
ABSTRACT 

The purpose of this work is to create and develop the approach on structural 

parametric synthesis of convolutional neural network to receive the unique CNN 

architecture with the good image recognition accuracy. 

The paper deals with the methods of processing and classification of graphic 

images using convolutional neural networks and mathematical algorithms for 

their support. Using researches, there shown that for the proper use of such 

system it’s requires compliance with special technical conditions. 

Today, in modern convolutional neural networks for the independent 

processing of graphic data there is a problem of lack of accuracy in the selection 

of special criteria. The urgency of this problem over time is only increasing due to 

the proliferation of the problem of digital identification. 

In order to increase the accuracy of the results of the work, there designed 

system includes the algorithm of input data preparation, generating the neural 

network architecture and configuration its global and local parameters with means 

of structural parametric synthesis algorithms. Also, there were done relative 

surveys and tests as well as implemented all the algorithms by means of 

programming. 
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 Introduction 

Recognition of visual images is one of the most important components of 

control and information processing systems, automated systems and decision-

making systems. Problems related to the classification and identification of objects, 

phenomena and signals characterized by a finite set of certain properties and 

features arise in such industries as robotics, information retrieval, monitoring and 

analysis of visual data, and artificial intelligence research. Algorithmic processing 

and classification of images are used in security systems, control and management 

of access, in video surveillance systems, virtual reality systems and information 

retrieval systems. At the moment, in production, systems for the recognition of 

handwritten text, license plates, fingerprints or human faces are widely used, which 

are used in software product interfaces, security and personal identification 

systems, as well as in other application purposes. 

Intensive research in this area has a long history and is associated with the 

works of D. Hubel and T. Wiesel,T. Kohonen, M. Turk and A. Petland, D. Hinton, 

J. Lekun and others. Recently, significant progress in the recognition of visual 

images has been achieved with the advent of dimensionality reduction methods, 

convolutional neural networks and constellation models. However, despite the 

successes achieved, modern research confirms the fact that image recognition 

algorithms still do not have the full capabilities of biological visual systems, such 

as the ability to function on a wide, unbounded set of recognition classes, 

resistance to invariant transformations and variability of objects in within 

categories. 

Thus, the actual problem recognized by the scientific community is the 

recognition of the depicted objects under the influence of affine transformations 

that can significantly change the shape of the image without affecting the 

belonging of the object to the recognition category. Attempts to solve this problem, 

which appears in the theory of pattern recognition as the inversion problem, have 

been undertaken in methods such as SIFT and ORB, as well as multilayer 

convolutional networks, but at the moment these methods offer partial solutions 



 

  

that provide resistance to a limited subset of transformations. The urgency of this 

problem is especially high in industries where pattern recognition is used in a 

natural environment (video surveillance, data analysis from monitoring cameras, 

robotic visual systems), where the visual sensor can have an arbitrary limited 

viewing angle with respect to the desired object. 

Currently, biometric systems for human identification are becoming more 

widespread. Their main advantages over traditional identification methods are as 

follows: they are based on unique biological characteristics, and, therefore, they 

are extremely difficult to counterfeit. Also, the convenience of their use is obvious 

- they do not require a person to possess any special cards, keys, etc. 

There are several ways of biometric identification. At the moment, the 

leaders are fingerprint and retinal identification. Other types of identification (by 

face or voice) are less developed. They are not so reliable in nature (easier to 

falsify), and therefore their use is possible only in some areas. 

The relevance of the problem of recognizing a person by the image of his 

face, as well as its preference over other means of identification of a person (for 

example, identification by fingerprints or by the retina) lies in the fact that there is 

no need for direct contact between the system and the person. 

The main difficulties that need to be overcome when identifying a person by 

face is to ensure the independence of the system from factors such as illumination, 

angle, and age-related changes. Many methods involve a large and costly 

preprocessing step. However, without understanding some of the general semantics 

of the image, it is difficult to get it right. 

That is why the direction of neural network methods looks promising. The 

principle of operation of such methods is based on the principle of the human 

brain. With the help of training, they allow you to find the relationship between 

individual features of the image and perform recognition with sufficient accuracy. 
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1. IMAGE PROCESSING OF DIAGNOSTICS SYSTEMS 
 

1.1. Problem statement 

 

In modern world there a lot of fields in which diagnostics systems takes 

important role in result sufficiency. One of them is the medical diagnostics, 

especially in procedures like UWI, CT, US, MRI scans etc. In the processing of 

such scans human factor takes a serious influence and there’s no ready to go 

solution to make it automatically or partially automatically processed and 

analyzed. The goal of this work is to design such system and configure it to work 

with medical data by means of structural parametric synthesis algorithms and 

convolutional neural networks.  

The aim of this work is to develop the convolutional neural network system, 

its own structure, configuration and parameters, choose and apply visual pattern 

recognition method capable of solving the inversion problem for various 

applications, recognizing patterns on the images, objects of the surrounding world, 

taking into account their invariant transformations. 

To achieve this goal, it is necessary to solve the following tasks: 

1. Development of a model of object representation using a hierarchy of 

features that are resistant to invariant transformations. 

2. Development of an convolutional neural network architecture to work 

with following model, choose it’s parameters and design the specific structure. To 

apply the feature extraction algorithm and an image recognition algorithm using 

the computer program means. Implement the algorithmic complex in the form of a 

computer program. 

3. Evaluation of the performance of the developed method and criteria for 



 

  

achieving the goal. 

4. Evaluation of the effectiveness of the developed method in comparison 

with modern alternative recognition methods. 

The research object of the thesis is the systems computer vision carrying out 

classification and identification of objects in the image. 

The subject of the research is mathematical models and algorithms of image 

recognition. 

To solve the set tasks, the methods of computer vision, optimization theory, 

mathematical statistics, the theory of artificial neural networks, probabilistic 

models, and the theory of experiment planning were used. 

 

1.2. Standard structure of Convolutional Neural Network 

 

The convolutional neural network systems (Conv Nets or CNNs) are the 

logical instrument receives an input parameters as image in the set of pixels view, 

finds some features on it and due to it sets the parameters (weighted coefficients) to 

wide data objects in the images and be able to highlight some things among all over 

objects. Conv Nets requires the less clean processing power relatively to other 

processing algorithms. Unlike to standard filter methods that working as hard-

engineered unit, the convolutional neural network can achieve it through the 

training processes. 

The structure of a Conv Nets is same as connectivity image of human brain 

biological neurons and was based on group of the “Visual Cortex”. Each one 

neuron responds to stimuli only in a specially-restricted area of the visual field 

known as the receptive area. A set of such areas overlap to cover the entire visual 

area. A Conv Nets are able to clearly capture the spatial and temporal 

dependencies in any input image data through the application based on relevant 

filters.  



 

  

Fig. 1.1 Convolutional neural network structure 

 

CNN structure performs a great setting to the image dataset with help of 

reduction in the number of parameters involved and reusability of weights. 

Therefore, the neural network can be trained to understand the sophistication of the 

image better. [4] 

 

1.2.1. Convolutional Layer (Kernel) 

 

The main and the first layer of Conv Net is the convolutional layer. This 

layer detects the logic into sets of pixels and extracts the features from them. There 

the logical operation which includes input set of pixels(image) and filter(Kernel). 

At the figure 2.3.1, green area resembles our 5x5x1 input image, I. The 

element which acts in convolutional operation of a convolution layer is called the 

“kernel” or in other words “filter”, K, which displayed with yellow color. K looks 

like 3 x 3 matrix. 

“Kernel”/”Filter”, K = 

1     0     1 

0     1     0 

1     0     1 



 

  

Kernel just slides from left to the right with the previously set-upped stride 

value till it reach the end of current string.  Then in jumped out on the next string 

and process will be repeated relatively. During some time filter end all the strings 

and we’ll obtain the output matrix. 

Applying the huge range of filters allows us to get different results such as 

edges, sharpen, features, relief map detection. Also, filters had the same color 

depth as the input image. Matrix multiplication is performed between Kn and In 

stack ([K1, I1]; [K2, I2]; [K3, I3]) and all the results are summed with the bias to 

give us a squashed one-depth channel “convoluted feature output”. [5] 

Let us introduce the convolutional layer l. In a similar architecture neural 

network l is taken as an odd number, that is l = 1, 3,…, 2α + 1. 

Then, for the feature map n, the following will take place: 

- 함 , = 푤 , (푖, 푗)  - convolution applied to feature map m 

layer (L - 1), on layer L with feature map n; 

- 푏  - threshold values attached to the feature map n on layer l; 

- 푉  a list of all layer levels (l - 1) that are connected to feature 

map n layer l. 

So the feature map n of the convolutional layer l will be computed in the 

following way: 

푦 = 푓 ∑   푦 ⊗ 푤 , + 푏              (1.1) 

where by the ⊗ operator we mean a mathematical operation of a two-

dimensional convolutions. 

Suppose that the size of the input feature maps 푦 	is equal 퐻	 	푋	푊	 , 

and the size of the convolution applied to them is 함 ,  equals 푟	 	푋	푐	 	then size of 

the output feature map 푦  is calculated as (Fig. 1.4.1). 

 

 

 



 

  

Fig. 1.2 Convolutional layer schema 

The main aim of this is to get the features as edges and polygons from the 

input image. Conv Nets can hold any number of convolutional layers. Therefore, 

the first convolutional layer is reasonable in extracting the “low level” features 

such as edges, color, gradient orientation, etc. 

By expanding it with another layers the architecture adapts to the “high 

level” features as well, giving us a network which has the wholesome 

understanding of images in the dataset, similar to how we would. 

On the output we’ll get two types of data where the convoluted feature loses 

its dimensionality relatively to the origin and the other with the increasing or 

holding actual dimensionality. To achieve it is necessary to use “valid padding” in 

first case and the “same padding” with another one. [3] 

In situation when we expand the 5x5x1 picture into a 6x6x1 picture and after 

we’ll filter it through 3x3x1 Kernel one, we’ll get out image matrix (convolved 

matrix) with 5x5x1 sizes. In other way in the case when we apply such operation 

without using the padding method it will cause that the output dimensionality value 

will be the same as the Kernel filters dimensionality (3x3x1). 

 

 



 

  

Fig. 1.3 Representation of Kernel filters 
 

1.2.2. Pooling Layer 

 

As the convolution layer the pooling one based on reducing the spatial size 

of the convoluted feature. By reducing the dimensionality it will slows the load on 

the computational elements.  Also, it is allowable to highlight the dominant 

features in any angles and positions to burst the learning process. 

Here exist only two types of pooling layers: “max pooling” and “average 

pooling”. Max pooling finds the maximum value at the resulting matrix given by 

Kernel filters. In its turn, average pooling finds the average value at the resulting 

matrix given by Kernel filters. 

 Max pooling also can take the role of noise suppressing. Due to 

dimensionality reduction it’s reduces the activation noises appears along it. In 

other way, the average pooling allows us to reduce dimensionality as a noise  



 

  

Fig 1.4  Representation of polling layers 
 

suppressing tool. In the result we can obtain that max pooling process much more 

better than average pooling 

Commonly pooling layers always working in para with convolutional layer 

and it forms the i-th convolution layer of CNN structure. Relatively to input image, 

its dimensionality and amount of features it will may cause on number of such 

convolution layers and on the computational power as well. Alright, now we’re 

understand how the convolutional layers works from inside, its construction and 

working approach. Finally, the output goes straight into the flatten layer to 

transform it into the vector for feeding it into classifier (fully connected layer).[7] 

Let's introduce the subsampling layer l. In convolutional neural network l is 

accepted to be taken as an even number, that is l = 2, 4,…, 2α. For feature maps n 

we introduce the following notation: 함 ,  - filter, applied to n on layer l, and 푏  - 

additional threshold value. Next, we will act as follows: divide the feature map n (l 

- 1) -th layer into disjoint blocks of 2 × 2 pixels. Then sum up the values of four 

pixels in each block and as a result we obtain the matrix	핫 = {푧 (푖, 푗)}, the 

elements of which will be the corresponding values of the sums. Thus, the formula 

for calculating values of matrix elements will be as follows: 

푧 = 푦 (2푖 − 1,2푗 − 1) + 푦 (2푖 − 1,2푗) + 푦 (2푖, 2푗 − 1) + 푦 (2푖, 2푗) 



 

  

 
Fig. 1.5 Pooling layer schema 

The feature map n subsampling layer l is calculated as: 

푦 = 푓 핫 × 함 , + 푏                    (1.2) 

Thanks to the above reasoning, it becomes possible calculate size 

퐻	 	푋	푊	 	feature maps 푦  downsampling layer l (Fig. 1.4.2). 

퐻 = ,푊 =                               (1.3) 

 

1.2.3. Fully connected layer (FC) 

 

Fully connected layer is the common instrument to find the non-linear 

relations in the feature structures that we’ll get from the convolutional layers. So 

it’s always applied as a final stage of convolutional neural networks. The fully 

connected layer is finding the possible non-linear functions. 

To classify the output there widely used the “softmax classification 

function”. Till a lot of epochs will done the neural network will set the right 

weighted coefficients and be able to classify our outputs. Nowadays, there exist a 

huge amount of different convolutional neural network structures with different 

number of layers and also different performance. Most popular structures are: Le-

Net, Alex-Net, VGG-Net, GoogLe-Net, Res-Net, ZF-Net. 

