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ABSTRACT 

Okoro O.C. Optimization of aircraft maintenance processes for continuing airworthiness in 

Nigeria. – Qualifying scientific work on the rights of the manuscript. 

Dissertation for obtaining a scientific degree of Doctor of Philosophy for the specialty 

272 – Aviation transport, specialization – Operation and Maintenance of Aircraft – National 

Aviation University, Ministry of Education and Science of Ukraine, Kyiv, 2023. 

 

This dissertation addresses the critical scientific problem of optimization of aircraft 

maintenance processes for cost-effective and efficient aircraft operations without 

compromising safety.  

This research includes the analysis of existing studies related to the optimization of 

aircraft maintenance processes and their potential for minimizing maintenance cost, which 

currently covers 10-20% (up to 30% in some regions) of aircraft operational costs. The analysis 

highlighted the gap in models and algorithms based on reliability theory, machine learning, 

regression, and probability and statistics theories for optimizing aircraft maintenance in the 

first three phases of the aircraft lifecycle. 

Another focus of this research is the provision of a simple and expandable framework 

for maximizing the utilization of daily aircraft operations data, which is often stored but 

primarily disregarded. Its' approach is expected to reduce waste that arises because of early 

maintenance and failure costs connected with late maintenance actions.  

The introduction justifies the relevance of the dissertation, formulates the purpose and 

main objectives of the study, and provides information on the research's relationship with 

scientific programs and topics. In addition, the scientific novelty and practical significance of 

the study are highlighted, the applicant's contribution in joint publications is noted, the 
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approbation of the results of the dissertation work are outlined, structure and volume of the 

dissertation are given. 

The first chapter gives an overview of aircraft maintenance in Nigeria, an in-depth 

analysis of existing aircraft maintenance optimization models, and a simple numerical 

reliability analysis of aircraft operating in Nigeria.  

Various aircraft types are in operation in Nigeria, and the commercial helicopter sector 

contributes to the economy by providing search and rescue services, and transportation to the 

offshore oil and gas industry. The NCAA is the only aviation regulatory authority in Nigeria; 

Part 5 of the NigCARs presents regulatory requirements for the continuing airworthiness of 

aircraft expected to operate in Nigeria in line with the SARPs in ICAO Annexes 6 and 8. ICAO 

Part M represents a compulsory operating license for aircraft operators and contains the 

minimum requirements for maintenance and airworthiness. The MRBR forms the basis for the 

maintenance program, which is part of the approved maintenance system and must be 

monitored by qualified engineers for suitability at least annually. Operators in Nigeria typically 

follow either the MSG-2 or MSG-3 philosophy of aircraft maintenance. 

To optimize aircraft maintenance, many researchers have suggested and tested a range 

of techniques based on aspects of aircraft maintenance processes such as planning, scheduling, 

maintenance task allocation, aircraft maintenance routing, spare parts inventory, personnel, 

and skill management, use of aircraft prognostics and health management data, and reliability 

models. However, insufficient attention is being paid to the development of models that 

consolidate the use of reliability theory models, machine learning, predictive analytics, 

regression models, and probability and statistics theories for optimizing aircraft maintenance. 

These industry 4.0 concepts form a framework for data-driven predictive aircraft maintenance, 

which will be the basis for carrying out aircraft maintenance tasks in the near future. 

To begin the development of these models, a simple numerical reliability analysis using 

daily aircraft operations data was carried out. This highlighted the least reliable aircraft systems 
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or structures for each fleet analyzed alongside the dynamics of the failure rate of each aircraft 

fleet. 

The second chapter is devoted to developing aircraft maintenance optimization models 

and algorithms using principles of reliability theory, predictive analytics, regression, machine 

learning, probability, and statistics theory.  

The models developed for reliability analysis of aircraft components, subsystems, 

systems, and structures determine the characteristic reliability of aircraft systems for 

optimizing aircraft maintenance. They can be applied to improve existing reliability-centered 

maintenance frameworks irrespective of the dataset's size. Furthermore, segmented regression 

models were developed to predict the occurrence of faults/failures.  

As aircraft components and systems deteriorate, it is crucial to carry out maintenance 

actions, which increases operational costs. Therefore, there is a need for an optimal interval 

that balances the frequency of aircraft maintenance tasks and the failure rate. In this section, 

models were developed to determine an optimal aircraft maintenance task interval. In addition, 

this model quantifies the cost and benefits of maintenance to obtain an optimum balance 

between both. 

