26 ISSN 1990-5548 Electronics and Control Systems 2022. N 2(72): 26-31

AUTOMATION AND COMPUTER-INTEGRATED TECHNOLOGIES

UDC 004.8 (045)
DOI:10.18372/1990-5548.72.16939

'V. M. Sineglazov,
?V. P. Khotsyanovsky

CAMERA IMAGE PROCESSING ON ESP32 MICROCONTROLLER WITH HELP
OF CONVOLUTIONAL NEURAL NETWORK

Faculty of Air Navigation, Electronics and Telecommunications, National Aviation University,
Kyiv, Ukraine
E-mails: 'svm@nau.edu.ua ORCID 0000-0002-3297-9060, sttt912@yahoo.com

Abstract—This paper analyzes a common ESP32 microcontroller with a built-in camera for image
classification tasks using a convolutional neural network. ESP32 is commonly used in loT devices to read
data and control sensors, so its computing power is not significant, which has a positive effect on the cost
of the device. The prevalence of ultra-low power embedded devices such as ESP32 will allow the
widespread use of artificial intelligence built-in IoT devices. The duration of photographing and photo
processing is obtained in the paper, as this can be a bottleneck of the microcontroller, especially together
with machine learning algorithms. Deployed convolutional neural network, pre-trained on another
device, MobileNet architecture on microcontroller and proved that ESP32 capacity is sufficient for
simultaneous operation of both the camera and convolutional neural network.

Index Terms—Machine learning; transfer learning; microcontrollers; image classification; ESP32.

I. INTRODUCTION

The Internet of Things(IoT) has become a reality.
Smart home devices range from laptops to TVs,
doorway cameras and dishwashers.

Intelligent buildings often include sensors, and
electronic devices connected to the network for
control, monitoring, and recording. Some sensors
can measure vital alarms, location, or user activity.
Finally, there are environmental sensors that detect
things like temperature, light, or user presence.

This data as well as energy consumption
measurement data of some devices can be recorded
during the day and then uploaded to a remote server.

Also, it can be used for teaching machine
learning models to provide the greatest comfort,
economy and safety for the residents of a smart
building.

On the other hand, technology, and solutions that
are used to create IoT devices have significant
limitations.

For example, if place a battery less camera in
front of the door, then there are problems with the
organization of its power supply. The nearby outlets
can not be found, and battery power is not very
handy, because exploitation will often have to
change the batteries because of the rapid discharge
during the streaming video transmission.

Thus, the organization of power supply becomes
an important task in the development of IoT devices,
which are constantly in an active state. To overcome

this barrier, IoT devices must be "intelligent" [1]. It
is necessary for them to act as independent
processing devices and independently perform data
processing, thus reducing the volume of transferred
traffic and reducing energy consumption.

One of the ways to solve these problems is to
integrate machine learning, namely neural networks
into the intelligent block [2].

Neural networks solve tasks that traditional
methods cannot compete with, it can successfully
solve tasks, focusing on non-conventional, noisy,
and spoiled information. A neural network is a
system consisting of several simple computing
elements (neurons) interconnected in some way. The
most widespread are multilayer networks in which
neurons are combined into spheres. The sphere, in
its turn, is an assemblage of neurons to information
from other neurons of the measure, i.e. outputs, is
sent in parallel at every stroke of the clock.

However, one of the disadvantages of neural
networks is that work requires a significant amount
of computing resources that are available only on
cost-effective computer systems. With the lapse of
time and the development of mobile devices, the
launch of neural networks and correct operation in

systems ~ with limited resources, such as
microcontrollers (microcontrollers are cheap,
programmable system, which often includes

memory and input-output interfaces on one chip)
became relevant.

©National Aviation University, 2022
http://jrnl.nau.edu.va/index.php/ESU, http://ecs.in.ua

V.M. Sineglazov, V.P. Khotsyanovsky

Camera Image Processing on ESP32 Microcontroller with Help of Convolutional Neural Network 27

The solution to this problem was the MobileNet
family of neural networks [3].

Neural networks will make the house more useful
and responsive to the needs of users by prediction
instead of relying entirely on direct commands or
programmed procedures manually. Also, neural
network integration can potentially make energy
management more efficient by limiting the use of
the device only when it is needed, without causing
inconvenience to the residents.

