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ABSTRACT 

The aim of this work is to solve the problem of structural parametric 

synthesis of hybrid convolutional networks which include residual and pyramidal 

neural networks. 

The topologies of modern convolutional neural networks, namely the 

residual and pyramidal neural network, are considered in the work. The necessity 

of using these neural networks to solve image processing problems is substantiated. 

A study of these convolutional networks. The accuracy of image processing 

in solving classification problems, research on the size of the convolution, the 

number of feature maps and the depth and width of neural network data were 

analyzed. 

 

An algorithm for training a hybrid neural network consisting of residual 

blocks and a pyramidal architecture has been developed and the conditions for 

improving the efficiency of the hybrid neural network have been determined, and 

examples are given in the CIFAR-10 data set and real examples of tumors detecting 

in medicine. 
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АНОТАЦІЯ 

Метою роботи є розв’язання задачі структурно параметричного 

синтезу гібридних згорткових мереж які включають в себе залишкову та 

пірамідальну нейронну мережу. 

У роботі розглядаються топології сучасних згорткових нейронних 

мереж, а саме залишкову та пірамідальну нейронну мережу. Обґрунтовано 

необхідність використання для розв’язання задач обробки зображень цих 

нейронних мереж.  

Проведено дослідження даних згорткових мереж. Проаналізована 

точність обробки зображень під час розв’язування задач класифікації, 

дослідження відносно розміру згортки, кількість карт ознак та досліджена 

глибина та ширина даних нейронних мереж. 

Розроблено алгоритм навчання гібридної нейронної мережі яка 

складається з залишкових блоків, та пірамідальної архітектури та визначено 

умови підвищення ефективності роботи гібридної нейронної мережі та 

наведено приклади на наборі даних ЦИФАР-10 та приклади на реальних 

задачах по виявленню пухлин у сфері медицини. 
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GLOSSARY 

 

CNN - convolutional neural network 

ANN - artificial neural network 

CL - convolution layer 

FC - face recognition 

AI - artificial intelligence  

AGI - artificial general intelligence 

TT - Turing test 

RGB - red-green-blue 

MP - max pooling 

AP - average pooling 

LN - landmark normalization 

GPU - graphical processing unit 

RNN - recurrent neural network 

ReLU - rectified linear units 



 

 
 

 INTRODUCTION 

In today’s world, the need for computerized object recognition in images 

using neural networks grows every year. People do not stand still but are constantly 

looking for something new and unattainable. Therefore, today a certain type of 

neural network called convolutional neural network is used to recognize objects in 

an image. 

Convolutional neural networks use various multilayer perceptrons designed 

in such a way that a minimal amount of preprocessing is required. Convolutional 

networks are based on a biological process, namely the connection pattern of 

neurons in the visual cortex of animals. Individual neurons in the cortex respond to 

stimuli only in a limited area the visual field, also known as the receptive field. 

Also, the receptive field data of many neurons is partially closed or overlapping, so 

that they cover the entire visual field. This type of neural network was proposed by 

French machine learning and artificial intelligence scientist Yann LeCun. 

Today, convolutional neural networks are widely used, in areas such as 

autopilot in cars, facial recognition of crime scenes, recognition of diseases, 

symptoms, recognition of satellite images of the planet, and others. Recent 

developments in software combined with precise algorithms in artificial 

intelligence and computer vision allow software engineers to develop a subsystem 

for automatic object recognition. 

In general, the convolutional neural network is today the "workhorse" in the 

field of neural networks. It is used primarily for computer vision tasks, although it 

can also be applied to audio and any data that can be represented as matrices. 

In this thesis, the problem of hybrid parametric synthesis is solved and 2 

neural network architectures, residual and pyramidal, are investigated and a hybrid 

based on them is created using the CIFAR-10 image collection dataset.
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CHAPTER 1. CONVOLUTION NEURAL NETWORK AS 

THE MEAN OF IMAGE PROCESSING 

1.1  State of modern neural network use in science and 

techniques 

In the modern world, neural networks are used in many areas, for example: 

• Economy and business: time series forecasting (exchange rates, 

product prices, demand, sales volumes, ...), automated trading (currency, stock or 

commodity exchange trading), credit default risk assessment, bankruptcy 

forecasting, genuine estate valuation, identification of over- and undervalued 

companies, ranking, commodity and cash flow optimisation, cheque and document 

reading and recognition, plastic card transaction security. 

• Medicine and healthcare: patient diagnosis (disease diagnosis), 

processing of medical images, cleaning of instrument readings from noise, 

monitoring of patient condition, prediction of the results of various treatments, 

analysis of treatment effectiveness. 

• Avionics: learning autopilots, radar recognition, adaptive piloting of 

heavily damaged aircraft, unmanned aerial vehicles (drones). 

• Communications: video compression, fast encoding and decoding, 

and optimisation of cellular networks and packet routing schemes. 

• Internet: associative information retrieval, e-secretaries and offline 

agents on the Internet, spam filtering and blocking, automatic categorization of 

messages from news feeds, targeted advertising and marketing for e-commerce, 

captcha recognition. 



 

 

• Production automation: Optimisation of production processes, 

quality control, monitoring and visualisation of multi-dimensional dispatch 

information, prevention of accidents. 

• Robotics: recognition of the scene, objects and obstacles in front of 

the robot, route guidance, control of manipulators, maintaining equilibrium. 

• Political science and sociological researches: predicting election 

results, analysing polls, predicting rating dynamics, identifying significant factors, 

clustering the electorate, studying and visualising the social dynamics of the 

population. 

• Security, security systems: face recognition; identification of a 

person by fingerprint, voice, signature or face; number plate recognition; 

monitoring information packets and information flows in a computer network to 

detect intrusions; forgery detection; analysis of data from video cameras and 

various sensors; analysis of aerial images (for example, to detect forest fires or 

illegal logging). 

• Input and processing of information: recognition of handwritten 

texts, scanned postal, payment, financial and accounting documents; recognition of 

voice commands, voice text input into a computer. 

• Geological exploration: seismic data analysis, associative mineral 

prospecting methods, deposit resource estimation. 

• Computer and board games: creating neuro-players in draughts and 

chess (ratings confirmed by playing with humans - at the level of masters and 

international masters), winning in go with European and world champions, on 

average better than humans, getting through almost fifty old classic games with 

Atari (all kinds of pongs, paceman, ...). 

 

 

 



 

 

Neural networks for doctors 

The use of neural networks in medicine is actively evolving due to the large 

number of annotated images, the increase in computing power and the advent of 

cloud-based data storage. Neural networks influence the state of medicine on three 

levels: 

1) To help doctors interpret images quickly and accurately; 

2) Reduce the number of medical errors; 

3) Help patients analyse their own data with sensors to monitor their 

condition. 

However, researchers are still at an early stage of using neural networks in 

medical practice because of limitations that prevent them from being fully 

exploited. 

 

Figure 1.1 Examples of using NN in medicine 

Deep Neural Networks (DNN) can help in the interpretation of medical scans 

of pathologies, electrocardiograms, and endoscopy. There is a particular focus on 

radiology - using neural networks to analyse X-ray scans. Google has used 

algorithms to interpret chest scans to make 14 different diagnoses, ranging from 

pneumonia to cardiac hypertrophy and collapsed lungs. DNNS can also diagnose 

certain cancers, fractures, haemorrhages, retinopathy, skin lesions and many other 

diseases. Algorithms can improve the work of dermatologists, cardiologists, 

ophthalmologists and even psychotherapists by monitoring the development of 

depression. 



 

 

Neural network for patients 

Algorithms that patients can use on their own are developing more slowly 

than algorithms used by doctors. In 2017, the US Food and Drug Administration 

(FDA) approved an algorithm to detect arrhythmias in a smartwatch, and then in 

2018 Apple received FDA approval for the algorithm used in the Apple Watch 

Series 4. Sensors on the watch detect the user's heart rate at rest and during physical 

activity, and if there is a strong deviation from what is expected, the user is alerted 

to an ECG recording through the watch, the results of which are then interpreted 

by the algorithm. 

Some smartphone apps use neural networks to monitor and control 

medication intake, such as AiCure causing a patient to take a selfie video while 

swallowing a prescribed pill. 

Algorithms based on how glucose levels rise or fall are used by diabetic 

patients. They help to prevent episodes of hypoglycaemia. Thus, common chronic 

diseases such as hypertension, depression and asthma can theoretically be better 

controlled with supplements.  

Problem of NN in medicine 

A major challenge for the future of artificial intelligence in medicine is how 

well data privacy and security can be ensured. There is a risk of disclosing sensitive 

patient data from medical histories. There is also the risk of intentionally disrupting 

the algorithm to harm people on a large scale, such as an overdose of insulin in 

diabetics. 

The second problem is the imprecise operation of algorithms. A recent 

example is IBM's Watson Health algorithm (known as Watson for Oncology). 



 

 

 Used by hundreds of hospitals around the world to make treatment 

recommendations for cancer patients, the algorithm was based on a small number 

of synthetic cases and very limited real-world data. Many of his treatment 

recommendations were flawed, such as suggesting the use of an incompatible drug 

for a patient with severe bleeding, which is a clear contraindication. 

Another problem is bias. Low socioeconomic status is a major risk factor for 

premature mortality. The disproportionate use of AI among the 'haves' compared 

to the 'have-nots' may increase the existing health gap. Closely related to this 

problem is the bias in the results due to insufficient inclusion of minorities in data 

sets. An example would be algorithms in dermatology that diagnose melanoma but 

do not take skin colour into account. Prejudice must be eradicated and medical 

research that provides a truly representative representation of the population must 

be strived for. 

Future abilities for NN in medicine 

Scientists emphasise that careful research into the algorithms' performance 

and testing in clinical settings is essential. Human health is too valuable, so in the 

near future AI will only be able to perform routine tasks with minimal risk. 

Despite the challenges, in the future researchers see the use of neural 

networks in software that will process vast amounts of data quickly and accurately, 

and machines that will see and do things that humans cannot. Ultimately, this will 

lay the foundation for highly efficient, data-driven medicine and reduce reliance on 

human resources. 

 

 

 



 

 

Neural networks in gaming industry 

When it comes to applying machine learning to the games industry, there are 

a number of limitations that make it not always possible to use this type of 

architecture. These include system requirements, particularly those related to the 

CPU, which determine the computer's ability to process complex game structures 

and its suitability for creating game story and gameplay. 

Thus, it turns out that in many games it is impossible to organize the 

necessary hardware to implement a complex AI system, much less a server cluster, 

which exists, for example, for image recognition networks on Facebook. 

Sometimes multiple AIs have to run simultaneously - and not only on computers, 

but also on mobile devices and other less productive platforms. All of this place’s 

constraints on the size and complexity of the machine learning architecture, as all 

calculations still need to be performed with frame durations on the order of 1 or 2 

milliseconds. Of course, it is possible to use various optimization and load-

balancing techniques between frames, but it is still not possible to completely get 

rid of these limitations. 