 

 



 

  

Fig. 1.6 Structural scheme of fully connected layer 
 

1.2.4. Forming the input data 

 

 As the input commonly we will get the RNG image which means R – red 

color, G – greed and B – blue. Also, image can be in different color types: 

grayscale, HSV, RGB, CMYK, etc. 

For the while, take into the mind which the computational power needed for 

process the image of 8K (7680×4320) sizes. The main purpose of Conv Nets is to  

Fig. 1.7 Input data representation (RGB) 



 

  

compress it into much more lighter state without losing important parts 

(features). It’s necessary to take care when we’re designing structure with low 

features learning possibilities and huge data sets. 
 

1.3 Review on image processing approaches 

1.3.1 Geometric-based method (Template-based method) 

 

Face recognition algorithms divided into geometry-based ones or template-

based methods. To realize practically the template based method it’s necessary to 

use some tools for statistical calculations as SVMach (Supporting Vector 

Machines), PCA (Principal-Component Analysis), LDA (Linear-Discriminant 

Analysis). Also it can be the kernel-based approach. The geometric-based method 

relay on the geometric relationships between some key-features, its areas and 

points.  This method also can be named as feature based method. [7,8] 

Already over the 30 years face recognition problem hold the one of most 

important tasks of computers vision. It’s caused by huge amount of real-life 

requirements for applications of face recognition in security purposes, 

telecommunications, sociological experiments and statistics, digital libraries, 

medicines, etc. 

In the theory the face feature recognition and also the human face 

recognition is the same as simple features recognition but more complex and 

complicated. Faces are the completely hard structured object which hard to analyze 

and able only closely to frontal-face positioning. Just an unusual little change can 

vary the faces different. That is why in a common face features recognition area 

there’s forming a dense setup of frontal-based faces, and the common face-pattern 

method will fail to work with them. [14] 

Face recognition systems can be divided into two different types. The first 

one is perform to check that the person that appears is the one of the saved in small 

database of persons (at least lower that 500). Usually, this method performs with 

smartphones, building or program access in the security purposes. The key points 



 

  

of such system are that the program working in the real-time, low latency in 

appearance detection and also low sensitivity for appearance changes. 

Second one finding the person in the huge database with the lot of the faces 

there. Often this system working with databases which contains thousands of faces 

and its relative information and due to intense computational requirements working 

in offline way.  

The main approach of this method is to find and analysis the key-feature 

points (anthropometrical local points). Then after finding their displacement they 

are needed to be manually approved by someone to increase the accuracy. This 

points displacement information stores in specially formed data bases. An example 

of this key points recognition shown at figure 2.6.2.[3] 

Process of face feature recognition commonly consists of three main steps: 

finding the special face landmarks, construct the shapes which describes face 

features using obtained landmarks, and also classification this shapes into different 

subclasses. 

The process of landmark displacement consist of two main parts. The first 

one is landmark displacement due to knowledge of its locations and second based 

in extracting the “gabor-jet” at the given images and estimate the approximations 

of this points by comparing it with the different models. For getting this system to 

be full-automatic firstly it’s necessary to approximate the location of few initial 

landmarks. To do that there is important to extract the face area. Usually, to 

achieve it we’re using the haarcascade methods for example haar frontalface 

cascade method. So, the points displaced at the middle of the eyes were founded 

using the haar method proposed by Viola and Jones. Than having the eyes location 

coordinates it’s much more easier to find another landmarks. One by one, these 

landmarks founded using the information about previous ones. The landmark 

location is then refined by comparing a Gabor jet extracted from the estimated 

point to a corresponding model jet from the bunch graph. Until the all landmarks 

will be founded the process will be executed. Then when all of them were founded 



 

  

it’s necessary to overwatch their changes during the time. For each next image of 

the video the displacement of landmarks should be founded. 

Landmark Normalization 

Process of landmarks normalization locks the landmarks to their uniform 

coordinate position at the initial frame of the video-shot, and as it’s shown in 

expression evolves, landmarks moved accordingly. Just denote that 푆  is the 

observing data for i-th landmark in the k-th sequence: 

푆 = {(푥 , 푦 ) , (푥 , 푦 ) , (푥 , 푦 ) ,… , (푥 , 푦 ) , (푥 , 푦 ) }   (1.4) 

where (푥 , 푦 )  is the i-th landmarks co-ord positioning in the l-th frame of the k-th 

sequence. There the N is the amount of frames in the sequence. 

The each landmark position relative to other ones is obtained from all the 

images, which are the first frames in all video-shots. All the landmarks should be 

normalized for every detection result and the differences between initial frame 

landmarks and the average ones also should be determined. This gives the 

displacement of the landmark, with respect to the average landmark position. Let’s 

denote  (δx0,δy0)k
i  as the displacements of the i-th landmarks in the 1-st image of 

the k-th sequence respectively to value of average landmarks positioning: 

(훿 , 훿 ) = (휇 − 푥 , 휇 − 푦 )                          (1.5) 

Displacements of each landmark are now added to the landmarks positioning 

in every image of the facial recognition sequence. The landmarks observing 

transformed result is now denoted by	푆` , and defined by: 

푆` = { 푥 + 훿 , 푦 + 훿 , 푥 + 훿 , 푦 + 훿 , 

… , 푥 + 훿 , 푦 + 훿 }                            (1.6) 

The observing results are normalized with relevance that for each landmarks 

for all the expression sequences now starts from the one initial coordinate position. 

Feature Extraction 

The peculiarity of this method is that for facial recognition and also for 

facial expressions recognition we’re using only geometrical information without 



 

  

performing with any graphical texture information. The feature extraction process 

based on two options, one by getting the observing result for each landmarks 

positioning, and the second by considering the observing data for pairs of  these 

landmarks. Let’s denote (x′, y′) as the transformed landmark coordinates 

positioning. 

푆` = {(푥` , 푦` ) , (푥` , 푦` ) , … , (푥` , 푦` ) }        (1.7) 

The amount of images for each video-shots for facial recognition can be 

different. So, for each group class there should be created the prototypic facial 

expression. Therefore, for each of these expressions there should be the same 

amount of images in database.[11] 

Features types ones are the features vector from the each individual 

landmarks observing sequences. Each landmarks coordinates in a sequences are 

subtracted from the initial landmarks coordinates, i.e., landmarks positioning in the 

neutral frame, for creating the types one features vector. Let’s denote (δx
′
l,δy

′
l)k

i as 

the differences at i-th landmarks in the l-th image, from the i-th landmarks in the 

initial frame of the k-th video-shot: 

훿푥`, 훿푦` = 푥` − 푥` , 푦` − 푦`                         (1.8) 

 

1.3.2 Appearance-based method 

 

The appearance-based method compares the image relatively to few another 

ones. There, the image presented as high-dimensional vector. This method widely 

used to extract and form the feature field from the image division. That means that 

the an image from the sample will be compared with special training set. In other 

way, the model-based method is representing the facial model. For the new 

implemented sample into the model, its parameters are used for images 

recognizing. 

The appearance based approach used to classify as “linear” or “non-linear”. 

Ex- PCA, LDA, IDA are used in direct approach whereas Kernel PCA used in 



 

  

nonlinear approach. Anyway, for the model based approach can be presented as 2-

D or 3-D “exelastic bunch graph matching” used. 

Appearance based facial recognition methods required for huge variety of 

purposes, for example for applications of face recognition in security purposes, 

telecommunications, sociological experiments and statistics, digital libraries, 

medicines, etc. Obviously, human brain able to recognize faces easily, so 

constructing the fully-automated facial recognition systems is a huge challenge in 

data processing and computer vision spheres. To achieve the a cheap and high-

level categorical sorting, instead just follow a guide-line based on the scientific 

psychological studies of human face holistics and local-features. Specifically, the 

proposed papers have the following categorization: “Holistics” approach and 

“Hybrid” approach. [17] 

 

1.3.3 Template matching method 

 

Template matching method is the simple approach for image processing 

tasks and also the facial recognition, features and edges extraction, etc. This 

method consists of two main approaches: “feature based” and “template based” 

matching. The feature based method applied to find the features and template 

image, such as edge and corner, as the main metric of conformity measurement, to 

find the best matching location of the template in the original image. A template-

based or global approach uses the entire template. To recognize a human face, it is 

necessary to extract some features. These features include the eyes, nose, mouth, 

and chin, as well as the shape of the face. To determine the location of these 

features, the researchers proposed various methods based on facial symmetry, 

facial geometry and brightness, as well as pattern matching. As a rule, facial 

recognition based on vision can be explained as follows. Initially, the image of the 

object is improved and segmented. Then the contour features are extracted by the 

contour extraction method and compared with the image features extracted from 



 

  

the database. If there is a match, then the face in the image of the subject is 

recognized. 

 

1.3.4 Principal Component Analysis (PCA) 

 

The Principal Component Analysis (PCA) is a standout amongst the best 

procedures that have been utilized in picture acknowledgment and pressure. PCA 

is a measurable strategy under the wide title of factor investigation. The motivation 

behind PCA is to diminish the enormous dimensionality of the information space 

(watched factors) to the littler characteristic dimensionality of highlight space (free 

factors), which are expected to depict the information financially. This is the 

situation when there is a solid relationship between's watched factors.  

The occupations which PCA can do are expectation, repetition evacuation, 

include extraction, information pressure, and so forth. Since PCA is an old style 

method which can accomplish something in the straight area, applications having 

direct models are appropriate, for example, signal preparing, picture handling, 

framework and control hypothesis, interchanges, and so on.  

Face acknowledgment has numerous pertinent territories. In addition, it 

tends to be sorted into face identification, face classification, or sex assurance. The 

most helpful applications contain group surveil-spear, video substance ordering, 

individual identification (ex. driver's permit), mug shots coordinating, entrance 

security, and so on. The principle thought of utilizing PCA for face 

acknowledgment is to express the huge 1-D vector of pixels built from 2-D facial 

picture into the minimal essential segments of the component space. This can be 

called eigenspace projection. Eigenspace is determined by distinguishing the 

eigenvectors of the covariance lattice got from a lot of facial images(vectors). The 

subtleties are portrayed in the accompanying area. 

Once the eigenfaces have been processed, a few sorts of choice can be made 

relying upon the application. PCA processes the premise of a space which is 

spoken to by its preparation vectors. These premise vectors, really eigenvectors, 



 

  

figured by PCA are toward the biggest difference of the preparation vectors. As it 

has been said before, we call them eigenfaces. Each eigenface can be seen a 

component. At the point when a specific face is anticipated onto the face space, its 

vector into the face space portray the significance of every one of those highlights 

in the face. The face is communicated in the face space by its eigenface coe cients 

(or loads). We can deal with a huge information vector, facial picture, just by 

taking its little weight vector in the face space. This implies we can reproduce the 

first face with some mistake, since the dimensionality of the picture space is a lot 

bigger than that of face space. 

 

1.3.5 Linear Discriminant Analysis method 

 

Linear Discriminant Analysis unequivocally endeavors to demonstrate the 

distinction between the classes of information. LDA is an amazing face 

acknowledgment system that beats the impediment of Rule segment investigation 

method by applying the straight discriminant basis. This foundation attempts to 

augment the proportion of the determinant of the between-class dissipate grid of 

the anticipated examples to the determinant of the with-in class disperse network 

of the anticipated examples. Direct discriminant gathering pictures of a similar 

class and isolates pictures of various classes of the pictures.  

Discriminant analysis can be used only for order not for 

relapse. The objective variable may have at least two classes. Pictures are 

anticipated from two dimensional spaces to c dimensional space, where c is the 

quantity of classes of the pictures. To distinguish an information test picture, the 

anticipated test picture is contrasted with each anticipated preparing picture, and 

the test picture is recognized as the nearest preparing picture. The LDA technique 

attempts to discover the subspace that segregates diverse face classes. The inside 

class disperse framework is likewise called intra-individual methods variety in 

appearance of a similar individual because of various lighting and face demeanor. 

The between-class dissipate network likewise called the additional individual 



 

  

speaks to variety in appearance because of distinction in personality. Straight 

discriminant techniques gathering pictures of similar classes and isolates pictures 

of the various classes. To recognize an info test picture, the anticipated test picture 

is contrasted with each anticipated preparing picture, and the test picture is 

distinguished as the nearest preparing picture.[20]  

In Direct discriminant examination we give the accompanying strides to 

discriminant the info pictures:  

Stage 1:  

We need a preparation set made out of a moderately huge gathering of 

subjects with assorted facial qualities. The proper choice of the preparation set 

straightforwardly decides the legitimacy of the last outcomes. The database ought 

to contain a few instances of face pictures for each subject in the preparation set 

and at any rate one model in the test set. These models ought to speak to various 

frontal perspectives on subjects with minor varieties in view point. They ought to 

likewise incorporate distinctive outward appearances, changed lighting and 

foundation conditions, and models with and without glasses. It is accepted that all 

pictures are now standardized to m × n exhibits and that they contain just the face 

locales and very little of the subjects' bodies.  

Stage 2:  

For each picture and sub picture, beginning with the two dimensional m × n 

cluster of power esteems I(x, y), we develop the vector extension Φ R m× n. This 

vector relates to the underlying portrayal of the face. In this way the arrangement 

of all countenances in the element space is treated as a high-dimensional vector 

space.  

