we may consider only one phase, for example, the phase A. At 
first we transform a delta – connected load into a star connected 
one, Fig. 16.2. 

1n

2aZ

2n
N

2cZ

1cZ 1aZ

Fig. 16.2 
 

The impedances of the symmetrical star are 3 times less 
than the impedances of the symmetrical delta. Ann neutral points 
in the symmetrical mode have the same potential. That’s why we 
may unite by the wire without impedance (it is shown by dot). 
Next we may consider only one phase A, Fig. 16.3. 

AI

1aI

2aI

2aZAE 1aZ

Z line 1

2aV1aV

Z line 2

 
 
 

Fig. 16.3 
 

Further transformation of the scheme allows to find the 
needed currents and voltages: 
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• current of the generator AI  

( )
212

122
1

ààline

ààline
line

A
A

ZZZ
ZZZ

Z

E
I

++
+

+
= , 

• current of the first consumer connected by a star 

,
212

22
1

ààline

àline
Aa ZZZ

ZZ
II

++
+

=  

• line current of the second consumer connected by a 
delta 

,
212

1
2

ààline

à
Aa ZZZ

Z
II

++
=  

• phase voltage of the first consumer  
,111 aaa ZIV =  

• phase voltage of the second consumer connected by 
a star 

222 aaa ZIV = . 
 

It is evident, that the respective currents and voltages in the 
phases B and C have the same values as in the phase A, but their 
initial phases are shifted by an angle 0120± . 

The magnitudes of the line voltages of the first consumer 
are 3  times greater than the magnitudes of the phase voltages 

1V  (besides, the initial phases of the line voltages lead the initial 

phases of the respective phase voltages by an angle 030 , as was 
shown oh the phasor diagram of a star connected load). 

The magnitudes of the line currents of the second consumer 
are 3  times greater than the magnitudes of the phase currents 
(he initial phases of the line currents lag behind the initial phases 
of the respective phase currents by an angle 030 , as was shown 
oh the phasor diagram of a delta connected load). 
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The magnitudes of the line voltages of the second consumer 
are 3  times greater than the magnitudes of the phase voltages 

2V of the transformed star. 
Thus, we may write the general formulas to determine other 

currents and voltages of the three – phase system: 
 

• currents of the generator  

,       , 120120 oo j
AC

j
AB eIIeII == −  

• currents of the first consumer 

,        , 120
11

120
11

oo j
ac

j
ab eIIeII == −  

• line currents of the second consumer 

,        , 120
22

120
22

oo j
ac

j
ab eIIeII == −  

• phase currents of the second consumer 

,
3

1                    

,
3

1      ,
3

1

)12030(
2

)12030(
2

30
2

0

oo

oo

+

−

=

==

j
aca

j
abc

j
aab

eII

eIIeII
 

• phase voltages of the first consumer 

,      , 120
11

120
11

oo j
ac

j
ab eVVeVV == −  

• line voltages of the first consumer 

,3                     

,3      ,3
)12030(

11

)12030(
11

30
11

oo

ooo

+

−

=

==

j
aca

j
abc

j
aab

eVV

eVVeVV
 

• line voltages of the second consumer 

.3                    

,3        ,3
)12030(

22

)12030(
22

30
22

oo

ooo

+

−

=

==

j
aca

j
abc

j
aab

eVV

eVVeVV
 

It is necessary to note, that the transformation of the load of 
the second consumer connected by a delta (in unsymmetrical 
case) into equivalent star doesn’t allows to continue simplification 
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of the system. It is explained by the fact that the potentials of the 
common points 1n  and 2n  are different and we may not to unite 
these points. 

The three –phase system with several loads may be 
calculated (in symmetrical or unsymmetrical modes) by any 
method of complex circuit calculation, for example by the loop 
current method. 

The system of equations for the three –phase system shown 
in Fig. 16.1 is: 

 

, 2        
)()22(

1 551 4433

21 2221 11

BAlinelineab

linelineablineline

EEZIZIZI
ZZIZZZI
−=−++

++−++
 

,2     
)22()(

1 551 4433

2 1 222 1 11

CBlinelinebc

bclinelinelineline

EEZIZIZI
ZZZIZZI

−=+−+
+++++−

 

,2       
)22()(

1 551 4433

21 2221 11

CBlinelinebc

bclinelinelineline

EEZIZIZI
ZZZIZZI

−=+−+

+++++−
 

,0)(332211 =++++ cabcabbcab ZZZIZIZI  

,)(          
)2(2

11 55

111 441 22111

BAbline

balinelineline

EEZZI
ZZZIZIZI

−=+−
−+++−

 

. )2(     
)(2

111 55

11 441 221 11

CBcbline

blinelineline

EEZZZI
ZZIZIZI

−=+++
++−+−

 

After calculation of the loop currents we may find all 
needed currents of the three –phase system: 

 
• currents of the generator: 

,                                    
 ,    ,                

5522

554422114411

III
IIIIIIII

C

BA

−−=

+−+−=+=
 

• currents of the first consumer: 
                   ,       ,       ,                55155441441 IIIIIII cba −=+−==  

• line currents of the second consumer: 
                ,       ,       ,                22211222112 IIIIIII cba −=−==



 92 

 
• phase currents of the second consumer: 

         .       ,       ,                3333223311 IIIIIIII cabcab =+=+=
 

 
For example, for the three –phase system shown in Fig. 

16.1 (circuit parameters are: 380=phE  V, =ω 200 
sec
rad

, 

1lineZ =1 + j1 Ω , 2lineZ =0,5 + j0,4 Ω , =1Z 10 Ω , =2Z 20 Ω ) 
we have the solution of the obtained system: 

A, 069,40 713,11      A, 891,9 558,40 2211 jIjI −=−=  
A, 466,5 462,29      A, 653,16 424,17 4433 jIjI −=+−=  

A, 247,28 997,955 jI −=  
so that in the symmetrical mode we may calculate the needed 
currents:  
 

• currents of the generator 

A, 68,71357,1502,70               

A, 357,1502,70                   
22

4411

=+===

−=+=

CBA

A

III

jIII
 

• currents of the first consumer 
A, 96,29    A, 466,5462,29           111441 ===−== cbaa IIIjII  

• line currents of the second consumer 
,A 75,41    A, 891,9 558,40           222112 ===−== cbaa IIIjII  

• phases currents of the second consumer 
A. 1,24    A, 653,16 424,17        33 ===−−== cabcabca IIIjII  

 
 

Practical training and modeling 
 

1. Draw the scheme of the three – phase system with the 
parameters according to the table 16.1. 
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2. Calculate the currents of the generator and the consumers 
by the circuit transformation method. 

3. Carry out the modeling three – phase system in the 
symmetrical mode, Fig. 16.4. 

4. Compare the results of calculation and modeling. 
Table 16.1 

N 
variant

phE , V 
ω , rad/s 

1 lineZ , 
Ω  

2 lineZ ,  
Ω  

1Z , 
Ω  

2Z , 
Ω  

1 380 
200 

1 + j1 1 + j1 10 20 

2 380 
400 

1 + j0,8 0,5 + j0,5 10 30 

3 220 
400 

0,5 + j0,5 1 + j1 20 20 

3 220 
200 

0,8 + j0,4 0,8 + j0,6 15 30 

4 380 
500 

0,6 + j0,6 0,4 + j0,4 30 45 

5 380 
600 

1,2 + j 0,6 0,6 + j0,4 20 30 

6 220 
300 

0,4 + j0,6 0,5 + j0,2 15 15 

7 220 
800 

1 + j1,6 0,8 + j1,2 10 10 

8 380 
300 

0,8 + j0,6 0,5 + j0,4 10 30 

9 380 
800 

1,6 + j 2,4 1,2 + j1,6 25 75 

10 220 
1000 

1,6 +j2,8 1,5 + j2 30 30 

11 380 
1000 

1,5 + j 2.4 1,2 + j2 20 60 

12 220 
2000 

1,5 + j 2,5 1,5 + j2 20 30 
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Fig. 16.4 
 

Review questions 
 

1. What are the types of the three – phase system with 
respect to ways of connection of the generator and the load 
phases? 

2. What is the condition of the unsymmetrical mode in the 
three – phase system? 

3. What methods can you use to calculate the three – phase 
system with several consumers? 

4. Write down the system of equations by the loop current 
method for the three – phase system shown in Fig. 16.1 without 
the first consumer. 

5. What formulas do you use to calculate the currents 
flowing through two parallel branches? 

6. What is the relationship between the line and the phase 
RMS complex currents in the load, connected by a delta, in the 
symmetrical mode? 
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17. NONSINUSOIDAL CURRENTS AND VOLTAGES IN 
LINEAR ELECTRIC CIRCUITS 

 
As a rule, the curves of electromotive forces, the voltages 

and the currents differ from the sinusoidal curves in the power 
electric circuits. For example, the curve of distribution of the 
magnetic induction in the air gap of the generators differs from 
the sinusoidal curve. That’s why the electromotive forces, induced 
in the windings don’t have the sinusoidal form. Besides, the 
nonsinusoidal currents flow in the electric circuits containing the 
nonlinear elements. 

In the linear electric circuits the nonsinusoidal currents flow 
through the branches when the energy sources generate the 
nonsinusoidal excitations. 

According to the Fourier series any function )( tf ω with 
the period 2π  may be expanded in the trigonometric series: 

[ ]∑
∞

=
ω+ω+=ω

1
0 cossin)(

k
kmkm tkCtkBAtf , 

where the coefficients kmkm CBA ,,0  are determined by the 
following formulas: 

,sin)(1    ,)(
2
1 2

0

2

0
0 ∫∫

ππ
ωωω

π
=ωω

π
= ttdktfBtdtfA km  

T
ttdktfCkm

π
=ωωωω

π
= ∫

π 2    ,cos)(1 2

0
. 

Physical meaning of the coefficient 0A  is the direct 
component of the function )( tf ω ; kmkm CB ,  are the amplitudes 
of sinusoidal and cosinusoidal components respectively (such 
components are called the harmonics). 

Since 
T
π

=ω
2

, then the coefficients may be determined by 

the expressions:  
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.cos)(2                         

,sin)(2     ,)(1          

0

00
0

∫

∫∫

ω=

ω==

T

km

T

km

T

tdtktf
T

C

tdtktf
T

Bdttf
T

A

 

In practical calculations the infinite series is replaced by the 
sum of finite number of items (as a rule, needed precision of 
approximation of the given nonsinusoidal signal may be obtained 
if we take into account 53÷  harmonics). 

As an example let’s expand into Fourier series the 
alternating oscillation of the triangular shape, Fig. 17.1. 

)(tv

0
4
T

2
T

mV

T

 
Fig. 17.1 

 
It is evident, that for such function the direct component is 

equal to zero ( 00 =V ). Since the function )(tv  is the odd 
function, then Fourier series has only sinusoidal components, that 
is we may write: 

,sin)(
1
∑
∞

=
ω=

k
km tkBtv  

and the coefficients kmB  may be defined from the formula: 

∫ ω=
2

0

.sin)(4
T

km tdtktv
T

B  
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Since the function )(tv is symmetrical one with respect to 

the line 
4
T

, then the coefficients kmB  are equal to zero for all 

even values k, and for odd values 12 −= qk  we obtain the 
general expression: 

.
)12(

2
)12(sin

8
)12sin(48

22

4

0 −

⎥⎦
⎤

⎢⎣
⎡ π−

π
=ω−= ∫ q

q
V

tdtq
T
tV

T
B m

T

mkm  

Thus, the Fourier series for the given nonsinusoidal voltage 
)(tv  may be written as: 

 

⎢⎣
⎡ +ω−ω+ω−ω

π
= tttt

V
tv m 7sin

49
15sin

25
13sin

9
1sin

8
)( 2  

....11sin
121
19sin

81
1

⎥⎦
⎤+ω−ω+ tt  

 
To calculate the electric circuit with the nonsinusoidal 

currents and voltages the superposition method is used. In this 
case the source of the nonsinusoidal EMF is considered as the 
series connection of the direct voltage source ( 0V ) and the 
sinusoidal voltage sources with the different amplitudes 
( kmkm CB , ) and multiple angular frequencies ( ωk ), Fig. 17.2. 

Linear Electric
Circuit

)(1 te

)(ten

)(tv

oV

 
Fig. 17.2 
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It is evident that the total voltage (resulting) at the input of 
the two – terminal network is defined as following: 

∑
=

+=
n

k
k tvVtv

1
0 )()( . 

As we see the function )(tv is the function of the complex 
shape. 

Since the considered electric circuit is the linear one, then 
we may consider the action of each EMF separately and calculate 
the respective components of the currents caused by these EMF 
(principle of superposition). The current flowing in any branch is 
calculated by the summation of the respective components: 

...)2()()( 210 +ω+ω+= titiIti  
To calculate the electric circuits with nonsinusoidal currents 

we have to take into account the following: for different angular 
frequencies the impedances of the inductive and the capacitive 
elements are calculated by means of the expressions: 

.1     , 1
1 Ckk

x
xLkkxx C

CLL kk ω
==ω==  

It means that the inductive reactance at the thk  harmonic is 
k times greater than the reactance at the first (k = 1) harmonic. It 
is evident that the capacitive reactance is k times less than the 
reactance at the first harmonic. 

For example, the complex impedance of the branch, 

containing the series connected R, L and C ( 1000=ω
s

rad
,       

R = 10 Ω , L = 0,01 H, C = 100 μF), is equal to: 
• for the first harmonic 

=⎟
⎠

⎞
⎜
⎝

⎛

⋅⋅
−⋅+=⎟

⎠
⎞

⎜
⎝
⎛

ω
−ω+=

−63
)1(

1010010
101,01000101 j

C
LjRZ

 
, 10)1010(10 Ω=−+= j  

• for the second harmonic 



 99 

( ) .  151052010
2

12)2( Ω+=−+=⎟
⎠
⎞

⎜
⎝
⎛

ω
−ω+= jj

C
LjRZ  

Totality of the sinusoidal components (harmonics) is called 
the spectrum. The spectrum of the periodical function of the 
complex shape consists of the direct component and the 
harmonics, the frequencies of which build up discrete series of 
values ωk (k = 1, 2, 3…), which are multiple to the fundamental 
frequency ω . The amplitudes of the harmonics are equal to nA , 
Fig. 17.3. 

1A

0A

nA

2A

5A 8A
ω

ω8ω5ω2ω0  
Fig. 17.3 

 
Physical reality of the spectrum harmonics doesn’t raise 

doubts if the oscillation of the complex shape is obtained by 
summation of the sinusoidal oscillations, which are produced by 
the real sources. In other cases, when separate sources of the 
different harmonics are absent, only initial physical oscillations 
exist. Totality of the sinusoidal harmonics, compiling the 
spectrum of the given signal must be considered as convenient 
mathematical representation of physical process. 