Forecasting spare parts demand can be a challenging exercise because demand is 

stochastic. However, a good knowledge of the failure trend and distribution can provide 

optimal solutions. In this study, models that can create efficient spare parts inventory 

management to provide adequate services for maintenance needs were developed. The 

proposed models focus on the interaction between failure rates and spare parts inventory. 

In the third chapter, the models developed in the second chapter were validated using 

daily aircraft operations data from Nigeria. The 𝜒2goodness-of-fit test was applied to 

mathematical models for reliability analysis (for dataset > 35) to verify if it obeys the 

exponential distribution. The calculated 𝜒2 is less than the threshold value 𝜒𝑡ℎ
2 ; hence the 

hypothesis for the exponential distribution law of mean time between failures of aircraft systems 
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and structures is accepted with a significance level equal to 0.05. For the proposed model for 

reliability analysis given a small dataset, a visual goodness-of-fit test that proves its validity is 

carried out.  

To determine which of the segmented regression models proposed gives the most 

prediction accuracy, all models were tested using real-life aircraft operational data. The model 

with the least value of standard deviation σ is considered the most precise for predicting the 

failure of an aircraft component, subsystem, system, or structure. Furthermore, a pictorial 

representation of good, over- and underfitting in regression was used to compare all the resulting 

graphs of the proposed regression models; all the models were in accordance with good fitting. 

Simulation analysis was carried out using the Monte Carlo method to prove the 

applicability of the models developed for determining the optimal maintenance task interval 

using average operational cost as a measure of efficiency. Results demonstrate that for the 

exponential model of time between failures, an optimal maintenance task interval that 

corresponds to a local minimum point on the graph of average operational cost per unit time vs 

maintenance task interval TM  does not exist; →opt MT . For the Erlang model, simulation results 

prove the existence of a “minimum” which corresponds to an optimal maintenance task interval. 

These results coincide with the analytical results in Chapter 2 and further prove that optimizing 

the maintenance task interval of aircraft systems using the Erlang model is possible.  

For the spare parts forecast models, the aircraft components are considered non-

repairable items and have exponentially distributed times to failure. The quantity of spare parts 

is calculated using the required probability of failure-free operation and the estimated failure 

rate value obtained from real statistical data analysis. To analyse the accuracy of the proposed 

model, a simulation based on the Monte Carlo method was performed, and the results 

favourably coincided with the required and calculated probability of failure-free operation. 

In the fourth chapter, a simple and expandable four-step methodology that consolidates 

approaches for reliability analysis of aircraft systems and structures, prediction of aircraft 

system faults/failures, optimization of aircraft maintenance task interval using average 
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operational cost as a measure of efficiency and forecast of spare parts inventory for the 

optimization of aircraft maintenance processes is developed. 

This methodology was developed because scattered standalone interventions may 

increase total downtime. The proposed methodology launches the basis for further 

developments in terms of its future expansion, validation, and implementation. Its uniqueness 

resides in the fact that while most studies focus on individual components or systems, the 

proposed methodology considers all aircraft components and systems in a single framework. In 

addition, this data-driven approach is a more cost-effective alternative to physics-based 

modelling and can be utilized for developing data-driven aircraft prognostics frameworks. 

Furthermore, insights from its usage can be beneficial in solving the maintenance optimization 

problem from the design phase of the aircraft life cycle.  

The conclusions present the main results of the dissertation research, which reflect the 

methodological foundations of the models and algorithms for optimizing aircraft maintenance 

processes. 

The scientific novelty of the primary results obtained during the research is as follows: 

1. For the first time, statistical simulation models for reliability analysis that can be 

applied to both large and small aircraft datasets were developed. The reliability indices 

obtained can improve the reliability-centered and condition-based maintenance framework. 

2. For the first time, segmented regression models were developed to predict flight hour 

at which an aircraft component, subsystem, or system will fail. This is necessary because wrong 

maintenance predictions and configuration strategies can lead to untimely support, flight 

delays, or aircraft on the ground. 