Stage 3:  

By characterizing all occasions of a similar individual's face as being in one 

class and the essences of various subjects as being in various classes for all 

subjects in the preparation set, we set up a system for playing out a bunch 

detachment investigation in the element space. Additionally, having named all 



 

  

occasions in the preparation set and having characterized every one of the classes, 

we register the inside class and between-class dissipate frameworks. 

 

1.3.6 Locality learning projections method 

 

Locality Learning Projections (LLP) includes straight projective maps 

emerging subsequent to taking care of a variational issue that is ideally 

safeguarded by the area structure of the database. Direct estimation of non-straight 

Laplacian eigenmape is presented by LPP. It is a strategy utilized in complex 

learning. Laplace Betrami administrator is utilized in finding the straight 

approximations of the eigen capacities. Nearby structure of the informational index 

is protected in LPP.[21] Thinking about LPP, we will talk about Laplacianfaces 

strategy which is utilized in face acknowledgment in area saving subspace. 

Complex structure of informational collection is displayed by making a 

contiguousness chart. This contiguousness chart is utilized to express the nearby 

closeness of the informational index. The picture set is first anticipated to a PCA 

subspace in order to make a nonsingular lattice. Clamor and undesirable 

information focuses is additionally utilized with the assistance of PCA 

preprocessing. 

 

1.3.7 Independent Component Analysis 

 

Independent  Component  Analysis (ICA) has as of late pulled in a lot of 

consideration in sign handling and highlight extraction fields, and has been viewed 

as an effective instrument for displaying and understanding the shrouded elements 

that underlie sets of arbitrary factors, or flag. Autonomous Part Examination (ICA) 

is a speculation of central segment investigation (PCA), which decorrelates the 

higher request snapshots of the info. In an assignment, for example, face 

acknowledgment, a significant part of the significant data is contained in the high 

request measurements of the pictures. [13] 



 

  

Independent  Component Analysis (ICA) is a speculation of primary segment 

examination (PCA), which decorrelates the higher request snapshots of the info. In 

an undertaking, for example, face acknowledgment, a great part of the significant 

data is contained in the high request insights of the pictures. An illustrative premise 

wherein the high request measurements are decorrelated might be more dominant 

for face acknowledgment than one in which just the second request insights are 

decorrelated, as in PCA portrayals. Utilizing ICA, one endeavors to show the 

fundamental information so that in the direct development of the information 

vectors the coefficients are as free as could be allowed. ICA bases of the extension 

must be commonly free while the PCA bases are only uncorrelated. ICA has been 

generally utilized for visually impaired source partition and visually impaired 

convolution. Visually impaired source detachment endeavors to isolate a couple of 

autonomous yet obscure source signals from their direct blends without knowing 

the blend coefficients. 
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2. MODERN CONVOLUTIONAL NEURAL NETWORKS 
 

2.1 Review on the existing networks for image classification approach 

 

The research in CNN is still going on and has a significant potential for 

improvement. It is generally observed that the significant improvements in CNN 

performance occurred from 2015-2019. The representational capacity of a CNN 

usually depends on its depth, and in a sense, an enriched feature set ranging from 

simple to complex abstractions can help in learning complex problems. However, 

the main challenge faced by deep architectures is that of the diminishing gradient. 

Initially, researchers tried to subside this problem by connecting intermediate 

layers to auxiliary learners. In 2015, the emerging area of research was mainly the 

development of new connections to improve the convergence rate of deep CNN 

architectures. In this regard, different ideas such as information gating mechanism 

across multiple layers, skip connections, and cross-layer channel connectivity was 

introduced. Different experimental studies showed that state-of-the-art deep 

architectures such as VGG, ResNet, ResNext, etc. also showed good results for 

challenging recognition and localization problems like semantic and instance-

based object segmentation, scene parsing, scene location, etc. Most of the famous 

object detection and segmentation architectures such as Single Shot Multibox 

Detector (SSD), Region-based CNN (R-CNN), Faster R-CNN, Mask R-CNN and 

Fully Convolutional Neural Network (FCN) are built on the lines of ResNet, VGG, 

Inception, etc. Similarly, many interesting detection algorithms such as Feature 

Pyramid Networks, Cascade R-CNN, Libra R-CNN, etc., modified the 

architectures as mentioned earlier to improve the performance. Applications of 

deep CNN were also extended to image captioning by combining these networks 



 

  

with recurrent neural network (RNN) and thus showed state-of-the-art results on 

MS COCO-2015 image captioning challenge. 

Similarly, in 2016, it was observed that the stacking of multiple 

transformations not only depth-wise but also in parallel fashion showed good 

learning for complex problems. Different researchers used a hybrid of the already 

proposed architectures to improve deep CNN performance. In 2017, the focus of 

researchers was mainly on designing of generic blocks that can be inserted at any 

learning stage in CNN architecture to improve the network representation (Hu et 

al. 2018a). Designing of new blocks is one of the growing areas of research in 

CNN, where generic blocks are used to assign attention to spatial and feature-map 

(channel) information. In 2018, a new idea of channel boosting was introduced by 

Khan to boost the performance of a CNN by learning distinct features as well as 

exploiting the already learned features through the concept of TL. [8] 

However, two main concerns observed with deep and wide architectures are 

the high computational cost and memory requirement. As a result, it is very 

challenging to deploy state-of-the-art wide and deep CNN models in resource-

constrained environments. Conventional convolution operation requires a huge 

number of multiplications, which increases the inference time and restricts the 

applicability of CNN to low memory and time constraint applications. Many real-

world applications, such as autonomous vehicles, robotics, healthcare, and mobile 

applications, perform the tasks that need to be carried on computationally limited 

platforms in a timely manner. Therefore, different modifications in CNN are 

performed to make them appropriate for resource-constrained environments. 

Prominent modifications are knowledge distillation, training of small networks, or 

squeezing of pre-trained networks. GoogleNet exploited the idea of small 

networks, which replaces the conventional convolution with point-wise group 

convolution operation to make it computationally efficient. Similarly, ShuffleNet 

used point-wise group convolution but with a new idea of channel shuffle that 

significantly reduces the number of operations without affecting the accuracy. In  



 

  

Fig. 2.1 Different categories of modern CNN architectures 

 

the same way, ANTNet proposed a novel architectural block known as ANTBlock, 

which at low computational cost, achieved good performance on benchmark 

datasets. 

From 2012 up till now, many improvements have been reported in CNN 

architectures. As regards the architectural advancement of CNNs, recently, the 

focus of research has been on designing of new blocks that can boost network 

representation by exploiting feature-maps or manipulating input representation by 

adding artificial channels. Moreover, along with this, the trend is towards the 

design of lightweight architectures without compromising the performance to 

make CNN applicable for resource constraint hardware. [13] 

Different improvements in CNN architecture have been made from 1989 to  

date. These improvements can be categorized as parameter optimization, 

regularization, structural reformulation, etc. However, it is observed that the main 

thrust in CNN performance improvement came from the restructuring of 

processing units and the designing of new blocks. Most of the innovations in CNN 

architectures have been made in relation to depth and spatial exploitation. 

Depending upon the type of architectural modifications, CNNs can be broadly 

categorized into seven different classes, namely; spatial exploitation, depth, multi-

path, width, feature-map exploitation, channel boosting, and attention-based 

CNNs. The taxonomy of CNN architectures is pictorially represented in figure  



 

  

Fig. 2.2 Perfomace comparison of the recent architectures of different CNNs 

about Architectural details of the state-of-the-art CNN models, their parameters, 

and performance on benchmark datasets are summarized. On the other hand, 

different online resources on deep CNN architectures, vision-related dataset, and 

their implementation platforms are mentioned.  

CNNs have a large number of parameters and hyper-parameters, such as 

weights, biases, number of layers, and processing units (neurons), filter size, stride, 

activation function, learning rate, etc. As convolutional operation considers the 

neighborhood (locality) of input pixels, therefore different levels of correlation can 

be explored by using different filter sizes. Different sizes of filters encapsulate 

different levels of granularity; usually, small size filters extract fine-grained and 

large size extract coarse-grained information. Consequently, in early 2000, 

researchers exploited spatial filters to improve performance and explored the 

relation of a spatial filter with the learning of the network. 



 

  

Fig. 2.3 Perfomace comparison of the recent architectures of different CNNs 

Different studies conducted in this era suggested that by the adjustment of 

filters, CNN can perform well both on coarse and fine-grained details. 

 

2.2  List of specialized constructive convolutional neural network blocks 

2.2.1 Squeeze and excitation block 

 

The way in which works the squeeze and excitation block is presented at 

figure 2.4. Firstly, it’s applies the feature transformation or simple convolution 

operation on input data X to receive the U features.  After it’s necessary to apply a  
 



 

  

Fig. 2.4 The structure of squeeze and excitation block 
squeeze operation to obtain single value of output U from each channel. 

Then it goes through excitation operation applied on outputs of squeeze ones to 

obtain per-channel weights. At the last, it rescales the feature map U with these 

activations to get the resulting SE block outputs.  

The role this operation performs at different depths differs throughout the 

network. In earlier layers, it excites informative features in a class-agnostic 

manner, strengthening the shared low-level representations. In later layers, the SE 

blocks become increasingly specialised, and respond to different inputs in a highly 

class-specific manner. As a consequence, the benefits of the feature recalibration 

performed by SE blocks can be accumulated through the network. 

 The main idea of squeeze and excitation blocks is that it’s can be 

implemented and used with most of already existed convolutional neural network 

architectures (for example, ResNet, Inception, AlexNet, DenseNet etc.). It will 

increase the network performances by slightly increasing the architecture 

complexity. [14] 

 On the figure 2.1.3 it is shown the implementation of this algorithm on the 

examples of inception and residuals blocks from the relative networks. For the 

inception architecture it’s necessary to add SE blocks after each inception module 

and in the residual ones they needed to be placed in the main stream before adding 

the residual. For the linear architecture implementation they can be placed after 

convolutional 2D layers.  

 



 

  

Fig. 2.5 Conceptual scheme of squeeze and excitation implementation on the inception and 

residual modules 

The presented SE block can be applied to any given transformation as 

computational element	퐅 : 퐗 → 퐔, 퐗 ∈ ℝ × × , 퐔 ∈ ℝ × × . Let the learned 

set of kernel filters be denoted as 퐕 = [퐯 , 퐯 , … , 퐯 ] where the v elements is the 

parameters of the relative filters. So we can mark the outputs of 퐅  as 퐔 =

[퐮 , 퐮 , … , 퐮 ], where 

퐮 = 퐯 ∗ 퐗 = ∑   퐯 ∗ 퐱                    (2.1) 

Here * denotes convolution, 퐯 = 퐯 , 퐯 , … , 퐯 ,	 X = 퐱	 , 퐱	 , … , 퐱	 	and 

퐮 ∈ ℝ × . 퐯 	is a 2D spatial kernel representing a single channel of vc that acts 

on the corresponding channel of X. Since the output is produced by a summation 

through all channels, the channel dependencies are implicitly embedded in vc, but 

these dependencies are entangled with the spatial correlation captured by the 

filters. 

Squeeze operation: Global Information Embedding. The main goal of this 

operation is to extract global information from each of the channels of the image. 

So achieve that there proposed using the Global Average Pooling to reduce the C x 

H x W image to C x 1 x 1 to get global statistic for each channel. The formula 2 

represents the squeeze (Global Average Pooling) operation.  

푧 = 퐅 (퐮 ) =
×

∑   ∑   푢 (푖, 푗)                       (2.2) 



 

  

 Excitation operation: Adaptive Recalibration.  With the help of this 

operation we can process the received vector output with the C length to produce 

the channel weights sets. The formula 3 represents the mathematical description of 

excitation operation. 

퐬 = 퐅 (퐳,퐖) = 휎(푔(퐳,퐖)) = 휎 퐖 훿(퐖 퐳)            (2.3) 

where 훿 is the rectified linear unit (ReLU) function, 휎 is the sigmoid 

function, W1 and W2 are fully connected layers and z is the resulting output vector 

from squeeze operation. 

 Here, these fully connected layers at the congestion structure complete 

the following functions: W1 reduces the dimensionality by the r ratio and W2 

contrariwise increase the dimensionality to restore the channel dimension of U. 

 As the sigmoid function returns the floats in range [0,1], the channel 

weights and the total result of SE block can be obtain as follows from equation 4. 

퐱 = 퐅 (퐮 , 푠 ) = 푠 퐮                                             (2.4) 

 

2.2.2 Convolutional block attention module 

 

Given an intermediate feature 퐅 ∈ ℝ × × 	as input, CBAM sequentially 

infers a 1D channel attention map M ∈ ℝ × ×  and a 2D spatial attention map 

퐌퐬 ∈ ℝ × × 	as illustrated in Fig. 1. The overall attention process can be 

summarized as:  

퐅 = 퐌퐜(퐅) ⊗ 퐅
퐅 = 퐌퐬(퐅 ) ⊗ 퐅                                            (2.5) 

 

where ⊗ denotes element-wise multiplication. During multiplication, the 

attention values are broadcasted (copied) accordingly: channel attention values are 

broadcasted along the spatial dimension, and vice versa. F'' is the final refined 

output. Fig. 2.12.1 depicts the computation process of each attention map. The 

following describes the details of each attention module. 