 
Practical training and modeling 

 
1. Draw the scheme of the linear electric circuit (Fig. 17.4) 

with the parameters according to the table 17.1. 
2. Draw the graph of the nonsinusoidal voltage )(tv  (Fig. 

17.1), using 11 harmonics. 
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3. Calculate the RMS values I and the voltage across the 
reactive element xV , using the principle of superposition. Write 
down the results of the calculation in the Table 17.2. 

)(tvL

)(ti

)(tv L

R )(ti

)(tv

R

)(tvC

C

 
Fig. 17.4 

 
Table 17.1 

N 
variant 

R,  
Ω  

L ,  
H 

C ,  
μF 

mV ,  
V 

ω , 
rad/s 

1 40 0,1 100 100 100 
2 35 0,12 120 120 150 
3 32 0,15 100 100 180 
4 30 0,1 150 150 200 
5 45 0,1 150 100 250 
6 40 0,2 200 50 200 
7 30 0,1 100 80 300 
8 25 0,1 150 150 300 
9 30 0,2 100 100 250 

10 40 0,05 50 80 400 
11 25 0,2 100 100 200 
12 30 0,15 50 50 300 

 
4. Determine the instantaneous values of the current )(ti  

and the voltage )(tvx  and construct the respective graphical 
dependencies. 

5. Carry out the modeling given electric circuit for each 
harmonic (Fig. 17.5). Write down the measured values of the 
current and the voltage in the Table 17.2. 

6. Carry out the modeling of the electric circuit for the 
given nonsinusoidal voltage (Fig. 17.6). 
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Table 17.2 
The number 

of  
harmonic 

RMS value of the 
harmonic 

RMS value of the 
nonsinusoidal voltage 

Calculation Modeling Calculation Modeling 
I , 
А 

õV , 
V 

I , 
А 

õV , 
V 

I , 
А 

õV , 
V 

I , 
А 

õV , 
V 

1         
3     
5     
7     
9     

11     
 

 
Fig. 17.5 

 

 
Fig. 17.6 

 
7. Compare the results of the calculation, the results of 

modeling by the superposition principle and the results of 
modeling with the generator of the given nonsinusoidal voltage. 
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Review questions 

 
1. In which cases can the nonsinusoidal currents and 

voltages appear in the electric circuits? 
2. How can you calculate the electric circuit in which the 

nonsinusoidal EMF is connected? 
3. Write down the Fourier series for the periodical 

nonsinusoidal signal and give the needed comments to the 
components of the series. 

4. How can you determine the coefficients of the Fourier 
series? 

5. How can you calculate the RMS value of the 
nonsinusoidal currents and voltages? 

6. How can you calculate the true power in the electric 
circuit with the nonsinusoidal voltage source? 

7. How can you calculate the inductive and capacitive 
reactances in the electric circuit with the nonsinusoidal voltage 
source? 
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18. NONLINEAR DIRECT CURRENT  
ELECTRIC CIRCUITS 

 
Unlike the linear circuit elements the parameters of the 

nonlinear elements depend on the currents and the voltages. The 
properties of these elements can’t be determined by means of 
single constant parameter (for example, the linear resistor is 
completely described by single parameter called the resistance R). 
In this case it is necessary to assign the dependencies between the 
current and the voltage, which are called the characteristics of the 
nonlinear elements. As a rule, the characteristics of such elements 
are determined by the experimental way and shown by the graphs. 
Besides, the graphs may be represented by the approximate 
analytical expressions. 

DC electric circuits, containing the nonlinear resistors, are 
described by the systems of the nonlinear algebraic equations. The 
type of equations is defined by the functions approximating the 
respective volt – ampere characteristics of the nonlinear elements. 

If the complex electric circuit contains only one nonlinear 
element, then the linear part of the circuit may be transformed to 
the equivalent parameters eR  and eE , so that only one loop is 
formed in which the current of the given nonlinear element flows 
(Fig. 18.1, a). In this case the obtained electric circuit is described 
by only one nonlinear algebraic equation. It is evident the 
quadratic or cubic equation gives exact result. 

a

eE

eR

eRV
ov

oi
oi

ov eE

e
e

R
E

ee iREv −=

eRV

v

)( ifv =

b  
 

Fig. 18.1 
 

The simplest method of calculation of the current in the 
nonlinear element is the graphical one. This method is based on 
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intersection of two volt – ampere characteristics. On the other 
hand the volt – ampere characteristic is given by the curve 

)(ifv = , on the other hand the volt – ampere characteristic is 
given by the equation, obtained by means of KVL: 

.ee iREv −=  
The point of intersection of these characteristics (Fig. 18.1, b) 

gives the values of the current 0i  and the voltage 0v  across the 
nonlinear element. It is evident that the voltages 0v  and 

eRv  

satisfy to KVL. 
In other cases to calculate the nonlinear electric circuit the 

numerical methods are used: method of simple iteration or 
Newton’s method. To use both methods it is necessary to know 
the preliminary (initial) estimate of the root. As a rule, such 
estimate is obtained from the solution of the nonlinear equation, 
in which nonlinear items are not taken into account. It means that 
the rough estimate is obtained by the solution of the linear 
equation. Such estimate is called the initial approximation. 

The initial approximation (for example, the current )0(i ) is 
substituted into respective iteration algorithm (for example, into 
Newton’s algorithm), so that the following value )1(i  is obtained. 

The value )1(i  is assumed as the new more exact solution, which 
is substituted into algorithm again. As a result we obtain the 
following value )2(i  and so on. The procedure of calculation 

)( )()1( kk iFi =+  is carried out up to that moment when the 

solution )()1( kk ii −+  will be less than some value ε  (this value is 
preset). Such procedure is called the iterative procedure. 

One can use another way, which gives the same result, 
however it doesn’t require of composition of the system of 
nonlinear equations. In this case Newton’s algorithm is applied 
immediately to the equation of the nonlinear element 
(linearization of the characteristic of the nonlinear element is 
carried out). In the previous case Newton’s method was applied to 
the equation of the nonlinear circuit. 
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Let’s assume that the volt – ampere characteristic of the 
nonlinear element is given by the analytical expression )(ifv = . 
The Newton’s algorithm gives the expression for the voltage 

)1( +kv  on thk )1( +  step of equation: 

( )( ) ( )=−+=−+= +++ )()1(
)(

)()()1()(
/

)()1( kk
k

kkkkkk ii
di
dvviiifvv  

,)()()()1()( kkkkk RiRiv −+= +  

where 
)(

)(
k

k di
dvR = is the equivalent resistance on thk )1( +  

step. 
Assuming that  

,)()()()( kkkk RivE −=  
we get the equation: 

,)()1()()1( kkkk RiEv ++ +=  

where )(kE  is the EMF of the DC voltage source. The value )(kE  
is calculated on the previous step by means of the known values 
of the current and the voltage. 

The obtained expression corresponds to the series scheme 
of substitution of the nonlinear element (the series discrete model 
of the nonlinear resistor), Fig. 18.2: 

i

v
1+kv

1+kikR kE

 
Fig. 18.2 

 
For example, for the nonlinear electric circuit, shown in Fig. 

18.3, a, we have the discrete scheme of substitution, shown in Fig. 
18.3, b. 
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b
i

v

a

eR

eE 1+kv

eR kE

1+ki

kReE

 
Fig. 18.3 

 
Using the KVL we may write: 

( ) ,)()()1( kekek EERRi −=++  

so that the current on the thk )1( +  step of the iterative procedure 
is equal to: 

)(

)(
)1(

ke

ke
k RR

EE
i

+

−
=+ . 

For the nonlinear resistor with the volt – ampere 

characteristic, given by the expression 3iv =  we may write: 

=−=−=== 2
1

)()(
3

)()()()()(
2

1

)(
)(

)( 2
3   ,
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3

kkkkkkkk
k

k iiiRivEi
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3 2
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)(
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3

)(
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3

)( kkk iii −=−=  

so that the iterative algorithm is: 

2
1

)(

2
3

)(
)1(

5,1

5,0

ke

kе
k

iR

iE
i

+

+
=+ . 

Let’s write the iterative algorithm for the following 
parameters of the linear part of the scheme: B 90=eE , 15=eR  
Ом, and for the initial approximation (initial value) A 10 =i : 

A; 208,5
485,55,115

)485,5(5,090   A; 485,5
5,115
5,090 2

3

)2()1( =
+

⋅+
==

+
+

= ii  
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A. 208,5
208,55,115

)208,5(5,090 2
3

)3( =
+

⋅+
=i  

It is evident that we obtain the stable result, using only three 
steps of the iterative procedure. This result may be assume as the 
exact value. The voltage across the nonlinear resistor is given by 
the volt – ampere characteristic and is equal to: 

B. 88,11208,5 33 === iv  
If the volt – ampere characteristic is given by the expression 

)(vfi = , then the Newton’s algorithm gives the respective 

equation for the current )1( +ki  on the thk )1( +  step as: 

( ) ( )=−+=−+= +++ )()1(
)(

)()()1()(
/

)()1( )( kk
k

kkkkkk vv
dv
diivvvfii  

,)()()()1()( kkkkk GvGvi −+= +  

where 
)(

)(
k

k dv
diG =  is the equivalent conductance on the 

thk )1( +  step. 
If we designate  

,)()()()( kkkk vGiJ −=  
then we may write the equation 

,)1()()()1( ++ −= kkkk vGJi  
where )(kJ  is the direct current source. This value is calculated 
by means of the known values of the current and the voltage on 
the previous step of the iterative procedure. 

The obtained expression corresponds to the parallel scheme 
of substitution (the parallel discrete model) of the nonlinear 
element, Fig. 18.4: 
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i

v

1+ki
kG
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1+kv

 
Fig. 18.4 

 
For example, for the nonlinear electric circuit, shown in Fig. 

18.3, a, we have the discrete scheme of substitution, shown in Fig. 
18.5. 

eE

eR

kG kJ

1+kv

1+ki

 
 

Fig. 18.5 
 

Using the node potential method we may write the iterative 
algorithm )( )1()1( ++ =ϕ kk v : 

.
1

1

)(

)(

)()1(

k
e

k
e

e

k
e

k
G

R

J
R
E

G
R

v
+

−
=⎥

⎦

⎤
⎢
⎣

⎡
++  

For example, for the nonlinear resistor with the volt – 

ampere characteristic, given by the expression 3iv = or 
3 2vi =  we may write: 
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=−=−===
−−

3
1

)()(
3 2

)()()()()(
3

1

)(
)(

)( 3
2  ,

3
2

kkkkkkkk
k

k vvvGviJv
dv
diG

 

,
3
1

3
2 3

2

)(
3

2

)(
3

2

)( kkk vvv =−=  

so that the iterative algorithm is written as: 

.

3
21
3
1

3
1

)(

3
2

)(

)1( −+
+

−
=

k
e

k
e

k
v

R

v
R
E

v  

 
Let’s write the iterative algorithm for the following 

parameters of the linear part of the scheme: B 90=eE , 15=eR  
Ом, and for the initial approximation (initial value) V 50 =v : 

  ;B 88,11   ; B 04,11

5
1666,0066,0

5
3
16

)2(

3

3 2

)1( ==
+

−
= vv 88,11)3( =v  V. 

The result V 88,11 )3( =v  may be assumed as the exact 
value. The current of the nonlinear element is defined by the volt 
– ampere characteristic and is equal to 

A. 208,588,113 23 2 === vi  
The obtained results coincide with the results for the series 

discrete model. 
 

Practical training and modeling 
 

1. Draw the scheme of the nonlinear electric circuit (Fig. 
18.6) with the parameters according to the table 18.1 

2. Carry out the transformation of the linear part of the 
given electric circuit with respect to the nonlinear element. 
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Calculate the current and the voltage of the nonlinear element by 
the graphical method. 

3. Calculate the parameters of the series discrete scheme of 
substitution of the nonlinear element and write down the iterative 
algorithm. Calculate the current and the voltage of the nonlinear 
element. 

1 2

3 4

5 6

E

R R

R
R

R

1v

1i

E

E E

E
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R

R
R

R R

R

R

RR

R

R
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Fig. 18.6 
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Continuation of Fig. 18.6 
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Fig. 18.6 
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Table 18.1 
N  

variant 
E , V R , Ω  Volt – ampere  

characteristic 
1 90 12 3

1
2

1 105,0 vi −⋅=  
2 90 18 3

11 vi =  
3 60 15 2

11 2,0 vi =  
4 80 12 3

11 5,0 vi =  
5 75 15 3

11 2 vi =  
6 90 18 2

11 1,0 vi =  
7 60 12 3

1
2

1 10 vi −=  
8 80 15 3

11 5,04 vi =  
9 90 18 3

11 6,0 3 vi =  
10 60 12 3

1
2

1 105,1 vi −⋅=  
11 75 6 3

1
2

1 102 vi −⋅=  
12 90 9 2

11 5,0 vi =  
 

4. Calculate the parameters of the parallel discrete scheme 
of substitution of the nonlinear element and write down the 
iterative algorithm. Calculate the current and the voltage of the 
nonlinear element. Compare the results of the calculation obtained 
in p.p. 4 and 3. 

5. Carry out the modeling the linear discrete model (series 
and parallel) of the given nonlinear circuit for several values of 
the iterative steps )43( ÷=kk . The relative error must not 
exceed the value 1%. Write down the results of modeling in the 
table 18.2. 

The scheme of modeling the parallel scheme of substitution 
is shown in Fig. 18.7. 

6. Compare the results of modeling and calculation. 
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Fig. 18.7 
 

Table 18.2 
Step of 

approximation 
Parameters of the 

series discrete model  
Parameters of the 

parallel discrete model 
 

k  
)(ki , 

А 
)(kR , 

Ω  
)(kE , 

V 
)(kv , 

V 
)(kG , 
1−Ω

)(kJ ,  
А 

0       
1       
2       
3       
4       

 
Review questions 

 
1. What is a nonlinear element? 
2. Give the characteristic of the graphical method of the 

nonlinear circuit calculation. 
3. How is the series discrete model of the nonlinear element 

constructed? 
4. How is the parallel discrete model of the nonlinear 

element constructed?  
5. What are the properties of application of the loop current 

method to calculate the nonlinear electric circuit? 
6. What are the properties of application of the node 

potential method to calculate the nonlinear electric circuit? 
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19. ALTERNATING CURRENT NONLINEAR CIRCUITS 
 

Occurrence, appearing in the most electrical devices with 
nonlinear elements can’t appear in the linear electric circuits. 
Besides, the principle of action of various devices is based on the 
nonlinear effect. For instance, rectification and stabilization of the 
alternating voltage, transformation of signals, multiplication and 
division of the frequency, amplification of the power are based on 
the nonlinear effects. 

The electric circuits with the nonlinear resistors are applied 
for rectification of the voltage and the current. The electric 
circuits with the nonlinear reactive elements, which, as a rule, 
have the symmetrical characteristic, are applied to get stabilized 
voltage, multiplication of frequency (trebling), relay effect. 