The complexity of the game can cause serious problems for the AI. Indeed, 

games like StarCraft II have game mechanics many times more complex than Atari 

games. So don't expect machine learning to cope with learning the entire state of 

the game and be able to interact with it at a given frame rate and with known system 

requirements. Just as the player is often guided by intuition in the early stages of a 

game, the AI must learn to initially process the game's state to make it easier to 

play later on. For example, one recent API for StarCraft II displayed only 

information that the developers deemed important: In one case, the AI used a 

reduced view of the entire map area; in another, like the player, it could move the 

camera around, and then its perception was limited to the information on the screen. 



 

 

Often, conventional methods of solving machine learning problems are not 

applicable to game artificial intelligence. For example, it does not usually need to 

win or do its best to win, as it did in the Atari games. More often, the AI's role is to 

make the game more fun. It may have to play a certain role and behave in a way 

that conveys the character it is responsible for. Thus, in-game AIs are more tied to 

the game design and story and should have the necessary tools to manipulate their 

behaviour to achieve its goal. Machine learning in its purest form is not always 

suitable for this - which means you have to look for something else. 

Neural networks in science 

One promising application area for artificial neural networks (ANNs) is 

industrial manufacturing. In this field, there is a marked trend towards production 

modules with a high level of automation, which requires an increasing number of 

intelligent self-adapting and self-regulating machines. However, production 

processes are characterised by a large variety of dynamically interacting 

parameters, which makes it difficult to create adequate analytical models. Modern 

production processes are becoming ever more complex. This slows down the 

introduction of new technological solutions. Moreover, in a number of cases, 

successful analytical mathematical models show failure due to the lack of 

computational power. Consequently, there is growing interest in alternative 

approaches to production process modelling using ANNs, which provide real-time 

models with small uncertainties that can be trained during use. The advantages of 

neural networks make their use attractive for tasks such as: 

• forecasting; 

• planning; 

• ACS design; 

• quality control; 

• manipulators and robotics control; 



 

 

• ensuring operational safety: identifying faults and preventing 

emergencies; 

• process control: optimisation of production process modes; 

monitoring and visualisation of dispatch information. 

Today, ANN-based forecasting is most fully realised in finance and 

economics. In industrial production, neural networks can be useful, for example, in 

creating enterprise risk management models, production cycle planning. 

Production modelling and optimisation is characterised by high complexity, large 

variables and constants that are not defined for all possible systems. Traditional 

analytical models can often only be built with considerable simplification and are 

mainly of an estimation nature. Whereas an LIS is trained on the basis of real or 

numerical experiment data. 

 Classical methods of building an automated process control system are 

based on formalised human knowledge of the control object. The option of building 

an ACS based on a neural network implements cognitive techniques inherent to 

humans. Examples of successful applications of ANN in this area include the 

control of complex processes and objects under conditions of information 

uncertainty, machining processes, robotic systems, etc. 

Much experience has been gained in the use of ANNs in quality management 

in industry. For example, the neural network used at Intel to detect defects in chip 

production is able to reject a defective chip with 99.5% accuracy. By emitting 

sound waves and receiving the reflected signal and then processing the ANN, 

experts at the National Institute of Standards and Technology (NIST) check the 

quality of concrete with material thicknesses up to half a meter.  

 



 

 

In the field of fault detection, the use of ANNs makes it possible to monitor 

the condition of equipment in real time, detect deviations and prevent the 

occurrence of emergency situations. The use of neural networks in pollution 

monitoring is very promising, which also reduces the risk of industrial accidents. 

Neural networks in information technologies 

 Due to the increasing complexity and heterogeneity of modern 

information and communication systems, traditional measures to ensure their 

functioning are becoming increasingly inadequate. One of the promising directions 

for solving practical problems in the field of information technology is to 

investigate the possibilities of using ANNs. 

Analysis of the relevant special literature has shown that in the information 

environment, neural networks have proven themselves in the following areas: 

▪ network management and optimization; 

▪ ensuring information security of communication networks; 

▪ recognition of the entered information; 

▪ information processing and retrieval. 

ANN successfully solves an important problem in telecommunications - 

finding the optimal traffic path between nodes. Two features are taken into account: 

firstly, the solution must be adaptive, i.e., it must take into account the current state 

of the communication network and the presence of bad spots, and secondly, the 

optimal solution must be found in real time. In addition to flow routing control, 

neural networks are used to obtain efficient solutions in telecommunication 

network design. 

 



 

 

In the field of information security, neural networks have also successfully 

solved problems that are inaccessible to traditional subsystems that focus on 

predefined classes of threats in the face of increasing complexity and dynamics of 

heterogeneous software. For example, the use of NS-based technologies for 

identification and authentication, anti-virus protection, intrusion detection and 

prevention, information security risk management, vulnerability detection, etc., has 

been well studied. 

In addition to these examples of theoretical research, references to practical 

implementations can be found in open sources.  

For example, the Vicarious recognition system developed by GoogleX Labs 

solves the problem of passing the CAPTCHA test. Researchers were able to 

achieve 90% accuracy in CAPTCHA recognition from Google, Yahoo, PayPal, 

Captcha.com and other projects. This research shows that modern CAPTCHAs are 

no longer an effective Turing test. In another  

Google X project has created an experimental computer neural network 

capable of independently recognizing morphological objects, such as cats, in a 

video stream. Another example of a working project is the work of a number of 

firms focused on anti-fraud in the banking sector. 

Speech recognition is one of the most popular applications of neural 

networks. A demonstration system of speaker-independent speech control with an 

integrated Windows calculator (developed by the Russian company NeuroProject) 

is capable of recognizing 36 commands spoken into a standard microphone, 

regardless of voice and pronunciation patterns. The use of neural network 

technology in cryptography is also represented by interesting developments.  

 



 

 

The most frequent use of neural networks is associated with Merkle-Hellman 

public key cryptosystems.  

 Fein-Marquart Associates Inc. has developed a program for postcode 

recognition with automatic further sorting. The system recognizes both typeset and 

handwritten numbers. The recognition accuracy is estimated at 98%. AT&T Bell 

Laboratories achieved 0.14% NN errors in character recognition when presented 

with a training pair from a set of representative samples used in training, and 5.0% 

when recognizing "new" characters. 

In the information society, the use of ANNs for coding and decoding 

information is a promising direction. The priority here is the task of processing 

speech information and images. The information compression method proposed in 

1987 is well known. Much attention is paid to the construction of neural network 

receivers with multiple access. 

1.2 Convolutional neural networks 

In the modern world, the analysis and obtained some of the best results in 

the recognition of objects on different types of images convolutional neural 

network, which is quite relevant over time and developments in the field of neural 

architectures of neural networks, such as: cognitron and neocognitron. The key to 

its key success is its ability to analyze two-dimensional image architecture, as 

opposed to a multilayer perceptron. 

Convolutional neural networks have a fairly good resistance to changes in 

the scale of the image, movement relative to the axis, rotation around the axis, 

changes in perspective relative to the place where this photo was taken and other 

possible distortions of the image. Hilly neural networks include three architectural 

/ topological ideas to provide static scale, rotation about an axis, space shift, and 

other spatial distortions that may occur, including such as: 



 

 

• local receptor fields (provide local two-dimensional connectivity of 

neurons); 

• general synaptic coefficients (provide detection of some features 

anywhere in the image and reduce the total number of weight coefficients); 

• hierarchical organization with spatial subsamples; 

In the 21st century, convolutional neural networks and all their possible 

modifications prove that they are the best algorithms for finding objects in terms 

of recognition accuracy and recognition speed. Since 2000, neural networks have 

been ranked highest in a well-known international competition among image 

recognition developers and professionals called ImageNet. 

Convolutional networks are a very good example of how the biological 

structure of humans helps to create similar technologies using a multilayer 

perceptron. To date, the most successful results in object recognition have been 

obtained with it. In the best cases, the recognition accuracy of these networks even 

exceeds the so-called already created ANN, which are already used in people's lives 

by 10-15%. Also, convolutional neural networks are the main branch of 

technologies that are associated with methods and approaches to deep learning. 

The main reason for such a great success of convolutional neural networks 

was the so-called idea of common weights.  

If you don't take into account the huge size of these neural networks, it still 

has fewer settings when compared to their parents, such as the neocognitron.  

There is a very similar option, which is very similar to a convolutional neural 

network is a neocognitron. Some neural networks do not partially use the idea of 

common weights, but the learning algorithms use the same ones, the inclusive 

feature of which is the method of error backpropagation.  



 

 

Convolutional neural networks have the ability to run quite fast on a machine that 

uses sequential operations, but if you use modules that can parallelize the learning 

processes of these networks, the speed can be increased by 2, 3, or even 5 times by 

parallelizing the convolution on each map signs, as well as deconvolution in the 

propagation of the error over the network. 

1.2.1 Structure of convolutional neural network 

A convolutional neural network consists of different types of layers: 

convolutional layers, subsampling layers and 'normal' neural network layers as 

shown on Figure 1.2. 

 

Figure 1.2 Topology of convolutional neural network 

The first two types of layers (convolutional, subsampling), alternating with 

each other, form the input feature vector for the multilayer perceptron. 

Figure 1.3 Visualization of convolution and subsampling 

 



 

 

1.2.2 Topology and basic parameters of convolutional neural 

network 

If we turn to scientific articles, the rule is that the topology of the neural 

network should be chosen depending on the specific problem and the solution to 

be found, but Figure 1.4 shows the standard default CNN topology. 

The number of feature cards is usually set by the requirements for a particular 

task, for example, if you use a large number of feature cards, then the load on the 

system on which the neural network will study will increase, but the quality and 

accuracy of feature maps will increase several times. If you take the best way or 

the so-called rule of ratio of rapid learning and accuracy, there are 

recommendations in which it is usually suggested to take the average value of the 

feature maps. 

In Figure 1.4 you can see the standard topology of the convolutional neural 

network which can be seen wherever their training is used. 

 

Figure 1.4 Topology of convolutional neural network 

 



 

 

Input layer 

Typically, the input image type in the input layer is a royal JPEG image with 

a different pixel type. But if the image size is larger, it is clear that the speed and 

complexity of processing will also increase several times, so in order for the 

calculation speed to be adequate, and within the limits we need, the image size must 

be determined by the problem to be chosen. . But at the same time, if the image is 

too small, or not high quality with a small expansion, then simply the convoluted 

layers will not be able to select the feature maps so that they correctly highlight the 

features of the image to further identify it in the work. Each image is standardly 

divided into 3 channels: red, blue, green, so-called RGB, but the image can be in 

other color and colorless spectra. 

The input layer takes into account the two-dimensional architecture of the 

images and consists of several maps called matrices or core, the feature map can 

be one for one hill, but if the image in 3 spectra as described earlier, the maps 

should be 3, for each color spectrum color spectra, the maps may be larger than 

previously indicated. Each feature map corresponds to one color channel.  

For example, 1 of the blue spectra corresponds to the maps for this channel, 

for the red spectrum the feature maps will correspond to the red channel maps, for 

green they should be green. If the image in the channel is gray, the feature map will 

be gray for one channel. 