II. MOBILENET

MobileNet is a family of general-purpose
computer vision neural networks designed for
mobile devices to support classification, detection,
etc. Mobile networks are small, low-latency, low-
power models parameterized according to the
resource constraints of different use cases. Although
the basic MobileNet architecture (Table 1) is already
tiny and has low latency, sometimes possible to
make the model be smaller and faster.

MobileNetV3. It is tuned to the processors of phones
by combining a network architecture, taking into
account the hardware, augmented by the NetAdapt
algorithm [17] and the new architecture (Fig. 2). To
build a less resource-intensive model, MobileNet
introduces a parameter o (alpha), which is called the
width multiplier.

Input | Operator ‘ t ‘ c ‘ n | s
2242 % 3 conv2d -l 032 |12
1122 x 32 bottleneck 1 16 111
1122 x 16 bottleneck | 6 | 24 | 2|2
562 x 24 bottleneck |6 | 32 |3 |2
282 x 32 bottleneck | 6| 64 | 4|2
142 x 64 bottleneck | 6| 96 | 3 |1
142 x 96 bottleneck | 6 | 160 | 3 | 2
72 x 160 bottleneck | 6 | 320 | 1 | 1
72 % 320 conv2d 1x1 | - | 1280 | 1 | 1
7% % 1280 avgpool 7x7 | - - 1] -

1x1x1280 | conv2d I1x1 | - k

Fig. 1. General architecture MobileNetV2

TABLE 1. GENERAL ARCHITECTURE MOBILENETV1
Type/Stride Filter Shape Tnput Size The role of the width multiplier o is to liquefy the
network evenly on each layer. However, the use of

gom’/(siz — g X g X 22" 32 ﬁ; X ﬁ; X 22 neural networks involves training them based on a

onv dw/s XJ3X X X L
Conv /sl 1x1x32x64 112x112x 32 trammg Sample'
Conv dw /s2 3x3x64 112x 112 x 64 -
Conv /s Ix1x64x128 56 x 56 x 64 Input | Operator | exp size | #out |
Conv dw/sl 3x3x128 56 x 56 x 128 2942 « 3 conv2d. 3x3 - 16
Conv /s1 1x1x128x 128 56 x 56 x 128 1192 x 16 bncck1’3x3 16 16
Conv dw /s2 3x3x128 56 x 56 x 128 562 % 16 bneck, 3x3) 24
Conv /sl 1x1x128x256 28 x 28 x 128 9 _ §
Conv dw /sl 3x3x256 28 x 28 x 256 282 x 24 bneck, 3x3 88 24
Conv /sl 1x 1x256x 256 28 x 28 X 256 28" x 24 bneck, 5x5 96 40
Convdw/s2 [3x3x256 28 x 28 x 256 142 x 40 bneck, 5x5 240 40
Conv/sl 1 x1x256x512 14 x 14 x 256 142 % 40 bneck, 5x5 240 40
5x Conv dw/sl [3x3x512 14 x 14 x 512 142 % 40 bneck, 5x5 120 48
5x Conv /sl 1x1x512x 512 14 x 14 x 512 142 % 48 bneck, 5x5 144 48
gonv ;1‘;’/ 52 ?x?xgg — ;4"7145"1212 142 x 48 bneck, 5x5 288 96

onv /s x1x X X 7Xx o . R
Convdw/s2_[3x3x1024 7x7x 1024 _‘,j x 96 bneck, 5x5 376 26
Convisl Tx1x1024x 1024 |7x7x 1024 rox 96 bneck, 5x5 576 96
AvgPool/sl |Pool 7x 7 7x7x1024 77 % 96 conv2d, 1x1 - 576
FC/sl 1024 x 1000 1x1x1024 72 % H76 pOOl, Tx7 - -
Softmax /sl | Classifier 1 x 1x 1000 12 x 576 | conv2d 1x1, NBN - 1280

2 s
To address the issue of faster performance, 17 x 1280 | conv2d Ix1, NBN - k

MobileNetV2 was developed based on the ideas of
MobileNetV1, using convolution with depth
separation as effective building blocks. However, it
introduces two new features into the architecture
(Fig. 1):

1) linear bottlenecks between layers;

2) short connections between bottlenecks.