Further we consider one of basic nonlinear elements of the 
AC electric circuits, called nonlinear inductance, which is 
represented by the coil with the magnetic core. 

The weber – ampere characteristic of the nonlinear 
inductance can’t be expressed by the analytical relationship 
exactly. As a rule, the equation of this characteristic is 
approximated to some accuracy by degree polynomial. If we 
neglect by the hysteresis, then the characteristic may be described 
by the short – cut polynomial: 

,0   , 3
3

31 >−=ψ bibib  
where ψ is the flux linkage of the coil with the current )(ti . 

If the current has the sinusoidal form, then the magnetic 
flux linkage is defined as: 

+ω⎟
⎠
⎞

⎜
⎝
⎛ −=ω−ω=ψ tIIbbtIbtIbt mmmm sin

4
3sinsin)( 2

31
33

31

,3sinsin3sin
4
1

31
3

3 tttIb mmm ωΨ+ωΨ=ω+  

where 1mΨ  is the amplitude of the magnetic flux linkage of the 
first (fundamental) harmonic. 

The voltage across the coil may be determined from the 
general expression: 
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)90(3sin3)90sin()( 31
oo +ωΨω++ωΨω=

ψ
= tt

dt
dtv mmL . 

Quasi–linear method allows to calculate the mean 
inductance (for the steady – state mode) as: 

( ),1
4
3)( 2

1
2

131
1

1
1 mdm

m

m
mmean kILIbb

I
IL −=−=

Ψ
=  

where 1bLd =  is the inductance in the mode of small oscillations 

( 01 →mI ), called the differential inductance 
di
dLd
ψ

= , 

1

3
4
3

b
b

k =  is the coefficient, which defines degree of  nonlinearity 

of the characteristic. 
Let’s consider the series oscillation circuit, including the 

nonlinear inductance, Fig. 19.1. 

)(tv

)(ti

)(te
Lv

R

C
 

Fig. 19.1 
 

Assuming, that the harmonic oscillation has the frequency 
ω  and the amplitude 1mV , we may find the voltage across the 
nonlinear inductor: 

,)()( 2

2

dt
vd

CiL
dt

dv
Ci

dt
diiL

dt
di

di
d

dt
dv CC

L ====
ψ

=
ψ

=  

where dL
di
diL =
ψ

=)( . 

According to KVL we may write: 
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,sin)()()( tVtvtvtv mCLR ω=++  
from which it follows 

.sin)( 2

2
tVv

dt
dv

RC
dt

vd
CiL mC

CC ω=++  

Approximate solving this nonlinear differential equation 
( )(iL  is nonlinear parameter) is difficult task. 

If the oscillation circuit has high quality, then the current of 
the first harmonic has maximum value among all harmonic 
components. Therefore the RMS value of the current I in the 
circuit is approximately equal to RMS value of the current of the 

first harmonic 1I , since ...2
2

2
1 ++= III , that is 1II ≈ . 

The amplitude of the current of the first harmonic equals: 

2

1
2

1
1)( ⎥⎦
⎤

⎢⎣
⎡

ω
−ω+

=

C
ILR

v
I

mmean

m
m . 

It is evident, that the resonant frequency depends on the 
current 1mI  and is defined as: 

CIL mmean )(
1

1
0 =ω  

The volt – ampere characteristic of the resonant circuit is 
defined by the KVL for RMS values: 

[ ] ,)()()()(
2

111
2

1 mmCmmLmmRmm IVIVIVIV −+=  
where: 

,
4
3)(,)( 1

2
1311mean111 mmmmmLmmmR IIbbILIVRIIV ⎥⎦
⎤

⎢⎣
⎡ −ω=ω==

 

11
1)( mmmC I
C

IV
ω

=  

are the volt – ampere characteristics of the respective elements, 
Fig. 19.2, a. 
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mV )( 1mmL IV

)( 1mmC IV
)( 1mmR IV

1mI
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1mV
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a b

)3(
mI)1(

mI)4(
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)2(
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)1(
mID

)2(
mID

 
Fig. 19.2 

 
The volt – ampere characteristic of the resonant circuit is 

shown in Fig. 19.2, b. 
From the obtained volt – ampere characteristic it follows 

that smooth variation of the voltage gives the current step of the 
first harmonic. Such occurrence is called the ferroresonance. 
Ferroresonance is not possible in the linear circuits. 

If the capacitance C is chosen in that way, that the line 
)( 1mmC IV will be intersect the curve )( 1mmL IV , then the point 

of intersection corresponds to ferroresonance of voltages 
( mCmL VV = ). 

Smooth variation of the voltage from zero to 1mV  (Fig. 

19.2, b) gives the current step in the point a (from )1(
1mI  in the 

point a to )2(
1mI  in the point b), so that the value of the step equals 

)1(
1

)2(
1

)1(
1 mmm III −=Δ . Further increment of the voltage gives 

smooth increment of the current (see the direction of the arrows 
from left to right in Fig. 19.2, b). And vice versa, smooth 
decrement of the voltage to 2mV  gives the current step (from 

)3(
1mI  in the point c to )4(

1mI  in the point d), so that the value of the 

step equals )4(
1

)3(
1

)2(
1 mmm III −=Δ (see the direction of the arrows 

from right to left). 



 118 

Let’s assume, that the losses in the circuit are negligible 
( 0≈R ) and the frequency ω  of the input voltage coincides with 

the resonant frequency 
CLd

1*
0 =ω , which corresponds to the 

mode of small oscillations ( 01 →mI ). Assuming that 

0*
0

*
0

1
ρ=

ω
=ω

C
L  ( 0ρ  is the characteristic impedance in this 

mode), we may determine the voltage across the inductor mLV : 

( ) ( ),11 2
1101

2
10 mmmmmL kIIIkILV −ρ=−ω= ∗ , 

and the voltage across the capacitor: 

.1
101

0
mmmC II

C
V ρ=

ω
=

∗
 

The amplitude of the applied voltage is equal to: 
,3

10 mmLmCm IVVV ρ=−=  
from which it follows: 

3
0

1 k
V

I m
m ρ

= . 

Now let’s find the voltage across the inductor, using the 
known value of the applied voltage mV : 

( ) =
ρ

ρ−
ρ

ρ=−ρ=
k

V
k

k
V

kIIV mm
mmmL

0
03

0
0

2
110 1  

.33
2
0

mm VV
k

−
ρ

=  

Let’s assume that the voltage is defined across the inductor 
in the resonant circuit (Fig. 19.3, a). This case corresponds to 
stabilization of the voltage, because the variation of the input 
voltage within some range doesn’t change the output voltage 

1mLV . 
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mV
1LmVmV

C

iR

)(iL

1LmV

 
Fig. 19.3 

 
The stabilization mode of the output voltage is explained by 

the fact, that the increment of the input voltage (it means that the 
current increases in the circuit) decreases the inductance 

)( 1mean mIL . In this case the voltage across the inductor 
decreases and the output voltage mLU  doesn’t change. 

For example, the resonant circuit has the following 
parameters: 2

1
33 1004,01030 mmean IL −− ⋅−⋅= , С = 200 μF. 

Then we may calculate the following values: 

,  25,12150
10200
1030

Ñ 6

3

00 Ω≈=
⋅

⋅
==ω=ρ

−

−
∗ d

d
L

L  

,001,0
1030
1004,0

4
3

4
3

3

3

1

3 =
⋅

⋅
==

−

−

b
b

k  

and the dependency between the input and the output voltages is: 
.2,53 3

mmmL VVV −≈  
The graph of this dependency is shown in Fig. 19.3, b. 
The considered principle of stabilization is used to construct 

the ferroresonance stabilizer of the alternating voltage. 
 

Practical training and modeling 
 

1. Draw the scheme of the series ferroresonance circuit with 
the parameters according to the table 19.1. The AC voltage source 

has the angular frequency ω= 500 
sec
rad

. 
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2. Construct the volt – ampere characteristic of the 
nonlinear inductor 2

1311)( mmmean IbbIL −=  according to the 
expression )()( 11 mmmean IfIL =ω . 

Table 19.1 
N  

variant 
R ,  
Ω  

3
1 10−⋅b , 

 H 

3
2 10−⋅b ,  
H/А2 

1 0,5 20 0,05 
2 0,6 22 0,06 
3 0,7 24 0,08 
4 0,8 26 0,05 
5 1,0 28 0,1 
6 0,5 30 0,11 
7 0,7 25 0,06 
8 0,6 21 0,08 
9 1,0 23 0,12 
10 1,2 26 0,1 
11 1,5 25 0,11 
12 0,8 28 0,06 

 
3. Calculate the value C of the capacitor to reach 

ferroresonance in the considered circuit. 
4. Construct the graphs of the volt – ampere characteristics 

of the resistor )( 1mmR IV , capacitor )( 1mmC IV  and the nonlinear 
inductor )( 1mmL IV . 

5. Construct the graph of the volt – ampere characteristic of 
the ferroresonance circuit according to the expression: 

[ ]2111
2

1 )()()()( mmCmmLmmRmm IVIVIVIV −+= . 

6. Calculate the current of the ferroresonance circuit for various 
values of the amplitude of the input voltage mV , using the 
software MathCAD: 
 
 
 



 121 

given 

mmm V
C

IRI =⎥⎦
⎤

⎢⎣
⎡

ω
−⋅⋅−⋅⋅ω+⋅ −−

2
2332 1)1006.01020(

 
find( mI )→ (...) 

 

  
Write down the results of calculation into the table 19.2. 

 
Table 19.2 

mV , V mI , А 
0 0 0 0 
3 0,264  –   –   
5 0,715 – – 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 

Comment:   Solution of the nonlinear algebraic equation 
gives three values of the current 1mI , which correspond to the 
points of intersection of the line mV  and the volt – ampere 
characteristic of the resonant circuit, Fig. 19.4. 

If the line mV  intersects the volt – ampere characteristic 
only in one point, then the two values of the current are the 
complex numbers, which must be excepted. 

mV

1
)(

m
1I

1mI

1
)(

m
2I 1

)(
m
3I
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Fig. 19.4 
Construct the volt – ampere characteristic of the circuit 

)( 1mm IV , using the results of calculation. 

7. Calculate the current steps )1(
1mIΔ  and )2(

1mIΔ , using the 
obtained graphs (for example, as shown in Fig. 19.5). 
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Fig. 19.5 

 
8. Construct the dependency of the output voltage mLV  of 

the ferroresonance circuit for various values of the input voltage 
mV , using the expression: 

mLV .33
2
0

mm VV
k

−
ρ

=  

9. Calculate the stabilization range of the output voltage 
mLV  according to inequality: 

%5%100
(max)

(min)(max)
≤

−

mL

mLmL

V

VV
. 
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Review questions 

 
1. How can you calculate the value of the capacitance C, for 

which the resonance in the circuit is possible? 
2. In what way is the graph of the volt – ampere 

characteristic of the ferroresonance circuit constructed?  
3. In what way is the expression for the mean value of the 

inductance )( 1mmean IL  obtained? 
4. What is the difference between the volt – ampere 

characteristics of the ideal ( 0≈R ) and real ferroresonance 
circuits? 

5. For what practical purposes is the ferroresonance circuit 
used? 

 
20. TRANSIENTS IN LINEAR ELECTRIC CIRCUITS WITH 

SINGLE POWER – CONSUMING ELEMENT 
 

The electric circuit changes its state if the circuit is 
connected to the voltage source. However, this state is not 
changed immediately because the inductive and capacitive 
elements are electrically inertial elements. Only after a time the 
electric circuit passes into steady – state mode (stationary mode), 
in which the currents and the voltages will be have constant 
values, Fig. 20.1. 

Processes, which take place in the electric circuits starting 
with the switching moment up to the moment of stability of the 
currents and the voltages, are called the transients. 

It is evident, that if the electric circuit contains only 
resistors (resistors are not power – consumer elements), then 
instantaneous change of the circuit configuration (or the energy 
source is connected to the passive circuit) leads to instantaneous 
changes of the currents and voltages in the branches (the transient 
is absent). 

Let’s assume that in the linear circuit transient calculations 
the duration of commutation (closing or opening of the switch) is 
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very small value with respect to the duration of transients. It 
means that commutation is carried out immediately. 

 

t

)(ti

)0(i

0

0=t
switching
moment

steady - state
mode before

switching

transient
current

steady - state
mode after
switching

 
Fig. 20.1 

 
Analysis of transients in the electric circuits means that we 

have to calculate the time dependencies of the currents and the 
voltages, which describe the change of the electric circuit energy 
state. 

More complex tasks of passing various signals through the 
electric circuits are based on the laws, used in the transient 
analysis. 

To calculate the transient currents and voltages in the linear 
electric circuit by the classical method the following steps are 
used: 

• It is necessary to calculate the electric circuit in the 
steady – state mode before switching to find the 
currents in the inductive elements and the voltages 
across the capacitors. According to the first and the 
second switching rules these values will be 
independent initial values: 

),0()0(       ),0()0( −− == CCLL vvii  
   where )0(),0( −− cL vi  are the values of the current   

and the voltage at the time moment directly before 
switching. 
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For example, for DC voltage source: 

B, 50)0()0(      vA, 5)0()0( ==== −− CCLL vii  
and for AC voltage source: 

,A 5,230sin5)0(  0    )30 314sin(5)0( ==→=→+=−
oo

LL itti
V. 25)30sin(5)0( 0  )30 314sin(50)0( −=−=→=→−=−

oo
CC vttv

 
• It is necessary to calculate the electric circuit in the 

steady – state mode after switching by analogy with 
the previous point (the difference is the change of the 
electric circuit configuration) to find the steady – state 
components of the transient currents ssi  and the 
voltages ssv . 

• It is necessary to write the system of differential 
equations after switching, using the KCL and KVL 
for instantaneous values of the transients. In this case 
it is necessary to remember the following 
relationships: 

,)(1)0()(1)()(
0
∫∫ +==↔=

∞−

t

LL

t

LL
L

L dttv
L

idttv
L

ti
dt

di
Lti

.)(1)0()(1)()(
0
∫∫ +==↔=

∞−

t

CC

t

CC
C

C dtti
C

vdtti
C

tv
dt

dv
Lti

        For example, for the scheme, shown in Fig. 20.2 
we may write the system of differential equations after 
switching: 
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F, 100   H, 1,0   ,V  180   ,  303210 μ===Ω==== ÑLERRRR

.)(1)0(

0

0
31111

22
2

11

321

Edtti
C

vRiRi

ERi
dt
diLRi

iii

t

C =+++

=++

=−−

∫

 

с

1R

3R2R

L C

0R

E )(
2

ti )(3 ti

 
Fig. 20.2 

 
• It is necessary to write characteristic equation and 

find its roots. This equation is obtained after 

substitution of differentiation 
dt
d  and integration 

∫ dt  symbols by the symbols p and 
p
1

 respectively.    

