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Abstract—The article deals with the problem of noise effect on semi-supervised learning. The goal of this
article is to analyze the impact of noise on the accuracy of binary classification models created using
three semi-supervised learning algorithms, namely Simple Recycled Selection, Incrementally Reinforced
Selection, and Hybrid Algorithm, using Support Vector Machines to build a base classifier. Different
algorithms to compute similarity matrices, namely Radial Bias Function, Cosine Similarity, and K-
Nearest Neighbours were analyzed to understand their effect on model accuracy. For benchmarking
purposes, datasets from the UCI repository were used. To test the noise effect, different amounts of
artificially generated randomly-labeled samples were introduced into the dataset using three strategies
(labeled, unlabeled, and mixed) and compared to the baseline classifier trained with the original dataset
and the classifier trained on the reduced-size original dataset. The results show that the introduction of
random noise into the labeled samples decreases classifier accuracy, while a moderate amount of noise
in unmarked samples can have a positive effect on classifier accuracy.

Index Terms—Data noise; machine learning; semi-supervised learning; support vector machines.

I. INTRODUCTION

Semi-supervised learning is a machine learning
approach that leverages both labeled and unlabeled
data for model training. Usually, a dataset is split
unevenly with unlabeled data being the majority of
samples. This leads to the problem of selecting
helpful unlabeled samples that can increase the
model accuracy.

To analyze the effect of noise on the semi-
supervised learning algorithm it is best to look at
well studied problem of binary -classification.
Existing meta-semi-supervised algorithms such as
Simple Recycled Selection (SRS) [1], incrementally
Reinforced Selection (IRS) [2], and Hybrid
Algorithm (HYB) introduced in [3] as they leverage
a supervised learning algorithm to train the model,
which enables the comparison of baseline supervised
algorithm with the semi-supervised algorithm. These
algorithms assign pseudo labels based on similarity
kernel and select samples with the most bias towards
one of the classes and use these samples to expand
the training set. These algorithms are based on the
assumptions of clustering and smoothness.
Smoothness assumption assumes that points that are
located close in the dataspace are more likely to be

in the same class, while cluster assumption assumes
that points that belong to one class are likely to form
a group or cluster [9]. This assumptions enable
pseudo-lable assignment to the unlabeled data by
measuring distance to the nearby labeled data points
and selecting high-confidence “strong” unlabeled
points to be the part of the closest labeled cluster.

However, both labeled and unlabeled data can
contain noise, which can increase or decrease the
model accuracy.

This paper aims to analyze the effect of noise on
the met-semi-supervised learning algorithms,
namely SRS, IRS, and HYB, and compare it to the
impact on the baseline Support Vector Machine
(SVM) [4].

II. PROBLEM STATEMENT

The problem of semi-supervised learning is the
problem of training classifier H leveraging labeled
dataset L = {(x; , y1), (x2, »2), ... (xp, yu)} and
unlabeled dataset U = {x1, x, ... Xuu}.

This paper aims to research the effect of noisy
data on semi-supervised learning algorithms by
introducing artificially generated noise into labeled
datasets and dropping a certain percentage of the
labels.
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The noise model we use to augment source
datasets creates new noisy samples by randomly
combining features of existing samples together and
assigning a random label to the sample. The details
of the noise algorithm are expanded in section 4.

Our goal is to evaluate the performance of
supervised and semi-supervised algorithms by
measuring the classifier accuracy after training it on
datasets with different levels of noise.

To evaluate the effect of the noise on model
quality, we measure the error rate of the presented
algorithms for binary classification problems and
compare it to the baseline SVM classifier. In this
paper we use the binary classification error rate
formula:

]3 + ]VZ (]7)

e=1- ,
F+N,+P +N,

where P, is a quantity of true positives; N, is a
quantity of true negatives; Py is a quantity of false
positives; Nyis a quantity of false negatives.

When introducing noise into the dataset for semi-
supervised algorithms, three strategies are used:
introduce the noise into the labeled data only
(labeled noise), introduce the noise into the
unlabeled data only (unlabeled noise), and introduce
the noise into both labeled and unlabeled data
(mixed noise).