 The input data for each specific pixel value is normalized to a range 

from 0 to 1, using the formula (1.1): 

𝑓(𝑝, 𝑚𝑖𝑛, 𝑚𝑎𝑥) =
𝑝 − 𝑚𝑖𝑛

max − 𝑚𝑖𝑛
 , (1.1) 

 



 

 

where  

f - normalization function, 

p – the value of a particular pixel color from 0 to 255, 

min – minimum pixel value 0, 

max – maximum pixel value 255. 

Convolutional layer 

A convolutional layer is a layer in which the process of selecting a set of 

maps takes place, in other words, they are function maps, or they are also called as 

regular matrices, each map has a so-called synaptic nucleus. Many other jares call 

these mathematical features of the kernel, filters, matrices, kernel algorithms. 

The set and size of maps is determined by the specific task to be solved. The 

more feature maps, the more characteristics will be selected during the convolution 

process, but the load on the system will increase. As stated in the recommendations 

for neural networks, you need to use a ratio of one to two. 

The size of all maps of the convolutional layer is the same and is calculated 

by the formula (1.2): 

(𝑤, ℎ) = (𝑚𝑊 − 𝑘𝑊 + 1, 𝑚𝐻 − 𝑘𝐻 + 1), (1.2) 

where  

(w, h) – the computed size of the convolutional map,  

mW – width of the previous map, 



 

 

mH – height of the previous map, 

kW – width of a core, 

kH – height of a core. 

A kernel is a filter or window, or convoluted kernel, that runs the entire area 

of the previous feature map and finds certain features and characteristics of the 

objects, saving them for future processing. For example, if a neural network has 

been trained on multiple faces, one of the many filters may emit the highest signal 

in the area of horizontal lines, circles, vertical lines, and other similar 

characteristics during training. At this time, other filters will highlight other 

features, such as lines at an angle of 45 degrees, or some other differences from 

those described earlier. The size of the convolution filter is usually taken in the 

range from 3x3 to 7x7. If the size of the core is not large, then a convolution with 

such a dimension may be useless, and not detect any signs.  

The same can happen if it is very large and this will further increase the 

number of neuronal connections. Another characteristic is that the size of the core 

should be chosen so that the size of the convolutional layer maps is uniform, this 

ensures that information is not lost when the dimension decreases or increases in 

the sample layer. 

The kernel is a system of shared weights or synapses; this is one of the main 

features of a convolutional neural network. In a conventional multilayer network, 

there are many connections between neurons, i.e., synapses, which significantly 

slows down the recognition process. In the convolutional network, on the contrary, 

the total weights allow to reduce the number of connections and find the same 

feature over the entire image area. 

 



 

 

Initially, the values of each map of the convolutional layer are equal to 0. 

The values of the weights of the kernels are set randomly in the range from -0.5 to 

0.5. The kernel slides over the previous map and performs the convolution 

operation, which is often used for image processing, the formula: 

(𝑓 ∗ 𝑔)[𝑚, 𝑛] = ∑ 𝑓(𝑚 − 𝑘, 𝑛 − 𝑙] ∗ 𝑔[𝑘, 𝑙]
𝑘,𝑙

, (1.3) 

where 

f – initial image matrix, 

g – kernel of convolution. 

 

Figure 1.5 Operation of convolution and getting the values of convolutional 

map 

Depending on the method of processing the edges of the original matrix, the 

result may be less than the original image (valid), the same size (same) or larger 

size (full), in accordance with Figure 1.6. 



 

 

 

Figure 1.6 Three types of initial convolutional matrix 

Pooling layer 

The association layer, like the convolutional layer, has maps, but their 

number is the same as the previous (convolutional) layer. The purpose of the layer 

is to reduce the dimensionality of the maps of the previous layer.  

If the previous convolution operation has already identified any features, 

such a detailed image is no longer needed for further processing, and it is 

compressed to a less detailed image. In addition, filtering out unnecessary detail 

helps to avoid overtraining. 

While the kernel of a sub-sample (filter) layer scans the previous layer's map, 

the scanning kernel does not overlap, unlike a convolutional layer. Typically, each 

map has a 2x2 kernel, which reduces the previous convolutional layer maps by a 

factor of 2. The whole feature map is divided into 2x2 feature cells, from which the 

maximum value is selected. 

Typically, the ReLU activation function is used in the subsample layer. 

Subsampling operation (or MaxPooling - selection of the maximum) in accordance 

with Figure 1.8. 



 

 

 

Figure 1.7 Generating a new sub-sampling layer map based on the previous 

convolutional layer map. Operation of subsampling (Max pooling) 

It can be described by the formula: 

𝑥𝑙 = 𝑓(𝑎𝑙 ∗ 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒(𝑥𝑙−1) + 𝑏𝑙), (1.4) 

where  

𝑥𝑙 – output of l layer 

f () – activation function 

𝑎𝑙 , 𝑏𝑙 - bias coefficients 

subsample () - local maximum sampling operation  

Fully connected layer 

The last of the layer types is the layer of a conventional multilayer 

perceptron. The purpose of the layer is classification, it simulates a complex non-

linear function, by optimizing which the quality of recognition is improved. 

 



 

 

The neurons of each map of the previous sublayer are connected to one 

neuron of the hidden layer. Thus, the number of neurons in the hidden layer is equal 

to the number of cards in the subsample layer, but the connections can be not 

necessarily so, for example, only some of the neurons of any of the cards in the 

subsample layer will be connected with the first neuron of the hidden layer, and the 

rest with the second, or all neurons of the first cards are connected with neurons 1 

and 2 of the hidden layer. The calculation of neuron values can be described by the 

formula: 

𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1 ∗ 𝑤𝑖,𝑗
𝑙−1 + 𝑏𝑗

𝑙−1

𝑖

) , (1.5) 

where 

𝑥𝑗
𝑙 – feature map j (output from l layer), 

f () – activation function, 

𝑏𝑙 – bias coefficient of l layer, 

𝑤𝑖,𝑗
𝑙  - matrix of weighting coefficients of the layer l. 

Output layer 

The output layer is a fully connected layer with the number of classes whose 

size is determined by the number of classes our system has to identify. In our case 

it is 10 neurons, as our training set has 10 classes of images (CIFAR-10). It is 

designed to return the result of the whole neural network; it is called an identifier. 

 

 



 

 

Activation function 

One of the steps in neural network development is the selection of a neuron's 

activation function. The type of activation function largely determines the 

functionality of the neural network and the method for training this network. The 

classical backpropagation algorithm works well for two-layer and three-layer 

neural networks, but it starts to have problems when the depth is further increased. 

One reason for this is what is known as gradient decay. As the error propagates 

from the output layer to the input layer, on each layer the current result is multiplied 

by the derivative of the activation function. The derivative of a traditional sigmoid 

activation function is less than unity over the entire domain, so the error will 

become close to zero after a few layers. If, on the other hand, the activation function 

has an unbounded derivative (such as the hyperbolic tangent), the error can grow 

explosively as it propagates, making the learning procedure unstable. Consider the 

most common activation functions used in neural networks. 

Sigmoid function 

This function belongs to the class of continuous functions and takes an 

arbitrary real number as input and gives a real number in the range 0 to 1 as output. 

In particular, large (modulo) negative numbers are converted to zero and large 

positive numbers are converted to one.  

Historically, the sigmoid has found widespread use because its output is well 

interpreted as a neuron's activation level: from no activation (0) to fully saturated 

activation (1). The sigmoid is expressed by the formula: 

𝑓(𝑠) =  
1

1 + 𝑒−𝑠
, (1.6) 



 

 

 

Figure 1.8 Sigmoidal function 

An extremely undesirable property of the sigmoid is that when the function 

is saturated on one side or the other (0 or 1), the gradient in these areas becomes 

close to zero. 

Recall that in the error back propagation process this (local) gradient is 

multiplied by the total gradient. Therefore, if the local gradient is very small, it 

effectively nullifies the overall gradient.  

As a result, the signal will struggle to pass through the neuron to its weights 

and recursively to the data. Also, you must be very careful when initializing the 

weights of sigmoid neurons to prevent saturation. For example, if the initial weights 

are too high, most neurons will go into a saturation state, which will lead to bad 

learning for the network. 

Activation function ReLU 

These are known to be neural networks capable of inducing an arbitrarily 

complex function. Activation functions are similar to sigmoid or tangential 

induction, but lead to problems with attenuation or gradients.  



 

 

However, a simpler version, the rectified linear activation function, can also 

be used, which is expressed as: 

𝑓(𝑠) = max(0, 𝑠) , (1.7) 

 

Figure 1.9 ReLU activation function 

Benefits of using ReLU: 

• its derivative is either one or zero, and therefore no growth or decay 

of gradients can occur, since multiplying one by the error delta gives us the error 

delta, but if we used another function, such as the hyperbolic tangent, the error delta 

could either decrease, increase, or remain the same, that is, the derivative of the 

hyperbolic tangent returns a number with a different sign and magnitude, which 

can strongly depend on the decay or spread of the gradient. Moreover, using this 

function leads to a decimation of the weights  

• calculation of the sigmoid requires resource-intensive operations such 

as exponentiation, whereas ReLU can be realised by a simple threshold 

transformation of the activation matrix at the zero point; 

• cuts off unnecessary parts in the channel when the output is negative 

 



 

 

Among the disadvantages are that the ReLU is not always reliable enough 

and can fail ('die') during training. For example, a large gradient passing through 

ReLU may cause the weights to update so much that the neuron will never run 

again. If this happens, from that point on, the gradient going through that neuron 

will always be zero.  

Accordingly, this neuron will be irreversibly turned off. For example, if the 

learning rate is too high, you may find that up to 40% of ReLUs are "dead" (i.e., 

never activated). This problem is solved by selecting a suitable learning rate. 

1.3 Problem statement of image processing 

Research and analysis in the field of neural networks, especially 

convolutional neural networks for different types of features and basic image 

processing parameters. To solve the problem of structural-parametric synthesis of 

convolutional neural networks and to find the most appropriate and most accurate 

parameters for a hybrid neural network, which will consist of 2 neural networks: a 

residual neural network and a pyramidal neural network.  

Create a hybrid neural network at the software level using state-of-the-art 

neural network creation methods and tools.  

Get better results compared to the state-of-the-art neural networks, explore 

the field of object identification by image. 

Conclusion: 

The first part of the article describes information about artificial neural 

networks, how they work and what they consist of. A convolutional neural network, 

its topology and the main parameters used to form it are described. The problem 

statement is also briefly described.
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CHAPTER 2. MODERN CONVOLUTIONAL NEURAL 

NETWORKS 

2.1 Classification of modern neural networks 

To date, there are 26 types of neural networks. 12 of them are named after 

their inventors, the rest have names like chaotic, Siamese, oscillatory, adaptive-

resonance, etc. In order to somehow systematise existing and future neural 

networks, attempts are being made in the modern world to divide them according 

to their classification type. 