The development of the ideas laid down in the
first versions of networks was the creation of

Fig. 2. General architecture MobileNetV3

III. THE PROBLEM OF THE LIMITED TRAINING
SAMPLE

Due to the active development of neural
networks in the last decade, the issues of training
data set formation is of particular importance, since
in many tasks, deep neural networks demonstrate
quality that significantly exceeds other machine

28 ISSN 1990-5548 Electronics and Control Systems 2022. N 2(72): 26-31

learning algorithms, but to obtain such a gain in the
quality, it is necessary to use large training samples
(up to several million images).

On this basis, the problem of limited training
samples arises. To mitigate this disadvantage and to
reduce the cost of the training sample formation and
the acceleration in obtaining a working prototype,
should turn to transfer learning.

The first mention of the concept of transfer
learning in machine learning dates back to 1993 in
[5]. The concept consists in transferring knowledge
obtained in one or more original tasks and using it to
improve learning in the current task (see Fig. 3).

The techniques that enable knowledge transfer
aim to make the machine learning process as
effective as human learning. As a result, it was
possible to retrain a convolutional neural network
trained on a single sample of data to perform tasks
on a new set of data, which significantly accelerated
the learning process of the network. As a
consequence, the material and time costs of forming
the training sample and training the neural network
were significantly reduced.

.
[|

Fig. 3. Learning process of transfer learning

Target Task

d-of

IV. PROBLEM STATEMENT

Given the advances in implementation and
operability of the MobileNet architecture and the
possibility of transfer learning, it is possible to run
neural networks pre-trained on other devices (such
as computers) in systems with low processing
power, such as microcontrollers.

Over the past few years, many microcontroller
manufacturers have worked on implementing
machine learning on microcontrollers. Some of them
have developed special libraries with machine
learning features [6], [7], and others have
implemented special hardware with advanced
machine learning capabilities [8], [9].

Therefore, the goal of this paper is to organize
the input of information from the camera to the

ESP32 microcontroller and process it using a
convolutional neural network that is deployed on
this but has been trained on a different device.

The ESP32 was chosen because it generated a lot
of interest from the beginning of production. The
M5CAMERA (which is based on the ESP32
microcontroller) from MSSTACK was used in this
work. The board has 4 MB of PSRAM memory and
a camera model OV2640 [10].

Since the camera operation and the image
generation for the microcontroller is a complex task,
before starting to work with neural networks it is
necessary to investigate the image generation time to
find the optimal quality without critical problems
with the resulting system performance. Another task
would be to investigate the effect of PSRAM
memory [11] on the performance of such a system
since modules with this memory are more
expensive.

V. RESEARCH OF TIME OF THE CREATION OF
A PHOTO ON THE ESP32 MICROCONTROLLER

To begin with, should study the effect of the
PSRAM memory implementation on the
performance of the controller. The measurements
were made by inserting the function micros() into
the program code [12]. This function returns the
number of microseconds after the microcontroller
starts. If subtracting these values, get the execution
time between the inserted functions. The shooting
time is the time between the command to shoot and
the moment after the execution of the command.

timel=micros () ;
cam.getPhoto () ;
time2=micros{();
total time=time2-timel;

Without PSRAM memory the M5CAMERA
board can use only one photo buffer. In Table II can
be seen four different resolutions and duration of
photo creation and processing.

TABLE II. PROCESSING SPEED WITHOUT PSRAM

Resolution | Maximum |Used Shoo- |Total
number of |pixels in |ting time
pixels in the time (ms)
the image |image (ms)

QVGA 76800 57600 70 79

VGA 307200 230400 145 199

XGA 786432 589824 463 593

SXGA 1310720 1048576 |540 794

The duration of the photo depends on the
resolution of the photo and also depends on the time

V.M. Sineglazov, V.P. Khotsyanovsky

Camera Image Processing on ESP32 Microcontroller with Help of Convolutional Neural Network 29

of the photo creation. In Table I there are columns
maximum number of pixels in the image and used
pixels in the image — the results in them are different
because the camera takes a photo in full resolution,
but the microcontroller turns only a square part of
the photo into an image, so there is a difference
between the number of pixels in the taken and
received photos at the end.

Now check the running time of the ESP32
microcontroller with PSRAM memory (Table III). It
can be noticed that the duration of shooting is less
than a millisecond, despite the resolution of the
photos. Not counting the processing time of the
photos is much higher than in the Table II.

