Introduction to Metrology

Traceability in measurements

Traceability in measurements

- 1. Basic concepts
- 2. Why we need traceability?
- 3. Infrastructure ensuring availability of traceable measurements

1.1 Basic concepts

Terms

QUANTITY

• Property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference

(A reference can be a measurement unit, a measurement procedure, a reference

material, or a combination of such.)

• Quantity can be a general quantity (e.g. length) or particular quantity (e.g. wavelength of Sodium D line)

MEASURAND

• Quantity intended to be measured

ESTIMATE (of the measurand); called also MEASURED QUANTITY VALUE

- measured value of a quantity measured value
- quantity value representing a measurement result

MEASUREMENT ERROR

• measured quantity value minus a reference quantity value

Uncertainty of measurement (*epävarmuus*)

non-negative parameter characterizing the dispersion of the quantity values being attributed to a measurand, based on the information used [1.1, 1.2]

Metrology and Standardization

Facts about Measurement Results

- Usually a measurement disturbs its target affecting thus the measurement result.
- A measurement result is always a combination of many factors.
- (reading or output signal of the measuring device is only one of them)
- We never know all the factors.
- We never know the "true value" of the factors (we can only estimate).
- The combined effect of unknown factors and inaccurate knowledge on the known factors is described quantitatively with the measurement uncertainty.
- "Absolute certainty is the privilege of uneducated minds ... or fanatics."

High precision - low accuracy

Accuracy and Precision

accuracy (tarkkuus)

closeness of agreement between a measured quantity value and a true quantity value of a measurand

precision (täsmällisyys) closeness of agreement between indications or measured quantity values obtained by replicate measurements on the same or similar objects under specified conditions

[1.1, 1.2]

High precision - high accuracy

Metrology and Standardization

Calibration (kalibrointi)

operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication. [1.1, 1.2] The result of a calibration can be given as

- correction value(s) at discrete measurement point(s)
- calibration equation (curve)
- re-calculated constant(s)
- statement that the error is in given specifications.

A calibration result includes always the uncertainty. (also the probability level should be given)

Conditions of calibration should be stated when reporting calibration results.

Adjustment (viritys)

set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity to be measured [1.1, 1.2]

NOTE 1: Types of adjustment of a measuring system include zero adjustment of a measuring system, offset adjustment, and span adjustment (sometimes called gain adjustment).

NOTE 2: Adjustment of a measuring system should not be confused with calibration, which is a prerequisite for adjustment.

NOTE 3: After an adjustment of a measuring system, the measuring system must usually be recalibrated.

Traceability (jäljitettävyys)

Example of traceability chain

(Metrological traceability) property of a measurement result whereby the result can be related to a reference through a documented

unbroken chain of calibrations, each contributing to the measurement uncertainty

Traceability chain:

sequence of measurement standards and calibrations that is used to relate a measurement result to a reference [1.1, 1.2]

Measurement standard (mittanormaali)

- realization of a given quantity, with stated quantity value and associated measurement uncertainty, used as a reference
- Measurement standard can be an instrument, a measuring system, material measure or a reference material.

[1.2]

Characteristics of Unbroken Traceability

For each calibration of the chain:

- Uncertainty estimation
- Documented and generally acknowledged procedures, documented results
- Competence
- Calibration is valid for the application.

Traceability Tower

 The tower is collapsed if any part of it is missing or incomplete

i.e.

there is no traceability unless all levels include all the characteristics of traceability

• At any level the measurement uncertainty can't be smaller than levels below.

Typical problems in traceability

1.2 Why we need traceability?

Traceability - why?

- Modern industrial production is not possible if subcontractors have different scales
- Scientific technical research can not necessarily be repeated if it is done without traceably calibrated instruments
- Traceability is the answer to the questions:
 - From where can I find a reliable measurement standard?
 - How can I convince others of the reliability of my measurement standard?

Accuracy of Length Standards and Commercial Capability 1950 - 2010

1.3 Infrastructure ensuring availability of traceable measurements

Metrology Infrastructure

- for ensuring global availability of traceable measurements
- foundation: The Metre Convention a diplomatic treaty first signed in 1875 by representatives of 17 nations
- three levels:
 - Global
 - Regional
 - National

Metrology and Standardization

Regional:

Reconnaissance mutuelle

des étalons nationaux de mesure et des certificats d'étalonnage et de mesurage émis par les laboratoires nationaux de métrologie

Paris, le 14 octobre 1999

Mutual recognition

of national measurement standards and of calibration and measurement certificates issued by national metrology institutes

Paris, 14 October 1999

Comité international des poids et mesures

Bureau	Organisation
nternational	intergouvernementale
des poids	de la Convention
et mesures	du Mètre

CIPM MRA objectives:

- to establish the degree of equivalence of measurement standards maintained by NMIs;
- to provide for the mutual recognition of calibration and measurement certificates issued by NMIs; thereby to
- to provide governments and other parties with a secure technical foundation for wider agreements related to international trade, commerce and regulatory affairs

MRA has been signed by 67 NMIs from 45 states and 20 associate states

MRA includes database of NMIs reviewed calibration services with corresonding uncertainties (CMCs)

MIKES has several 100s of different CMC entries