Classification by input data type:  

• analog (real numbers at the input);  

• binary (binary numbers at the input); 

• figurative (signs, hieroglyphs, symbols at the input) neural networks; 

Classification by the type of training:  

• supervised learning (the output space of neural network solutions is 

known); 

• unsupervised learning (the output space of solutions is formed only 

on the basis of input influences; such networks are called self-organizing); 

• reinforcement learning (a system of assigning penalties and rewards 

obtained as a result of the interaction of the ANN with the environment is used); 



 

 
 

 

Classification by the type of the synapse settings: 

• networks with fixed connections (the weight coefficients of the 

neural network are selected immediately, based on the conditions of the 

problem); 

• networks with dynamic connections (these networks have synaptic 

connections in the learning process); 

Classification by the transmission time: 

• synchronous networks (the transmission time for each synaptic 

connection is either zero or a fixed constant); 

• asynchronous networks (the transmission time for each connection 

between the elements is different, but also constant); 

Classification by the type of ties: 

• feedforward networks (all connections are directed strictly from 

input neurons to output neurons); 

• recurrent networks (the signal from the output neurons or neurons 

of the hidden layer is partially transmitted back to the inputs of the input layer 

neurons); 

• Hopfield recurrent network (filters input data, returning to a stable 

state and, thus, allows solving problems of data compression and building 

associative memory); 

• bidirectional networks (there are connections between layers both in 

the direction from the input layer to the output, and in the opposite direction); 



 

 
 

In addition, radial-baseline networks (or RBF-networks), self-organizing 

maps (in particular, the self-organizing Kohonen map) and networks of other 

classes, which are not yet fully formed, are used. 

Types of modern convolutional neural networks: 

LeNet-5 

A neural network proposed by Yann LeCun for MNIST dataset handwritten 

digit recognition.  

AlexNet 

Winner of ImageNet two thousand twelve with 84.6% accuracy. 

Implemented using CUDA for improved performance. Consists of two separate 

parts that loosely communicate with each other, allowing them to run in parallel 

on different graphical process units with minimal data exchange. 

VGG 

A family of neural network architectures, including VGG-11, VGG-13, 

VGG-16 and VGG-19, among others. The 2013 ImageNet winner (VGG-16) is 

92.7% accurate. One distinguishing feature is the use of small convolution cores 

(3x3, as opposed to large 7x7 or 11x11 cores). 

GoogLeNet 

Also known as inception network, the 2014 ImageNet winner with 93.3% 

accuracy. Consists mainly of inception modules. Contains a total of 22 layers with 

configurable parameters (+5 pooling layers). 

ResNet 



 

 
 

2015 ImageNet winner. The winning network contained over 150 layers and 

scored 96.43% accuracy. 

 

2.2 The main characteristics, structure, parameters and results of 

ResNet and Pyramidal neural networks 

2.2.1 Residual Neural Network (ResNet) 

 

 

Figure 2.1 Topology of 34-layer ResNet (3.6 billion FLOP) 

Dotted quick joins increase the dimension. 



 

 
 

ResNet: Based on the simple network described above, a fast connection has 

been added (Figure 2.1), which turns the network into its residual version. The fast 

connection of the identity F (x {W} + x) can be used directly when input and output 

are of the same dimension. When increasing the dimensionality (dashed lines in 

Figure 2.1), two options are considered: 

1) quick join performs ID mapping with additional zeros added to increase 

the dimensionality. This option does not introduce any additional para-metrics. 

2) the fast connection projection in F (x {W} + x) is used for dimension 

matching (done with 1 × 1 convolutions). 

Each ResNet block has two levels of depth (used in smaller networks such 

as ResNet 18, 34) or 3 levels (ResNet 50, 101, 152). For either option, if fast 

connections are made over feature maps of two dimensions, they are performed in 

steps of 2. 

 

Figure 2.2 Layer ResNet description 

50-layer ResNet: Each 3-layer block is replaced in the 34-layer network by 

this 3-layer bottleneck, resulting in a 50-layer ResNet (see table above). They use 

variant 2 to increase the dimensionality. This model has 3.8 billion FLOPs. 



 

 
 

ResNet with 101 and 152 layers: ResNet with 101 and 152 layers uses more 

three-layer blocks (see table above). Even after increasing the depth, the 152-layer 

ResNet (11.3 billion FLOPs) has less complexity than the VGG-16/19 networks 

(15.3 / 19.6 billion FLOPs). 

 

Skip connection (shortcut connection) 

When a deeper network begins to add up, there is a problem: as the depth of 

the network increases, the accuracy first increases and then rapidly decreases. The 

decline in learning accuracy shows that not all networks are easy to optimise. 

To overcome this problem, Microsoft introduced a deep "residual" learning 

structure. Instead of hoping that every few layers correspond directly to the desired 

baseline representation, they explicitly allow these layers to correspond to the 

"residual". The formula F (x) + x can be implemented using neural networks with 

fast connections (feedforward connections, fast connections). 

 

Figure 2.3 Skip (shortcut) connection structure 

A shortcut connection skips one or more layers and performs ID mapping. 

Their outputs are added to the outputs of the stack layers. Many problems can be 

solved with ResNet, such as 



 

 
 

• ResNet is relatively easy to optimise: 'simple' networks (which simply 

stack layers) show large learning errors when the depth is increased; 

• ResNet makes it relatively easy to improve accuracy by increasing 

depth, which is more difficult to achieve with other networks; 

 

Results 

ResNet converges faster than its simple counterpart. Figure 2.4 shows that 

a deeper ResNet achieves better learning results than shallow networks. 

 

Figure 2.4 Results of ResNet50 on CIFAR-10 dataset 

As we can see, the residual neural network performs very well with a high 

accuracy factor. 

During training, the image is resized by randomly sampling its short side by 

[256,480] to enlarge it. A 224 × 224 crop is randomly selected from the image or 

its horizontal offset by subtracting the average value for each pixel. The training 

rate starts at 0.1 and is divided by 10. When the error variation reaches a plateau, 



 

 
 

the models are trained to sixty × ten thousand iterations. A weight loss of 0.0001 

and a moment of 0.9 is used. 

 

 

 

2.2.2 Pyramidal Neural Network 

 

 

Figure 2.5 Topology of pyramidal neural network (PNN) 

The main difference that is immediately apparent is that each successive 

layer of the pyramidal convolutional neural network increases the number of 

feature maps to improve identification accuracy. 

Most deep convolutional networks use a method in which the size of the 

feature maps increases along the edges of the image, but the size of the feature map 

itself does not increase until it reaches the subsampling layer. In this case, the size 



 

 
 

of the feature map Dk of the k-th residual unit belonging to the n-th grouping can 

be described as follows: 

𝐷𝑘 =  { , 𝑖𝑓 𝑛(𝑘) ≥ 2
𝑛(𝑘) = 1

16 ∗ 2𝑛(𝑘)−2
16           } , (2.1) 

where n(k) ∈ {1, 2, 3, 4} denotes the index of the group to which the k-th 

residual unit belongs. Residual units belonging to the same group have the same 

size of the feature map and the n-th group contains Nn residual units.  

The first group has only one convolutional layer which converts the RGB 

image into multiple feature maps. For the nth group, after passing through Nn 

residual units, the feature size is halved and the number of dimensions is doubled. 

A pyramidal neural network is that the dimensionality of the additive 

network's feature map gradually increases linearly, while the dimensionality of the 

multiplicative network increases geometrically. That is, the dimensionality 

increases slowly in the input layers and increases sharply in the output layers. This 

method is similar to the original deep network architectures such as VGG or 

ResNet. 

 

Figure 2.6 Structure of pyramidal neural network 

The building block (convolutional filter stacks with BN- and ReLU-layers) 

in the block is the core. Obviously, to maximise the capability of the network 



 

 
 

architecture, an excellent building block is required. The pyramidal neural network 

incrementally increases the feature map. Size instead of doubling in one of the 

residual blocks evenly distributes the load, increasing the function of the map. To 

illustrate, let's compare PNN with ResNet. 

Activation function ReLU: 

After using ReLU for this neural network it’s improved performance: 

 

𝑥𝑘
𝑙 = 𝑅𝑒𝐿𝑈(𝐹(𝑘,𝑙)(𝑥𝑘−1

𝑙 ) + 𝑥𝑘−1
𝑙 ), (2.2) 

where the ReLU seem to have the function of filtering nonnegative elements. 

Results 

 

Figure 2.7 Results of Pyramidal neural network on CIFAR-10 dataset 

As can be seen from the results on the CIFAR-10 dataset, the pyramidal 

neural network performed much better than ResNet. Finally, the experimental 

results show that PNN has excellent generalisation ability, showing better results 

than other deep models. 



 

 
 

2.3 Learning Image Sampling (Datasets) 

CIFAR-10 

The CIFAR-10 training set was used to train and test the neural networks,  

which consists of sixty thousand colour images of thirty-two-by-thirty-two pixels 

of ten classes, six thousand images per class.  

This training set also includes fifty thousand training images and ten thousand test 

images to test the already trained network.  

The data set is divided into five training and one test batch, each containing 

ten thousand images. The test batch contains exactly one thousand images of each 

class selected at random. The training batches contain the remaining images in 

random order, but some training batches may contain more images of one class 

than another. Between training batches contain exactly five thousand images of 

each class. 

 

Figure 2.8 Types of images in CIFAR-10 



 

 
 

The classes are completely exclusive of each other. There is an intersection 

of numbers between cars and trucks. "Car" includes sedans, SUVs and the like. 

"Truck" includes only big trucks. None of them include pick-up trucks. 

Each image is chosen so that it only shows the object being studied, so that 

the convolutional neural network can select only those features that are specific to 

that type of object. 

Computer algorithms for object recognition in photographs are often trained 

on examples of datasets that have already been selected to begin with. CIFAR-10 

is a set of images that can be used to train a neural network for object recognition.  

 

Since the images in CIFAR-10 are of low resolution (thirty-two by thirty-

two pixels), this dataset allows users to train their network quickly and get results 

quickly, try different algorithms and immediately see what works and what doesn't. 

In general, it is good practice to use the CIFAR-10 image set to test the overall 

performance of your network, and only then use the larger image sets. 

CIFAR-100 

This dataset contains all the same images as in CIFAR-10, but additionally 

contains 90 new image classes for more detailed and advanced training of your 

network and verification of results. Each image class contains a fairly large number 

of images, equal to six hundred images. Five hundred of these are set aside for 

training and one hundred of the six hundred for network verification. All classes in 

this dataset are divided into 20 superclasses, each image has a label "fi-ne" (the 

class it belongs to) and a label "rough" (the superclass it belongs to). 

In general, it contains the following superclasses: aquatic mammals, fish, 

flowers, food containers, fruits and vegetables, household appliances, home furry 



 

 
 

furniture, insects, large predators, large outdoor man-made objects, large outdoor 

nature scenes, large omnivores and herbivores, medium sized mammals, non-insect 

invertebrates, non-insect invertebrates, humans, reptiles, small mammals, trees, 

type 1 vehicles, type 2 vehicles. And other big amount of different images. 