To find the roots we have to expand the determinant 
of the obtained system and equate its to zero, that is 

0)( =Δ p . For our case we may write: 
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,06060 2700
130        0        30

0         30   30
1            1         1

)( =+++=

+

+
−−

=Δ
C
L

pC
pL

pC

pLp

 
wherefrom 

+LCp260 (2700C + L) p + 60 = 0, 
or 

.0601037106 224 =+⋅+⋅ −− pp  
          Characteristics roots are: 

.sec  70308        ,sec  70308 1
2

1
1

−− +−=+−= jpjp
 

• It is necessary to write the general solutions for free 
components of the transient currents: 
for one root: 

,)( pt
f Aeti =  

   for two real roots 1p  and 2p  

,)( 21
21

tptp
f eAeAti +=  

   for two complex roots fjp ω+δ=1 ,   

fjp ω+δ=2  

).sin()( ν+ω= δ tAeti f
t

f  
• It is necessary to calculate the initial values of the 

transient currents )0(i , substituting the time moment 
0=t  into the system of the differential equations. In 

this case we obtain the system of the algebraic 
equations, the solution of which gives the needed 
values. For the scheme, shown in Fig. 20.2, the initial 
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values )0(2i  and )0(cv  are known according to the 
first and second switching rules: 

,A 2
90

180)0()0()0(
021

22 ==
++

=== − RRR
Eiii L  

V. 60)0()0()0()0( 2222 ==== −− RiRivv CC  
   To find the values )0(1i  and )0(3i we have to     
solve the system of algebraic equations: 

),0()0()0(
),0()0()0(

3311

231

CvERiRi
iii

−=+
=−

 

wherefrom )0(1i =3 А, )0(3i =1 А. 
The value )0(Lv  is found by means of KVL: 

V. 30)0()0()0()0( 2233 =−+= RiRivv CL  
• It is necessary to calculate the initial values of the 

transient currents derivatives (this point is carried out 
only for electric circuits with two power consuming 
elements). In this case we have to solve the system of 
algebraic equations for initial values, substituting for 
these values their derivatives. 
         For example, for considered above example we 
may write: 

),0()0()0(

)0()0()0(
/

3
/
31

/
1

/
2

/
3

/
1

CvRiRi

iii

−=+

=−
 

where the values )0(/
2i  and )0(/

Cv  are calculated by 
the following way: 

,
)0(

)0()0()0(
)(

)0( /
2

//

0 L
v

iiLi
dt

tdi
Lv L

LL
t

L
L ==⇒==

=

.
)0()0(

)0()0(
)(

)0( 3//

0 C
i

C
i

vCv
dt

tdv
Ci C

CC
t

C
C ==⇒==

=
 

Since: 
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,
sec
V10

10100
1)0(     ,

sec
À300

1,0
30)0( 4

6
//

2 =
⋅

===
−Ñvi  

then: 

.
sec
À1300)0(    ,

sec
À1000)0( /

3
/
1 −=−= ii  

• It is necessary to calculate the constant of integration 
A (if we consider the case of one root): 

,)0( ssiiA −=  
the constants of integration 1A  and 2A  (the case of 
two real roots): 

),,(           )0(

, )0(

212211
/

21ss

AAApApi

AAii

⇒+=

+=−
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constants of integration А та ν  (the case of two complex 
numbers) 

.cossin)0(

, sin)0(
/ νω+νδ=

ν=−

f

ss

AAi

Aii
 

For the considered above example we calculate the 
constants of integration for transient current in the first branch: 

, .cossin)0(

, sin)0(

1111
/
1

1111

νω+νδ=

ν=−

f

ss

AAi

Aii
 

or 

.29,14
70

1000      ,0      cos701000

, sin0            

1111

11

−=−==ν⇒ν⋅=−

ν=

AA

A

 
• The transient currents are determined as the sum of 

the free and the steady – state components (according 
to the principle of superposition): 

,)( ss
ptAeiti +=  

          ,)( 21
21ss

tptp eAeAiti ++=  

).sin()( ss ν+ω+= δ tAeiti f
t  

For example, for the transient current in the first 
branch we may write: 

.A  70sin29,143)sin()( 308
11ss11 teteAiti t

f
t −δ −=ν+ω+=  

The analysis of the transients by the Laplace 
transformation is carried out by the following way: 

• It is necessary to calculate the steady – state mode 
before switching to find the currents, flowing through 
the inductive elements, ant the voltages across the 
capacitors (see the classical method). 

• It is necessary to construct the equivalent scheme of 
substitution after switching according to the rule for 
each element, Fig. 20.3. 



 130 

p
E

pL

E

)(ti

)(tiL

)(tiC

)(pI

)(pIL

)(pICpC
1

p
vC )0(

C

L )0(LLi

 
Fig. 20.3 

 
The resistance R is taken into account in the schemes before 

and after switching, because it is not the power consumer element. 
For the scheme, shown in Fig. 20.2 we have the equivalent 
operator scheme of substitution, Fig. 20: 

с

с

с

3R

1R

2R

p

E

pC

1

)0(2L i
)(1 pI

)(3 pI

pL

)(2 pI

p

vC )0(

 
Fig. 20.4 



 131 

• It is necessary to construct and solve the system 
of algebraic equations with respect to transient currents 

)( pI  (as a rule, the loop current method is used). For 
example, for the scheme, shown in Fig. 20.4 we have 
the system of equations: 

)0()())(( 21222111 Li
p
ERpIpLRRpI +=+++  

p
vE

pC
RRpIRpI C )0(

)1)(()( 3122111
−

=+++ , 

or 

p
ppIpIp 2,0180)(30)()1,060( 2211

+
=++  

,120)(1060)(30 22

4

11 p
pI

p
pI =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++  

from which it follows: 
).()()(    ),()(    ),()( 22111223112 pIpIpIpIpIpIpI +===

        The current transforms must be written as a ratio 
of the respective algebraic polynomials: 

.
)(
)(

...
...

)(
2

1

01
1

1

01
1

1
pF
pF

bpbpbpb
apapapa

pI m
m

m
m

n
n

n
n =

++++

++++
=

−
−

−
−  

From the obtained system of equations we may 
find the current transform )(11 pI : 

( ) .
)(
)(

601037106
18092,01012)()(

2

1
224

24

211 pF
pF

ppp
pppIpI =

+⋅+⋅

++⋅
==

−−

−
 

The obtained expressions of the current 
transforms must be satisfied to boundary theorems (the 
use of these theorems is check up of the obtained 
transforms): 

• The initial value of the current is defined by the 
boundary relationship: 
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),(lim)0( ppIi
p ∞→

=  

• The steady – state value of the current is defined 
by the boundary relationship: 

).(lim
0

ppIi
p

ss
→

=  

      For obtained above the current transform we get the 
following results: 

,A 2
106
1012

601037106

18092,01012
)(lim)0( 4

4

2

2
4

2
4

22 =
⋅

⋅
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⋅
+⋅

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⋅

==
−

−

−
−

−

∞→

pp

pp
ppIi

p

 

A. 3
60

180)(lim 2
0

ss2 ===
→

ppIi
p

 

• It is necessary to calculate the real transient currents 
according to the formula of expansion: 

,
)(
)(

)(
1

/
2

1∑
=

=
n

k

tp

k

k ke
pF
pF

ti  

where 

kpp
k dp

pdF
pF

=

=
)(

)( 2/
2 , 

kp  is the root of the denominator 0)(2 =pF . 
Let’s carry out the research of the transients in the simple 

circuits, the schemes of which contain one power consumer 
element (these circuits are called the first – order circuits), for 
example, the branches with the series connected resistor of 
resistance R and inductor of inductance L (or the branches with 
the series connected resistor of resistance R and capacitor of 
capacitance C). In particular, it may be the equivalent scheme of a 
coil, which has a resistance of wire, the schemes of windings of 
generators, transformers and motors. However, in our case we 
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will consider the linear elements, namely the coils, not containing 
the cores made from the ferromagnetic material. 

The core, made from the ferromagnetic material, 
substantively increases the time constant of the coil, because the 
relative permeability μ  is substantively increased (it means, that 
the inductance L is increased). The electric circuits becomes by 
the nonlinear one, and the dependency i(t) will be differ from the 
dependency of the linear circuit. The time constants of great coils 
with the ferromagnetic material have the values from the range 

)51( ÷  sec. 
Practical training and modeling 

 
1. Write down the differential equations with respect to the 

current and the voltage for the reactive elements and determine 
the initial conditions for the electric circuits (Fig. 20.5, a and b) 
for switching on mode and short circuit mode. 

The parameters are: Е = 120 V, R = 5*k Ω , L  = 0,05 H,   
С = 10 ,Fμ where k is the number of variant. 

с с

R R

E
E

)(ti

)(ti

CC LL )(tv)(tv

а
b

 
Fig. 20.5 

 
To obtain the differential equations it is necessary to use the 

switching rules, KVL and the relationships between the current 
and the voltage for reactive elements. 

For example, for switch up mode of the RL – circuit to the 
direct voltage source with the EMF E (Fig. 20.5, a) we may write: 

,EviR L =+  
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,)(1)0()(
0
∫+=
t

L dttv
L

iti  

where )0(i  is the initial value of the current flowing through the 
inductor. This value equals zero according to the first switching 
rule. So we may write: 

.)(
0

Evdttv
L
R t

LL =+∫  

The differential equation of the voltage across the inductor 
)(tuL may be obtained by means of differentiation: 

.0=+ L
L v

L
R

dt
dv

 

The initial condition for the voltage across the inductor is 
defined by means KVL at the time moment 0=t : 

,)0()0( EvRi L =+  
from which it follows that EvL =)0( . 

Let’s consider again the equation EviR L =+  and use the 
differential relationship: 

dt
diLvL = . 

Then we may write the differential equation with respect to 
the current in the circuit: 

.1 E
L

i
L
R

dt
di

=+  

By analogy we may consider other modes in the circuits, 
shown in Fig. 20.5, a and b: 

• Switching on mode of RL – circuit 

0=+ L
L v

L
R

dt
dv  

].)0(  ,0)0([     ,1 EviE
L

i
L
R

dt
di

L ===+  

• Short circuit mode of RL – circuit 



 135 

0=+ L
L v

L
R

dt
dv

 

                                 

.)0(  ,)0(     ,0 ⎥⎦
⎤

⎢⎣
⎡ −===+ Ev

R
Eii

L
R

dt
di

L  

 
• Switching on mode of RC – circuit 

E
RC

v
RCdt

dv
C

C 11
=+  

                                  

.0)0(  ,)0(     ,01
⎥⎦
⎤

⎢⎣
⎡ ===+ Cv

R
Eii

RCdt
di  

• Short circuit mode of RC – circuit 

01
=+ C

C v
RCdt

dv
 

                               

.)0(  ,)0(     ,01
⎥⎦
⎤

⎢⎣
⎡ =−==+ Ev

R
Eii

RCdt
di

C  

 
2. Calculate the time constants Lτ  and Cτ , the practical 

duration of the transients .5tr τ=t  
3. Obtain the solution of the differential equations, using the 

software MathCAD. For example, the solution of the differential 
equation with respect to the voltage Lv  may be obtained by the 
following way: 

 
           solve 

⎟
⎠
⎞

⎜
⎝
⎛−== y

L
RytDEy :),1(           :  

)  ,100  ,5  ,0  ,(rkfixed: DyZ τ⋅=  
=Z  
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The variable y corresponds to variable )(tvL , the variable 

1t corresponds the time in switching on mode. The solution Z is 

the matrix, which has 100 rows, zero column corresponds to 
current time, the first column is the variable )(tvL : 

Z

0 1

0
1

2

3

4

5

6

7

8

9

10

0 100
5·10    -4 95.123

1·10    -3 90.484

1.5·10    -3 86.071

2·10    -3 81.873

2.5·10    -3 77.88

3·10    -3 74.082

3.5·10    -3 70.469

4·10    -3 67.032

4.5·10    -3 63.763

5·10    -3 60.653

=

 
4. Construct the graphs of the currents and the voltages for 

all modes in the schemes, shown in p.1. 
The graphs may be constructed by the following way (for 

example, for )(tvL ): 
j 0 99..:= t1j Zj 0,:= UL1j Zj 1,:=

0 0.01 0.02 0.03 0.04 0.05
0

50

100

UL1j

t1 j  
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To construct the graphs it is necessary to combine switching 
on and short circuit modes. In this case we have to use other 
variable 2t , which corresponds to time variable for short circuit 
mode. The solution of the differential equation (for )(tvL ) is: 

 
solve

y E−:= D t2 y,( ) y
r−

L
⋅⎛⎜

⎝
⎞⎟
⎠

:=

Z1 rkfixed y 5 τ⋅, 10 τ⋅, 100, D,( ):=  
                               Z1 = 

 
Assuming the new variable jt2 , we may construct the 

combined graph, Fig. 20.6. 

τ10

τ5

t

Lv
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j 0 99..:= t1j Zj 0,:= UL1j Zj 1,:= t2j Z1j 0,:= UL2j Z1j 1,:=

0 0.02 0.04 0.06 0.08 0.1
100

0

100

UL1j

UL2j

t1 j t2 j,  
 

Fig. 20.6 
 

5. Carry out modeling the given electric circuits according 
to p.1, using the voltage source of the squared form with the 

amplitude E and the frequency 
τ

=
10

1f . This voltage represents 

(models) periodicity of switching on and short circuit modes of 
the electric circuit, Fig. 20.7. 

 
Fig. 20.7 

 
Make a copy of oscillograms of the transient currents and 

the voltages across the reactive elements, Fig. 20.8. Compare the 
results of calculation and modeling. 
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Fig. 20.8 
 

Comment: Oscillogram of the voltage across the resistor 

corresponds to the oscillogram of the current in the circuit on 
R
1

 

scale. 
Review questions 

 
1. Explain the first and the second switching rules. 
2. Explain the algorithm of solution of the first – order 

differential equation. 
3. Explain why the current in an inductor and the voltage 

across a capacitor don’t change by step. 
4. Explain the algorithm of calculation of transients by the 

classical method. 
5. Explain the algorithm of calculation of transients by the 

operational (Laplace transformation) method. 
6. In what way does the time constant has action upon the 

form of the transient currents? 
 

21. TRANSIENTS IN THE SERIES OSCILLATORY CIRCUIT 
 

The considered above electric circuits contain only one 
power consumer element. Such circuits are completely described 
by the first – order differential equations. Besides, these circuits 
have inertial property. It means that rapid change of the voltage of 
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the independent source leads to smooth variation of the current in 
an inductor and the voltage across the capacitor. 

Let’s consider the electric circuits including the inductor 
and the capacitor simultaneously, Fig. 21.1. 