 

  

 
Fig. 2.6 Diagram of each attention sub-module. As illustrated, the channel sub-module 

utilizes both max-pooling outputs and average-pooling outputs with a shared network; the spatial 

sub-module utilizes similar two outputs that are pooled along the channel axis and forward them 

to a convolution layer. 

Channel attention module. We produce a channel attention map by 

exploiting the inter-channel relationship of features. As each channel of a feature 

map is considered as a feature detector, channel attention focuses on ‘what’ is 

meaningful given an input image. To compute the channel attention efficiently, we 

squeeze the spatial dimension of the input feature map. For aggregating spatial 

information, average-pooling has been commonly adopted so far. Zhou et al. 

suggest to use it to learn the extent of the target object effectively and Hu et al. 

adopt it in their attention module to compute spatial statistics. Beyond the previous 

works, we argue that max-pooling gathers another important clue about distinctive 

object features to infer finer channel-wise attention. Thus, we use both average-

pooled and max-pooled features simultaneously. We empirically confirmed that 

exploiting both features greatly improves representation power of networks rather 

than using each independently, showing the effectiveness of our design choice. We 

describe the detailed operation below. 

We first aggregate spatial information of a feature map by using both 

average pooling and max-pooling operations, generating two different spatial 

context descriptors: 퐅  and  퐅 , which denote average-pooled features and  



 

  

Fig. 2.7 CBAM integrated with a ResBlock in ResNet. This figure shows the exact 

position of our module when integrated within a ResBlock. We apply CBAM on the convolution 

outputs in each block. 

 

max-pooled features respectively. Both descriptors are then forwarded to a 

shared network to produce our channel attention map M ∈ ℝ × × . The shared 

network is composed of multi-layer perceptron (MLP) with one hidden layer. To 

reduce parameter overhead, the hidden activation size is set to ℝ / × × , where r is 

the reduction ratio. After the shared network is applied to each descriptor, we 

merge the output feature vectors using element-wise summation. In short, the 

channel attention is computed as: 

M (F) = 휎(푀퐿푃(퐴푣푔푃표표푙(퐅)) + 푀퐿푃(MaxPool	(퐅)))

= 휎 퐖 퐖 퐅퐜 +퐖 퐖 (퐅퐜 )                      (2.6) 

where 휎 denotes the sigmoid function, 퐖 ∈ ℝ / × , and	퐖 ∈ ℝ × / . 

Note that the MLP weights, W0 and W1, are shared for both inputs and the ReLU 

activation function is followed by W0. 

Spatial attention module. We generate a spatial attention map by utilizing 

the inter-spatial relationship of features. Different from the channel attention, the 

spatial attention focuses on ‘where’ is an informative part, which is complementary 

to the channel attention. To compute the spatial attention, we first apply average-

pooling and max-pooling operations along the channel axis and concatenate them 

to generate an efficient feature descriptor. Applying pooling operations along the 

channel axis is shown to be effective in highlighting informative regions [33]. On 

the concatenated feature descriptor, we apply a convolution layer to generate a 



 

  

spatial attention map 퐌퐬(퐅) ∈ 퐑 ×  which encodes where to emphasize or 

suppress. We describe the detailed operation below. 

 We aggregate channel information of a feature map by using two 

pooling operations, generating two 2D maps: 퐅 	 ∈ ℝ × × 	and	퐅 ∈

ℝ × × . Each denotes average-pooled features and max-pooled features across 

the channel. Those are then concatenated and convolved by a standard convolution 

layer, producing our 2D spatial attention map. In short, the spatial attention is 

computed as: 

퐌퐬(퐅) = 휎 푓 × ([퐴푣푔푃 (퐅);푀푎푥푃 (퐅)])

= 휎 푓 × 퐅퐚퐯퐠퐬 ; 퐅퐬
															          (2.7) 

where 휎 denotes the sigmoid function and 푓 ×  represents a convolution 

operation with the filter size of 7 x 7.  

Arrangement of attention modules. Given an input image, two attention 

modules, channel and spatial, compute complementary attention, focusing on 

‘what’ and ‘where’ respectively. Considering this, two modules can be placed in a 

parallel or sequential manner. We found that the sequential arrangement gives a 

better result than a parallel arrangement. For the arrangement of the sequential 

process, our experimental result shows that the channel-first order is slightly better 

than the spatial-first. 

 

2.2.3   PolyNet. PolyInception Module 

 

We develop a new family of building blocks called PolyInception modules, 

which generalize the Inception residual units [25] via various forms of polynomial 

compositions. This new design not only encourages the structural diversity but also 

enhances the expressive power of the residual components. 

To begin with, we first revisit the basic design of a residual unit. Each unit 

comprises two paths from input to output, namely, an identity path and a residual 

block. The former preserves the input while the latter turns the input into residues  



 

  

Fig. 2.8 Left: residual unit of ResNet, Middle: type-B Inception residual unit, Right: 

abstract residual unit structure where the residual block is denoted by F. 

 

via nonlinear transforms. The results of these two paths are added together at the 

output end of the unit, as 

(퐼 + 퐹) ⋅ 퐱 = 퐱 + 퐹 ⋅ 퐱:= 퐱 + 퐹(퐱)         (2.8) 

This formula represents the computation with operator notations: x denotes 

the input, I the identity operator, and F the nonlinear transform carried out by the 

residual block, which can also be considered as an operator. Moreover, F · x 

indicates result of the operator F acting on x. When F is implemented by an 

Inception block, the entire unit becomes an Inception residual unit as shown in Fig. 

3. In standard formulations, including ResNet [9] and InceptionResNet [19], there 

is a common issue – the residual block is very shallow, containing only 2 to 4 

convolutional layers. This restricts the capacity of each unit, and as a result, it 

needs to take a large number of units to build up the overall expressive power. 

Whereas several variants have been proposed to enhance the residual units [1, 28, 

34], the improvement, however, remains limited. [15] 

Driven by the pursuit of structural diversity, we study an alternative 

approach, that is, to generalize the additive combination of operators in Eq. (1) to 

polynomial compositions. For example, a natural extension of Eq. (1) along this 

line is to simply add a second-order term, which would result in a new 

computation unit as 



 

  

Fig. 2.9 List of PolyNet structures 

 

(퐼 + 퐹 + 퐹 ) ⋅ 퐱: = 퐱 + 퐹(퐱) + 퐹(퐹(퐱))                (2.9) 

The corresponding architecture is shown in Fig. 4 (a). This unit comprises 

three paths, namely, an identity path, a firstorder path that contains one Inception 

block, and a second order path that contains two. The signals resulted from these 

paths will be summed together at the output end, before the ReLU layer. Here, the 

second-order path allows the input signal to go through deeper transformations 

before being merged back to the main path. This can considerably increase the 

expressive power of the unit. 

It is noteworthy that along both the first-order and second-order paths, the 

outputs of the first Inception block are the same, that is, F(x). Taking advantage of 

this observation, we can reduce the architecture in Fig. 4 (a) to a cascaded form as 

shown in Fig. 4 (b). These two forms are mathematically equivalent; however, the 

computational cost of the latter is only 2/3 of the former. 

Note that the cascaded form can be reflected by an algebraic rewriting as I + 

(I +F)F. As such an extension embodies a polynomial composition of the Inception 

blocks, we call it a PolyInception module. The maximum number of Inception 

blocks along a path is referred to as the order of the module. 

Figure 4 illustrates several PolyInception modules which differ in how the 

Inception blocks are composed and whether they share parameters. For 



 

  

convenience, we refer to them as poly-2, mpoly-2, and 2-way respectively. The 

following discussion compares their characteristics. 

• poly-2: I + F + F2. This unit contains two Inception blocks, both denoted 

by F. This is a notational convention indicating that they share parameters. This 

design can increase the representation power without introducing additional 

parameters. 

• mpoly-2: I + F + GF. The structure of this design is similar to poly-2, 

except that the two Inception blocks do not share parameters. Similar to poly-2, the 

computation of the first layer along both 1st- and 2nd-order paths can be shared 

(both denoted by F), and thus it can also be reduced into an equivalent cascaded 

form (I+(I+G)F), as shown in Fig. 4 (c). Compare to poly-2, it possesses stronger 

expressive power. At the same time, however, the parameter size also doubles. 

 • 2-way: I + F + G. This is a first-order PolyInception, with an extra first-

order path incorporated into the unit. This construction is similar to the building 

blocks used in the Multiple Residual Network [1].  

These exemplar designs can be further extended based on the relations 

between operator polynomials and network architectures. For instance, poly-2 and 

mpoly-2 can be extended to higher-order PolyInception modules, namely, poly-3 (I 

+ F + F2 + F3) and mpoly-3 (I+F +GF +HGF). Compared to their 2nd-order 

counterparts, the extended versions have greater expressive power, but also incur 

increased computational cost. Similarly, 2-way can also be extended to 3-way. 

 

2.2.4 ResNeXt block 

 

We adopt a highly modularized design following VGG/ResNets. Our 

network consists of a stack of residual blocks. These blocks have the same 

topology, and are subject to two simple rules inspired by VGG/ResNets: (i) if 

producing spatial maps of the same size, the blocks share the same hyper-

parameters (width and filter sizes), and (ii) each time when the spatial map is 

downsampled by a factor of 2, the width of the blocks is multiplied by a factor of  



 

  

Fig. 2.10 Left: A block of ResNet, Right: a block of ResNeXt with cardinality = 32, with 

roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels) 
2. The second rule ensures that the computational complexity, in terms of FLOPs 

(floating-point operations, in # of multiply-adds), is roughly the same for all 

blocks.  

With these two rules, we only need to design a template module, and all 

modules in a network can be determined accordingly. So these two rules greatly 

narrow down the design space and allow us to focus on a few key factors.  

Revisiting Simple Neurons. The simplest neurons in artificial neural networks 

perform inner product (weighted sum), which is the elementary transformation 

done by fully-connected and convolutional layers. Inner product can be thought of 

as a form of aggregating transformation: 

∑   푤 푥                 (2.9) 

where x = [x1, x2, ..., xD] is a D-channel input vector to the neuron and wi 

is a filter’s weight for the i-th channel. This operation (usually including some 

output nonlinearity) is referred to as a “neuron”. See Fig. 2.  

The above operation can be recast as a combination of splitting, transforming, 

and aggregating.  

Splitting: the vector x is sliced as a low-dimensional embedding, and in the 

above, it is a single-dimension subspace xi.  

Transforming: the low-dimensional representation is transformed, and in the 

above, it is simply scaled: wixi.  



 

  

Aggregating: the transformations in all embeddings are aggregated by	∑  .  

Aggregated Transformations. Given the above analysis of a simple neuron, 

we consider replacing the elementary transformation (wixi) with a more generic 

function, which in itself can also be a network. In contrast to “Network-in-

Network” [26] that turns out to increase the dimension of depth, we show that our 

“Network-in-Neuron” expands along a new dimension. Formally, we present 

aggregated transformations as: 

ℱ(퐱) = ∑   풯(퐱)                           (2.10) 

where 풯  (x) can be an arbitrary function. Analogous to a simple neuron, 

풯	should project x into an (optionally lowdimensional) embedding and then 

transform it. In Eqn.(2.10), C is the size of the set of transformations to be 

aggregated. We refer to C as cardinality [2]. In Eqn.(2.10) C is in a position similar 

to D in Eqn.(1), but C need not equal D and can be an arbitrary number. While the 

dimension of width is related to the number of simple transformations (inner 

product), we argue that the dimension of cardinality controls the number of more 

complex transformations. We show by experiments that cardinality is an essential 

dimension and can be more effective than the dimensions of width and depth.  

In this paper, we consider a simple way of designing the transformation 

functions: all 풯’s have the same topology. This extends the VGG-style strategy of 

repeating layers of the same shape, which is helpful for isolating a few factors and 

extending to any large number of transformations. We set the individual 

transformation 풯  to be the bottleneckshaped architecture [14], as illustrated in Fig. 

1 (right). In this case, the first 1×1 layer in each 풯  produces the lowdimensional 

embedding. 

The aggregated transformation in Eqn.(2) serves as the residual function [14] 

(Fig. 1 right): 

퐲 = 퐱 + ∑   풯(퐱)               (2.11) 

where y is the output. 

 



 

  

Fig. 2.11 Equivalent building blocks of ResNeXt. (a): Aggregated residual 

transformations, the same as Fig. 1 right. (b): A block equivalent to (a), implemented as early 

concatenation. (c): A block equivalent to (a,b), implemented as grouped convolutions [24]. 

Notations in bold text highlight the reformulation changes. A layer is denoted as (# input 

channels, filter size, # output channels). 

 

Relation to Inception-ResNet. Some tensor manipulations show that the 

module in Fig. 1(right) (also shown in Fig. 3(a)) is equivalent to Fig. 2.11(b).3 Fig. 

3(b) appears similar to the Inception-ResNet [14] block in that it involves 

branching and concatenating in the residual function. But unlike all Inception or 

Inception-ResNet modules, we share the same topology among the multiple paths. 

Our module requires minimal extra effort designing each path.  