The noise agent generates new noisy samples by
combining features of randomly selected existing
samples and assigning random labels:

noise; =random(X),,
labels; = random ({~1,1}),

where X is the original samples; X; is the feature j of X.

Generated samples are then introduced into
datasets based on the noise introduction strategy
(labeled, unlabeled, mixed) and classifier is trained
using one of the SSL algorithms.

To study the effect of noise semi-supervised
algorithms were selected because they enable the
usage of a supervised model which can be used to
establish the baseline accuracy. Among the semi-
supervised algorithms SRS, IRS, and HYB
algorithms enable the usage of a base supervised
model by assigning pseudo labels to the unlabeled
data and leveraging the supervised learning
algorithm to create a classifier. To assign the pseudo
labels to the unlabeled data, a similarity matrix is
built using a kernel function. RBF and cosine
similarity kernel functions were chosen because of
their wide adoption, while KNN was chosen as it

promises an improvement of the underlying kernel
function.

Support Vector Machine was chosen as a
baseline supervised classifier as it is well suited and
well suited for binary classification problems.

III. RELATED WORKS

A. Simple Recycled Selection

Simple Recycled Selection algorithm introduced
in [1] is based on the idea of iteratively improving
the model accuracy by combining labeled data L
with small subset U, of unlabeled data U.

To select the strong unlabeled samples similarity
matrix S and predicted labels H are used to compute
the confidence level of value being assigned to
positive class p or negative class ¢g. Similarity matrix
is a pairwise matrix of labeled and unlabeled
samples with values in range of 0 to 1 inclusive,
where 1 means exact match and 0 — lack of any
similarity between the two samples.

z and zer 18 then computed as z =sign(p—gq)

and z__. =| p—q]|. z will be used as a pseudo label —

conf
if z, =-1, then U; is considered to be of a negative
class and vise versa. zZ.ns 1S a measure of how
“strong” unlabeled sample is.

Unlabeled data U is sorted by the confidence
level z o in the descending order and top k& samples
are selected with their respective pseudo labels and
combined into the U,.

The model M; is trained using training set
P =U, UL. Afterward, the model is used to assign

predicted labels H for U.

If the ensemble version of algorithm is used
model weight w; is calculated and prediction
function H(X) is updated as
H(X)=HX)+w,-M,(X).

It is important to note, that SRS relies on
iteratively using a small number of unlabeled
samples iteratively improving the accuracy. This
means that the training set size is constant
throughout the training process, so the algorithm
benefits not from the unlabeled set size but rather
from a few strong samples. This algorithm is better
suited for problems with either relatively small
unlabeled data set or if unlabeled dataset contains
few strong distinct samples.

B. Incrementally Reinforced Selection

Incrementally Reinforced Selection [2] is similar
to SRS in many ways. The only major difference is
that, unlike SRS, IRS expands the labeled data set
with selected strong unlabeled data U,. This enables
IRS to benefit from bigger unlabeled data set size,
not just from few strong samples.
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Since IRS will expand training set, it is well
suited for problems with the vast unlabeled dataset
as it will benefit from the expanded data set.
However, caution should be taken when selecting
the training hyper parameters as after selecting
strong samples algorithm will pick weak samples
which could decrease the model accuracy.

C.  Hybrid Algorithm

Hybrid algorithms attempt to combine
principles of both SRS and IRS together to create a
more robust algorithm that picks the strongest
possible unlabeled data U, on each iteration while
also expanding the the number of semples selected
from the unlabeled data set.

Hybrid algorithm introduced in [3] is more
universal than SRS and IRS as it can both leverage
few strong samples to improve initial accuracy and
then use more available unlabeled samples as it
increases the unlabeled ratio. It is applicable in
scenarios when both IRS and SRS are used and can
prove to be more efficient, however, it requires more
fine tuning for both SRS and IRS phases.

D.  Kernel Functions

All of the reviewed algorithms use a similarity
matrix to assign pseudo-labels to the unlabeled
dataset. In our study, we used three kernel functions
to calculate similarity matricies to test the impact of
noise on the similarity kernels.