TABLEIII. PROCESSING SPEED WITH PSRAM
Resoluti | Maximum Used | Shooti | Total
on number of | pixelsin| ng time
pixels in the the time | (ms)
image image | (ms)

QVGA 76800 57600 <l 12
VGA 307200 230400 <l 360
XGA 786432 589824 <1 292

SXGA 1310720 1048576 <1 1710

Taking into account data from Table II and III,
means that using PSRAM memory decreases photo
capture time, but significantly increases photo
processing time. Therefore, the optimal camera
mode is QVGA both for boards with PSRAM
memory and without it, because machine learning
algorithms usually use images with low resolution

VI. PREPARATION OF THE TRAINING SAMPLE
AND TRAINING OF THE NEURAL NETWORK

Before training the network, it needs to form a
training sample. To investigate transfer learning, the
generated sample will consist of 210 initial images
(70 images per class).

After the formation of the training sample, it
should proceed to its automated augmentation by
making small random changes to the training data
(cropping or rotating images). For this purpose, the
script shown in Fig. 4 has been implemented.

After enlarging the data set, its size is 96x96
pixels. Apart from resizing the images, also need to
change the color gradation from RGB to grayscale to
keep the actual color depth [13]. Also, working with
grayscale helps to reduce the amount of final
memory required for logical output.

After conducting operations on the training
sample, move on to training the network. It will
perform pre-training on a pre-trained model [16]
MobileNetV1, which is trained on the ImageNet
dataset [14], using Edge Impulse Studio [15].

MobileNetV1 is used because MobileNetV2 will
need about 1.3 MB of RAM and 2.6 MB of ROM to
run the model, which will cause significant delays in
operation. At the same time, using MobileNetV1 and
setting a = 0.10 will result in less accuracy, but will
only need about 53.2 KB of RAM and 101 KB of
ROM. The results of the network training are shown
in Fig. 5.

ImageDataGenerator (width_shift_range

height_shift_range
fill_mode="nearest")

datagen

(x_train)

datagen.
X_batch, y_batch (x_train, y_train, batch_size=9):
i (e,
pyplot. (i)
pyplot. (X_batch[i].
pyplot. O

datagen.

(img_rows, img_cols, 3))

Fig. 4. Data augmentation script
76.8% 0.68
Cenfusion matrix palidation set
u‘n

FeatLre exporer il traning set) @

Fig. 5. System training report

The model achieved about 77% accuracy, but the
amount of RAM to be used in the output is about 60
Kbytes, which is reasonable when using the ESP32
controller along with the camera without significant
power issues.

VII. PREPARATION OF THE TRAINING SAMPLE
AND TRAINING OF THE NEURAL NETWORK

The learned model can be deployed as a library
generated by Edge Impulse Studio, which will store
the weights of the network to be connected to the
project using code (Fig. 6). Where #include
<ESP32-CAM.h> connects the file with the scales.

This code is a template that receives the image
unprocessed (stored in the array features) and runs
the classifier to output the network.

#include <ESP32-CAM.h>

static const float features[] = {

I

int raw_feature_get_data(size t offset, size_ t length, floot *out_ptr) {
memcpy(out_ptr, features + offset, length * sizeof(float));

return @;
1

Fig. 6. Code template for neural network startup

30 ISSN 1990-5548 Electronics and Control Systems 2022. N 2(72): 26-31

Primarily need to get the image from the camera,
pre-process it by resizing it to 96x96, turning it into
grayscale and smoothing it out. This will be the
input tensor of the model. The output tensor will be
a vector with values showing the probability of each
of the classes.

For this, was taken the official code available for
testing of the camera
https://github.com/edgeimpulse/example-esp32-cam
and merged it with the code of the trained neural
network.

VIII. CONCLUSIONS

The ESP32 microcontroller was used in this work
because its quality is proven. The OV2640 camera
has sufficient resolution for most machine learning
tasks.

The creation process can take a long time on the
ESP32, but machine learning algorithms usually use
low resolution images, so it is recommended to set the
camera resolution to the lowest level.

It can be concluded that the ESP32 with the
OV2640 camera has enough processing power to
perform simple machine learning and camera
photography tasks.

In a future analysis it will be interesting to test the
ESP32 with different neural networks and try to use
both Tensilica Xtensa LX106 cores in calculations.