Relation to Grouped Convolutions. The above module becomes more 

succinct using the notation of grouped convolutions [24].4 This reformulation is 

illustrated in Fig. 3(c). All the low-dimensional embeddings (the first 1×1 layers) 

can be replaced by a single, wider layer (e.g., 1×1, 128-d in Fig 3(c)). Splitting is 

essentially done by the grouped convolutional layer when it divides its input 

channels into groups. The grouped convolutional layer in Fig. 3(c) performs 32 

groups of convolutions whose input and output channels are 4-dimensional. The 

grouped convolutional layer concatenates them as the outputs of the layer. The 

block in Fig. 3(c) looks like the original bottleneck residual block in Fig. 1(left), 

except that Fig. 3(c) is a wider but sparsely connected module. 

 

 

 



 

  

2.2.5 Attention Module (Residual Attention Neural Network) 

 

Our Residual Attention Network is constructed by stacking multiple 

Attention Modules. Each Attention Module is divided into two branches: mask 

branch and trunk branch. The trunk branch performs feature processing and can be 

adapted to any state-of-the-art network structures. In this work, we use pre-

activation Residual Unit, ResNeXt and Inception as our Residual Attention 

Networks basic unit to construct Attention Module. Given trunk branch output 

T(x) with input x, the mask branch uses bottom-up top-down structure [5] to learn 

same size mask M(x) that softly weight output features T(x). The bottom-up top-

down structure mimics the fast feedforward and feedback attention process. The 

output mask is used as control gates for neurons of trunk branch similar to 

Highway Network [29]. The output of Attention Module H is: 

퐻 , (푥) = 푀 , (푥) ∗ 푇 , (푥)																																															(2.12) 

where i ranges over all spatial positions and c ∈ {1, ..., C} is the index of the 

channel. The whole structure can be trained end-to-end. 

In Attention Modules, the attention mask can not only serve as a feature 

selector during forward inference, but also as a gradient update filter during back 

propagation. In the soft mask branch, the gradient of mask for input feature is: 

∂푀(푥, 휃)푇(푥, 휙)
∂휙

= 푀(푥, 휃)
∂푇(푥, 휙)
∂휙

																											(2.13) 

where the θ are the mask branch parameters and the φ are the trunk branch 

parameters. This property makes Attention Modules robust to noisy labels. Mask 

branches can prevent wrong gradients (from noisy labels) to update trunk 

parameters. Experiment in Sec.4.1 shows the robustness of our Residual Attention 

Network against noisy labels.  

Instead of stacking Attention Modules in our design, a simple approach 

would be using a single network branch to generate soft weight mask, similar to 

spatial transformer layer [17]. However, these methods have several drawbacks on  



 

  

Fig. 2.13 Example architecture of the proposed network for ImageNet. We use three 

hyper-parameters for the design of Attention Module: p, t and r. The hyper-parameter p denotes 

the number of pre-processing Residual Units before splitting into trunk branch and mask branch. 

t denotes the number of Residual Units in trunk branch. r denotes the number of Residual Units 

between adjacent pooling layer in the mask branch. In our experiments, we use the following 

hyper-parameters setting: {p = 1, t = 2, r = 1}. The number of channels in the soft mask Residual 

Unit and corresponding trunk branches is the same. 
challenging datasets such as ImageNet. First, images with clutter background, 

complex scenes, and large appearance variations need to be modeled by different 

types of attentions. In this case, features from different layers need to be modeled 

by different attention masks. Using a single mask branch would require 

exponential number of channels to capture all combinations of different factors. 

Second, a single Attention Module only modify the features once. If the 

modification fails on some parts of the image, the following network modules do 

not get a second chance.  

The Residual Attention Network alleviates above problems. In Attention 

Module, each trunk branch has its own mask branch to learn attention that is 

specialized for its features. As shown in Fig.1, in hot air balloon images, blue color 

features from bottom layer have corresponding sky mask to eliminate background, 

while part features from top layer are refined by balloon instance mask. Besides, 

the incremental nature of stacked network structure can gradually refine attention 

for complex images. 

However, naive stacking Attention Modules leads to the obvious 

performance drop. First, dot production with mask range from zero to one 



 

  

repeatedly will degrade the value of features in deep layers. Second, soft mask can 

potentially break good property of trunk branch, for example, the identical 

mapping of Residual Unit.  

We propose attention residual learning to ease the above problems. Similar 

to ideas in residual learning, if soft mask unit can be constructed as identical 

mapping, the performances should be no worse than its counterpart without 

attention. Thus we modify output H of Attention Module as 

퐻 , (푥) = 1 +푀 , (푥) ∗ 퐹 , (푥)																																	(2.14) 

M(x) ranges from [0, 1], with M(x) approximating 0, H(x) will approximate 

original features F(x). We call this method attention residual learning. Our stacked 

attention residual learning is different from residual learning. In the origin ResNet, 

residual learning is formulated as Hi,c(x) = x+Fi,c(x), where Fi,c(x) approximates the 

residual function. In our formulation, Fi,c(x) indicates the features generated by 

deep convolutional networks. The key lies on our mask branches M(x). They work 

as feature selectors which enhance good features and suppress noises from trunk 

features. 

In addition, stacking Attention Modules backs up attention residual learning 

by its incremental nature. Attention residual learning can keep good properties of 

original features, but also gives them the ability to bypass soft mask branch and 

forward to top layers to weaken mask branch’s feature selection ability. Stacked 

Attention Modules can gradually refine the feature maps. 
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3. STRUCTURAL PARAMETRIC SYNTHESIS OF 

CONVOLUTIONAL NEURAL NETWORK 

 

3.1 Problem definition of structural parametric synthesis 

 

In the terms of structural parametric synthesis, it’s necessary to solve the 

problem of generating the convolutional neural network structure, configuration of 

the networks parameters, training process and its practical implementation.  In the 

previous chapter there were presented the CNN blocks and architectures which will 

be used and the base in our structural parametric synthesis algorithm.  

The problem definition can be described as follows: complete set is specified 

퐽 = 푅 , 푌 푗 = 1, … , 푃 pairs of type "attribute-value", where 푅 , 푌  input and output 

vector of neural network, respectively. 

It is necessary to synthesize such an optimal CNN on the basis of a training 

sample J, which would provide an effective solution to the applied problem 

(classification, approximation, prediction). The vector optimality criterion is 

defined as 

퐈 = {퐼 (푥), 퐼 (푥)} →  opt                                          (3.1) 

where 퐼 (푥) = 퐸yar (푥) generalization error, which determines the magnitude 

of the error of solving the problem in the test sample; 퐼 (푥) = 푆(푥) is the neural 

network complexity (number of interneural connections); X is a vector of 

significant parameters. 

 While the choosing the suitable neural network structure the following 

parameters should be counted:  

- List of blocks used in CNN; 

- Network depth; 



 

  

- Number of blocks; 

- GFLOPs value at training the neural network; 

- Difficulty of input data set preparation. 

After confirming the architecture the parametric synthesis should be done. 

There’re such coefficients that should be configure: 

- Convolution layer: numbers of feature maps, stride size, filter 

size. 

- Pooling layer: kernel filter size, aggregation function. 

- FC Layer: number of FC layers, layers size, encoder type. 

- Reduction ratio, etc; 

Finally to train and test the received network we need to prepare the input 

data set full of images that should require few requirements. Also, the program 

implementation of the CNN should process and apply such random 

transformations as:  

- Random mirror; 

- Random crop; 

- Aspect ratio; 

- Random rotation; 

- Pixel Jitter; 

 

 

3.2 Structural synthesis of convolutional neural network 

 

 Structural synthesis is the algorithm of generating the suitable 

structure of CNN. The one of many approaches is genetic algorithm shown below. 

The idea is generate the number of different architectures by putting the random 

blocks in each stage and then by means of testing choose few with the best 

performance. 

 



 

  

 

 

Fig. 3.1 Representation on genetic algorithm on the example of two stage network  
 

Then we shuffle this architecture parts with a lot of different variations, 

testing them and again choosing ones with best performance. By doing this 

operations over and over we’ll get the most suitable architecture. 

In this work I’m proposing to use the genetic algorithms to generate the 

convolutional neural network architecture using the following CNN building 

blocks presented in Chapter 2: 

- Squeeze and Excitation block based on ResNet module; 

- Squeeze and Excitation block based on PolyInception module; 

- Densely connected block; 

- Convolutional block attention module; 

- Residual attention module; 

- ResNeXt block; 

- and common convolutional layer, fully connected layer, etc. 

The some requirements to the blocks to be able connected within each other.  

While connecting two random blocks the important role takes the coincidence of 

output data depth or dimensionality of first one and the convolutional filters depth 



 

  

of the second ones. The block should be able to process that type of data that 

expected to come from layer before. 

Now we can dive into the genetic algorithm implementation. We provide a 

binary string representation for a network structure in a constrained case. Note that 

many state-of-the-art network structures can be partitioned into several stages. In 

each stage, the geometric dimensions (width, height and depth) of the layer cube 

remain unchanged. Neighboring stages are connected via a spatial pooling 

operation, which may change the spatial resolution. All the convolutional 

operations within one stage have the same number of filters, or channels. [16] 

We borrow this idea to define a family of networks which can be encoded 

into fixed-length binary strings. A network is composed of S stages, and the s-th 

stage, s = 1,2,…,S, contains Ks nodes, denoted by vs,ks , ks = 1, 2,…,Ks. The nodes 

within each stage are ordered, and we only allow connections from a lower-

numbered node to a highernumbered node. Each node corresponds to a 

convolutional operation, which takes place after element-wise summing up all its 

input nodes (lower-numbered nodes that are connected to it). After convolution, 

batch normalization and ReLU are followed, which are verified efficient in training 

very deep neural networks. We do not encode the fully-connected part of a 

network. 

In each stage, we use 1 + 2 + … + (Ks - 1) = ½ Ks (Ks - 1) bits to encode the 

inter-node connections. The first bit represents the connection between (vs,1, vs,2), 

then the following two bits represent the connection between (vs,1, vs,3) and (vs,2, 

vs,3), etc. This process continues until the last Ks - 1 bits are used to represent the 

connection between vs,1, vs,2,…, vs,Ks - 1 and vs,Ks. For 1 < i < j < Ks, if the code 

corresponding to (vs,i; vs,j) is 1, there is an edge connecting vs,i and vs,j , i.e., vs,j takes 

the output of vs,i as a part of the element-wise summation, and vice versa. 

Figure 2.4.1 illustrates two examples of network encoding. To summarize, a 

S-stage network with Ks nodes at the s-th stage is encoded into a binary string with 

length		퐿 = 1
2∑  푠 퐾푠(퐾푠− 1). Equivalently, there are in total 2L possible network 



 

  

structures. This number may be very large. In the CIFAR10 experiments (see 

Section 4.2), we have S = 3 and (K1, K2, K3) = (3, 4, 5), therefore L = 19 and 2L = 

524;288. It is computationally intractable to enumerate all these structures and find 

the optimal one(s).  

The genetic algorithm process for neural network can be divided into 

following steps: 

1. Input: the reference dataset D, the number of generations T, the 

number of individuals in each generation N, the mutation and crossover 

probabilities pM and pC, the mutation parameter qM, and the crossover 

parameter qC. 

2.  Initialization: generating a set of randomized individuals 필 , , 

and computing their recognition accuracies. 

3. for t = 1, 2, …, T do: 

 

 

 
Fig. 3.2 Representation of allele, gene, chromosome, genotype and phenotype 

adapted from 



 

  

a. Selection: producing a new generation 필 , with a Russian 

roulette process on 필 , . 

b. Crossover: for each pair 필 , ,필 ,
⌊ / ⌋

, performing 

crossover with probability pC and parameter qC. 

c. Mutation: for each non-crossover individual 필 , , doing 

mutation with probability pM and parameter qM. 

d.  Evaluation: computing the recognition accuracy for each new 

individual 필 , . 

4. End for. 

5. Output: a set of individuals in the final generation 필 ,  with 

their recognition accuracies. 

Basic instructions for building GAform a gene (bit strings of arbitrary 

length). A sequence of genes is called a chromosome. Possible solution to a 

problem may be described by genes without really being the answer to the 

problem. The smallest unit in chromosomes is called an allele represented by a 

single symbol or binary bit. A phenotype gives an external description of the 

individual whereas a genotype is deposited information in a chromosome as 

presented in Figure 1. Where F1, F2, F3, F4. . .Fn and G1, G2, G3, G4 . . .Gn are 

factors and genes, respectively. 

 Individuals in a group form a population. The fitness of each individual in 

the population is evaluated. Individuals with higher fitness produce more offspring 

than those with lower fitness. Individuals and certain information about the search 

space are defined by phenotype parameters. 

The initial population and population size (pop size) are the two major 

population features in GA. The population size is usually determined by the nature 



 

  

of the problem and is initially generated randomly, referred to as population 

initialization 

Crossover. This is a randomly pointed locus in an encoded bit string and the 

exact number of bits before and after the pointed locus are fragmented and 

exchanged between the chromosomes of the parents. The offspring are formed by 

combining fragments of the parents’ bit strings. For all offspring to be a product of 

crossover, the crossover probability (pc) must be 100% but if the probability is 0%, 

the chromosome of the present offspring will be the exact replica of the old 

generation. 