Conclusion: 

This chapter describes the types of neural networks, their parameters and 

features. ResNet and Pyramid neural networks are described with their topologies, 

main parameters and additional parameters. The results of ResNet and Pyramid 

neural networks on CIFAR-10 and CIFAR-100 datasets are included. The image 

data sets used in training and testing of these networks are described. 
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CHAPTER 3. CREATION OF HYBRID NEURAL 

NETWORK 

3.1 Deep pyramidal residual hybrid neural network structure 

3.1.1 Zero-padded skip connection type 

ResNets and pre-activation ResNets have been studied several types of 

labels, such as the identity display label or the projection label. The experimental 

results showed that the identity mapping label is a more suitable choice than the 

other labels. Because the identity mapping label has no parameters, it has a lower 

probability of rearrangement compared to other types of labels; this provides an 

improved ability to generalize. Moreover, it can pass cleanly through a gradient 

according to the identity mapping, and therefore provides greater stability during 

the learning phase. 

In the case of a hybrid pyramidal residual neural network, only identity 

mapping cannot be used for reduction because the dimensionality of the feature 

map differs for the individual residual units. Therefore, only a null substitution skip 

or projective reduction can be used for all residual units. However, as already 

mentioned, projective labeling can make information dissemination difficult and 

lead to optimization problems, especially for very deep networks.  

On the other hand, we have found that the zero-addition label does not lead to 

overfitting problems, as there are no additional parameters and, surprisingly, it 

shows significant generalisation power compared to other labels. 

 



 

 
 

We now consider the effect of reducing the null substitution identity 

mapping to the k-th residual unit belonging to the n-th group with the reformed 

vector xl k of the l-th feature map: 

𝑥𝑙
𝑘  = 

𝐹(𝑘,𝑙)(𝑥𝑘−1
𝑙 ),                  𝑖𝑓 𝐷𝑘−1<𝑙≤ 𝐷𝑘

𝐹(𝑘,𝑙)(𝑥𝑘−1
𝑙 ) + 𝑥𝑘−1

𝑙 ,   𝑖𝑓 1≤ 𝑙≤ 𝐷𝑘−1 (3.1) 

where 𝐹(𝑘,𝑙) denotes the l-th residual function of the k- the residual unit and 

Dk represents the pre-defined channel 

 

Figure 3.1 Structure of residual block with zero-padded identity-mapping 

skip 

 

Figure 3.2 Structure of unraveled view of Figure 3.1 

is the dimensionality of the k-th residual unit. It follows from equation (3.1) that 

the null elements of the identity mapping label for increasing dimensionality let xl 

k contain the outputs of both residual networks and simple networks.  



 

 
 

Therefore, we can assume that each null-filled identity mapping label can 

provide a mixture of residual network and simple network, as shown in (3.1, 3.2).  

Moreover, our hybrid pyramidal residual neural network increases the 

channel dimensionality in each residual unit, and the effect of mixing the residual 

network and the ordinary network is markedly increased. 

3.1.2 New building block 

To maximise the capabilities of the network, it is natural to ask the following 

question: "Can I design a better building block by changing the stacked elements 

within the building block in a more principled way?" The first types of building 

blocks were proposed in the original article on ResNets, and another type of 

building block was proposed later in the article on pre-activated ResNets to answer 

this question. Moreover, pre-activated ResNets attempted to solve the problem of 

reverse gradient overflow by redesigning the residual modules; this proved 

successful in tests. However, although the pre-activation residual module has been 

found to have empirically improved performance, further investigation into 

possible combinations has yet to be carried out, leaving potential room for 

improvement. In the following, we will attempt to answer this question from two 

perspectives, looking at straightened linear units (Re-LU) and batch normalisation 

layers (BN). 

3.1.3 ReLU function in the building block 

The inclusion of ReLUs in the building block residuals blocks are 

necessary for non-linearity; however, we have found empirically that 

performance can vary depending on the location and number of ReLUs. This can 

be discussed 



 

 
 

This can be discussed with the original ResNets, for which it has been shown 

that performance increases as the network deepens; however, if the depth exceeds 

1,000 layers, overfitting still occurs, and the result is less accurate than that 

obtained by smaller ResNets. 

First, we note that using ReLU after adding residual units have a negative 

impact on performance: 

𝑥𝑘
𝑙 = 𝑅𝑒𝐿𝑈(𝐹(𝑘,𝑙)(𝑥𝑘−1

𝑙 ) + 𝑥𝑘−1
𝑙 ), (3.2) 

where ReLUs are removed after adding to the identity path creation. 

Consequently, the overall performance increased by a significant amount without 

excessive fitting, even at depths exceeding 1000 layers. In addition, Shen et al. 

proposed a weighted residual network architecture that places ReLUs inside the 

residual unit (instead of placing ReLUs after addition) to create an identical path. 

ReLU after addition) to create an identity path, and showed. 

This structure also does not rebuild, even with a depth of more than 1000 

layers. Secondly, we found that using a large number of Re-LUs in blocks of each 

residual block can have a negative impact on performance. Removing the first 

ReLU in the blocks of each residual block was found to improve performance over 

blocks. Experimentally, we found. 

That removing the first ReLU in the stack is preferable and that the second 

ReLU must remain to ensure non-linearity. However, when we remove the first 

ReLU, the blocks are changed to BN-conv-BN-ReLU-conv, in this case the two 

convolution layers are separated by a second ReLU, thus guaranteeing non-

linearity. Consequently, provided an appropriate number of ReLUs are used to 

ensure non-linearity of the feature space, the remaining ReLUs can be removed to 

improve network performance. 



 

 
 

 

Figure 3.3 Pre-activation function ResNet with removed the first ReLU 

with a Batch Normalization layer after the final convolutional layer 

3.1.4 Batch Normalization layers in the building block 

The main role of the BN layer is to normalise activations for rapid 

convergence and improve performance.  

Experimental results from four structures, show that the BN layer can be 

used to maximise the capabilities of a single residual block. The BN layer performs 

an affine transformation according to the following equation: 

𝑦 = 𝛾𝑥 +  𝛽, (3.3) 

where γ and β are studied for each activation in the feature maps. We find 

experimentally that the computed values of and can approach 0. This means that 

if the computed values of and are close to 0, the corresponding activation is not 

considered useful.  



 

 
 

Weighted ResNets, in which the learned weights are at the end of their 

building blocks, are also similarly trained to determine whether the corresponding 

residual block is useful. Thus, the BN layers at the end of each residual block 

represent a generalized version, among other things, so that decisions can be made 

as to whether each residual block is useful. In this way, degrees of freedom obtained 

by involving and from batch normalisation layers can improve the capabilities of 

the network architecture. The results support the conclusion that adding a batch 

normalisation layer at the end of each building block and improves performance. 

Note that the aforementioned network, which removes the first ReLU, is also 

improved by adding a batch normalization layer after the last convolutional layer. 

3.1.5 Training parameters 

The hybrid neural network was trained by stochastic gradient descent (SGD) 

back propagation with Nesterov pulse for 300 epochs on the CIFAR-10 dataset. 

The initial learning rate is set to 0.1 for CIFAR-10, and decreases by a factor of 0.1 

at 150 and 225 epochs, respectively. The filter parameters are initialized with 

"msra". We use a weight attenuation of 0.0001, an attenuation of 0, a pulse of 0.9 

and a batch size of 128.    

3.2 Application of multicriteria optimisation for structural-

parametric synthesis of neural networks 

3.2.1 Pareto-optimality 

 Optimisation criteria can be narrow, neutral or overriding. In the first 

case, optimizing one of the criteria leads to improving the others. In the second 

case, optimizing one criterion does not affect the others.  

 



 

 
 

The case of conflicting (overlapping) criteria is of interest, when an attempt 

to improve one of them leads to deterioration of the others. In this case, a solution 

can only be achieved on the basis of a compromise. The mathematical model of 

trade-offs in optimisation is often based on the concept of Pareto multiplicity, 

named after the Italian economist who first investigated such models in the early 

20th century. 

A solution x ∈ D is called an effective solution (non-dominant, Pareto-like, 

irreducible) if there is no solution in the set of admissible alternatives D which is 

not worse than x by objective functions, or at least one objective function is strictly 

better than x. (A Pareto point cannot be polished by the sum of all objective 

functions). 

This definition of an efficient solution can be refined by introducing the 

notion of Pareto dominance, which is basic in the theory of bagatocriteria choice 

and more precisely reveals the essence of the formulation 'one solution is better 

than another'. 

Pareto's concept of domination 

We will assume that the problem of minimization for N criteria is solved. 

Then the notion of Pareto-dominant for two any vectors is defined by three possible 

variants: 

1. Solution a domains solution b: а? ‰»b if 𝑓𝑖(𝑎) < 𝑓𝑖(𝑏)∀𝑖 = 1, 𝑁. 

2. Solution a weakly domains solution b: a ≽ b, if 𝑓𝑖(𝑎) ≤ 𝑓𝑖(𝑏)∀𝑖 = 1, 𝑁. 

3. The solutions a and b are non-integer: a ≈ b if 𝑓𝑖(𝑎) ⊀ 𝑓𝑖(𝑏) ∧ 𝑓𝑖(𝑎) ⊁

𝑓𝑖(𝑏)∀𝑖 = 1, 𝑁 



 

 
 

Thus, if vector x is undominant with respect to D, it is called Pareto-optimal, 

i.e., if y ∈ D: y x does not exist, then x is Pareto-optimal. 

The set of all efficient points is called the Pareto set in the variation space, 

and their image in the criterion space is called the Pareto front. 

From all of the above, the following conclusion can be made. For any 

admissible point behind the Pareto set, there is a point in the Pareto set which gives 

for all objective function’s values not worse than at this point and at least one 

objective function is strictly better. Thus, it turns out that the solution to the 

bagatocriterial optimization problem is appropriate to choose from the Pareto 

multiplicity, since any other point can obviously be improved by a Pareto point at 

least by one criterion without degradation of the other criteria.  

Mathematically speaking, a given Pareto solution cannot be regarded as 

superior to another Pareto solution, so once the Pareto multiplicity has been 

formed, the problem of bagatocriterial optimisation can be regarded 

mathematically solved. 

3.2.2 Approaches to the designation and selection 

Target function interchange (NCGA) 

In the evolutionary algorithms of this class, instead of combining the target 

functions to obtain a scalar value of adjacency, the target functions are interchanged 

during the selection phase. Each time an individual is selected for reproduction, the 

decision to accept him or her into the intermediate population is made on the basis 

of different target functions. For example, the intermediate population can be 

populated with equal portions of different objective functions. Change the order or 

select by chance the order in which the target functions are viewed. 

Aggregation (alignment) of objective functions 



 

 
 

In this case, the objective functions are combined into one parameterized 

objective function as in classical approaches, but the parameters of the objective 

function do not change during different optimization runs, but vary during a single 

run. 

Some approaches use a valid method, where each individual is evaluated 

using a given amount combination. Thus, all members of the population are 

evaluated using different objective functions, and the optimization is done 

simultaneously from a variety of perspectives. 