с

E

L

)(tvL )(tvC

)(ti

R

C

 
 

Fig. 21.1 
 

Such circuits are completely described by the second – 
order differential equations (for example, with respect to the 
voltage across the capacitor): 

dt
diLv

dt
dv

CiEvviR L
C

CL ===++    ,   ,  , 

wherefrom 

.2

2
Ev

dt
dv

RC
dt

vd
LC C

CC =++  

As known, the second – order differential equation may be 
represented by the two first – order differential equations with 
respect to state variables ( Li  and Cv , see section 6): 

Ev
L

i
L
R

dt
di

C =++
1

 

].0)0(    ,0)0([         ,01
===− C

C vii
Cdt

dv
 

It is the equation of RLC , written on the base of state 
variables. The determinant of the system gives the characteristic 
equation (see section 20): 

,0)( =Δ p  
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,01

           1  

1       
2 =++=

−

⎟
⎠
⎞

⎜
⎝
⎛ +

LC
p

L
Rp

p
C

LL
Rp

 

from which the characteristic roots are: 

.1
22

2

2,1 LCL
R

L
Rp −⎟

⎠
⎞

⎜
⎝
⎛±−=  

Let’s assume that δ=
L

R
2

, 0
1

ω=
LC

, where δ  is 

damping coefficient, 0ω  is natural frequency of the oscillatory 
circuit. 

If  0ω>δ  (real roots), then the so – called aperiodic mode 
occurs, and for the case 0ω<δ  (complex roots) we have 
oscillatory mode. In this mode the characteristic roots may be 
written in the form: 

,     , 11 ff jpjp ω−δ−=ω+δ−=  
where the frequency of free oscillations is defined as 

22
0 δ−ω=ω f . 

The general expressions for the transient current and the 
transient voltage are (see the section 20): 

),sin()( 11ss ν+ω+= δ teAiti f
t  

),sin()( 22ss C ν+ω+= δ teAvtv f
t

C  

where the constants of integration 11,νA  and 22 ,νA  are 

calculated by means of the initial values )0(),0( /ii  and 

)0(),0( /
Cc vv . 

The practical duration of the transients is defined by the 
decay time of the exponential function 0, <δδte . As a rule, this 



 142 

time is equal to 
δ

÷
1)53(  and contains N periods of the free 

component of the transient current, where: 

.)53(
2

2)53( QQ
R

L
T
t

N f

f

p ≈
π
÷

=
π

ω÷
==  

Thus, unlike the processes in RC  - and RL - electric 
circuits, the transients in RLC - circuit are defined by two 
parameters 1p  and 2p . These parameters may be real numbers 
( 0ω<δ ) and have sense of the time constants like in RC - and 

RL  - electric circuits: 
1

1
1
p

=τ ,  
2

2
1
p

=τ . If 1p  and 2p  are 

the complex numbers ( 0ω<δ ), then their physical sense is: real 
part of the complex number δ  is the damping coefficient, the 
imaginary part fω  is the frequency of the free oscillations. It 
means, that RLC - circuit may be represented by the oscillating 
system. In this case the capacitor and the inductor are changed by 
the energy over the period. If the energy cW has a maximum 
value, then the energy LW  is equal to zero and vice versa. 

 
Practical training and modeling 

 
1. Write down the differential equations with respect to the 

current and the voltage across the capacitor. Calculate the initial 
values in the switching on mode to the direct voltage source and 
in the short circuit mode. 

The parameters of the given electric circuit (Fig. 21.1) are: 

E = 120 V, R = 10k Ω , L = k31050 −⋅  H, 
k

C 20
=  μF, where k 

is the variant number. 
2. Calculate the damping coefficient δ , the frequency of 

the free oscillations fω , time constant τ  and practical duration 
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pt  of the transient current, quality factor Q and the number N of 
periods of free components: 

,1    ,    ,1    ,
2

22
00 δ

=τδ−ω=ω=ω=δ fLCL
R

 

.)25,1(    ,5    , QNt
R

L
Q p

f ÷=τ=
ω

=  

3. Solve the differential equation with respect to the current 
)(ti  and the voltage cv (t) in switching on and short circuit 

modes. For example, in switching on mode we have: 
 

solve

y
0

0
⎛
⎜
⎝

⎞
⎟
⎠

:= D t y,( )

E
L

R
L

y0−
1
L

y1⋅−

1
C

y0⋅

⎛
⎜
⎜
⎜
⎝

⎞

⎠

:=

Z rkfixed y 0, 5 τ⋅, 250, D,( ):=  
=Z  

 
The variables 0y  and 1y  correspond to the current in the 

circuit and the voltage across the capacitor respectively. 
4. Construct the graph of the transient current and the 

graphs of the voltages across the capacitor and the inductor: 
 

j 0 249..:= t j Zj 0,:= ij Zj 1,:= Ucj Zj 2,:=

Ulj E ij r⋅− Ucj−:=
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0 0.01 0.02 0.03 0.04 0.05
200

0

200

400
207.432

89.205−

Ucj

Ulj

0.050 t j  
 
To construct the graphs it is necessary to combine switching 

on and short circuit modes (see p.4, section 20). 
5. Carry out modeling the given oscillatory circuit, using 

the voltage source of the squared form with the amplitude E and 

the frequency 
τ

=
10

1f . Make a copy of oscillograms of the 

transient currents and the voltages across the reactive elements, 
Fig. 21.2. Compare the results of calculation and modeling. 

 

 
а 
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b 

 
c 
 

Fig. 21.2 
 

6. Calculate the value R to obtain the aperiodic process in 
the circuit. Construct the graphs )(),( tvti C  and )(tvL . 

7. Carry out modeling the aperiodic process and make 
copies of the respective oscillograms. 

 
Review questions 

 
1. In what case does the oscillatory mode occur, if the 

circuit is connected to the direct voltage source? 



 146 

2. How many oscillations does the free component do over 
the time of transient, if the characteristic roots are: 

1
2,1 s  3000300 −+−= jp ?  

3. Verify that the number of free oscillations N close to the 
value of Q – factor of the oscillatory circuit. 

4. In what case is the free component of the voltage across 
the capacitor the aperiodic function? 

5. Write down the second – order differential equations 
describing the transient current )(ti , the transient voltages )(tvc  
and )(tvL .   

6. Write down the system of differential equations for the 
state variables )(ti  and )(tvc . 

7. In what way are the characteristic roots calculated? 
8. What physical sense do the characteristic roots have? 
9. Write down the general expression of the transient 

current for the complex characteristic roots. 
10. How can you calculate the initial values )0(),0( /ii  and 

)0(),0( /
Cc vv ? 

 
22. TRANSIENTS IN AC LINEAR ELECTRIC CIRCUITS 

 
If the electromotive force of the external source is 

)sin()( ϕω += tEte m , then the steady – state current, flowing in 
the circuit, has the sinusoidal form as well: 

),sin(уст ϕψω −+= tIi m  
where 

,arctg      ,
R
x

Z
E

I m
m =ϕ=  

   LxLRZ ω=ω+=    ,)( 22             for RL - circuit, 

C
x

C
RZ

ω
=⎟

⎠
⎞

⎜
⎝
⎛
ω

+=
1   ,1 2

2            for RC - circuit, 
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C
Lx

C
LRZ

ω
−ω=⎟

⎠
⎞

⎜
⎝
⎛

ω
−ω+=

1   ,1 2
2   for RLC - circuit. 

 
The general expressions for transient currents and voltages 

may be written as following: 
• for RL - circuit 

=ϕ−ψ+ω+=+=
−

)sin()()()( tIAetititi m
t

L
R

ssf  

,)sin()sin(
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
ϕ−ψ−ϕ−ψ+ω=

− t
L
R

m etI  

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
ϕ−ψ+ϕ−ψ+ωω==

− t
L
R

mL eRtLI
dt
diLtv )sin()cos()(

 
==ϕ=ϕ=ω= ZIEZRZL mm,cos,sin  

,)sin(cos)cos(sin
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
ϕ−ψϕ+ϕ−ψ+ωϕ=

− t
L
R

m etE  

• for RC - circuit 

=−ϕ+ψ+ω
ω

+=+=
−

)90sin()()()(
1

ot
CZ

E
Aetvtvtv mt

RC
CssCfC  

,)90sin()90sin(
1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−ϕ+ψ−−ϕ+ψ+ω

ω
=

− t
RCm et

CZ
E oo  

+−ϕ+ψ+ωω
ω

== )90cos()( otC
CZ

E
dt

dv
Cti mC  

=
ϕ

=
ϕ

==−ϕ+ψ
ω

+
−

sin
  ,

cos
)90sin(1

1
Ct

RCm x
ZRZe

RCZ
E o  
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=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−ϕ+ψϕ+−ϕ+ψ+ωϕ=

− t
RCm et

R
E

1

)90sin(sin)90cos(cos oo

.)cos(sin)sin(cos
1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
ϕ+ψϕ+ϕ+ψ+ωϕ=

− t
RCm et

R
E

 

The graphical dependencies of transients are constructed by 
the superposition of free and steady – state modes 
( )()()( tititi ssf += , )()()( tvtvtv ssf += ), Fig. 22.1. Let’s 

consider the graph )(ti  in RL  - circuit. 

iss

)(ti
f

)( ti

t

 
Fig. 22.1 

 
It is evident, that the transient current )(ti in the initial 

period differs from the steady – state component, besides its value 
exceeds the amplitude of the steady – state current. 

A maximum value of the current in the circuit will be under 
the condition, that 

If the steady – state current at the switching moment has a 
maximum value (in this case o90±=−ϕψ ), then the transient 
current reaches a maximum value, equaled approximately mssI2  
for the great value of the time constant Lτ . 
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Let’s consider the transients in the series oscillatory circuit, 
when AC voltage source is connected to the circuit. 

The general expression for the transient current is written in 
the form: 

).sin()()()( 21
21 ϕ−ψ+ω++=+= t

Z
E

eAeAtititi mtptp
ssf  

The oscillatory transient processes are more interest. In this 
case the characteristic roots are the complex numbers (see 
sections 20 and 21): fjp ω+δ−=1  , fjp ω−δ−=2  and the 
transient current is defined as: 

+ν+ωϕ−ψ
ω
ω

−ϕ−ψ+ω= δ )sin()sin()sin()( 0 te
Z

E
t

Z
E

ti f
t

f

mm

 

.sin)cos(sin te
Z
L

L
E

f
t

f

m ω⎥⎦
⎤

⎢⎣
⎡ ϕ−ψ

ω
−ψ

ω
+ δ  

 
From the obtained expression it follows that the transient 

current in RLC - circuit has three components: the first 
component is undamped oscillation with the frequency ω  of the 
external source, other two components are damped oscillations 
( 0<δ ) with the frequency fω .  

The amplitude of oscillations depends on the relationship of 
frequencies ω  and fω  (for low losses of the circuit, that is for 

02
ω<<=δ

L
R

, we may assume that 0ω≈ω f  and 
2
π

=ν ). 

Under the condition 0ω=ω  the amplitudes of oscillations reach 
to maximum values (resonance condition), Fig. 22.2, a. 

The amplitude of the voltage of steady – state oscillations 
across the capacitor Q times greater the amplitude mE . 

If the frequencies ω  and 0ω  differ between each other, 
then the graph of the transient current is changed according to 
more complex law, Fig. 22.2, b.  
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а b

)(ti )(ti

t t

 
Fig. 22.2 

 
Addition of the oscillations, which have close frequencies 

and approximately equaled amplitudes, gives the oscillations with 

the frequency 
2

0ω−ω
=Ω  (in this case we assume that the 

oscillatory circuit has no the losses). It is said that beating occur 
in the circuit. The transient current is defined by the expression: 

=ϕ−ω+ϕ−ω= )sin()sin()( 0t
R

E
t

R
E

ti mm  

0
00      ,

2
cos

2
sin2 ω>ω⎥⎦

⎤
⎢⎣

⎡ ϕ+
ω+ωω−ω

−= tt
R

Em . 

 
From this expression it follows that the amplitude of the 

current in the circuit is slowly changed according to the law 

⎥⎦

⎤
⎢⎣

⎡ ω−ω
t

2
sin 0  and the frequency of oscillations is equal to 

ω≈
ω+ω

2
0 . 

The imaginary curve (such curve is called the envelope) 
shows the law of change of the instantaneous current amplitude 
(the envelope is shown by dots in Fig. 22.2, b). In the considered 
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case the envelope is defined by the function 

⎥⎦

⎤
⎢⎣

⎡ ω−ω
t

R
Em

2
sin2 0 .  

If the losses in the circuit are not equal to zero, then the 
graph of the transient current has the form, shown in Fig. 22.3. 

t

i(t)

 
Fig. 22.3 

 
Practical training and modeling 

 
1. Write down the differential equations with respect to the 

current and calculate the initial conditions for the schemes (see 
Fig. 20.5, a) in the switching on mode to the AC voltage source. 

The parameters of the given electric circuit (Fig. 21.1) are: 
mE = 141 V, kR 5,0=  Ω , L  = 0,5 H, С = 10 μF, where k  is 

the number of variant. Assume the frequency of the external 
voltage source equaled 400 Hz. 

2. Solve the differential equations using the software 
MathCAD. For example, the solution of the equation with respect 
to the current in RL – circuit is: 

 
solve

y 0:= D t y,( )
Em sin w t⋅( )⋅

L
R
L

y⋅−⎛⎜
⎝

⎞
⎠

:=

Z rkfixed y 0, 20 T⋅, 500, D,( ):=  
          Z = 
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where 
ω
π

=
2T . 

3. Construct the graphs of the transient currents in RL – and 
RC – circuits in switching on mode to the AC voltage source. 

4. Write down the differential equations with respect to the 
current and the voltage across the capacitor in switching on mode 
of the series oscillatory circuit to AC voltage source. Circuit 
parameters are: mE =10 V, 0,1=R  Ω , L  = 0,01 H, С = 25 μF, 
f = 400 Hz. 

Comment: differential equations with respect to the 
current and the voltage across the capacitor are called the 
equations of state variables of the oscillatory circuit (see the 
sections 6 and 21): 

 

i
dt

dv
C

tEv
dt
diLiR

C

mC

=

ω=++ ,sin
⇒

.1

,1sin1

i
Cdt

dv

v
L

i
L
RtE

Ldt
di

C

Cm

=

−−ω=
 

 
5. Calculate the period T of oscillations of the AC voltage 

source, the natural frequency of the oscillatory circuit 0ω , Q – 
factor and the difference of frequencies Ω : 

.   ,   ,1   ,1 0
00 R

L
Q

LCf
T

ω
=ω−ω=Ω=ω=  

6. Solve the state variable equations of the oscillatory 
circuit using the software MathCAD for the case, when the 
frequency of oscillations ωof the voltage source is close to the 
natural frequency 0ω  of the oscillatory circuit. 

7. Construct the graph of the transient current )(ti  and the 
graph of the transient voltage across the capacitor )(tvC , Fig. 
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22.4. Show the envelop on the graph using the expression 

.
2

sin1)( ⎥⎦
⎤

⎢⎣
⎡Ω⋅= ttienv  

 

0 0.01 0.02 0.03 0.04 0.05
5

0

54.007

3.822−

ij

i0j

0.050 t j  
Fig. 22.4 

 
8. Carry out p.p. 6 and 7 for the case, when 0ω=ω  

(resonance condition). It may be obtained, for example, by 
decrease of the inductance value, Fig. 22.5. 