The reason for crossovers is the reproduction of better chromosomes 

containing the good parts of the old chromosomes as depicted in Figure 2. Survival 

of some segment of the old population into the next generation is allowed by the 

selection process in crossovers. Other crossover algorithms include: two point, 

multi-point, uniform, three parent, and crossover with reduced surrogate, among 

others. Single point crossover is considered superior because it does not destroy 

the building blocks while additional points reduce the Gas performance.  

Mutation. This is the creation of offspring from a single parent by inverting 

one or more randomly selected bits in the chromosomes of the parent as shown in 

Figure 3.3. Mutation can be achieved on any bit with a small probability, for 

Fig. 3.3 Mutation (single point) 



 

  

instance 0.001. Strings resulting from the crossover are mutated in order to avoid a 

local minimum. Genetic materials that may be lost in the process of crossover and 

the distortion of genetic information are fixed through mutation. Mutation 

probability (pm) is responsible for determining how frequent will be the section of 

chromosome subjected to mutation. Thus, the decision to mutate a section of the 

chromosome depends on the pm. 

If mutation is not applied, the offspring are generated immediately from 

crossover without any part of the chromosomes being tempered. A 100% 

probability of mutation means the entire chromosome will be changed but if the 

probability is 0%, it indicates none of the chromosome parts will be distorted. 

Mutation prevents GA from being trapped in the local maximum. 

Figure 3.3 shows mutation for a binary representation.  

When a problem is given as an input, the fundamental idea of GA is that the 

pool of genetics specifically contains the population with a potential solution or 

better solution to the problem. GA use the principle of genetics and evolution to 

recurrently modify a population of artificial structures through the use of operators, 

including initialization, selection, crossover and mutation, in order to obtain an 

optimum solution. Normally, GA start with a randomly generated initial population 

represented by chromosomes. Solutions derived from one population are taken and 

used to form the next generation population. This is carried out with the 

expectation that solutions in a new population are better than those in the old 

population. 

The solution used to generate the next solution is selected based on its 

fitness value; solutions with a higher fitness value have higher chances of being 

selected for reproduction, while solutions with lower fitness values have a lower 

chance of being selected for reproduction. This evolution process is repeated 

several times until a set criterion for termination is satisfied. For instance, the 

criterion could be the number in the population or the satisfaction of the 

improvement of the best solutions. 



 

  

The problem in NN design is deciding the optimum configurations to solve a 

problem in a specific domain. The choice of NN topology is considered a very 

important aspect since inefficient NN topology will cause the NN to fall into a 

local minima (local minima is a poor weight that pretends to be the best, through 

which back-propagation training algorithms can be deceived from reaching the 

optimal solution). The problem of deciding suitable architectural configurations 

and optimum NN weights is a complex task in the area of NN design. Parameter 

settings and the NN architecture affect the effectiveness of the BPNN as 

mentionedearlier. The optimum number of layers and neurons in the hidden 

whereas there is no clear theory for choosing the appropriate parameter setting. GA 

have been widely used in different problem domains for automatic NN-topology 

design, in order to deviate from problems attributed to its design, so as to improve 

its performance and reliability. [12] 

The NN topology, constitutes the learning rate, number of epochs, 

momentum, number of hidden layers, number of neurons; (input neurons and 

output neurons), error rate, partition ratio of training, validation and testing data 

sets. In the case of RBFN, finding the center and width in the hidden layer and the 

connection weights from the hidden to the output layer. The GA is applied to 

optimize the topology of an NN and applied it to model the spatial interaction data. 

GA is used to obtain the optimum configuration of the NN topology. Then, he 

successfully used his model to predict the rate of nitride oxidization. GA is used to 

obtain the optimum topology of the BPNN and developed a model for estimating 

the cost of building construction. Optimizing subsets of features, number of time 

delays and TDNN topology based on a GA search. A TDNN model was built to 

detect a temporal pattern in stock markets. By repeating a similar study using an 

ATDNN and a GA was used to optimize the number of time delays and the 

ATDNN topology. The result obtained with the ATDNN model was superior to 

that of the TDNN. A fault detection system was designed using an NN in which its 

topology was optimized based on a GA search.  

 



 

  

 
Fig. 3.4 Randomly generated CNN architectures using the genetic algorithm and special blocks 



 

  

Fig. 3.5 SE CNN architecture as the presentation of generating the different 

numbers of convolutional and other layers by means of genetic algorithm 

The structure of following network can be divided into seven different 

blocks. At the beginning of the flow placed the simple convolutional layer sized by 

7x7 with the stride length of 2. This layer will learn 64 filters as it’s early placed 

layer. Then there follows the 3x3 pooling layer that performs the max pool 

operation on the convolution output. 

On the figure 3.4 presented four randomly generated CNN architectures 

using the block from the presented before list of neural networks and generic 

algorithm for structural synthesis.  

On the figure 3.5 presented the structure received from genetic algorithm 

which shows not the relationships and random block generation as on figure 3.4 

but the generating the different numbers of different layers and their base internal 



 

  

configuration values. There, after the first pooling layer are placed three of the 

specific SE-ResNet blocks with following parameters:  

- [Convolutional, 1x1, 64 filters; Convolutional, 3x3, 64 filters; 

Convolutional, 1x1, 256 filters; Fully-Connected 16, 256]. The output 

will be 56x56 pixels.  

Then there four of:  

- [Convolutional, 1x1, 128 filters; Convolutional, 3x3, 128 filters; 

Convolutional, 1x1, 512 filters; Fully-Connected 32, 512]. Output will be 

28 x 28 pixels.  

Now six of:  

- [Convolutional, 1x1, 256 filters; Convolutional, 3x3, 256 filters; 

Convolutional, 1x1, 1024 filters; Fully-Connected 64, 1024]. Output will 

be 14x14 pixels.  

Then three of:  

- [Convolutional, 1x1, 512 filters; Convolutional, 3x3, 512 filters; 

Convolutional, 1x1, 2048 filters; Fully-Connected 128, 2048].  

Finally, resulting data appears on global average pooling layer, fully-

connected layer and softmax function.  
 

3.3 Parametric synthesis of convolutional neural network 

 

Parametric synthesis is the approach of configuring the convolutional neural 

network to achieve the best possible performance. The parameters list that should 

be configured can be divided into two groups. Fist one is the local parameters of 

the convolution layers, pooling layers and other local values for the partials of the 

CNN building blocks. The second one is the global values such as learning rate, 

shifts, data noising, reduction ratio, etc. 

The local parameters group consists of: 



 

  

• Number of filters: It is also necessary to decide for each convolutional 

layer, the number of filters or neurons. This hyperparameter is crucial to allow the 

transmission of information to the deeper layers, as a too-small number of filters 

can lead to significant information loss in that particular layer. Again we must 

account for overfitting when augmenting this value. 

• Kernel size: Also for each convolutional layer, we must decide the size of 

the convolution or kernel. For consistency reasons, all the kernels in a layer are the 

same size, however, the optimal size is dependent on the problem and the structure 

of the rest of the network. This parameter is crucial to allow the network to learn 

the patterns in their corresponding scales. 

• Stride size: The shift size on which the filter moves by one step. 

• Also there: kernel filter size, aggregation function, convolution filter size, 

etc. 

Now, while knowing the parameters that should be configured, using the 

genetic algorithm we can configure our neural network. The genetic algorithm for 

CNN configuring looks like: 

Input: (max_gen, cross_prob, mutation_prob, max_pop, conv_parameters) 

1. generation <- 0 

2. Population <- Generate initial population from input parameters 

3. while generation < max_gen do 

a. for individual in population do 

i. individual.accuracy <- obtain validation accuracy value from 

training network define by individual’s chromosome and 

conv_parameters 

b.  end for 

c. Calculate each individual fitness from population 

d. elite ← Get individual with best fitness from population 

e. children_list ← Empty list 



 

  

f. next_pop ← Empty list 

g. for individuals in population do 

i. if Random([0,1]) ≤ cross_prob then 

1. Choose parent1 and parent2 from population using 

proportional roulette wheel selection. 

2. if generation/max_gen < Random([0,1]) then 

a. child1, child2 ← Cross parent1 and parent2 

sequentially 

3. else 

a. child1, child2 ← Cross parent1 and parent2 

with binary list 

4. end if  

5. Add child1 and child2 to children_list 

ii. End if 

iii. if generation < max_gen/2 then 

1. next_pop ← apply mutation to children_list with 

probability mutation_prob 

iv. else 

1. survivors ← Select a fraction of survivors from 

population, according to fitness 

2. Add survivors, children_list and elite to next_pop 

3. next_pop ← apply mutation to next_pop with 

probability mutation_prob 

v. end if 

vi. Fill next_pop with random individuals or delete random 

individuals until max_pop total individuals 

vii. if elite not in next_pop then 

1. Replace random individual from next_pop with elite 

viii. End if 

ix. population ← next_population 



 

  

x. generation ← generation +1 

h. end for 

4. end while 

5. Train population and return the elite 

While using such algorithm it is necessary to take view on the fitness 

evaluation and selection process. To calculate the fitness of an individual we must 

train it completely to measure its validation accuracy, as shown in line 7 of the 

algorithm. During the first half of the evolution process, we calculate the fitness of 

the individual proportionally to its validation accuracy. If we denote by Ai the 

validation accuracy of an individual i of the population P, its fitness fi can be 

computed by: 

푓 =
퐴

∑  ∈ 퐴
																				(3.2) 

As we can see, the fitness of an individual represents the fraction it 

contributes to the total accuracies accumulated in the whole population. While this 

approach easily differentiates individuals with poor performance from good 

models in early stages, after a few generations the differences between the best and 

the worst individual become smaller. Eventually, all individuals have a similar 

fitness value and the algorithms can no longer differentiate their performances. 

This is why after reaching the midpoint of evolution, we change the strategy to a 

rank-based one. To compute this fitness value, we must first rank all individuals 

according to their accuracies: the best individual will have a rank of 1, the second-

best a rank of 2 and so on. Now, if we denote by ri the rank of the individual i, we 

can compute its fitness by: 

푓 =
푛 + 1 − 푟

∑  ∈ 푛 + 1 − 푟
																	(3.3) 

where n is the number of individuals. This is equivalent to the previous fitness if 

we replace the validation accuracy by n + 1 − ri, a value that represents how good 

is the network compared to the rest of the population. 



 

  

During the evolution process, we use an elitist approach, as shown in line 30 

of the algorithm. Also, to maintain a constant number of individuals through the 

evolution process, we implement two different approaches. During the first half of 

evolution, the next generation is initialized with the best individual, the mutated 

individuals, and the children. Then, the desired population size is obtained by 

generating new random individuals. This means that the only individual that 

survives unaltered does so through elitism. This is done so to allow for a greater 

diversity during the first generations, introducing random individuals to each new 

generation. 

During the latter half of evolution, the elite and modified individuals 

(mutated and children) are also part of the next generation. However, to achieve 

the desired population size, individuals of the previous generation have a chance to 

survive to the next one, proportional to their fitness value. This allows some 

successful individuals from a generation to survive to the next one unchanged, 

intensifying the search process. 

Similarly to structural synthesis, we’ll use genetic algorithm to get the best 

values for these parameters. As the input data to genetic algorithm it is necessary to 

generate and randomly fill the number of byte arrays with the binary data. Each 

section of each following byte array will represent one of the values for neural 

networks configuration.  

Now, by using the presented algorithm we’ll receive our CNN configuration 

and we’re able to test it on our target image sample. 
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4. PRACTICAL IMPLEMENTATION OF STRUCTURAL 

PARAMETRIC SYNTHESIS AND RECEIVED NEURAL NETWORK BY 

MEANS OF PYTHON 

 

4.1 Choosing the python CNN implementation library 

 

In Python, you should be mindful so as to comprehend reactions. For 

instance, the cheap capacity to add a component to a rundown, in particular attach, 

changes the rundown. In a useful language like Lisp, adding another component to 

a rundown, without changing the first rundown, is a modest task. For instance if x 

is a rundown containing n components, adding an additional component to the 

rundown in Python (utilizing annex) is quick, yet it has the symptom of changing 

the rundown x. To develop another rundown that contains the components of x in 

addition to another component, without changing the estimation of x, involves 

replicating the rundown, or utilizing an alternate portrayal for records. In the 

looking through code, we will utilize an alternate portrayal for records 

consequently.  

The package list that can be used is following: 

• Scipy with Numpy 

• Matplotlib 

• Theano  

• Keras 

• TensorFlow 

• Sci-Kit Learn 

•   PyTorch 

• Caffe 



 

  

• Theano 

The detailed information about then can be founded in other sources. In this 

work the “Tensorflow” and “Keras” will be used. 

 

4.2 Preparing the image set data 

 

Before giving the information to the AI calculations we have to preprocess 

our graphical information.  

Pursue these means to preprocess the information in Python:  

Step 1: Importing the valuable bundles: If we are utilizing Python then this 

would be the initial step for changing over the information into a specific 

arrangement, i.e., preprocessing. It very well may be done as pursues: 

import numpy as np 

from sklearn import preprocessing 

Here we have utilized the accompanying two bundles:  

NumPy: Basically NumPy is a broadly useful cluster preparing bundle 

intended to productively control enormous multi-dimensional varieties of self-

assertive records without giving up a lot of speed for little multi-dimensional 

exhibits.  