Use of the concept of Pareto-Dominion (SPEA, SPEA2) 

All undomesticated individuals will be ranked 1 and will be removed from 

the population at the same time. Further, additional undomesticated individuals will 

be assigned rank 2 and will also be removed from the population. This process 

continues until all of the individuals have been assigned a similar rank to other 

members of the population. As a result, an individual's rank determines his or her 

value of belonging. 

Thus, membership is linked to the entire population, whereas in other 

approaches the membership value of an individual is calculated independently of 

the other individuals. 

3.3.3 Approaches to maintaining population diversity 

Underpopulations are formed and maintained, so called niche, in which 

individuals are obliged to share resources. The more individuals are in the closest 

proximity to an individual, the more the value of his or her affiliation decreases. 

A niche is a group of individuals who have the same affiliation. When there 

is a laggard-criteria optimization, an approach called dilution of total commitment 

is often used to reduce the commitment of the individuals who are in the same 



 

 
 

niche. This is done to prevent the population from converging to a single solution. 

Thus, stable subpopulations can be formed, each corresponding to different optima 

of the function. 

Limited Scoping 

Two individuals are only allowed to join forces if they are distant from one 

another. As in the case of a separation of proximity, the distance between two 

individuals can be determined using different metrics. It should be noted that this 

approach is not widespread in practice. 

Isolation by means of distance control 

In this mechanism, each individual is assigned a position in the population. 

And, in general, two approaches are distinguished: either the spatial structure of a 

single population is defined, such that spatial niche is created; or the population is 

divided into distinct subpopulations that only occasionally exchange individuals, 

with so-called migrations of rare individuals occurring. 

Redesignation 

In line with this method, identities are composed of active and inactive parts: 

the first identifies the vector of solutions and the inactive part is not used. Thus, the 

information can be "stored" in the individual, as the active and inactive parts can 

change places during the evolution. 

 

 

Restarting 



 

 
 

Another approach used to counteract leapfrogging is to "re-start" either the 

entire population or a portion of it after a certain period or when the search has 

stalled (no gain over several generations). 

In this case, "restarting" means replacing all or part of the individuals in the 

population with those generated accidentally, i.e., repeating the initial initiation of 

the population or part of it. 

Consolidation (clustering) 

This is where new individuals (soviets) replace similar individuals in the 

population. In this case, unlike the general evolutionary algorithm, not the entire 

population participates in selection, recombination and mutation, but only a small 

fraction of individuals. 

3.3.4 Using elitism to maintain population diversity 

The use of elitism ensures that the maximum adaptability of the population 

will not decrease from generation to generation, but can only increase. In contrast 

to the methods discussed in the previous paragraph, the application of the concept 

of elitism in the genetic algorithm usually promotes faster convergence of the 

population. Therefore, this approach is good for optimizing unimodal functions, 

and when solving multicriteria optimization problems can cause premature 

convergence. 

Accordingly, in contrast to single-criteria optimization, the use of the 

concept of elitism in multi-criteria optimization is a more complex procedure 

associated with the concept of dominance.  

Instead of one best individual, an elite set is created here, the size of which 

can be compared with the size of the population itself. This raises questions: What 



 

 
 

kind of individuals and how long to keep in the elite set? What individuals and 

when to return to the population? 

In general, there are two main elitist approaches: 

1. Directly copy non-dominant individuals to the next population. 

Sometimes variants with restrictions are used, when only N individuals optimal for 

a certain function are transferred to the next population, regardless of the values of 

other criteria. 

2. The concept of supporting an external set of individuals (archive) is often 

used. Thus, in each generation, a certain percentage of the population is filled or 

replaced by representatives of the archive, who are selected randomly or according 

to some criterion, for example, after the end of the time during which the individual 

must remain in the archive. 

 3.3.5 Basic algorithms of multicriteria optimization 

NCGA 

A feature of the NCGA algorithm (Neighborhood Cultivation Genetic 

Algorithm) is the use of a special type of crossover - neighborhood crossover: 

The choice of individuals for crossbreeding is not accidental - the two closest 

individuals are chosen. Due to this approach, obtained after crossing individuals 

are close to their parents. 

 

 

Algorithm description: 



 

 
 

Step 0. Initialization: Set the parameters of the algorithm: population size - 

N, the maximum number of iterations of the search - T. An initial population of P0 

is generated. 

The initial population P0 is copied to the archive A0. The size of the archive 

is also N. Set the iteration number t = 0. 

Step 1. Start a new iteration of the search: t = t +1. We generate a new 

population Pt = At – 1 (i.e., P1 = A0 = P0 is the initial population). 

Step 2. Calculate the value of the fitness function for each individual in this 

step. 

The optimization criterion used to calculate the fitness function varies in turn 

at each iteration. For example, if the problem includes three criteria for 

optimization, then the first criterion uses the first criterion to calculate the fitness 

function, the second iteration uses the second criterion, the third iteration uses the 

third criterion, the fourth iteration uses the first criterion again, and so on. 

Step 3. Ranking: Individuals in the population are sorted by the values of 

adaptation functions in descending order (from the best individual to the worst). 

Step 4. Grouping: individuals are divided into groups, each of which consists 

of two individuals. These two individuals are selected from the beginning of the 

list of sorted individuals. 

Step 5. Crossing and mutation: in each of the formed groups there is crossing 

(crossover) and mutation. 

This algorithm uses a variant of a single-point crossover - two selected 

"parents" are cut at a randomly selected point, after which their chromosomes 

exchange their fragments. 



 

 
 

The mutation is associated with a random change in one or more genes on a 

chromosome. As you can see, hear a randomly selected bit changes its state to the 

opposite. Two daughter individuals are formed from two parental individuals. 

Parents are removed from the group. 

Step 6. All daughter individuals are grouped into one group, which becomes 

the new population of Pt. 

Step 7. The values of the fitness function for each individual from the new 

Pt population are calculated. The evaluation criterion used is the same criterion 

used in the second step of this iteration. 

Step 8: Update the archive: The Pt population and the At-1 archive are 

merged together. From the formed association (which will contain 2N individuals) 

it is necessary to choose N individuals that form a new At archive. The SPEA2 - 

Environment Selection algorithm approach is used to make this choice. 

Step 9. Check the stop condition: if the stop condition is reached (t> Tmax), 

the search ends. Otherwise, go to step 1. 

SPEA2 algorithm 

In comparison with the classical genetic algorithm, the SPEA method has the 

following features: 

• to calculate the value of the fitness function, use the concept of "Pareto-

optimality" (Pareto optimality); 

• individuals who are not dominant in relation to other members of the 

population are stored externally in a special external archive; 



 

 
 

• to reduce the number of individuals stored in the external archive, 

clustering is performed, which in turn does not affect the properties of individuals 

acquired in the search process. 

The main improvements of the SPEA2 algorithm in comparison with the 

classic SPEA: 

• improved procedure for determining the suitability of individuals, which 

for each individual takes into account the number of individuals that dominate the 

individual and the number of individuals that it dominates 

• a new method of reducing the size of the archive, which guarantees the 

preservation of boundary solutions 

Description of the algorithm 

Exit: N (population size), NA (archive size), T (maximum number of 

generations), 

Output: A (set of non-dominant individuals). 

Step 0. Initialization: Create an initial population P0, according to stage 1 of 

the scheme of the general evolutionary algorithm, and an empty archive A0 = ∅. 

Set t = 0. 

Step 1. Determination of fitness: Calculate the value of fitness of individuals 

in Pt and At. 

Step 2. Upgrading the archive (Environmental selection): Copy all non-

dominant individuals in Pt and At to At + 1. 



 

 
 

If the size of At + 1 exceeded NA, then reduce At + 1 using the 

Environmental selection procedure, otherwise, if the size of At + 1 is less than NA, 

then fill At + 1 with dominant individuals with Pt and At. 

Step 3. Stop: If t ≥ T or some other stop criterion is met, then At + 1 is the 

required set of solutions. 

Step 4. Selection: Put At * = ∅ (mating pool) and for s = 1, N perform: 

a) randomly select two individuals i, j ∈ At + 1, 

b) if F (i) <F (j), then At * = At * + {i}, otherwise At * = At * + {j} (in the 

case of minimization). 

Step 5. Crossbreeding: Crossbreeding is performed similarly to 

crossbreeding in the classical genetic algorithm. 

Step 6. Mutation: Mutation is carried out similarly to mutations in the 

classical genetic algorithm 

Step 7. Save the result of crossbreeding and mutation operations on the set 

of individuals At * as a new population of Pt + 1. Increase the iteration counter t = 

t + 1 and go to step 1. 

It should be noted that the stage of determining the fitness functions in the 

scheme of the CREA / SPEA2 method is not carried out as in the classical genetic 

algorithm, but is a modified procedure based on the concept of Pareto-dominance.  

Along with this stage, the clustering mechanism used to reduce the number 

of individuals in the archive is also carried out according to a special scheme. 

Algorithms for step-by-step implementation of both procedures are presented 

below. 



 

 
 

Calculation of fitness in the CREA2 method: 

To avoid a situation where individuals dominated by the same members of 

the archive have the same values of fitness functions, the SPEA2 algorithm for each 

individual takes into account the number of individuals that dominate it and which 

it dominates. 

1. Each individual i ∈ At, is assigned the value S (i) ∈ [0,1), which is called 

the "strength" of the individual (reflects the adaptability of the non-dominant 

solution), which is proportional to the number of members of the population j ∈ Pt, 

for which f (i) ≽ f (j). 

Let n be the number of individuals in the archive At that are dominated by 

the individual and, N be the total number of individuals in the archive. Then the 

"strength" of the individual will be defined as 

𝑆(𝑖) =
𝑛

𝑁 + 1
(3.4) 

2. Based on the value of S (i) is calculated "rough" (raw) value of the fitness 

function R (i) of individual i, which is calculated by summing the "forces" of all 

individuals j, which dominate or weakly dominate the individual. 

 

𝑅(𝑖) = ∑ 𝑆

𝑗∈𝑃𝑡+𝐴𝑡,𝑗≻𝑖

(𝑗) (3.5) 

3. Also to calculate the value of the fitness function is used the value of the 

density of the location of individuals: 

For each individual and the Cartesian distance from it to the rest of the 

individuals j in the archive and population is calculated. All calculated distances 



 

 
 

for this individual are added to the list and sorted in ascending order. The k-th 

element of such a list for an individual and denote as σki. 

Calculate the value of density D (i) for individual i: 

𝐷(𝑖) =
1

𝜎𝑖
𝑘 + 2

, 𝑘 = √(𝑁 + 𝑁𝐴) (3.6) 

4. The final value of the fitness function F (i) for an individual and is defined 

as F (i) = R (i) + D (i). 