 

Em 10:= R 0.2:= L 0.0064:= C 25 10 6−
⋅:=

w 2π 400⋅:= T 5
2 L⋅
R

⋅:=
solve

y
0

0
⎛
⎜
⎝

⎞
⎟
⎠

:= D t y,( )

1
L

Em⋅ sin w t⋅( )⋅
R
L

y0⋅−
1
L

y1⋅−

1
C

y0⋅

⎛
⎜
⎜
⎜
⎝

⎞

⎠

:=

Z rkfixed y 0, T 0.2⋅, 800, D,( ):=
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j 0 499..:= t j Zj 0,:= ij Zj 1,:=

0 0.01 0.02 0.03 0.04
40

20

0

20

40

ij

t j  
Fig. 22.5 

 
9. Carry out p.p. 6 and 7 for the case, when the losses in the 

oscillatory circuit are absent (R = 0). 
 

Review questions 
 

1. What character do the transients have in the oscillatory 
circuit, if it is connected to AC voltage source for the cases 

0ω>ω and 0ω=ω ? 
2. Obtain the general expression for the transient voltage 

across the capacitor in RC – circuit, if it is connected to AC 
voltage source. 

3. Obtain the general expression for the transient voltage 
across the inductor in RL – circuit, if it is connected to AC voltage 
source. 

4. Draw the graph of the transient current in RL – circuit for 
the case, when the time constant τ  has a great value. 
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23. ELECTRIC CIRCUITS WITH THE DISTRIBUTED 
PARAMETERS. 

 DISTRIBUTION OF THE VOLTAGE AND THE CURRENT IN 
THE LONG LINE 

 
The transmission lines of energy, geometrical length l of 

which are much less than the wave length λ , may be represented 
by the substitution schemes with the lumped parameters (see the 
section 11). On the contrary, the lines, geometrical length l of 
which is commensurable with the length of wave λ , may be 
represented by the equivalent schemes with the distributed 
parameters. Such lines are called the long lines. In practice it 
corresponds to the expression λ÷≥ )1,005,0(l . 

In general each elementary section of the long line (in the 
view of mathematics the section dx is considered) has the 
inductance 0L , the capacitance 0C , the resistance of losses 0R  
and the conductance of losses 0g , Fig. 23.1, a. 

dxL0 dxL0

dxR0

dxC0 dxC0dxg0

dx dx
a b

Fig. 23.1 
 

The parameters 0000 ,,, gRCL  are called the primary (or 
linear) parameters (because the dimension of these parameters is 
taken per unit length, for example, the dimension of 0L  is m

H ). 

If the conditions 00 RL >>ω  and 00 gC >>ω  are satisfied, then 
such line is considered as the lossless line (it is satisfied on high 
frequencies), Fig. 23.1, b. 
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As a rule, the inductance and the capacitance are uniformly 
distributed along the double or the cable lines (homogeneous long 
line). Electromagnetic wave is propagated with terminal velocity 

00

1
CL

=ϑ . It means that the responses do not appear in the 

different points of the long line immediately at the switching 
moment of the generator to the electric circuit. These responses 
appear later and the delay time τ  depends on the length of line 
and the velocity of wave propagation: 

.00CLll
=

ϑ
=τ  

The lossless line is an ideal delay line. In practice to obtain 
the delay time about several microseconds it is necessary to have 
very great geometrical length of line. For example, the delay time 
of the cable line of 200 m length is 5÷10 microseconds. That’s 
why an artifical long line is used in the real devices. This line is 
represented by great number of the series (cascade) connected 
links (sections) with lumped parameters. For great number of 
links in the artifical line the processes in this line and the 
processes in the real line with the distributed parameters are 
practically the same. 

Let’s find the frequency f of the generator, connected to the 
artifical line including n links to obtain the equivalent length of 
this line equaled the length λ  of wave of the generator. 

The delay time of the artifical line is equal to 

linklinkd CLn=τ , where linkL , linkC are the inductance and 
the capacitance of each link of the artifical line. Thus, the artifical 
line consisting of n links is equivalent to the real double line with 
the linear inductance linkLL =0  and the capacitance 

linkCC =0 , which has a length corresponding to the same delay 
time dτ . 

The frequency f and the period T of oscillations are 

connected by the well – known expression 
T

f 1
= . If the delay 
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time dτ  of the line is equal to the period T, then the signal passes 
the distance, equaled the length λ  of wave, over the time T. Thus, 
we may write: 

.1

linklink CLn
f =  

In space the length of the wave is 
f
c

=λ , where 

8103 ⋅=c  
sec
m

 is the velocity of light. Then the equivalent 

length of the artifical line eql  at the frequency f is equal to the 

length of the wave λ , that is λ=eql , from which it follows: 

.linklinkeq CLcn
f
cl ==  

Thus, the artifical line, including n links ( linklink CL , ) at 

the frequency 
linklink CLn

f 1
=  is equivalent to the real line of 

the length λ . If the frequency is equal to f
4
1

, then the artifical 

line is equivalent to the real line of the length 
4
λ , Fig. 23.2. 

Each line is completely described by the wave impedance 
wZ  and the propagation constant ν . In general case the wave 

impedance equals: 

,
0

0

00

00
Y
Z

Cjg
LjR

Z w =
ω+
ω+

=  

and the propagation constant is 
.00 β+α==ν jYZ  
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eq

v λ

λ=l

f

f

х

leq =  1/4

1/4

 
 

Fig. 23.2 
 
The real part of the propagation constant α  characterizes 

the damping of oscillations in the line and the imaginary part β     
(phase constant) characterizes the change of the phase of 
oscillations along the line. 

In the lossless lines ( 0,0 00 == gR ) the wave impedance 
is represented by the resistance and is equal to 

0

0
C
L

Zw = , 

and the phase constant β  is proportional to the frequency ω : 

.00CLjj ω=β=ν  
In all cases, when the line is loaded at the impedance 

loadZ , which differs from the wave impedance wZ , the 
backward wave (reflected wave) appears in the line (the wave is 
reflected from the load). In this case the reflection coefficient is 
equal to: 

.
wload

wload
ZZ
ZZ

+
−

=Γ  

Let’s consider the following operating modes depending on 
the values of the load impedance loadZ  of the loaded line (Fig. 
22.3): 
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• short – circuit mode ( loadZ = 0), 
• open – circuit mode (the line is opened at the end, 

that is ∞=loadZ ), 
• matched mode ( loadZ = wZ ), 
• unmatched mode ( loadZ ≠ wZ ). 

2 loadZе

1I linkL 2I

2V
1V

ξ

OC SC

linkL linkL

linkC linkC
2
linkClinkC

 
 

Fig. 22.3 
 

Let’s transfer the origin of the distance from the beginning 
of the line to its end and designate the variable of reading as ξ . 
Next we express the phase constant β  using the concept of the 

length of the wave λ  ⎟
⎠
⎞

⎜
⎝
⎛

λ
π

=β
2

 and write down the equation, 

which allows to calculate the complex values of the voltage and 
the current in any point of the line if the input voltage 2V  and the 
input current 2I  are known: 

βξ+βξ= sincos 22 wZIjVV , 

,sincos 2
2 βξ+βξ=

wZ
V

jII  

or 

ξ
λ
π

+ξ
λ
π

=
2sin2cos 22 wZIjVV , 
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.2sin2cos 2
2 ξ

λ
π

+ξ
λ
π

=
cZ

V
jII  

For the respective operating modes of the line we have the 
following equations: 

 
• short – circuit mode ( 02 =V ) 

,2sin      ,2sin 22 ξ
λ
π

=ξ
λ
π

= ww ZIVZIjV , 

,1     ,2cos     ,2cos 22 −=Γξ
λ
π

=ξ
λ
π

= IIII  

• open – circuit mode ( 02 =I ) 

,2cos      ,2cos 22 ξ
λ
π

=ξ
λ
π

= VVVV , 

,1     ,2sin     ,2sin 22 =Γξ
λ
π

=ξ
λ
π

=
ww Z

VI
Z
V

jI  

• matched mode ( 222 VZIZI loadw == ) 

,      , 2

2

2 VVeVV
j

==
ξ

λ
π

, 

,0     ,          , 2

2

2 =Γ==
ξ

λ
π

IIeII
j

 
• unmatched mode ( loadZ ≠ wZ , loadZ = loadR ) 

,2sin2cos2 ⎥
⎦

⎤
⎢
⎣

⎡
ξ

λ
π

+ξ
λ
π

=
load

w
Z
Z

jVV , 

,      .,2sin2cos2 n
R
Z

j
Z
Z

Z
V

I
load

w

load

w

w
=⎥

⎦

⎤
⎢
⎣

⎡
ξ

λ
π

+ξ
λ
π

=  

,2sin2cos 222
2 ξ

λ
π

+ξ
λ
π

= nVV  
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.2sin2cos 2222 ξ
λ
π

+ξ
λ
π

= n
Z
VI

w
 

 
The distributions of the RMS values of the voltage and the 

current in short – circuit and open – circuit modes are shown in 
Fig. 23.4, a and b respectively. 

0

4
λ

2
λλ

4
3

0

4
λ

2
λλ

4
3

V VII

a b

λλ

 
Fig. 23.4 

 
The distributions of the RMS values of the voltage and the 

current in the matched mode and the voltage in the unmatched 
mode are shown in Fig. 23.5, a and b respectively. 

0

V

I

0

4
λ

2
λλ

4
3

IV ,wload ZZ <

2
λ

wload ZZ >

wload ZZ =

λ λ

a b  
 

Fig. 23.5 
 

The standing waves appear in the line in short – circuit and 
open – circuit modes. Such waves do not transfer the energy from 
the generator to the load. The direct wave appears only in the 
matched mode (backward wave is absent). It means that the RMS 
values of the voltage and the current are the same along the line, if 
the lossless line is considered. 
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In the matched mode the voltage is equal to the voltage of 
the generator at any distance from the end of line. Since, the input 
voltage is (for l=ξ ): 

====β+β= 222221 sincos VZIZIlZIjlVV loadww  

),sin(cos2 ljlV β+β  
then we obtain 

.sincos 2
22

211 VllVVV =β+β==  
In unmatched mode the mixed waves are set in the line (the 

direct and the backward waves exist in the line simultaneously). 
However, the amplitude of the backward wave will be less than 
the amplitude of the direct wave. It is explained by the fact that 
some part of the energy is consumed in the load.  

The difference between the maximum and minimum values 
of the voltage will be greater, if the difference between the values 

loadZ  and wZ  will be greater as well. To describe the mixed 
wave mode the traveling – wave ratio is used: 

).(              

  ),(      ,
max

min

wload
w

load
tr

wload
load

w
trtr

ZZ
Z

Z
C

ZZ
Z
Z

C
V
V

C

<=

>==
 

 
Practical training and modeling 

 
1. Draw the scheme of the lossless homogeneous long line 

with the parameters according to the respective variant (Table 
23.1). The number of links it is necessary to assume 16. 

2. Calculate the length l of the real line, corresponding the 
equivalent artifical line. Calculate the frequency f, for which one 
length λ  of the wave is lay in the line. 

3. Calculate the wave impedance wZ , the phase constant 
β , which characterizes the change of phase of oscillations along 
the line: 
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.2      ,
0

0
λ
π

=β=
C
L

Z w  

Table 23.1 
N  

variant 
0L ,  
Hμ  

0C ,  
pF 

Voltage of the 
generator V, 

 V 
1 200 1000 100 
2 175 1250 100 
3 150 1500 120 
4 125 1800 120 
5 100 2000 120 
6 200 1500 75 
7 175 1500 75 
8 150 1750 90 
9 125 2000 90 
10 100 1500 80 
11 150 1250 100 
12 200 1000 120 
 

4. Construct the graphs of the distribution of the RMS 
values of the voltage and the current along the line: 

• short – circuit mode 

ξ
λ
π

=ξ
λ
π

=ξ
2cos        ,2sin)(     22 IIZIV w , 

• open – circuit mode 

ξ
λ
π

=ξ
λ
π

=ξ
2sin         ,2cos)(      2

2
wZ

V
IVV , 

• matched mode 

wZ
V

IVV 2
2 )(        ,)(      =ξ=ξ , 

• unmatched mode 

,2sin2cos 222
2 ξ

λ
π

+ξ
λ
π

= nVV  
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.2sin2cos 2222 ξ
λ
π

+ξ
λ
π

= n
Z
VI

w
    

load

w
R
Z

n =  

for cases wload ZR = , wload ZR 5,0= . 
5. Construct the graphs of the distribution of the 

instantaneous values of the voltage and the current along the line: 
 

• short – circuit mode 
),90sin(sin),( 2
o+ωβξ=ξ tVtv m  

,sincos),( 2 t
Z

V
ti

w

m ωβξ=ξ  

• open – circuit mode 
,sincos),( 2 tVtv m ωβξ=ξ  

).90sin(sin),( 2 o+ωβξ=ξ t
Z

V
ti

w

m  

The values of ξ  and t are chosen from the ranges: 
TTt ..01.0,0:             ..20,0: ⋅=λ=ξ  

6. Calculate the traveling – wave ratio for the given values 
of the load loadR . 

7. Carry out modeling the long line and determine the 
reading of the voltmeters in various points of the line (Fig. 23.6) 
for the modes according to p.4. 

The results must be written in the table 23.2. 
8. Construct the graphs of distribution of the values of the 

voltage using the results of modeling for the modes according to 
p.4. Compare the results of modeling and calculation. 

9. Calculate the traveling – wave ratios for the given values 
of the load loadR  using the results of modeling. 
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Table 23.2 

λ
ξ

 
Short – 
circuit 
mode 

Open – 
circuit 
mode 

Mode 

w

load

Z
Z
=

=
   

 

Mode 

w

load

Z
Z

5,0 =
=

Mode  

w

load

Z
Z

5,0=
=

 

1/16      
2/16      
4/16      
6/16      
8/16      

10/16      
12/16      
14/16      
16/16      

 

 
 

Fig. 23.6 
 

Review questions 
 

1. In which cases is the transmission line of the energy 
considered as the electric circuit with the distributed parameters? 
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2. How can you calculate the value of frequency f, for 
which the artifical line is equivalent to the real long line of the 
length equaled λ ? 

3. Write down the equation to determine the voltage and the 
current in any point of the lossless line in the short – circuit and 
the open – circuit modes. 

4. Write down the equation to determine the voltage and the 
current in any point of the lossless line in the matched and the 
unmatched modes. 

5. Draw the curves of distribution of the RMS values of the 
voltage and the current in the short – circuit and the open – circuit 
modes. 