3. For the first time, optimal aircraft maintenance task interval was determined using 

average operational cost as a measure of efficiency. The model was developed based on 

reliability probability density functions, cost of corrective aircraft maintenance, and cost of 

preventive aircraft maintenance. Existing optimal maintenance task models use the 

maintenance cost rate as an optimization criterion but overlook the reliability performance. 
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Reducing the system maintenance cost rate does not imply that the system reliability 

performance is optimized in terms of cost, specifically for multicomponent systems. Minimal 

maintenance cost is sometimes associated with reduced system reliability measures; this is one 

of the outcomes of having different components in the system, which may have various 

maintenance costs and different importance to the system. This forms the basis for the 

development of this model. 

4. For the first time, a model that considers the historical trend of component failures 

and reliability parameters for forecasting spare parts inventory was developed. This is 

especially important for operations in countries like Nigeria because there are limited original 

equipment manufacturers and spare parts storage facilities available. In addition, spare parts 

performance deteriorates over time in hot standby, warm standby, and even cold standby. They 

can also suddenly fail due to external shocks and degradations resulting from imperfect storage 

(storage failure). 

5. For the first time, a concise methodology that integrates reliability parameters, failure 

prediction, cost, and spare part inventory forecast was developed to optimize aircraft 

maintenance processes for continuing airworthiness. This is particularly important for 

implementing the strategies proposed in this study as a single framework instead of existing 

standalone models that result in prolonged planning and waste. Furthermore, the models and 

algorithms proposed were validated using real operational aircraft data from airlines and 

helicopter operators in Nigeria. As a result, these models can be scaled to multiple systems 

without needing specific domain knowledge. In addition, this data-driven approach is a more 

cost-effective alternative to physics-based modeling and can be utilized for developing data-

driven aircraft prognostics frameworks. 

The practical value of the results obtained in the dissertation are as follows: 

1. A technique for reliability analysis based on exponential distribution given a dataset > 

35; allows aircraft operators to analyze data components, subsystems, systems, and 

structures. An operator can compare the reliability of the entire fleet to understand the 
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cost of schedule interruptions, analyze solutions, and prioritize service bulletins based 

on impact on the fleet. 

2. A technique for reliability analysis given a dataset <  35; is significant because small 

datasets produce large confidence intervals at high total flight hours, implying lower 

statistical reliability; a key disadvantage of using a small dataset is the lack of statistical 

stability. The proposed technique is based on Kazakyavicius equation; the failure rate is 

determined using the probability of failure-free operations. 

3. A technique for predicting the flight hour at which a failure will occur in an aircraft's 

components, subsystems, systems, and structures. This is significant because wrong 

maintenance predictions and configuration strategies can lead to untimely support, flight 

delays, or aircraft on the ground. 

4. A technique for determining optimal aircraft maintenance interval using average 

operational cost as a measure of efficiency. The proposed model is based on Erlang's 

probability density function of time between the failures and considers maintenance cost 

and reliability. It also quantifies the corrective and preventive maintenance costs 

alongside the maintenance benefits to obtain an optimum balance between both. 

5. A technique for forecasting aircraft spare parts inventory for non-repairable items and 

exponentially distributed time between the failures. The quantity of spare parts is 

calculated using the required probability of failure-free operation and the estimated 

failure rate value obtained from real statistical data analysis. This is significant because 

excess spare parts inventory results in a high holding cost and impedes cash flows. In 

contrast, a lack of spare parts can lead to costly flight delays or cancellations, negatively 

impacting airline performance.  

6. A concise, simple, and expandable four-step methodology that integrates all the 

proposed techniques for the optimization of aircraft maintenance processes. This 

methodology is considered a novel theoretical framework for performance-centered 

aircraft maintenance, which considers the operational performance and the condition of 

aircraft components, subsystems, systems, and structures. 
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The results of this research may be used in formulating maintenance optimization 

problems and developing a data-driven predictive maintenance approach from the design phase 

of the aircraft life cycle.  

Keywords: aircraft, aircraft maintenance, optimization, maintenance optimization,  

reliability, reliability analysis, regression, segmented regression, probability, statistics, 

predictive analytics, machine learning, data processing, efficiency, expert system, statistical 

simulation,  Monte Carlo, aircraft systems,  aircraft components, aircraft structures, aircraft 

subsystems, failure rate, mean time between failure, time between failures, probability density 

function, technical condition, diagnosis, decision-making, spare parts, preventive maintenance, 

predictive maintenance, corrective maintenance, data-driven, dataset. 
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INTRODUCTION 

The relevance of the dissertation topic. The operations phase of the aircraft life cycle 

is the most expensive; it costs 10-20 times the design and manufacturing phase. For instance, 

in Nigeria, even though domestic and international passenger traffic has grown tremendously 

recording a post-COVID-19 pandemic annual growth rate of 43.41% and 57.61%, respectively 

[1], aircraft maintenance costs are still significantly higher than the global average. Aircraft 

operators spend 75% of the estimated $1 billion annual cost in West Africa [2]; this justifies 

the need for a shift away from traditional maintenance actions, which are corrective or 

preventive.  