Sklearn.preprocessing: This bundle gives numerous regular utility capacities 

and transformer classes to change crude component vectors into a portrayal that is 

increasingly appropriate for AI calculations.  

Step 2: Defining test information: After bringing in the bundles, we have to 

characterize some example information with the goal that we can apply 

preprocessing strategies on that information. We will currently characterize the 

accompanying example information: 

Input_data = np.array([2.1, -1.9, 5.5], 

[-1.5, 2.4, 3.5], 

[0.5, -7.9, 5.6], 

[5.9, 2.3, -5.8]]) 



 

  

Step 3: Applying preprocessing procedure: In this progression, we have to 

apply any of the preprocessing methods. The accompanying area depicts the 

information preprocessing methods. 

 

4.3 Genetic algorithm implementation 

 

These are only two dependencies for this program. This is as the neural 

network infrastructure implemented is a simple version that I created myself. To 

implement more complex networks, it can be imported “Keras” or “Tensorflow”. 

import random 

import numpy as np 

This is the creation of the class “genetic_algorithm” that holds all the 

functions that concerns the genetic algorithm and how it is supposed to function. 

The main function is the execute function, that takes pop_size, generations, 

threshold, X, y, network as parameters. pop_size is the size of the generated 

population, generations is the term for epochs, threshold is the loss value that you 

are satisfied with. X and y are for applications of genetic algorithms for labelled 

data. You can remove all instances of X and y for problems with no data or 

unlabelled data. Network is the network structure of the neural network. 

class genetic_algorithm:     

    def execute(pop_size,generations,threshold,X,y,network): 

        class Agent: 

            def __init__(self,network): 

  

This function creates the first population of agents that will be tested: 

def generate_agents(population, network): 

            return [Agent(network) for _ in range(population)] 

 



 

  

Fig. 4.1 This script describes the initialization of the weights and the propagation of the 

network for each agent’s neural network 

 

As the example that I am using utilizes labelled data. The fitness function is 

merely calculating the MSE or the cost function for the predictions. 

def fitness(agents,X,y): 

            for agent in agents: 

                yhat = agent.neural_network.propagate(X) 

                cost = (yhat - y)**2 

                agent.fitness = sum(cost) 

            return agents 

This function mimics the theory of selection in evolution: The best survive 

while the others are left to die. In this case, their data is forgotten and is not used 

again. 

def unflatten(flattened,shapes): 

            newarray = [] 

            index = 0 

            for shape in shapes: 

                size = np.product(shape) 



 

  

                newarray.append(flattened[index : index + 

size].reshape(shape)) 

                index += size 

            return newarray 

 

To execute the crossover and mutation functions, the weights need to be 

flattened and unflattened into the original shapes. The crossover function is one of 

the most complicated functions in the program. It generates two new “children” 

agents, whose weights that are replaced as a crossover of wo randomly generated 

parents. This is the process of creating the weights: 

- Flatten the weights of the parents 

- Generate two splitting points 

- Use the splitting points as indices to set the weights of the two children 

agents 

On the figure 4.2 presented the full process of the crossover of agents.  

 

Fig. 4.2 The process of crossover of agents at the crossover and mutation functions 



 

  

This is the mutation function. The flattening is the same as the crossover 

function. Instead of splitting the points, a random point is chosen, to be replaced 

with a random value. 

 

4.4 Convolutional neural network blocks implementation 

 

First of all, while implementing the constructive block of an CNN it is 

necessary to define the set of function input parameters. These parameters are 

mostly the same for all the building blocks of a convolutional neural network.  

The list of parameters is following: 

- initial_conv_filters: number of features for the initial convolution; 

- depth: number or layers in the each block, defined as a list. 

                ResNet-50  = [3, 4, 6, 3] 

                ResNet-101 = [3, 6, 23, 3] 

                ResNet-152 = [3, 8, 36, 3]; 

- filter: number of filters per block, defined as a list; 

- width: width multiplier for the network (for Wide ResNets); 

- bottleneck: adds a bottleneck conv to reduce computation; 

- weight_decay: weight decay (l2 norm); 

- include_top: whether to include the fully-connected layer at the top of the 

network; 

- weights: `None` (random initialization) or `imagenet` (trained on 

ImageNet); 

- input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use 

as image input for the model; 

- input_shape: optional shape tuple, only to be specified if `include_top` is 

False (otherwise the input shape has to be `(224, 224, 3)` (with `tf` dim 

ordering) or `(3, 224, 224)` (with `th` dim ordering). It should have 

exactly 3 inputs channels, and width and height should be no smaller than  

 



 

  

 

Fig. 4.3 The function of the SE-ResNet block  

 

On the example of the squeeze and excitation block based on residual module 

we can create relative function as it shown on figure 4.3. With the same approach 

we can modulate all the constructive blocks for our CNN implementation. 

 

4.4 Creating the whole convolutional neural network implementation 

 

A convolution duplicates a grid of pixels with a channel lattice or 'portion' 

and entireties up the increase esteems. At that point the convolution slides over to 

the following pixel and rehashes a similar procedure until all the picture pixels 

have been secured. [23] 

Stacking the information dataset acknowledged as following:  

from keras.datasets import mnist 

#download mnist data and split into train and test sets 

(X_train, y_train), (X_test, y_test) = mnist.load_data() 



 

  

Presently we should investigate one of the pictures in our dataset to perceive 

what we are really going after. We will plot the principal picture in our dataset and 

check its size utilizing the 'shape' work.  

import matplotlib.pyplot as plt 

#plot the first image in the dataset 

plt.imshow(X_train[0]) 

#check image shape 

X_train[0].shape 

 As a matter of course, the state of each picture in the mnist dataset is 28 x 

28, so we won't have to check the state of the considerable number of pictures. 

When utilizing genuine world datasets, you may not be so fortunate. 28 x 28 is 

likewise a genuinely little size, so the CNN will probably keep running over each 

picture before long.  

Next, we have to reshape our dataset inputs (X_train and X_test) to the 

shape that our model expects when we train the model. The main number is the 

quantity of pictures (60,000 for X_train and 10,000 for X_test). At that point 

comes the state of each picture (28x28). The last number is 1, which implies that 

the pictures are greyscale. 

  #reshape data to fit model 

X_train = X_train.reshape(60000,28,28,1) 

X_test = X_test.reshape(10000,28,28,1) 

We have to 'one-hot-encode' our objective variable. This implies a section 

will be made for each yield class and a double factor is inputted for every 

classification. For instance, we saw that the primary picture in the dataset is a 5. 

This implies the 6th number in our exhibit will have a 1 and the remainder of the 

cluster will be loaded up with 0.  

from keras.utils import to_categorical 

#one-hot encode target column 

y_train = to_categorical(y_train) 

y_test = to_categorical(y_test) 



 

  

y_train[0] 

Now we’re able to form the model. As an example it’s will be CNN with 

two convolutional layers. 

model.add(Conv2D(64, kernel_size=3, activation=’relu’, 

input_shape=(28,28,1))) 

model.add(Conv2D(32, kernel_size=3, activation=’relu’)) 

model.add(Flatten()) 

model.add(Dense(10, activation=’softmax’)) 

The model sort that we will utilize is Sequential. Successive is the most 

straightforward approach to assemble a model in Keras. It enables you to fabricate 

a model layer by layer. We utilize the 'include()' capacity to add layers to our 

model.  

Our initial 2 layers are Conv2D layers. These are convolution layers that will 

manage our information pictures, which are viewed as 2-dimensional frameworks. 

64 in the principal layer and 32 in the second layer are the quantity of hubs in each 

layer. This number can be changed in accordance with be higher or lower, 

contingent upon the extent of the dataset. For our situation, 64 and 32 function 

admirably, so we will stay with this until further notice.  

Portion size is the extent of the channel network for our convolution. So a 

portion size of 3 implies we will have a 3x3 channel framework. Allude back to the 

presentation and the main picture for an update on this.  

Enactment is the initiation work for the layer. The initiation work we will 

use for our initial 2 layers is the ReLU, or Rectified Linear Activation. This 

enactment capacity has been demonstrated to function admirably in neural systems.  

Our first layer additionally takes in an info shape. This is the state of each 

information picture, 28,28,1 as observed prior on, with the 1 connoting that the 

pictures are greyscale.  

In the middle of the Conv2D layers and the thick layer, there is a 'Level' 

layer. Smooth fills in as an association between the convolution and thick layers.  



 

  

'Thick' is the layer type we will use in for our yield layer. Thick is a standard 

layer type that is utilized much of the time for neural systems.  

We will have 10 hubs in our yield layer, one for every conceivable result (0–

9).  

The actuation is 'softmax'. Softmax causes the yield aggregate to up to 1 so 

the yield can be translated as probabilities. The model will at that point make its 

forecast dependent on which choice has the most elevated likelihood. 

The streamlining agent controls the learning rate. We will utilize 'adam' as 

our optimizer. Adam is commonly a decent enhancer to use for some cases. The 

adam enhancer alters the learning rate all through preparing.  

The learning rate decides how quick the ideal loads for the model are 

determined. A littler learning rate may prompt increasingly exact loads (up to a 

specific point), yet the time it takes to register the loads will be longer.  

We will utilize 'categorical_crossentropy' for our misfortune work. This is 

the most well-known decision for characterization. A lower score demonstrates 

that the model is performing better. To make things much simpler to translate, we 

will utilize the 'exactness' metric to see the precision score on the approval set 

when we train the model.  

#compile model using accuracy to measure model performance 

model.compile(optimizer='adam', loss='categorical_crossentropy', 

metrics=['accuracy']) 

Presently we will prepare our model. To prepare, we will utilize the 'fit()' 

work on our model with the accompanying parameters: preparing information 

(train_X), target information (train_y), approval information, and the quantity of 

ages.  

For our approval information, we will utilize the test set gave to us in our 

dataset, which we have part into x_test and y_test.  

The quantity of ages is the occasions the model will push through the 

information. The more ages we run, the more the model will improve, up to a 



 

  

specific point. After that point, the model will quit improving during every age. 

For our model, we will set the quantity of ages to 3. 
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CHAPTER 5 

Occupation Safety 
 

5.1  Analysis of harmful and dangerous production factors 

 

The worker that performs with the convolutional neural network (CNN) can 

performs his responsibilities at following working place. The working place is the 

room of 1 – 12 working places. The room sizing ranges from six square meters and 

additionally 4.5 square meters per person.  There at least one window for natural 

lighting and manual air conditioning, the ceiling lamps of day lighting for at least 

200lx and quartz lamps for disinfection.  

For an air conditioning there the common complex system with the 

regulatory air exchanges ratio (60 square meters per hour for one person at the 

working place), the functions of filtering the air flow from dust and large particles 

without external noises and controlling of air temperature. The standard 

temperature value kept by system is 20-25C that relay of list of factors such as 

humidity, air exchange ratio etc.  

The working place supplied with the one of computer devices such as 

personal computer, mono-integrated computing system, laptop, etc. Also, there are 

two IPS computer monitors, printer, scanner and tabletop lamp. Besides of exact 

working place in the office room placed coffee machine, microwave and manual 

heater.  

The list of dangerous factors which can impact on worker:  

 Increased or decreased air temperature of the working area 

(without air conditioning or heat systems – 8 – 32C); 

 Lack or absence of natural light; 



 

  

 Insufficient lighting of the working area; 

 High or low humidity; 

 Increased or decreased air mobility (without air conditioning 

system is 55 square meters on whole working place); 

 Sensitizing (Eyes influence, to make the rest for each 1.5 hours 

of active working with 10 minutes of the rest); 

 Neuropsychiatric overload – monotony of work; 

 Neuropsychiatric overload – emotional overload. 

Therefore, the main dangerous factors are interconnected with the 

working process with the computers (computer monitor) and the specific of the 

tasks that cause its monotony and emotional overload. To prevent this it’s 

necessary to responsively approach the work, regularly take breaks and perform 

special praxis. 
 

 

5.2  Measures to reduce the impact of harmful and dangerous 

production factors 

 

One of the main factors is the lack or absence of natural light and 

insufficient lighting of the working area. To prevent this it’s necessary to check 

and calculate the lighting intensity in the room, what light sources should be 

applied and at what relative placing. 

In our work process there no low-sized objects so it will be enough 150-

200 lux of lighting intensity. Also it’s necessary to prevent the lighting contrast 

between working area lighting and whole room (not more than 25%). 

Lighting is calculated for a room with an area of 18 m2, the width of 

which is 6m, and the height is 3m. The number of fixtures is determined by the 

luminous flux method. For this, the luminous flux F incident on the surface is 

determined:  



 

  

퐹 =
퐸 ⋅ 퐾 ⋅ 푆 ⋅ 푍

푛
																																			(5.1) 

where F - calculated luminous flux lx, E - normalized minimum 

illumination, lx (the work of a programmer belongs to the category of precise 

work = 300lx), S - illuminated area, Z - ratio of average illumination to 

minimum, K - safety factor taking into account the decrease in the luminous 

flux of the lamp as a result of contamination of the lamps during operation, n - 

utilization rate. 