The mechanism of clustering in the method SPEA2 (Environmental 

Selection): 

In some cases, the archive of Pareto-optimal solutions may be too large or 

even contain many decision points. However, from the point of view of the final 

decision-maker on choosing the optimal solution, too many options to choose from 

is a disadvantage. Moreover, the number of individuals in the archive affects the 

behavior of SPEA / SPEA2 - too many non-dominant solutions reduce 

"competition" between individuals (selection pressure) and can slow down the 

search. Also, to obtain qualitative results that would cover the entire allowable 

Pareto region, it is necessary that all individuals be evenly distributed in the space 

of criteria: if the points in the archive A are unevenly distributed, then during the 

calculation of fitness functions (and the formation of a new population) towards 

certain areas of space, which leads to an imbalance of the population and as a 

consequence - the unrepresentativeness of the resulting solution. Thus, the 

reduction and redistribution of individuals from the archive (while maintaining the 

basic characteristics of the individuals found) is desirable or even mandatory. 

Unlike the clustering mechanism used in the SPEA algorithm, the 

corresponding procedure in the SPEA2 algorithm has two features: 



 

 
 

• the number of individuals stored in the archive has become constant and 

does not change over time; 

• boundary solutions are not removed from the archive. 

Conclusion: 

This chapter describes a new idea of convolutional neural networks so called 

“hybrid”. Also described an increase in the function map measurement gradually 

to build so-called pyramid structure alongside the ResNets concept.  

It was also created a new residual unit that includes a new building block for 

residual unit with zero filled label. This design leads to significantly improved 

generalization capabilities. Also described briefly parameters of structural 

parametric synthesis of neural networks. 
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CHAPTER 4. SOFTWARE COMPLEX 

4.1  Development tools 

4.1.1 TensorFlow library 

TensorFlow is an open-source machine learning library developed by 

Google to meet its needs for systems that can build and train neural networks to 

detect and decode images and correlations, similar to human learning and 

understanding d. It is currently used for both research and product development by 

Google, often replacing its closed-source predecessor DistBelief. TensorFlow was 

originally developed by the Google Brain team for Google's internal use until it 

was released under the open-source Apache two-point zero license on nine of 

November two thousand fifteen. 

TensorFlow is Google Brain's second-generation open-source machine 

learning system. While the reference implementation runs on a single device, 

TensorFlow can run on multiple CPUs and GPUs (including optional CUDA 

extensions for general purpose graphical process unit computing). TensorFlow is 

available for 64-bit Linux, macOS, Windows and mobile computing platforms 

including Android and iOS. 

TensorFlow computation is expressed as data flow graph states. The name 

TensorFlow comes from the operations that such neural networks perform on 

multidimensional data sets. These multidimensional arrays are called 'tensors'. In 

June 2016, Jeff Dean of Google stated that TensorFlow is mentioned in 1500 

repositories on GitHub, of which only 5 are owned by Google. 

 



 

 
 

Among the applications for which TensorFlow is the basis are automatic 

image description programs such as DeepDream. On 26 October 2015, Google 

officially introduced RankBrain, which supports TensorFlow.  

RankBrain now handles a significant number of search records, replacing 

and complementing traditional static algorithms based on search results. 

Another application is using FakeApp to seamlessly combine photos and 

videos to create fake but believable videos, known as Deepfake. 

TensorFlow provides a library of off-the-shelf numerical computation 

algorithms implemented as data flow graphs. The nodes of such graphs implement 

mathematical operations or input/output points, and the edges of the graph 

represent multidimensional data sets (tensors) that are passed between nodes. 

Nodes can be assigned to computing devices and operate asynchronously, 

processing all suitable tensors together in parallel, allowing simultaneous operation 

of nodes in a neural network, analogous to the simultaneous activation of neurons 

in the brain. 

Basic elements of TensorFlow tool 

Computation graph 

Working with TF is built around the construction and execution of a 

calculation graph. A computation graph is a construct that describes how the 

computation will be executed. In classical imperative programming, we write code 

that is executed line by line. In TF, the conventional imperative programming 

approach is needed only for some auxiliary purposes. The basis of TF is to create 

a structure which defines the order of calculations. Programs are naturally 

structured into two parts - making a computation graph and performing 

computations in the created structures. 



 

 
 

In TF, the graph consists of placeholders, variables and operations. From 

these elements it is possible to assemble a graph in which tensors will be computed.  

Tensors are multidimensional arrays; they serve as "fuel" for the graph. A 

tensor can be a single number, a feature vector from the problem being solved or 

an image, or a whole batch of object descriptions or an array of images. Instead of 

a single object, we can pass an array of objects to the graph and an array of 

responses will be computed for it. TF's work with tensors is similar to how numpy 

works with arrays, in which functions we can specify the axis of the array relative 

to which the computation will be performed. 

Sessions 

Computational graphs are executed in sessions. The session object 

(tf.Session) hides the context of graph execution - the necessary resources, 

auxiliary classes, address spaces. 

There are two types of sessions - regular sessions, which are implemented in 

tf.Session, and interactive sessions (tf.InteractiveSession). The difference between 

the two is that an interactive session is more suitable to run in the console and is 

immediately identified as the default session. The main effect is that the session 

object doesn't need to be passed as a parameter to the calculation function. In the 

examples below, I will assume that the interactive session we declared in the first 

example is running at the moment, and when I need to refer to the session, I will 

refer to the sess object. 

Artificial intelligence is the process of modelling human intelligence using 

machines and specialised computer systems. Examples of artificial intelligence 

include learning, reasoning and self-correction. Applications of artificial 

intelligence include speech recognition, expert systems, pattern recognition and 

machine vision. 



 

 
 

Machine learning is a branch of artificial intelligence that deals with systems 

and algorithms that can learn any new data and data patterns. 

Machine learning encompasses the machine learning section, and deep 

learning is part of machine learning. The ability of a programme that follows 

machine learning concepts is to improve the characteristics of the observed data.  

The main motive for transforming data is to improve its knowledge to 

achieve better results in the future, to provide an output that is close to the desired 

result for that particular system. Machine learning includes 'pattern recognition', 

which involves the ability to recognise patterns in data. 

It is also provided free of charge. The code is open source. The tasks that this 

library solves involve information flow and programming of differentiated types. 

Despite the specific range of tasks, this resource is widely used by specialists - 

mainly in the field of machine learning. It is also suitable for commercial activities 

and research work. 

Using this library, it is possible to work on 

- with projects designed for machine learning; 

- with neural network projects; 

- naming projects. 

It loses out to CNTA and MxNet, for example, in terms of performance. It 

has a higher entry level for beginners than PyTorch or Keras. Naked Tensorflow is 

fairly low-level and requires a lot of boilerplate code, and the "discover and run" 

mode for Tensorflow makes debugging much harder. 



 

 
 

This form of library makes it possible to write new algorithms, including 

those that contain tensor operations in large numbers. As you know, neural 

networks can be expressed in different ways.  

They are often mapped in the form of computational graphs, which is easily 

implemented using the Tensor Flow resource. In this case it will look like a series 

of operations applied in a certain sequence. 

Python is the fastest growing programming language. This is not surprising 

given that it is simple, easy to use, free and, relevant to some, allows for shape 

tasks. Researchers of information are particularly well versed in Python's literate 

grammar, its teachability, and its ease of combining with various dialects such as 

C and C++.  

All of these positive characteristics, along with the ongoing surge of 

enthusiasm for AI and artificial intelligence, may help explain the abundance of 

incredible open-source libraries and frameworks for AI and data science 

applications. There are libraries that can be used in a myriad of applications. Open-

source systems have arisen for most of the above tasks, and the choice of which 

library to use for a particular enterprise can now be stumped. 

Each open-source framework available today has its own advantages and 

disadvantages when evaluating these components. Moreover, choosing the best 

system for your needs will depend on exactly what you need to achieve. In any 

case, whatever your particular circumstances, this guide will help you understand 

which system is ideal.  

 

Sci-kit Learn is a library with a large group of old-style AI classifiers, such 

as Support Vector Machines (SVMs), KNN maps, K-Nearest Neighbours (KNN) 



 

 
 

classifiers, random forests and reciprocity calculations. It includes choices for 

supervised and unsupervised learning.  

Thus, it is ultimately a successful machine for measurable mapping. It has 

been based on many other Python libraries such as SciPy, Numpy and Matplotlib, 

and part of its central computation is additionally composed using Python. 

Advantages: 

- Very suitable for people who are new to neural networks and computer 

vision; 

- Very suitable for analysing intelligent data, such as predicting small or 

labelled datasets. 

Weaknesses: 

- Does not support artificial neural networks; 

- No support for graphical process unit computing; 

What sets this framework apart is the usual interface for engineers and the 

abnormal state of reflexivity that allows particularly delicate feet in artificial 

intelligence to effectively familiarise themselves with the stage without having to 

manage the low levels of real computation.  

It's not difficult to run and learn, and there are some decent and common 

training exercises to help you understand the calculations when you have to work 

with them. Be that as it may, Sci-unit Memories has a few obstacles. 

First of all, it does not support artificial neural networks. It is also suitable 

for small enterprises with small datasets and for tasks that are not particularly 



 

 
 

computationally intensive. This is because the framework does not support GPU 

registration. For more trained or "bad to the bone" engineers, it may be perceived 

as somewhat reticent, as reflection does not take into account tweaking hidden 

computations. 

Ideal for: Hardcore designers who require fast computation on a single 

graphical process unit.  

The system allows productive work with scientific formulas involving 

multidimensional clusters. 

Advantages: 

- Efficient handling of compressed images of large and multidimensional 

data sets; 

- Allows for extensive system flexibility to fine-tune the parameters of the 

main algorithms and algorithms to create new models 

Weaknesses: 

- Very unclear and harsh learning curve; 

- Does not support scaling by more than 1 graphical process unit. 

In any case, it continues to be an unusual solution for energetic deep learning 

enthusiasts.  

Although unusual for CNN and image processing, the system is not suitable 

for recurrent neural network (RNN) and applications involving content, sound and 

temporal coordinate information. In addition, although there are a large number of 



 

 
 

layers ready to execute, the formation of new layers can be monotonous, since for 

each new layer a full forward, backward and angular update must be characterised. 

 In addition, the structure offers a medium level of thought - it is in a not 

normal state, sufficient for quick research, and adapted enough for you to tweak 

some of the perspectives. This detail may be an advantage for mid-level designers, 

but it seems rather limiting for non-serious engineers. 

Created by Facebook's team (FAIR), genuinely new still rivals TensorFlow, 

and many foresee it becoming a best option in the near and far future than many 

other structures. 

Advantages: 

- Coding is simple, so the learning curve is flatter; 

- Supports dynamic graphics, so you can adjust them on the fly; 

- Supports graphical process unit acceleration. 

Weaknesses: 

- Quite new, so has a less community and small amount of resources 

available over the internet. 

For the most part, this is common code for writing code, but the structure is 

a mixture of high-level and low-level APIs. In fact, it's suitable for both school-

youth and deep learning. It includes many pre-prepared models, and when coding 

you don't have to arrange numbers into 'int', 'short' or 'twofold' information types 

as in other coding dialects. This makes the representation of activities and 

possibilities in this system progressively more instinctive than other alternatives. 



 

 
 

What makes this framework special, however, is that it offers engineers the 

ability to use dynamic diagrams. TensorFlow. This framework also provides robust 

support for increasing graphical process unit speed, so you get both skill and speed. 