REFERENCES

[1] D. Schweizer, M. Zehnder, H. Wache, H. Witschel,
D. Zanatta and M. Rodriguez. Using Consumer
Behavior Data to Reduce Energy Consumption in
Smart Homes: Applying Machine Learning to Save
Energy without Lowering Comfort of Inhabitants,
2015. https://doi.org/10.1109/ICMLA.2015.62

[2] Liciotti, Daniele & Bernardini, Michele & Romeo,
Luca & Frontoni, Emanuele. 4 Sequential Deep
Learning Application for Recognising Human
Activities in Smart Homes, Neurocomputing, 2019,
pp- 396.
https://doi.org/10.1016/j.neucom.2018.10.104

[3] Keras documentation: MobileNet, MobileNetV2, and
MobileNetV3. Keras: the Python deep learning API.
https://keras.io/api/applications/mobilenet/

[4] Jian Mao, Qixiao Lin, Jingdong Bian. Application of
learning algorithms in smart home IoT system
security, 2018. https://doi.org/10.3934/mfc.2018004

[51 L. Y. Pratt, Discriminability-based transfer between
neural networks. NIPS Conference: Advances in Neural
Information Processing Systems, 1992.

[6] STM32Cube.Al: Convert neural networks into
optimized code for STM32. ST life.augmented Blog.
https://blog.st.com/stm32cubeai-neural-networks/

[7]1 L. Lai,, N. Suda, I. V. Chandra, CMSIS-NN: efficient
neural network kernels for arm cortex-M CPUs.
Comput. https://arxiv.org/abs/1801.06601, 2018

[8] General vision, Presentation of the Curie Neurons on
Arduino/Genuinol01,https://www.general-
vision.com/publications/PR _CurieNeuronsPresentati
on.pdf

[9] Allan, A. Getting started with the NVIDIA jetson
nano developer kit, 2019

[10] M5-docs.
https://docs.m5stack.com/en/unit/mScamera

[11] Pseudostatic (random-access) memory (PSRAM) |
JEDEC. https://www.jedec.org/standards-
documents/dictionary/terms/pseudostatic-random-
access-memory-psram, 2019

[12] Micros() — arduino reference. Arduino - Home.
https://www.arduino.cc/reference/en/language/functi
ons/time/micros/

[13]Stephen Johnson. Stephen Johnson on Digital
Photography. O'Reilly. ISBN 0-596-52370-X , 2006

[14] Contributors to Wikimedia projects. ImageNet -
Wikipedia. Wikipedia, the free encyclopedia.
https://en.wikipedia.org/wiki/ImageNet

[15]Intro to machine learning with edge impulse - silicon
labs. (2020). Silicon Labs.
https://www.silabs.com/support/training/intro-
machine-learning-with-edge-impulse/intro-machine-
learning-with-edge-impulse-presentation

[16] Tensorflow.(2022). models/research/slim/nets/
mobilenet at master tensorflow/models.
GitHub.(2022),https://github.com/tensorflow/models/
tree/master/research/slim/nets/mobilenet

[17]NetAdapt: Platform-aware neural
adaptation ~ for mobile applications.
arXiv.org. https://arxiv.org/abs/1804.03230

Received January 09, 2022

network
(2018).

Sineglazov Victor. ORCID 0000-0002-3297-9060. Doctor of Engineering Science. Professor. Head of the Department.
Aviation Computer-Integrated Complexes Department, Faculty of Air Navigation Electronics and Telecommunications,

National Aviation University, Kyiv, Ukraine.

Education: Kyiv Polytechnic Institute, Kyiv, Ukraine, (1973).

Research area: Air Navigation, Air Traffic Control, Identification of Complex Systems, Wind/Solar power plant,

artificial intelligence.
Publications: more than 670 papers.
E-mail: svm@nau.edu.ua

V.M. Sineglazov, V.P. Khotsyanovsky
Camera Image Processing on ESP32 Microcontroller with Help of Convolutional Neural Network 31

Khotsyanovsky Volodymyr. Post-graduate Student.

Faculty of Air Navigation, Electronics and Telecommunications, National Aviation University, Kyiv, Ukraine.
Education: National Aviation University, Kyiv (2020).

Research area: artificial intelligence.

Publications: 10.