We experimented with three similarity kernels -
Radial Bias Function [5], Cosine Simmilarity [6]
and K-Nearest Neighbours [7].

Radial Bias Function (RBF) — is a function that
calculates the similarity of the two samples based on
squared Euclidian distance adjusted by a free
parameter coefficient.

lx ="

K(x,x")=exp (2—2}
c

where o is a free parameter

Cosine Similarity is also a common choice. It is
based on the cosine of the angle between two vectors
created between the two samples and is calculated as

xxlT

[E3(520)

K-Nearest Neighbors kernel can be considered a
meta-kernel as it utilizes other kernels to improve
their accuracy.

K(x,x")=

K'(x,x")=K(x,x)-2K(x,x")+ K(x",x"),

where K is an underlying similarity kernel.

In our study, we used RBF as the underlying
kernel for K-Nearest Neighbors.

Usually, similarity kernels are selected based on
the geometry of the problem. RBF is a reasonable
and common default choice. Also, an automated
hyperparameter search can be used to determine the
best similarity kernel and kernel’s parameters as
described in [8].

IV. EXPERIMENT SETUP

To study the effect of noise we designed the
dataset processing method and noise generating
method. All of the algorithms used in the paper are
designed for the problems of binary classification, so
all of the datasets are reduced to two-class datasets
by selecting two majority classes.

We use labeled datasets as a baseline. To
generate a semi-supervised dataset we randomly
select data points in the original dataset and remove
labels. In our setup, we keep 30% of points labeled
while removing labels for the other 70% of the
points.

During the testing, we conducted several runs
with different noise levels as introduced in formula
(2) and evaluated the results using the error rate
formula (1). We experiment with 0, 5, 10, 20, and 30
percent of noise samples in datasets for baseline
SVM, labeled data, unlabeled data, and mixed data.

Additionally, we experiment with several ways
of introducing noise into the dataset as illustrated in
Fig. 1.
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b) Data split for mixed semi-
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Fig. 1. Data split for different experimentation setups
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Baseline experiments were conducted in the
mixed mode (Fig. 1b). In this mode, we introduce
noise both to the labeled and unlabeled samples. To
assess the impact of noise type we additionally
experimented with labeled-only dataset noise (Fig.
1¢) and unlabeled-only noise (Fig. 1d) and compared
the resulting error rates.

It’s worth noting that we used relatively small
academic datasets with clear decision boundaries,
however, in real-world datasets it is important to
make sure that datasets meet the assumptions of
selected SSL algorithms (smoothness and clustering)
in our case. Another important property that the
dataset should satisfy is that the density probability
function should match for both labeled and
unlabeled datasets, otherwise model accuracy can
decrease as SSL algorithms are likely to mislabel the
unlabeled samples. Finally, as we used SVM as our
baseline supervised classifier it is important that
datasets have high and low-density regions in order
to find a proper decision boundary. If the dataset has
only high or low-density regions or class overlaps
SVM will show poor performance as it would
struggle to find the appropriate decision boundary.

V. RESULTS

We tested 3 meta-semi-supervised learning
algorithms and 1 supervised learning algorithm on
several UCI [10] datasets. The datasets used are
illustrated in Table I.

TABLE 1. USED DATASETS
Dataset Num.ber of Number of Number of
attributes instances classes
balance 4 625 3
glass 10 214 7
heart 14 270 2
iris 4 150 3

To mitigate randomness in the data augmentation
process each test was run 20 times and error rates
were averaged afterward. Each semi-supervised test
was performed with 3 different kernels — cosine,
radial bias function and k-nearest-neighbors.

Each dataset was reduced to two dominant
classes as our implementations of the algorithms are
only suitable for binary classification. The results of
the experiments are given in Tables II to V. The
tables contain error rate values for specified
percentage of noisy samples using mixed noise
algorithm (Fig. 1b).

