PRINCIPLES FOR CONVENTIONAL CONTRIBUTIONS TO MODELED STATION DISPLACEMENTS

•Guiding principles for IERS Conventions models

- Selection criteria for displacement contributions
- Recommended revisions for Conventions Chapter 4 (ITRF)
- Handling of non-tidal displacements

- IERS model for station positions
 - instantaneous positions differ from regularized positions by:

 $\mathbf{X}(\mathbf{t}) = \mathbf{X}\mathbf{R}(\mathbf{t}) + \sum \Delta \mathbf{X}\mathbf{i}(\mathbf{t})$

- where $\Delta Xi(t)$ are "regularization corrections" to remove mostly high-frequency (geophysical) variations
- idea is to simplify time evolution of XR(t) by removing known effects
- Question: which effects to include as corrections $\Delta Xi(t)$?
 - current IERS Conventions not complete or fully self-consistent
- Objective: provide set of "principles" for selection process
 - aim for rational set of guidelines
 - but must also consider historical context

Proposed Classification of IERS Models

- Class 1 "reduction"
 - used *a priori* in data reductions to derive geodetic estimates
 - ideally, models not adjusted in reductions
 - must be highly accurate, errors < ~1 mm
 - geophysically based & as independent of space geodesy as possible
 - inter-solution consistency important for combinations
 - e.g., solid Earth tide model
- Class 2 "conventional"
 - to remove an observational singularity or is purely conventional
 - choice is effectively arbitrary
 - e.g., ITRF rotational datum (NNR w.r.t. crust)
- · Class 3 "useful"
 - helpful to interpret data, but not required as Class 1 or 2
 - should *not* be embedded in exchanged results
 - e.g., zonal UT1/LOD models

Proposed Scope of IERS Conventions

- Class 1 "reduction"
 - provide complete & consistent set of highly accurate models
 - provide implementing software & test data sets
- Class 2 "conventional"
 - provide unique set without ambiguities
 - but only where necessary
 - choices guided by Union resolutions & historic practice
- · Class 3 "useful"
 - include those whose use is likely to be sufficiently common
 - or to minimize user confusion

• Chapter 4, eqn 11

 general model to relate instantaneous *a priori* position, X(t), on Earth's surface at epoch t to regularized position XR(t) is:

 $\mathbf{X}(\mathbf{t}) = \mathbf{X}\mathbf{R}(\mathbf{t}) + \sum \Delta \mathbf{X}\mathbf{i}(\mathbf{t})$

where $\Delta Xi(t)$ are "regularization corrections" to remove mostly high-frequency (geophysical) variations

- idea is to simplify time evolution of XR(t)
- Current model for XR(t) is linear

XR(t) = X0 + V * (t - t0)

- set of values {X0, V} for global set of stations constitutes a specific TRF realization, at reference epoch t0
- Which "regularization corrections" to include in $\Delta Xi(t)$?

Guiding principles

•

•

- include only Class 1 ("reduction") models, plus any techniquespecific effects
- selection of regularization corrections should be rational process
- included effects should not be chosen randomly or haphazardly
- but consistency with historic practice often wise to avoid confusion

Specific criteria

- include complete daily & sub-daily tidal variations
- model corrections must be accurate, errors < obs errors
- models must be as independent of geodetic data as possible
- prefer models in closed-form expressions for ease of use
- try to maintain flexibility to evaluate different models easily a posteriori when accuracy is questionable

Recommendations for Revised Chapter 4

- Keep current eqn 11 & linear model for XR(t)
- Retain 2003 models for ∆Xi(t) corrections, including periods > daily for consistency with past:
 - solid Earth (body) tide (no change)
 - ocean tidal loading (text clarified)
 - solid Earth pole tide (no change)

• Add new models:

- ocean pole tide loading (recent update), including long periods
- S1/S2 atmospheric pressure tidal loading (under evaluation)

• Geocenter motions

 compensating motions of solid Earth due to tidal variations of fluid loads *should be included* in site displacements (explicit clarification) Recommendations for Chapter 4 (cont'd)

- Technique-dependent corrections
 - may be included by Technique Services
 - can cause position-like displacements
 - but models need not be given explicitly in IERS
 Conventions
 - care must be taken for effects on local ties, for instance
- Non-tidal displacements should not be included
 - do not satisfy selection criteria
 - therefore, should be excluded from operational reductions
 - but research tests are encouraged
 - some specific objections & issues follow next . . .

Non-Tidal Displacements Fail Criteria

• Reliability not adequate in sub-daily band

- need fully self-consistent treatment of "dynamic barometer"
- IB & non-IB approximations not adequate for <fortnightly periods
- Accuracy of fluid models not well demonstrated
 - studies of accuracy & comparisons lacking
 - combined product series should be investigated for improved accuracy & ease of use
- Tidal effects must be cleanly removed
 - tides treated separately
 - all treatments must be self-consistent
- Long-term biases in ITRF must be avoided
 - mass conservation often not enforced in fluid models
 - could lead to secular drifts in ITRF

Non-Tidal Displacements Failures (cont'd)

- Would force new ITRF datum requirements
 - reference positions would depend on reference pressure field
 - might require average long-term pressure for every point
- Not easy to test alternative models
 - better to test non-tidal loadings *a posteriori*
 - assumes net non-tidal loads not significant over geodetic integration intervals (usually, 1 d to 1 week)
 - but, need rigorous methods to compute daily/weekly averages

- GGFC to provide validated Class 3 load displacement models
 - validated "operational" IERS models should appear at 1st level of GGFC bureaux
 - other "research" models should appear elsewhere
 - must provide model data fields, documentation, & software
 - provide accuracy assessments

•

- · consider errors in raw fluid fields
- also errors in modelling, etc
- suggest issues be studied better & evaluated in near future
- IERS Conventions changes
 - expand Chapter 7 to discuss use of non-tidal models as Class 3 type

- Rather than apply non-tidal corrections in data reductions, test *a posteriori* effects in ITRF combination
 - try non-tidal corrections in stacking of technique frames
 - would be more important for techniques with sparse or noncontinuous observing (i.e., VLBI, SLR)
- Instead of simple Helmert stacking of raw frames, try: Helmert{ XYZk(x,t) - Load(x,t) } [] TRFk(x,v)
 - effect of loads on long-term inter-site positions probably minor if loads average close to zero
 - but time-varying network effects for different techniques could be mitigated
 - interpretation of EOPs & Helmert parameters would be affected since load effects would be nominally removed
- **Requires careful testing & evaluation**
 - must be esp concerned with long-term stability of frame

Summary of Recommendations

- **Revise IERS Conventions Introduction**
 - define classes of models explicitly & specify scope
 - give criteria for selection of site displacement models
- Revise IERS Conventions Chapter 4
 - proposed text given in Position Paper
- Handling of non-tidal displacements
 - do not include as conventional site model contributions
 - expand Chapter 7 to discuss effects as Class 3 type
 - refocus GGFC activities to address questions raised here
- Study non-tidal displacements in ITRF combination
 - evaluate *a posteriori* corrections in frame stacking
 - determine if network effects can be mitigated
 - take great care with datum & interpretation issues