Utilization coefficient taken from the table of lighting flow values.  

퐼 =
푆

ℎ ⋅ (퐴 + 퐵)
= 	

18
2.92 ⋅ (3 + 6)

= 0.6849	(푛 = 0.22) 

퐹 =
300 ⋅ 1.5 ⋅ 18 ⋅ 1.1

0.22
= 40500	푙푥 

For lighting, fluorescent lamps of the LB40-1 type are selected, the 

luminous flux of which = 4320 lx. The required number of lamps is calculated 

using the formula: 

푁 =
퐹
퐹
= 	

40500
4320

= 9	푢푛푖푡푠.																		(5.2) 

To prevent listed before harmful factors to impact on the workers it’s 

necessary to supply the working area with some preventive measures. 

For the air conditioning system is the: 60 m3 per person with filtering and 

temperature controls functionality.  

For increased or decreased air temperature of the working area there is air 

temperature control at conditioning system (keeps on 20-25C), integrated 

heating system with heating battery and manual heating electric device.  

For sensitizing harmful factor it is the regular breaks from using the 

computer monitor each one and half hour of its active usage.  

To prevent dangerous effect from work specific such as monotony of 

work and emotional overload it’s necessary to prevent the workers working 

overtime and normalizing the limits of expected results for its performance 

time. 



 

  

 

5.3  Occupation safety instruction 

 

To provide the safety condition at the working place everyone should 

follow such general requirements as acknowledgement about emergency action 

plan, maintain fire protection and prevention equipment, how to use it properly 

and where it placed in the office. The Occupational Safety and Health 

Administration require workers to have a fire safety emergency action plan in 

place that outlines the actions employees and employers must take in the event 

of a fire. Employers are responsible for keeping fire protection equipment in 

working order. This includes portable fire extinguishers and fire suppression 

systems, which have to be regularly inspected, maintained and tested. Portable 

fire extinguishers that have been used once need to be recharged. There 

required that employers provide employees with training on the proper use of 

fire safety equipment. Training sessions must be provided to employees at least 

once per year. 

Before starting the work, worker should check the socket in which 

computer and other devices are plugged-in. Check the startup process and it’s 

stability.  

During the work be sure to not affect the wires and computer sockets, 

keep the unbounded liquid sources out of working place. During the working 

process every one and half hour worker should take a ten minutes break from 

the computer device to provide his eyes safety.  

After the work all the electrical devices should be taken off, the computer 

should be normally taken off without manually cutting the power source. 
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CHAPTER 6 

Environmental Protection 
 

6.1 Convolutional neural networks for environmental monitoring 

 

Image classification plays an essential role in several research areas and 

application domains. Land-use recognition is one important research field, where 

satellite and radar images are usually employed for further identification of 

deforesting areas, farms, and roads, among others. In the past years, drones have 

also been used for monitoring purposes either. New onboard cameras with high 

spatial resolution and infra-red devices are now in lockstep with lightweight and 

more autonomous drones that are currently used for both surveillance and personal 

matters. Drone can also cover wide areas and monitor deforesting areas, wildfire, 

and illegal land-use. Kim et al. proposed to use Convolutional Neural Networks 

(CNN) to classify doppler-acquired images using drones. The work merged both 

time- and frequency-domain images to classify indoor and outdoor images with 

recognition rates nearly to 95%. also used drone images for the classification of 

land-cover classes using Random Forests. The proposed approach was compared 

against Support Vector Machines and Decision Trees and achieved an overall 

accuracy of 91.23%.  Ventura et al. employed a low-cost drone to monitor marine 

areas and further identify coastal fish nursery grounds. 

The authors argued that watching coastal areas with some regularity is costly 

and sometimes unfeasible. In this work, they make use of a small drone that can 

produce fine-scale images for further image classification. Han et al. [6] focused 

on the analysis the error range of drone-based image classification when compared 

with field measurements (i.e., ground-truth data). The authors noticed that one 



 

  

could obtain pretty much precise results when we set the drones accordingly to the 

primary goal of the work. 

Rewick et al. also employed drones for pollution monitoring in urban areas. 

The work aimed at combining three dimensional surface terrain models with 

pollution data acquired by the drone to reconstruct a three-dimensional model of 

potential pollution sources. Besides very recently, Chen et al. presented an 

approach to detect illegal drones in the wild using deep learning. In this case, the 

authors state that the main problem concerns the lack of data for training purposes. 

Such drawback was addressed using data augmentation with synthetic images and 

video sequences extracted from the Internet mainly. 

Therefore, as one can observe, most of the works surveyed in this paper are 

pretty much recent, thus highlighting the importance of this source of information 

for monitoring and controlling activities using drones. However, to the best of our 

knowledge, we have not observed any work that attempted at using drones and 

deep learning to monitor illegal land-use for environmental controlling purposes, 

which turns out to be the main contribution of this work. Particularly, we are 

interested in using drones to identify illicit activities (e.g., non-authorized 

buildings, crop plantation, and fishing, among others) in the neighborhood of a 

private area that it is maintained by a Brazilian energy company. With such an 

automated system, the company can better control the territory, thus avoiding 

damages to the natural resources. 

Everyone are interested in using a drone to monitor the area surrounding a 

power plant from a Brazilian energy company. Recent protocols regulate the rights 

and obligations concerning the natural resources in the area the energy company is 

required to maintain. In this context, tracking illegal activities, such as new 

buildings (without permission), deforesting areas, wildfire, and unregulated fishing 

is of crucial importance. 

It is first considered four main classes of interest: 

• buildings: it comprises houses and their nearby areas, such as swimming 

pool and parking lot; 



 

  

Fig. 6.1.1 Some samples from the dataset: (a) “good quality” image, (b) presence of algae 

along the riverside, and (c) mudlike river. The images were obtained from a city in the 

countryside of Sao Paulo State, Brazil. 

• deforesting areas: it comprises grazing areas and unpaved roads; 

• water: it comprises rivers, lakes, and lagoons.  

• forest: it comprises mainly large trees and bushes. 

However, classifying drone images in those labels in the wild is quite more 

complicated that one can expect. Some shortcomings may be noticed, such as 

shadows, swimming pools (they must be considered from the “building” class, not 

from the water), and the rivers and small lagoons mainly. Depending on the 

season, the water may have its color changed due to the presence of algae. Also, 

some species usually get stuck nearby the riverside and are likely to be mistaken 

for grass or land. 

Figure 6.1.1 displays three sample images from the ones captured using the 

drone. Figure 6.1.1a depicts an image that is considered of “good quality”, i.e., 

with minor or no problems that may require some preprocessing (i.e., shadows), 



 

  

and Figure 6.1.1b depicts an image with the presence of algae along the riverside 

(highlighted area). Finally, Figure 6.1.1c displays a mud-like river (highlighted 

area) that might be easily mistaken for land (i.e., “deforesting area” class). Another 

problem we faced and was also pointed out in the review of the literature concerns 

the lack of labeled data for training the classifiers. Therefore, we manually created 

and labeled a dataset with 100 samples (patches of different sizes), being 25 

samples for each aforementioned class. When extracting the patches, we carefully 

considered maximizing the inter-class variability, as well as also presenting 

challenging situations for training the model. Figure 2 presents some patches 

extracted from the original images. 

As we are dealing with colored images, we opted to use an ImageNet pre-

trained convolutional neural network under the Keras1 environment. To establish 

the desired goal, we have chosen two out of several consolidated models, i.e., 

VGG16 and VGG19. Figure 3 displays the VGG16 architecture, while 

VGG19 can be seen as an evolved VGG16 version, having three more 

convolutional layers, being each one added at every max pooling step, beginning 

right after the second max pooling layer. 

Additionally, after the last pooling layer, we discarded all fully connected 

and softmax layers to fine-tune a new classification model based on ImageNet 

already-trained weights. 

We used the previous layers to predict the so-called “bottleneck features” 

from our 96 training samples (i.e., we used 96 images for training and 4 for 

validating purposes), which were now resized to 150 × 150 patches2. The new 

classification model stands for a 256-output ReLU-activated fully connected layer 

followed by a 4-output fully connected layer, and finally a softmax classifier on 

top of that. Note that these new layers were fine-tuned for 50 epochs using a 

default parameter rms-prop optimizer and a cross-entropy loss function under a 

validation set with 4 images (i.e., one per class). 

Further, the aforementioned trained model was used to predict the unseen 

images captured by the drones, which where spliced into 150×150 patches for 



 

  

classification purposes (i.e., the same size used during training). During training, 

both neural models achieved a similar performance, with around 95% of 

recognition rates. 

 
 

6.2 A recent ecological application of convolutional neural 

networks 

 

In recent years, a wealth of material has been accumulated on the 

influence of unfavorable environmental factors on public health, new scientific 

results have been obtained on the relationship between environmental factors 

and public health. However, the accumulation of information does not lead to 

new knowledge. The rate of evolution of information technology is 

significantly ahead of the evolution of the methodological foundations of 

ecology, protection and management of the state of the environment - the 

existing methods and standards are based on outdated traditional concepts and 

concepts, the technologies of preparation and decision-making lag behind the 

achievements in mathematical modeling, information and computing 

technologies. 

In addition, a feature of the development of the technosphere in recent 

years is a change in its systemic properties: the emergence of risks caused by 

long causal relationships, their interdisciplinary nature, global changes of a 

technogenic nature, high sensitivity to "weak influences", etc. This inevitably 

leads to the need the use of a systematic approach to the analysis of technogenic 

risks and technosphere safety in general using the methods of system analysis 

and information technology. 

Over the past few years, there has been an active development of 

artificial intelligence technologies that imitate the activity of brain neurons - 

artificial neural networks (ANN). The use of artificial neural networks provides 



 

  

a number of advantages over the traditional approach, allowing simultaneously 

taking into account a large number of influencing parameters affecting a set of 

dependent quantities, and automatically synthesizing highly complex analytical 

models from available databases, which most fully reflect the causal 

relationships between the parameters characteristic of the system under study, 

to automatically assess the degree of influence of each of the influencing 

parameters on the dependent values and to correct the obtained analytical model 

with the appearance of new data by "learning" the neural network. 

An artificial neural network is a mathematical apparatus that allows you 

to build algorithms for information processing, which has a unique ability to 

learn by examples and "recognize" in the stream of "noisy" and often 

contradictory information, signs of previously encountered images and 

situations. ANNs allow finding hidden dependencies between input and output 

data, which are beyond the attention of classical methods. 

Simulation of systems using ANN is carried out in three stages: training, 

assessment of learning outcomes and the use of trained networks for 

forecasting. On the training set, the network is configured, i.e. correction of 

neuron weights in proportion to the output error. The control set data is used for 

cross-checking - at each step of training the network, the error for the entire set 

of observations from the control set is calculated and compared with the error 

on the training set. The ANN learning algorithm is aimed at minimizing the 

error at the output of the network, which is estimated using statistical indicators 

(such as the mean absolute error). The network with the least error is 

recognized as the most efficient. 

To test the acceptability of neural network technologies for assessing 

environmental risk, a model of the impact of harmful emissions on the health of 

the Krasnoyarsk population was built. As indicators of the state of the 

environment, we used the concentration of pollutants in the air according to the 

data of the Center for Environmental Pollution Monitoring of the State 

Institution “Krasnoyarsk TsGSM-R”, which monitors the air quality at 8 



 

  

stationary posts in Krasnoyarsk. The yearbooks “The state of atmospheric air 

pollution in cities on the territory of the Krasnoyarsk Territory, the Republics of 

Khakassia and Tyva” were processed from 1999 to 2010. 

The data of sanitary and demographic statistics of the Territorial Body of 

the Federal State Statistics Service for the Krasnoyarsk Territory were used as 

an indicator of population health. 

By varying the structure and parameters of the neural network and the 

learning algorithm, several network models were obtained, from which the best 

one in terms of generalization property (the smallest error on the test sample) 

was selected. The selected network has a layer-by-layer organization and direct 

signal propagation (multilayer perceptron) with three layers: 1 layer - 3 

neurons, 2 and 3 layers - 2 neurons each with a sigmoidal activation function of 

neurons. The average relative error for all results was 0.40%, the average 

absolute error was 0.93%, i.e. the network provides good convergence of 

calculated and actual values. 

 
 



 

  

CONCLUSIONS 

 

1. In this work were analyzed the approaches into image recognition and 

classification. Their features and practical implementations. 

2. The fundamental complex comparison and review on modern convolutional 

neural network was done. The constructive blocks of different CNNs and 

their practical implementation were shown.  

3. In this work were done the analysis of modern literature and scientific papers 

about the structural parametric synthesis of convolutional neural networks 

and the main algorithms was fetched out.  

4. The types and implementation of genetic algorithms were discovered and 

formed the strict algorithm for its implementation for generation the 

structure of convolutional neural network and its global and local 

parameters. 

5. The idea of combining the genetic algorithms in tandem of different 

constructive blocks that mostly all from the modern convolutional neural 

networks was developed to generate the unique CNN architecture that will 

suit any highly specialized task of image recognition. 

6. Proposed complex system for structural parametric synthesis of CNN that 

was formed using the newly proposed and modified genetic algorithm in the 

para of data preparation algorithm. In result the high-accurate image 

recognition system was received. 
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