TABLE II. RESULTS FOR THE "BALANCE" DATASET

Algoritm / Noise

Base 5% 10% | 20% | 30%
Level

SVM 0.017210.04920.0156 {0.14290.1333

0.0172 |- - - -

SVM (30% data)

SRS (COS) 0.157510.1929 |0.1885 |0.2495 |0.2376
SRS (KNN) 0.0799 10.0819 |0.1297 |0.1457 |0.1956
SRS (RBF) 0.0569 |0.061 |0.1052|0.1875|0.2044
IRS (COS) 0.3937 10.4033 |0.3823 |0.4563 |0.4429
IRS (KNN) 0.1816|0.1973 |0.2344 |10.2486 |0.2712
IRS (RBF) 0.1023 |10.137410.226 |0.2659 |0.3659
HYB (COS) 0.314410.313210.3099 |0.3841 |0.3403
HYB (KNN) 0.0713 10.0846 |0.1099 |0.176 |0.2013
HYB (RBF) 0.234510.2341 |10.2562 |0.2913 |0.3628
TABLE III. RESULTS FOR "GLASS" DATASET
Algoritm /| poco | 5% | 10% | 20% | 30%
Noise Level
SVM 0 0.125 0.1176 |10.222210.2253
SVM (30% |0 - - - -
data)
SRS(COS) 0.168210.11250.226 |0.3093 |0.2948
SRS(KNN) [0.0227 {0.0729 {0.092 |0.1204 |0.1879
SRS(RBF) 0.1477 10.125 |0.284 |0.2352]0.2052
IRS(COS) 0.3023 |10.4458 |10.314 |0.3352|0.4052
IRS(KNN) 0.0682 10.1875 |0.21 0.2611 |0.3086
IRS(RBF) 0.3 0.454210.326 |0.3519|0.3948
HYB(COS) [0.2886(0.2771 |0.286 [0.363 ]0.3948
HYB(KNN) [0.0341(0.0146 |0.008 [0.1111 |0.1152
HYB(RBF) [0.2568 |0.25 0.378 |0.3278 |0.4345
TABLEIV. RESULTS FOR “HEART” DATASET
1@%‘:53‘:] Baseline | 5% | 10% | 20% | 30%
SVM 0.2963 [0.3448 |0.2333 |0.4545 |0.4167
SVM (30% {0.2963 |- - - -
data)
SRS (COS) {0.4305 0.4535{0.42 |0.4061 |0.4764
SRS (KNN) {0.3793 |0.5023 {0.3678 {0.4714 {0.4708
SRS (RBF) |0.3988 |0.4267{0.3578 {0.4551 {0.4349
IRS (COS) [0.472 0.4919(0.48 |0.4694 |0.4528
IRS (KNN) |0.4427 [0.4384|0.4244 10.4408 |0.4528
IRS (RBF) |0.3646 [0.5186 |0.4078 |0.401 |0.3811
HYB (COS) |0.5061 [0.4989 |0.4898 |0.4826 |0.4953
HYB 0.3817 ]0.4233 (0.4233 {0.4245 {0.4915
(KNN)

HYB (RBF) |0.361 0.3826(0.4022 {0.3378 |0.45
TABLE V. RESULTS FOR "IRIS" DATASET
Algoritm / | g oline | 5% | 10% | 20% | 30%

Noise Level

SVM 0 0 0.0909 |0.0833 |0.0769
SVM (30% (0 - - -
data)

SRS(COS) |0.0333 0.012510.044110.0111 |0.015
SRS(KNN) (0 0.012510.0029 |0.1111 |0.13
SRS(RBF) |0.02 0.0 0.185310.1972 |0.18
IRS(COS) [0.2233 0.1688 10.0912|0.2 0.24
IRS(KNN) |0 0.0156 10.0912 |0.1667 |0.085
IRS(RBF) [0.2333 0.256210.091210.1722 10.255
HYB(COS) [0.28 0.2969 |0.3824 |10.6028 |0.5275
HYB(KNN) |0 0 0.0588 |0.1111 |0.1075
HYB(RBF) |0.41 0.375 0.6029 |0.6528 |0.4775
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From the results several observations can be
highlighted.

e KNN similarity kernel shows  best

performance on high dimension data, while
RBF shows comparable or better performance
for low dimension datasets.

e SRS seems to be the best SSL method,
followed by HYB and IRS.

e Small amounts of noise (5—10%) can improve
model performance. Increasing noise levels
seem to have a decaying effect on the model
accuracy.

e SSL methods have a high variance in error
rates with noise in the data. It is caused by
noise split between labeled and unlabeled
data. When noise is added into unlabeled data
it has a high chance of being dropped if it has
low confidence values or used if it can is
considered a strong example. However when
noise is added to labeled data will skew
confidence values for wunlabeled data,
introducing bias.

e Overall, on analyzed datasets it can be seen
that SSL has little to no improvement
compared to the original model. Small
amounts of noise seem to have positive effects
on high-dimension high-volume datasets, such
as the heart.