E-mail: sttt912@yahoo.com

B. M. Cunernazos, B. II. XousiniBcbkuii. O0podka 300paxenb 3 Kamepu Ha MikpokoHTpoJepi ESP32 3a
J0TOMOTI 0K 3rOPTKOBOI HeIiPOHHOI Mepexi

VY poOoti mpoaHaiizoBaHO MoIMpeHuil MikpokoHTpoiep ESP32 3 BOymoBaHOI KaMeporo Ui 3aBOaHb KiacHpikallii
300pakeHb 3 BUKOPHCTaHHSIM 3rOpTKOBOI HelipoHHOT Mepexi. 3a3Buyaii ESP32 BukopucroByethest B puctposix [oT s
3YUTYBAHHS JIaHUX Ta YIPABJiHHSI CEHCOPaMHU TOMY HOro oOYMCIIIOBAJIbHA TIOTYXKHICTh HE € 3HAYHOO, 110 MO3UTHBHO
BIUIMBA€E Ha BapTiCTh NpucTporo. [lommupeHicTs BOYIOBaHUX MPHUCTPOIB 3 HAIHU3BKHM €HEPrOCHOKUBAHHAM, TAKHUX SIK
ESP32 no3Bonmute MacoBe mommpeHHs BOymoBaHuX NpucTpoiB [oT i3 mTydnum inTenekroM. B poboti onmepikaHo
TpuBaJIicTh (otorpadyBaHHs Ta 00poOku Qororpadiil, OCKUIBKH e MOXKE OYTH BY3BKHM MiCIEM MiKPOKOHTpOJiepa,
0COOJIMBO Pa3oM 3 AITOPUTMaMH MAaIIMHHOTO HaBYaHHS. PO3TOpPHYTO 3rOpTKOBY HEWPOHHY MEpEKY, HOIEPEAHBO
HaBYEHY Ha IHIIOMY IIPHCTPOI, apxXiTekTypu MobileNet Ha MiKpOKOHTpoJiepi Ta JOBENeHO, 10 noTykHocTeil ESP32
JIOCTATHBO JJISl OTHOYACHOI POOOTH SIK KaMEPH TaK 1 3rOPTKOBOT HEMPOHHOT MEPEXKi.

Karou4osi ciioBa: ManimHHe HaBYaHHS; TpaHC(epHe HABYAHHS; MiIKPOKOHTpOJIEepH; Kiacudikais 300pakens; ESP32.

Cuneraaszos Bikrop Muxaitnosua. ORCID 0000-0002-3297-9060.

Jloktop TexHiunux Hayk. [Ipodecop. 3aBigyBau kadeaporo.

Kadenpa aBiamiiHUX KOMIT'IOTEpHO-IHTETPOBAaHUX KOMIUIEKCiB, akynbTer aepoHaBiramii, e€JEKTPOHIKH 1
TeNeKoMyHikanii, HarionanpHuii aBiamiinuid yHiBepcuter, KuiB, Ykpaina.

Ocgita: KuiBcbkuii momiTexHivynuii incruryt, Kuis, Ykpaina, (1973).

HampsiMm HaykoBOi JIisUTBHOCTI: aepoHaBiralfis, yHpaBJIiHHS MOBITPSHHM pPYXOM, ileHTH(]IKalis CKIaJHHX CHCTEM,
BITPOEHEPTreTHYHI YCTAHOBKH, IITYYHHH THTEIIEKT.

Kinbkicts myOmikariii: 6inbiie 670 HayKOBUX POOIT.

E-mail: svm@nau.edu.ua

XousiHiBcbkmii Botomumup IlerpoBuy. AcnipaHr.

dakynbpTeT aepoHaBirallii, eIeKTPOHIKH Ta TeJeKoMyHikaniii, HarlionanbpHuiA aBianiiiHuii yHiBepcureT, KuiB, YkpaiHa.
Ocsirta: HanionanbsHuii aBianiiinuii yisepcuter , Kuis (2020).

HamnpsiMm HayKoBOi JisTTBHOCTI: IITYYHUH 1HTENEKT.

Kinpkicts myomikarii :10.