However, the main drawback is that the system is still under development, and you 

might run into some bugs.  

Also, which is indicative of its younger age, the means to populate its official 

documentation is still very scarce. In any case, as common shows, this will not be 

a problem for a long time, as more and more developers change and the network 

evolves gradually but consistently. 

TensorFlow is currently being hailed as the best system. In a short period of 

time, it has become the favourite of some designers, and there is now a regular 

development of the network and a significant energy of improvement. The structure 

was developed by the Google Brain group and supports all stages, from Linux to 

An-droid. It's a non-normal state structure that allows you to run low-level code 

using helper libraries. Ultimately, it allows you to track the progress of the 

preparation procedure, while respecting a ton of measurements and not worrying 

about the vast majority of the different subtleties.  

Advantages: 

- Quite a lot of flexibility and customisation possibilities; 

- Contains several ready-to-use models and a ready-to-use library, allowing 

you to get started without additional customisation; 

- Ability to expand with hardware or software; 

- Quite a big online community over the internet. 

Weaknesses: 



 

 
 

- Only supports NVIDIA graphical process units; 

- Very steep learning curve. 

TensorFlow engineering and UX differs from other systems in that the nodes 

in a TensorFlow diagram represent numerical actions and the edges of the diagram 

represent multidimensional exponents (tensors). These tensors move between 

nodes, which gives you greater adaptability with respect to creating new nodes, 

unlike, for example, the design.  

In addition, the framework has a large set of models to look at: there are pre-

installed packages that allow for voice recognition and machine interpretation, as 

well as models that allow for recursion, characterisation, neural systems and a 

combination of different computations. TensorFlow can be used for many internal 

AI applications. 

However, the component that truly boggles the mind is TensorFlow's data 

logging capabilities. So far, TensorFlow is the most reasonable contender in the 

field of dispersed data processing. It provides amazing adaptability and gives you 

the ability to send your computations to different CPUs, GPUs, different servers, 

mobile phones, and the Google Cloud Machine Learning Engine. You can do this 

without changing any code - it's truly incredible. However, the main drawback is 

that the technology currently only supports NVIDIA GPUs. Similarly, in terms of 

RNN support, it's at least weaker than some other frameworks, and the wait for 

information absorption can be a bit more extreme than in Sci-unit.  

Overall, with Google's solid support and huge online network, TensorFlow is here 

to stay. 

4.1.2 Primary data processing for training samples 



 

 
 

In our daily lives, we work with a lot of information, but this information is 

roughly structured. To provide information as input to AI calculations, we must 

transform it into important information. This is where information preprocessing 

comes into play. In other simple words, we can say that we have to process the 

information before we can give it to the AI computation. 

Used these tools to preprocess the information in Python:  

Step 1: Import libraries: when using the Python programming language, this 

will be the first step to convert the information into a particular structure, i.e., 

preprocessing: 

import tensorflow as tf 

import tf.keras as keras 

from keras.datasets import cifar10 

from keras.utils import np_utils 

Step 2: Selection of the training sample: after adding the libraries, we have 

to offload the images into 4 variables so that we can apply preprocessing strategies 

to this information. We will characterize the accompanying sample of information: 

(x_train, y_train), (x_test, y_test) = cifar10.load_data() 

Step 3: Apply the preprocessing procedure: In this step we need to classify 

our images using the built-in method in the tensorflow.keras library and convert 

the la-bels class into categories. The following area shows the preprocessing 

information method: 

#num_classes=10 (for CIFAR-10), 100 (for CIFAR-100) 



 

 
 

y_train = np_utils.to_categorical (y_train, num_classes) 

y_test = np_utils.to_categorical (y_test, num_classes) 

 

Step 4: Pixel intensity data must be normalized as follow to get pixels in 

range from 0 to 1: 

x_train = x_train.astype(‘float32’) 

x_test = x_test.astype(‘float32’) 

x_train  /= 255 

x_test   /= 255 

4.2 Results of hybrid convolutional neural network based on 

ResNet and pyramidal neural network structure 

 

Features of the image preprocessing program are: 

– the image from the device comes in the form of a video sequence and 

not sufficiently contrast; 

– the programs automatically increase the contrast to the desired level 

(by checking the echogenic scale). 

 



 

 
 

 

Figure 4.1 The image pre-processing sample 

An example of image preprocessing is shown in fig. 4.1. 

Contour Highlightening 

 

Figure 4.2 The contour highlightening 

 

An example of contour selection is shown in fig. 4.3, where the highlighted 

contours are shown in the right image. 

The suspicious outline is highlighted in red. The problem of discontinuities 

and irrelevant data inside the circuit is solved. 



 

 
 

 

Figure 4.3 Selection of suspicious areas 

Obtaining autocorrelation function 

Obtaining autocorrelation functions (ACF) corresponding to certain contour 

shapes is shown in Figure 4.4. 

 

Figure 4.4 Obtaining autocorrelation function 

After image processing, four contours were obtained. One of them managed 

to classify. The neoplasms are isoechogenic, as the middle tone is in the appropriate 

place on the echogenicity scale. The echostructure is heterogeneous. 



 

 
 

 

Based on the correspondence of a certain pattern of ACF, it was concluded 

that the "wrong" form of neoplasm shown in Figure 4.6. 

On the basis of the analysis of the outline of the contour, it was concluded 

that the contour is without clear boundaries. Using the second projection and the 

Brunn method, the volume of the tumor was determined: 11.03. 

Additionally, the following data were entered into the neural network: age: 

58 years; female. Neural Network Output Diagnosis: Papillary Carcinoma. The 

results of ultrasound of the patient BV are shown in Fig. 4.6, 4.7. After image 

processing, 6 contours were obtained. One of them managed to classify 

Figure 4.5 Outlines of patient ultrasound scan results 



 

 
 

 

Figure 4.6 The conclusion about the “wrong” form of neoplasm of the 

patient’s ultrasound scan results 

 

Figure 4.7 Outlines of patience ultrasound scan results 

The neoplasm is hypoechoic because the middle tone is in the appropriate 

place on the echogenicity scale. The echostructure is homogeneous. 

Based on the correspondence of a certain pattern of ACF, it was concluded 

that the "correct" form of neoplasm shown in Fig. 4.8. 



 

 
 

 

Figure 4.8 The conclusion about the “wrong” form of neoplasm results of 

ultrasound scan of the patient 

Additionally, the following data were entered into the neural network: age: 

34 years; female. Neural Network Output Diagnosis: A-Cell Tumor (Follicular 

Adenocarcinoma). 

The results of ultrasound scan of the patient are shown in Fig. 4.9. 

After image processing, four contours were obtained. One of them managed 

to classify. 



 

 
 

The neoplasm is hypoechoic because the middle tone is in the appropriate 

place on the echogenicity scale. Echostructure is heterogeneous, there are 

hydrophilic formations. 

 

On the basis of the analysis of the outline, it was concluded that the outline 

has clear hydrophilic boundaries. Using the second projection and the Brunn 

method, the volume of tumors was determined: 43.57. 

Figure 4.9 Outlines of the results of ultrasound scan of the 

patient 



 

 
 

 

Figure 4.10 The conclusion about the “correct” form of neoplasm results of 

ultrasound scan of the patient 

Additionally, the following data were entered into the neural network: age: 

53 years; gender: male. Diagnosis at the output of the neural network: nodal goiter. 

The results of ultrasound scan of the patient are shown in Fig. 4.11. 

 

 



 

 
 

Figure 4.11 Another results of the “right” new creation of the ultrasonic 

examination of the patient 

The neoplasms are isoechogenic because the middle tone is in the 

appropriate place on the echogenicity scale. The echostructure is heterogeneous. 

There are massive cystic lesions. 

Based on the correspondence of a certain pattern of ACF, it was concluded 

that the "correct" form of neoplasm shown in Fig. 4.12. 

 

Figure 4.12 Contours results of ultrasound of the patience 

 



 

 
 

 

Figure 4.13 Conclusion about the “right” form of new creation of the 

ultrasound examination of the patient 

On the front side of the analysis around the contour of the boules of the crusts 

of the gallows, the contour is with clear hydrophilic spaces. For another alternative 

projection and the Brunn method, a new appraisal oath was made: 13.69. 

 

Additional in the neural measure I have boules introduced so far: age: 44 

rocks; become: Female. Diagnosis of neuronal outcome: an adenomatous nodular 

goiter (actually cystadenoma). Results of ultrasound of the patient AV image 

config.  

After processing the image, three contours were shaded. One of them went 

into classify. 

Neoplasms are isoechogenic, so as the middle tone can be found at the 

mainstream on the exogenous scale. The echo structure is not uniform. The 

presence of masculine approval. 



 

 
 

Based on the correspondence of a certain pattern of ACF, the conclusion was 

made about the "correct" form of neoplasm. 

 

Figure 4.14 Another conclusion of the creation of the “right” new creation 

results of ultrasonic examination of the patient 

On the basis of the analysis of the outline of the contour, it was concluded 

that the contour with clear hydrophilic boundaries. Using the second projection and 

the Brunn method, the volume of neoplasm was determined: 15.51. 

Additionally, the following data were entered into the neural network: age: 

13 years; female. Diagnosis at the output of the neural network: nodal goiter. 

In accordance with the structural diagram of the intellectual diagnostic 

system after isolation of anomalous areas as a result of video processing of 

ultrasound images, it is necessary to evaluate their parameters, namely: type of rim 

of tumor, inclusion, structure of tumor, size and echogenicity of tumor. The type 

of rim, the structure of the neoplasm and the presence of inclusions are determined 

by constructing autocorrelation functions of fragments of the anomalous region 

with subsequent comparison with the reference correlation functions corresponding 

to the possible types of these parameters, for example, for inclusions these are the 

following options: no, point inclusions, linear inclusions, tail comets ». The 



 

 
 

echogenicity of the neoplasm is determined by the use of the Piton Image Library 

(PIL). 

Conclusion: 

This section describes how data is processed before neural network training, 

and provides real results of neural network operation on images of malignant 

tumors in the human body. 

 



 

 
 

CONCLUSION 

 

In this work with application of modern technical approaches to data 

processing the GPU-basic method of functioning of a neural network was chosen. 

To compare the methods of image recognition, a graphically based method of 

calculation and verification of the original data of the convolutional neural network 

was chosen. Compared with the results in this work, an analysis of modern 

literature and scientific papers on image recognition was performed and the basic 

structure of the neural network was obtained.  

Depending on the results of the research, it follows that reducing the core 

filters will reduce the processing power, as well as increase the number of 

processed frames per second. Research has revealed that all relevant programming 

libraries for the formation of a neural network cannot allow it to be easily used in 

more complex systems, where the neural network is generally just a structural part.  

A new complex deep structural neural image identification network is 

proposed and formed using the recently proposed structure of a convolutional 

neural network together with the use of residual blocks and a pyramidal 

architecture. As a result, compared to the tests, we get a more accurate image 

recognition system. 
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