Additionally, tests with different noise
introduction algorithms were performed on the heart
dataset to test the impact of different noise types.
Several algorithms, namely SRS, boosted variation
of SRS, IRS, and HYB algorithms were compared
using the KNN kernel from previous experiments.

The error rate for mixed data noise labeled data
noise, and unlabeled data noise is presented in
Figs 2, 3, and 4 respectively.
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Fig. 2. Mixed data noise error rate

Error rate for Labeled Data noise
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Error rate for Unlabeled Data noise
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Fig. 4. Unlabeled data noise error rate

Based on this several approaches to improving
the classification accuracy of semi-supervised
models in the presence of noisy data. Since
unlabeled data has a limited effect on classification
accuracy, it is important to make sure that labeled
data has as little noise as possible. A high level of
noise in labeled and data algorithms that leverage
few strong samples, such as SRS, show limited
performance degradation. However, algorithms that
leverage more unlabeled samples are more resilient
to mixed noise. K-Nearest Neighbors with the
underlying RBF display higher resilience to noise.

VI. CONCLUSIONS

In this paper we provided a brief overview of
SRS, IRS, and HYB semisupervised-learning
algorithms, an overview of KNN, RBF, and cosine
similarity kernel functions, and studied the effect of
noise on the models created with these algorithms.

Overall, SRS performs best for low-
dimensionality datasets with a limited amount of
samples, shows better accuracy, and is less sensitive
to noise than other algorithms. However, on larger
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datasets, it shows worse accuracy and is more
susceptible to noise.

However, for high-dimensionality higher volume
datasets, IRS performs better, however, it is more
sensitive, especially to the mixed and labeled noise.
On the lower-volume datasets, IRS performance is
worse than SRS.

The hybrid algorithm  shows  average
performance on low-noise data sets and worst
performance on high volume high dimensionality
datasets. Noise impact is limited, however, it also
doesn’t gain much accuracy from mixing noise into
the unlabeled data like other methods.

Among the tested similarity kernels, KNN
consistently outperforms cosine similarity and RBF
and is least sensitive to noise. Cosine similarity is
the most inconsistent in the noisy environment and
RBF shows average results.
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B. M. Cunernasos K. C. Jlecoropcekmii. JlocigxeHHs: BINIMBY HIYMY B HANIIBKEPOBAHOMY HABYAHHI