6. Draw the curves of distribution of the RMS values of the 
voltage and the current in the unmatched mode. 

7. How can you calculate the traveling – wave ratio? 
8. What conditions are to produce the standing wave? 
9. Draw the graphs of the distribution of the instantaneous 

values of the voltage and the current along the line in short – 
circuit and open – circuit modes. 

 
24. INPUT CHARACTERISTICS AND TRANSFORMING 

PROPERTIES OF THE ELECTRIC CIRCUITS WITH 
DISTRIBUTED PARAMETERS 

   
The input impedance of the lossless long line may be 

calculated as the ratio of the RMS complex input voltage to the 
RMS complex input current: 

.
cossin

sincos
)(

2
2

22

1

1

lIl
Z
V

j

lZIjlV
I
V

lZ

w

w
in

β+β

β+β
==  

Assuming that 
2

2
I
V

Z load = , we may write the general 

expression: 
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[ ]
.

tg
tg

1tgcos

tgcos
)(

2

2

1

1

wload

wload
w

w

load

wload
in ZlZj

ljZZ
Z

l
Z

Z
jlI

ljZZlI
I
V

lZ
+β

β+
=

⎥
⎦

⎤
⎢
⎣

⎡
+ββ

β+β
==

 
In the short – circuit mode ( 0=loadZ ) we have: 

,tg      ,tg)( lZxjxljZlZ win scin scwin sc β==β=  
It means that, the input impedance of the short – circuited 

line has inductive character, if its length is less than a quarter of 

wavelength ⎥⎦
⎤

⎢⎣
⎡ λ
<

4
l . If the length is 

4
λ

=l , then the short – 

circuited line has infinite input impedance (if the line has losses, 
then the input impedance has confined great value). The 
properties of the short – circuited line of a quarter of wavelength 
and the properties of the parallel oscillation circuit are the same. 

It is evident that the short – circuited line has capacitive 
character, if its length is greater than a quarter of wavelength and 
is less than a half of λ , Fig. 24.1. 

 

0

λ
2
1

λ
4
1

in scZ

λ
4
3

λ

Fig. 24.1 
In the open – circuit mode ( ∞=loadZ ) we have: 
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.ctg
tg

tg

tg1
lim)( ljZ

lj
Z

Z
Z

ljZ

l
Z
Z

jZ
ZlZ w

w

load

w
load

load

w
load

w
Zin oc

load
β−=

β
=

⎥
⎦

⎤
⎢
⎣

⎡
+β

⎥
⎦

⎤
⎢
⎣

⎡
β+

=
∞→

 
The dependency between the input impedance and the 

length of the line in the open – circuit mode is shown in Fig. 24.2. 
 

in oc

0
λ

2
1

λ
4
1

Z

λ
4
3

λ

Fig. 24.2 
 

Thus, if we change the length of the section of the lossless 
line, then we may imitate the inductive and the capacitive 
impedances of any value. As a rule this property is used at high 
frequency in the different devices. 

In the matched mode ( wload ZZ = ) we have: 
.inwin ZZZ ==  

It means, that the input impedance has active character and 
equals the wave impedance for any its length. 

Let’s consider the section of the lossless line of length 
4
λ

 

with the wave impedance, which is loaded on the resistor 
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loadload RZ = , Fig. 24.3, a. Let’s calculate the input impedance 
of the quarter – wave section of the line. Since 

∞=
π

=
λ

λ
π

=β
2

tg
4

2tgtg l , then we obtain: 

.

tg
tg

tg
tg

tg
tg

4

2

load

w

load
w

w
load

w
wload

wload
win R

Z

R
lj

Z
lj

Z
lj

R
lj

Z
ZljR

ljZR
ZZ =

⎥
⎦

⎤
⎢
⎣

⎡
+

β
β

⎥
⎦

⎤
⎢
⎣

⎡
+

β
β

=
+β
β+

=⎟
⎠
⎞

⎜
⎝
⎛ λ

 
Thus, the input impedance of the quarter – wave line is 

inversely proportional to the load resistance loadR . This property 
is used to match the line with the load or match the lines with 
different wave impedances. 

4
λ

а b

loadR

in  tΖ

wΖ
inΖ

wΖ wtΖ loadR

4
λ

Fig. 24.3 
 

Such quarter – wave section is called the quarter – wave 
transformer, because it transforms the wave impedance to the load 
impedance. 

In general, the wave impedance of the transformer wtZ  is 
calculated in that way to obtain the input impedance equaled wZ . 
In this case the backward waves and the energy losses are absent 
in the line with the wave impedance wZ . So we may write: 
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,
2

w
load

wt
in t Z

R
Z

Z ==  

wherefrom it follows: 

loadwwt RZZ = . 
The direct and the backward waves are present in the line 

with the impedance wtZ , but the length of this line is sufficiently 
small, therefore the losses of energy are relatively small. 

For example, let’s assume that the wave impedance of the 
line equals 100=wZ  Ω  and the load resistance is equal to 

400=loadR  Ω . To obtain the matched mode in the line 
connected to the load it is necessary to connect the quarter – wave 
transformer, Fig. 24.3, b. In this case its wave impedance must be 
equaled to: 

loadwwt RZZ = = 200400100 =⋅  Ω . 
The input impedance of such transformer equals: 

100
4

2
==⎟

⎠
⎞

⎜
⎝
⎛ λ

load

wt
in t R

Z
Z  Ω  

and , therefore, the backward waves and energy losses will be 
absent in the line. 

The choice of the needed value wtZ  may be carried out by 
means of change of the distance between the line wires, Fig. 24.4. 

For example, the increment of distance between the wires 
gives the decrement of the linear capacitance 0C . In this case the 
wave impedance of the transformer wtZ  increases.  
 

Practical training and modeling 
 

1. Carry out modeling the homogeneous lossless long 
line with the parameters according to the variant (Table 
24.1). The number of links it is necessary to assume 16. 
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4
λ

4
λ

<

wtΖ
wΖ

in  tZ =
wΖ

wΖ

wΖ wtΖ

in  tZ = wΖ

Rload Rload

Rload > wΖRload

Fig. 24.4 
 

2. Construct the graphs of dependencies of the input 
impedance from the length of the line for the short – circuit and 
the open – circuit modes, using MathCAD software. 

3. Construct the graphs of dependencies of the input 
impedance from the length of the line for the short – circuit and 
the open – circuit modes, using the results of modeling (Fig. 
24.5). 

The initial length of the line λ=l  (see the section 23) may 
be changed by decrease of the frequency of the generator (see Fig. 
23.2). Write down the results of modeling into the Table 24.1. 

Table 24.1 

λ
l

 
Short – circuit 

mode 
Open – circuit 

mode 
inZ  

V I  V I  S – c 
mode 

O – c 
mode 

1/16       
2/16       

. 

. 

. 

      

16/16       
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Fig. 24.5 
 

4. Calculate the frequency f, for which the length of the line 

equals 
4
λ

. Calculate the input impedance of the quarter – wave 

transformer for the given values loadR  according to the 
expression: 

.
2

load

wt
in t R

Z
Z =  

Construct the dependency of the input impedance of the 
quarter – wave transformer from the load resistance loadR . Write 
down the results of calculation and modeling into the Table 24.2. 

Compare the results of calculation and modeling. 
5. For resistance of the load 400=loadR Ω  calculate the 

wave impedance wtZ  of the quarter – wave transformer to 
provide the matched mode of the line and the load. Carry out the 
modeling the long line with the quarter – wave transformer.  
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Calculate the input impedance of the line and input 
impedance of the quarter – wave transformer connected to the 
load resistance 400=loadR Ω , using the results of 
measurement. 

 
Review questions 

 
1. How can you calculate the input impedance of the quarter 

– wave transformer connected to the load resistance 
400=loadR Ω ? 

2. What formulas do you use to calculate the input 
impedance of the lossless line in the short – circuit and the open – 
circuit modes for various values of its length? 

3. How can you match two lossless lines with the different 
wave impedances? 

4. How can you calculate the quarter – wave transformer, if 
the wave impedance of the line equals 200=wZ  Ω  and the 
load resistance is equal to 500=loadR Ω ? 

5. Calculate the input impedance of the lossless line inZ  
for the given parameters: l = 100 m, 500=wZ  Ω , 60=λ  m, 

380=loadR Ω . 
6. Calculate the input impedance of the short – circuited 

lossless line, if l = 100 m, 500=wZ  Ω , 60=λ  m. 
7. Calculate the least frequency f in the short – circuited 

lossless line of the length l = 30 m, for which the line is 
equivalent to the parallel resonance circuit tuned on the resonant 
frequency. 
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25. MATRIX – TOPOLOGICAL METHODS OF MODELING 
ELECTRIC CIRCUITS 

 
We have considered above the traditional form of construct 

of the system of equations, describing the electric circuit. Next we 
will consider the matrix – topological method to analyze and 
model the electric circuits. It is necessary to note that construction 
of the equations in the first case is carried out more simple way. 
However, a positive property of the matrix – topological direction 
in the electric circuit analysis and modeling is the application of 
the basic formulas of the loop current and the node potential 
methods for machine designing of the electric and electronic 
schemes by means of the PC. It is provided by a high order of the 
respective procedure. 

It is necessary to note also, that forming of equations by the 
node potential method in this case is the most economical to 
minimize the computing time. The node equations are 
characterized by the properties, which guarantee a steady solution 
on each step of discretization to provide the given precision of the 
calculation on the long intervals of time. It is important when the 
transient processes are modeled. Besides, the node potential 
method is universal one and allows to analyze the electric circuits 
with nonmutual nonlinear and multipole elements. This method 
also provides a high rate of convergence of widely used methods 
of the numerical solution of the algebraic and the differential 
equations. 

The concept of a graph in the matrix – topological theory 
of the electric circuits is the basic concept. In this case a graph is 
the aggregate of nodes and branches, which connect these nodes. 
This theory is based on the use of the topological concepts, 
namely: a tree, a branch of connection, a main loop, a main 
section and the topological matrixes, connected with these 
concepts. 

To describe the topology of the electric circuits each bipolar 
element is replaced by the segment of the line, called a branch of 
the graph. Each branch has the direction, which coincides with the 
respective direction of the current, flowing through this element. 

For example, the graph of the  circuit, shown in Fig. 25.1, a 
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is shown in Fig. 25.1, b. The graph has four nodes and six 
branches. 

The subgraph, containing all nodes and branches connecting 
these nodes, is called a tree of the graph, if it does not form the 
closed loops. It is evident, that the graph has n – 1 branches, if the 
scheme has n nodes. The branches of the graph, including in the 
tree, are called the ribs. Other branches of the graph not 
containing in the tree are called the chords or the main branches 
(branches of connection). Several trees may represent single 
graph. 

R1 R2

E1

R3

R4

R5 R6

E2 1 2

3

4

65
1

2

3

a b

Fig. 25.1 
 

Let’s consider the tree of the graph, shown in Fig. 25.1, b 
by solid lines. A main section of the graph is the section, which 
passes through only one rib (it is always possible, because the ribs 
of the tree does not form the loops) and some aggregate of chords 
of the graph. Thus, the main section corresponds only one rib of 
the graph. The direction of the main section coincides with the 
direction of the respective rib of the tree. The number of main 
sections is equal to the number of ribs of the tree (n – 1). The 
main sections are shown in Fig. 25.1, b by arches. 

A main loop of the graph is the closed loop containing only 
one chord. The main loops are shown in Fig. 25.1, b by the closed 
lines. 
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The topological structure of the graph may be completely 
described by means of the clique – incidence matrix A, the main 
section matrix S and the main loop matrix K.  

The clique – incidence matrix (node matrix) A has n – 1 
rows and m columns, where (n – 1) is the number of ungrounded 
nodes), m is the number of branches of the graph. The number of 
the row corresponds the number of the node and the number of 
the column corresponds the number of the branch. Matrix 
elements are: 

 

 node. th       toincident  not    isgraph      theofbranch    th   if   0,
it,      todirected  is   and 

node th      toincident    isgraph     theofbranch    th    if  1, 
it,   from    directed  is   and 

node th      toincident    isgraph     theofbranch    th    if    ,1

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−−

−−−

−−

=

³ j

³ j

³  j

aij

 
For example, the graph, shown in Fig. 25.1, b (the node 4 is 

grounded) may be represented by the matrix A in the form of: 
 

 1 2 3 4 5 6 
1 1− 0 1−  0 1− 0 
2 1− 1− 0 1 0 0 
3 0 1 1 0 0 1−

 
The matrix A may be written for all nodes. In this case such 

matrix is called the indefinite one. The sum of elements of any 
column of such matrix is equal to zero. This matrix is used to 
analyse electronic circuits. 

One – to – one correspondence between the branches and 
the main sections is given by the main section matrix S, in which 
the number of the row corresponds the number of the section and 
the number of the column corresponds the number of the branch. 
Matrix elements are: 
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 branch. th      includenot      doesbranch    th       if    0,
opposite,   are    directions      

    their andbranch     th      includes section    th     if  1, 
coinside,   directions      

   their andbranch    th      includessection    th    if     ,1

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−−

−−−

−−

=

j i

j i

j  i

sij  

For example, the graph, shown in Fig. 25.1, b (the node 4 is 
grounded) may be represented by the matrix S in the form of: 

 
 1 2 3 4 5 6 

1 1− 0 1 0 1 0 
2 1− 1− 0 1 0 0 
3 0 1− 1−  0 0 1 

 
One – to – one correspondence between the branches and 

the main loops is given by the main loop matrix K, in which the 
number of the row corresponds the number of the loop and the 
number of the column corresponds the number of the branch. The 
number of the main loops equals the number of the chords 
(branches of connection). The main loops are the independent 
loops. Matrix elements are: 

 

 

   branch.  th    gh          throu passnot       does   loop th     if   0,
 opposite,    are     directions      

       theirandbranch      th           throughpasses   loop th     if  1, 
coincide,     directions      

    theirand branch      th    gh           throu passes   loop th     if    ,1

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−−

−−−

−−

=

j  i

j  i

j  i

kij  

For example, the graph, shown in Fig. 25.1, b may be 
represented by the matrix K in the form of: 

 
 

 1 2 3 4 5 6 
1 1 0 0 1 1 0 
2 0 1 0 1 0 1 
3 0 0 1 0 1− 1 
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Each row of the matrix S shows on the aggregate of 

branches, which are intersected by the given main section. If we 
multiply the elements of this row by the respective elements of 
the matrix of the branch currents and add their products, then we 
obtain the algebraic sum of the currents in the branches of the 
respective main section, equaled zero according to KCL. Thus, we 
may write the generalized Kirchhoff’s current law: 

,0=bIS  

where bI – the vector of the currents in the branches of the 
electric circuit. This expression is called also the first topological 
equation of the graph. Indeed, as for the graph, shown in Fig. 
25.1, b we have: 
 

I1− I3+ I5+

_I1 I2− I4+

I2− I3− I6+

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

=
0

0

0

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1−

1−

0

0

1−

1−

1

0

1−

0

1

0

1

0

0

0

0

1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

*

I1

I2

I3

I4

I5

I6

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

=

 
 

If we multiply some row of the transposed matrix tS  by the 

vector V
r

, containing the independent node voltages, then we 
obtain the algebraic sum of the node voltages, which is equal to 
the voltage of the given branch: 

VSV tb = . 
For example, for the graph, shown in Fig. 25.1, b we have: 
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V1

V2

V3

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

=

V1− V2−

V2− V3−

V1 V3−

V2

V1

V3

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

=

Vb1

Vb2

Vb3

Vb4

Vb5

Vb6

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

1−

0

1

0

1

0

1−

1−

0

1

0

0

0

1−

1−

0

0

1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

*

 
 
Each row of the matrix K shows on the aggregate of the 

branches, containing the respective loop. If we multiply the 
elements of the row by the respective elements of the vector of the 
branch voltages bV

r
, then we obtain the algebraic sum of the 

voltages in the loop, which is equal to zero according to the KVL: 
.0=bVK

r
 

This expression is called also the second topological 
equation of the graph. Indeed, as for the graph, shown in Fig. 
25.1, b we have: 

 
 

V1 V4+ V5+

V2 V4+ V6+

V3 V5− V6+

⎛⎜
⎜
⎜
⎝

⎞⎟
⎟
⎟
⎠

=
0

0

0

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

0

0

0

1

0

0

0

1

1

1

0

1

0

1−

0

1

1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

*

V1

V2

V3

V4

V5

V6

⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

=

 
 
It is evident, that the current flows through the chord, 

belonging to only one loop. That’s why the currents in the main 
branches are equal to the respective loop currents and we may 
write the following expression: 
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bkt IIK
rr

= , 

where kI
r

 is the vector of the loop currents. For example, for the 
graph, shown in Fig. 25.1, b we have: 
 
 

I11

I22

I33

⎛⎜
⎜
⎜
⎜⎝

⎞⎟
⎟
⎟
⎟⎠

= =*

1

0

0

1

1

0

0

1

0

1

0

1

0

0

1

0

1−

1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

I11

I22

I33

I11 I22+

I11 I33−

I22 I33+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

I1

I2

I3

I4

I5

I6

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 
Let’s consider the generalized branch of the electric circuit, 

Fig. 25.2. 