E-mail: sttt912@yahoo.com

B. M. Cuneraa3zon, B. I1. XousinoBckuii. O6padoTka u3odpakeHuii ¢ kKamepbl Ha MUKpPOoKoHTposJiepe ESP32 ¢
TMOMOIIBI0O CBEPTOYHOII HEHPOHHOIi ceTn

B pabote mnpoaHaIM3HpPOBAaH PacIpPOCTPaHCHHBIH MHKpokoHTpouiep ESP32 co BcTpoeHHOM kamepoil i 3amay
Kiaccu(pUKaIi W300paKeHUH C HCIONIb30BAaHHEM CBepTOuUHON HeiponHo# cetu. OObruHO ESP32 ucmone3yercs B
ycrporictBax loT 11t cuMThIBaHHMS JaHHBIX U YIPABJICHUS CEHCOPAMH, ITOTOMY €r0 BBIYMCIUTEIbHAS MOIIHOCTH HE
SIBIISIETCSL 3HAYUTEIBHOW, YTO IMOJOKUTEIBHO BIIHMSET HAa CTOMMOCTH YCTpOMCTBA. PacmpocTpaHeHHOCTh BCTPOEHHBIX
YCTPOMCTB CO CBEPXHU3KMM SHEPromoTpeOiieHHeM, Takux kak ESP32, mo3BonmuT MaccoBoe pacmpoCTpaHEHHE
BCTpOeHHBIX ycTpoiicTB 0T ¢ MCKycCTBEHHBIM UHTEIUIEKTOM. B pabore monydeHa MPOXOKUTENBHOCTh
¢dororpadupoBanust u 06paboTku (ororpaduii, MOCKOIBKY 3TO MOXKET OBITh Y3KHM MECTOM MHUKPOKOHTpOIIEpa,
0COOEHHO BMECTE C ajJrOPUTMaMM MallMHHOTO oO0ydeHHs. Pa3BepHyTa cBepTOYHAs HEHpPOHHAsI CETh, MPEABAPUTEIHHO
o0y4yeHHass Ha JPyroM YyCTpOWCTBe, apxurekrypa MobileNet Ha MHUKpPOKOHTpoJUlepe W JOKa3aHa, YTO MOIIHOCTEH
ESP32 nocratouHo [yt OoqHOBpEMEHHO# pabOoThI KaK KaMephl TaK U CBEPTOYHON HEHPOHHOM CETH.

KnwueBble ciioBa: MammHHOE oOOydeHHe; TpaHcepHOe OOydeHHe; MHUKPOKOHTPOJUIEPBL, KiacCHU(HKAIUS
n3obpaxenuii; ESP32.

Cunersasos Bukrop Muxaiiaosnu. ORCID 0000-0002-3297-9060.

Jloktop TexHmueckux Hayk. IIpodeccop. 3aBenyromuii kadempoii.

Kadenpa aBHAIMOHHBIX KOMITBIOTEPHO-MHTETPOBAHHBIX KOMIUIEKCOB, (DaKyabTeT a’3pOHABHTAIlMH, SJICKTPOHHUKH U
TeJeKOMMYyHHUKaluii, HarmoHanpHbINA aBUAallMOHHBIN yHUBepcuTeT, Kue, Ykpauna.

Ob6pa3oBanue: KueBckuii moauTeXxHuIeckuii HHCTUTYT, Kues, YkpauHa, (1973).

HanpaBieHue HaydHOW MAEATCIBHOCTH: adpPOHABHUTAIlWs, YIIPABICHHE BO3AYIIHBIM JBIDKCHHEM, HICHTU(DUKAIISL
CJIOXKHBIX CHCTEM, BETPOIHEPICTUICCKHIE YCTAHOBKH, UCKYCCTBCHHBIA UHTEIICKT.

Konugectro myOnukanuii: 6onee 670 HaydHBIX padoT.

E-mail: svm@nau.edu.ua

XousinoBckuii Bnagumup IleTpoBuy. AcnupaHt.

®DakynbTeT a3pOHABUTAITNH, SJIEKTPOHUKH U TeJIEKOMMYHHUKaIHi, HarpioHanbHbIH aBUallMOHHbBIN YHUBEpcHuTeT, Kues, YkpanHa.
O0pasoBanue: HarmonansHbIi aBUalMOHHbIA yHUBEpcUTeT, Kues (2020).

HamnpaBnenue Hay4HOH JIESITENFHOCTH: HCKYCCTBEHHBIN MHTEIIEKT.

KonmuectBo myoiukarwmii: 10.

E-mail: sttt912@yahoo.com