VY crarTi po3riSAacThes mpobiieMa BIUIMBY IIyMY Ha TOYHICTH Y 3a/adaX HaMiBKKEpPOBAHOTO HAaBYaHHI. MeToro 1€l
CTaTTi € aHalli3 BIUIMBY HIYMY Ha TOYHICTH Mojeneill OiHapHOI Kiacudikamii, CTBOPEHHMX 3a IIOMOMOIOI0 TPHOX
HaITiBKEpOBaHMX aJIropuTMiB HaB4YaHHs, a came: Simply Recycled Selection (SRS), Incrementally Reinforced Selection
(IRS) 1 Hybrid Algorithm (HYB). ¥V skocti 6a3oBoro kinacudikatopa Bukopuctano Support Vector Machine (SVM).
Mu npoaHalli3yeMO pi3HI alropuTMHU JUIs OOYMCIIEHHS MaTpulp momioHocTi, a came Radial Bias Function, Cosine
Simmilarity i K-Nearest Neighbours. J[7s 1ineii mopiBHUIBHOIO aHATi3y BUKOPHCTOBYBATUMYThCS HaOOpH JaHUX 3i
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cxoua UCI. 11]o6 mepeBipuTH BILIMB IIyMY, pi3Ha KUIBKICTh IITYYHO 3T€HEPOBAHMX BHIIAJIKOBO IIO3HAYEHUX 3pa3KiB
OyJ10 BBe/IeHO B HA0Ip TaHUX 3 BUKOPUCTAHHSAM TPHOX CTpaTeriii (MapkoBaHa, HE MAapKOBaHa Ta 3MilllaHa) i TIOPIBHSIHO 3
0a30BMM KJ1acH(ikaTOpOM, HABYEHUM 3 BUXIJHUM HaOOpPOM JIaHUX, 1 Kilacu(ikaTopoM, HABYEHUM Ha BUXiJHOMY HaOOpi
JIAaHUX 3MEHIIIEHOTO po3Mipy. Pe3ynbpTaT MOKa3yroTh, 0 BBEICHHS BUIIJIKOBOTO ITyMY B MapKOBaHi 3pa3Ku MOTipIIye
TOYHICTH MOJIENIi, 8 BBEJICHHsI BUIIaIKOBOTO IIIyMY B HEMapKOBaHi JIaHi MOXKe HaBIAaKH IiJBUIIUTH TOYHICTh MOJIENI.
Karouogi ciioBa: 3anrymieHi JaHHi; MalllMHHE HABYaHHS; HalliBKEPOBaHE HABYAHHS; OIOPHI BEKTOPHI MAIIWHU.

Cuneraaszos Bikrop Muxaitnosuu. ORCID 0000-0002-3297-9060.

Jloxtop TexHiunux Hayk. [Ipodecop. 3aBigyBau kadeaporo.
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B crathe paccmarpuBaetcs mpobiiemMa BIMSHHUS IIyMa Ha TOYHOCTh B 3a1a4yax MONyympaBiseMoro ooyuenus. Llesmpto
9TOM CTaThU SIBISIETCS AHANN3 BIMSHUS [IyMa Ha TOYHOCTh MOJIENCH, CO3MaHHBIX C TOMOIIBIO TPEX MOMYYIPABIIEMbIX
anroputMoB oOyueHusi, a uMmeHHo: Simply Recycled Selection (SRS), Incrementally Reinforced Selection (IRS) u
Hybrid Algorithm (HYB). B kadectBe 6a3oBoro kiaccudukaropa ucmonb3oBaH Support Vector Machine (SVM).
[IpoaHamu3upoBaHbl Pa3IMYHbIC AJTOPUTMBI JUTS BBIYUCICHHS MaTpull nomoOws, a uMmeHHo Radial Bias Function,
Cosine Simmilarity u K-Nearest Neighbours. [lns meneit cpaBHUTENBHOr0 aHaigu3a OYIyT HMCIOJIB30BATHCS HAaOOPHI
mandbix w3 xpanwidma UCL YtoObl NpoBEpUTh BIMSHHE IIYMOB, pa3HYHbIE KOJIHYECTBA HCKYCCTBEHHO
CTEHEPUPOBAHHBIX CIY4aHO pa3MEYCHHBIX OOpa3loB OBLIM BBEJCHBI B HA0Op JAHHBIX C HCIOJIB30BAHHEM TpPEX
cTpateruil (pa3MeueHHbIC, Hepa3MEUeHHbIC, CMEIIAHHBIC) W CPaBHEHBI C 0Aa30BBIM KIACCH(PHUKATOPOM, OOYICHHBIM
HCXOMHBIM HabOpOM JaHHBIX, U KIacCH(PUKATOPOM, OOYUEHHBIM HA HCXOJHOM HAOOpe NaHHBIX YMEHBIICHHOTO
pa3Mepa. Pe3ynbTaThl MOKa3bIBAIOT, YTO BBOJA CIYYaHHOrO MIyMa B MapKHpPOBaHHBIC 0Opasilbl yXYAIIAET TOYHOCTh
MOJIEITH, a BBOJI CITy4aifHOTO IilyMa B HEMapKHUPOBAHHbIC TAHHBIE MOXKET HA00OPOT TIOBBICUTH TOYHOCTH MOJIEITH.
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