Eb

Jb

RbIb

Ub  
Fig. 25.2 

 
According to the generalized Ohm’s law we may write: 

)()(1
bbbbb

b
bb EVGEV

R
JI +=+=+  

or 
)( bbbbb JIREV +=+ . 

This expression corresponds to the general case, when any 
branch contains the passive two – terminal network with the ideal 
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voltage source of the electromotive force bE  (this EMF is 
connected in series with the branch) and the ideal current source 

bJ  (this source is connected in parallel to the branch). In specific 
cases the branches may contain only passive or active two – 
terminal networks. It is evident, that the considered above 
expressions are satisfied for each branch. Then the matrix form of 
the equations has the form: 

( ),bbbbb JIREV
rrrr

+=+  
or 

( ),bbbbb EVGJI
rrrr

+=+  
where bR  and bG  are the diagonal matrixes of the resistances 

and conductances of the branches respectively, 
bi

bi R
G 1

= . 

For the reversible electric circuits the matrixes bR  and bG  
are always diagonal matrixes with the elements biR  and biG . 

Let’s consider the matrix equation of the branches in the 
form: 

( )bbbbb JIREV
rrrr

+=+ . 
If we multiply on the left both parts of the equation by the 

matrix K, then we have: 
( )bbbbb JIKREKVK

rrrr
+=+ . 

Since 
,0=bVK

r
   bkt IIK

rr
= , 

then 

bbktbb JKRIKKREK
rrr

+= , 
wherefrom it follows: 

[ ] [ ].1
bbbtbk JREKKKRI
rrr

−= − . 
The obtained expression is the solution of the equations by 

the loop current method in the generalized matrix – 
topological form. 

Since 
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bkt IIK
rr

= , 
then the currents in the branches of the electric circuit are found 
from the expression: 

tb KI =
r

[ ] [ ].1
bbbtb JREKKKR
rr

−− . 
If the current sources are absent (for example, the current 

sources may be transformed into the voltage sources), then the 
obtained expressions are simplified: 

[ ] btbk EKKKRI
rr 1−= , 

tb KI =
r

[ ] btb EKKKR
r1− . 

As an example let’s calculate the currents flowing in the 
branches of the electric circuit (Fig. 25.1, a), the graph of which is 
shown in Fig. 25.1, b. 

 
ORIGIN 1:= R1 15:= R2 30:= R3 30:=

R4 10:= R5 10:= R6 10:=

K

1

0

0

0

1

0

0

0

1

1

1

0
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0

1−

0

1

1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= diag R( )
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0

10

0

0

0

0

0

0
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0

0

0

0

0

0
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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= RB diag R( ):=

EB

180

120

0

0

0

0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:= KT

1

0

0

1

1

0

0

1

0

1

0

1

0

0

1

0

1−

1

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:= IB KT K RB⋅ KT⋅( ) 1−⋅ K⋅ EB⋅:= IB

5

1.25

0.75

6.25

4.25

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

 
 

Let’s consider the matrix equation of the branches in the 
form: 

( )bbbbb EVGJI
rrrr

+=+ . 
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If we multiply on the left both parts of the equation by the 
matrix S, then we have: 

( )bbbbb EVSGJSIS
rrrr

+=+ . 
Since 

,0=bIS
r

   bt VVS
rr

= , 
then 

bbtbb ESGVSSGIS
rrr

+= , 
wherefrom it follows: 

[ ] [ ]bbbtb EGJSSSGV
rrr

−= −1 . 
The obtained expression is the solution of the equations by 

the node voltage (potential) method in the generalized matrix 
– topological form. 

Since 

bt VVS
rr

= , 
then the voltages across the branches of the electric circuit are 
found from the expression: 

tb SV =
r

[ ] [ ]bbbtb EGJSSSG
rr

−−1 . 
The branch currents may be calculated from the branch 

equation: 
( ) bbbbb JEVGI

rrrr
−+= . 

As an example let’s calculate the currents flowing in the 
branches of the electric circuit (Fig. 25.1, a), the graph of which is 
shown in Fig. 25.1, b. 
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ORIGIN 1:= G1
1

15
:= G2

1

30
:= G3

1

30
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G5
1

10
:= G6

1
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:= G4

1
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S
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Ib Gb Ub Eb+( )⋅:= Ib

5

1.25

0.75

6.25

4.25

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

 
The considered above methods may be applied to calculate 

the AC electric circuits. In this case the vectors of the complex 
numbers represent the respective currents and voltages, namely: 

,bI
r

 ,kI
r

 ,bV
r

 ,V
r

 ,bE
r

 and bJ
r

. By analogy the matrixes of the 
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real numbers bR  and bG  are replaced by the matrixes of the 
complex numbers bZ  and bY . 

As an example let’s calculate the currents flowing in the 
branches of the electric circuit (Fig. 25.3, a), the graph of which is 
shown in Fig. 25.3, b. 

Z1 Z2

E1 E2
1 2
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4
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Fig. 25.3 
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Ub ST S Yb⋅ ST⋅( ) 1− S⋅ Yb− Eb⋅( )⋅⎡⎣ ⎤⎦⋅:= Ub
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Ub5 51.7= Ub6 74.152=

Ib Yb Ub Eb+( )⋅:= Ib

0.961− 0.244i−

6.84 3.272i+

3.38− 0.667i+

5.879 3.028i+

2.419 0.912i−

3.46 3.94i+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

Ib1 0.991= Ib2 7.582= Ib3 3.445= Ib4 6.613=

Ib5 2.585= Ib6 5.243=  
 

Next we will consider the individual case, when the electric 
circuit contains the coils with the inductive coupling (let’s assume 
that the current sources are absent). Then the matrix equation 
written by means of the loop current method is: 

[ ] btbMtb EKZKKI
rr 1−= , 

where the matrix bMZ is written in the form: 
 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

bnMnMnMn

nMMbM

nMMMb

bM

ZZZZ

ZZZZ
ZZZZ

Z

.............            

.........................................................
  ..............            

  ..............            

321

223221

113121

 

 
It is evident, that the matrix bMZ  is not diagonal one and 

the electric circuit is considered as irreversible one. The matrix 
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elements are the complex impedances of the branches and the 
complex impedances of the mutual inductance MjZ M ω= . 
Since jiMijM ZZ = , then the matrix is symmetrical with respect 

to the main diagonal. 
As an example let’s consider the electric circuit with the 

three coils having inductive coupling (Fig. 25.4, a). The graph of 
this scheme is shown in Fig. 25.4, b. 

1 2

6

3

45

2

1

ba

E1

Z6

Z3

Z5 Z4

Z1 Z2

. ..

 
Fig. 25.4 

 
Z1 5 10i+:= Z2 5 10i+:= Z3 5 10i+:=

Z4 5:= Z5 20i−:= Z6 5 10i+:=

ZM12 5i:= ZM13 5i:= ZM23 5i:=

EB

100

0

0

0

0

0

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:=ZB

Z1

ZM12−

ZM13

0

0

0

ZM12−

Z2

ZM23−

0

0

0

ZM13

ZM23−

Z3

0

0

0

0

0

0

Z4

0

0

0

0

0

0

Z5

0

0

0

0

0

0

Z6

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:=
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Q 207.36=Q Q1 Q2+ Q3+:=

Q3 2 3.59⋅ 2.519⋅ 5⋅ cos 1.004 deg⋅( )⋅( )−:=

Q2 2 3.59⋅ 1.072⋅ 5⋅ cos 2.358− deg⋅( )⋅ 2 2.519⋅ 1.072⋅ 5⋅ cos 3.362− de⋅(⋅−:=

Q1 3.592 10⋅ 2.5192 10⋅+ 1.0722 10⋅+ 3.042 20⋅− 5.172 10⋅+:=

                Reactive power of the load
Q = Q1 + Q2 + Q3

3.592 5⋅ 2.5192 5⋅+ 1.0722 5⋅+ 3.3912 5⋅+ 5.172 5⋅+ 293.052=

True power of the voltage source

S 293 207.4i+:=

Complex power of the voltage source

arg 0.9 0.583i−( ) 57.3⋅ 32.937−=

arg 2.03 1.491i−( ) 57.3⋅ 36.299−=

arg 2.93 2.074i−( ) 57.3⋅ 35.295−=

IB6 5.17=IB5 3.04=IB4 3.391=

IB3 1.072=IB2 2.519=IB1 3.59=

IB

2.93 2.074i−

2.03 1.491i−

0.9 0.583i−

0.293− 3.378i−

1.193 2.795i+

1.737 4.869i−

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=IB KT K ZB⋅ KT⋅( ) 1−⋅ K⋅ EB⋅:=
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Practical training and modeling 
 

1. Draw the scheme of modeling of the DC electric circuit, 
the scheme of which is shown in Fig. 25.5, a. The table 25.1 gives 
the circuit parameters. 

b

R3 R4

R2

R1

R5 R6

E2

E1

E1

Z6

Z3

Z5 Z4

Z1 Z2

. .

а  
Fig. 25.5 

Таблиця 25.1 
 

N 
variant 

1R , 
Ω  

2R , 
Ω  

3R ,  
Ω

4R , 
Ω  

5R ,
Ω

6R ,
Ω

1E  
V 

2E  
V 

1 10 10 10 5 10 20 50 50 
2 20 10 20 10 20 40 40 50 
3 12 8 9 12 10 15 60 60 
4 6 9 15 9 12 6 75 60 
5 50 10 16 8 10 30 80 80 
6 5 5 10 10 5 15 50 50 
7 10 10 10 10 10 10 90 80 
8 30 30 30 15 20 45 75 50 
9 20 10 10 20 12 18 80 60 

10 15 15 15 15 10 30 90 75 
11 30 30 30 15 15 15 90 90 
12 15 15 15 30 30 30 90 60 
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2. Draw the graph of the given electric circuit and make up 
the topological matrixes KA, , S  and the diagonal matrixes bR  
and bG . 

3. Make up the vectors bE
r

 and bJ
r

. 
4. Carry out the calculation of the electric circuit by the 

loop current method in the generalized matrix – topological form, 
using the software MathCAD. Check the results of calculation by 
the software Workbench and the power balance equation. 

5. Carry out the calculation of the electric circuit by the 
node potential method in the generalized matrix – topological 
form, using the software MathCAD. Check the results of 
calculation by the software Workbench and the power balance 
equation. 

6. Draw the scheme of modeling of the AC electric circuit, 
the scheme of which is shown in Fig. 25.5, b. The table 25.2 gives 
the circuit parameters. 

Таблиця 25.2 
 

N 
 

1Z , 
Ω  

2Z , 
Ω  

3Z , 

Ω  
4Z , 
Ω  

5Z , 

Ω  
6Z , 

Ω  
MZ , 
Ω  

E, 
V  

1 5 – j6 4 + j3 5 + j5 10 2 – j4 5 – j5 j3 200 
2 8 – j6 4 + j3 4 + j2 2 + j2 2 + j4 5 + j5 j2 100 
3 5 – j2 4 + j2 4 + j3 2 – j2 2 + j2 2 + j6 j1 150 
4 6 – j5 5 + j3 5 + j5 20 2 – j2 5 j2 120 
5 6 – j8 4 + j6 4 + j3 15 2 – j3 6 + j2 j4 180 
6 3 – j4 3 + j5 5 + j5 10 2 + j3 6 – j2 j4 200 
7 4 – j3 5 + j5 4 + j6 3 + j3 8 2 – j6 j4 90 
8   5+ j6 4 + j4 4 + j4 3 – j3 2 – j1 8 j3 120 
9 6 + j5 8 + j6 4 + j3 4 – j2 10 4 + j4 j4 100 

10 3 + j4 6 + j8 4 + j6 2 + j3 5 8 j5 60 
11 6 – j8 4 +j8 4 + j8 4 + j3 6 10 j6 180 
12 2 – j5 6 + j6 4 + j4 3 + j2 2 – j4 4 j3 120 

 
7. Carry out the calculation of the electric circuit by the 

loop current method in the generalized matrix – topological form, 
using the software MathCAD. Check the results of calculation by 
the software Workbench and the power balance equation. 
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Review questions 
 

1. Give the definitions of the following concepts: the graph 
of the electric circuit, the tree, the chord and the rib. 

2. What is the clique – incidence matrix? Give an example. 
3. What is the main section matrix? Give an example. 
4. What is the main loop matrix? Give an example. 
5. Give the definition of the first topological equation. Give 

an example of its application. 
6. Give the definition of the second topological equation. 

Give an example of its application. 
7. Verify the formula of the definition of the loop currents 

in the generalized matrix – topological form. 
8. Verify the formula of the definition of the node voltages  

in the generalized matrix – topological form. 
9. What are the peculiar properties of the application of the 

matrix – topological methods in calculations of the electric 
circuits with coils, having inductive coupling. 
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