Corrective Maintenance (CM) tasks are connected to run-to-failure maintenance 

strategies, while Preventive Maintenance (PM) work is performed as part of a fixed interval to 

replace, repair, or restore. It includes work carried out under a fixed-interval restoration/repair 

strategy and conducted based on a time or machine-run-based schedule that detects, precludes, 

or mitigates degradation [3]. Unfortunately, these traditional aircraft maintenance strategies 

lack predictive capability and often lead to maintenance being performed too early, i.e., before 

the end of a machine's useful life, or too late, i.e., after a costly failure [4]. Therefore, the 

aviation industry needs realism in mathematical models, and the way optimization problem is 

formulated; system reliability, maintenance processes, and cost must be considered from the 

design phase of the aircraft lifecycle [5].  

Recent research highlights that statistical data processing algorithms can be used to 

improve the efficiency of aircraft operations given diagnostic variables and reliability 

parameters as initial data [6-11]. These algorithms can be developed using statistical data 

generated from the operations phase of the aircraft lifecycle, which generates a wealth of real-

time data, which is collected, transferred, and processed with 70 miles of wire and over 18 

million lines of code [12-13]. The resulting algorithms can estimate the time of possible failure 

with the aim of preventing it based on correct and timely operational actions. Furthermore, the 

data-driven Predictive Maintenance (PdM) approach based on industry 4.0 techniques will 
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result in lower maintenance costs, avoid unnecessary PM actions and reduce unexpected 

failures. A combination of PM and PdM results in 18.5 % less unplanned downtime and 87.3% 

fewer defects for more reliance on predictive than preventive maintenance [3].  

Aim and objectives of the study. The main aim of this study is cost-effectiveness and 

increased efficiency of aircraft operations from a maintenance point of view using operations 

in Nigeria as proof of concept.   

To achieve this aim, the following objectives are addressed:  

– Understand existing aircraft maintenance strategies using the scenario in Nigeria. 

– Develop mathematical models that can be implemented to improve the framework of 

Reliability-Centered Maintenance (RCM) and Condition-based maintenance (CBM) 

strategies.  

– Develop mathematical models for determining optimal flight hour for aircraft 

maintenance. 

– Develop mathematical models for determining the optimal aircraft maintenance task 

interval.  

– Develop mathematical models for a precise forecast of spare parts inventory.  

– Increase steady state availability of aircraft components and systems, reduce aircraft 

downtime, and increase the levels of targeted maintenance. 

– Develop a framework that can form the basis for maintenance optimization from the 

design phase of the aircraft lifecycle.  

The research object shall be aircraft maintenance processes, systems, and components. 

The research subject data processing algorithms for optimizing aircraft maintenance 

processes. 

Methods of the research. The methods of mathematical reliability theory, probability 

theory and statistics, machine learning, predictive analytics, numerical analysis, and statistical 

simulation modeling are used to address the objectives stated. 

 



20 
 

Scientific novelty of the obtained results. 

1. For the first time, statistical simulation models for reliability analysis that can be 

applied for both large and small aircraft datasets were developed. The reliability indices 

obtained can improve the framework of RCM and CBM   

2. For the first time, segmented regression models were developed for the prediction of 

flight hour at which an aircraft component, subsystem or system will fail. This is necessary 

because wrong maintenance predictions and configuration strategies can lead to untimely 

support, flight delays, or aircraft on the ground. 

3. For the first time, optimal aircraft maintenance task interval was determined using 

average operational cost as a measure of efficiency. The model was developed based on 

reliability probability density functions, cost of Corrective aircraft maintenance (CM), and cost 

of Preventive aircraft maintenance (PM). Existing optimal maintenance task models use the 

maintenance cost rate as an optimization criterion but overlook the reliability performance. 

Reducing the system maintenance cost rate does not imply that the system reliability 

performance is optimized in terms of cost, specifically for multicomponent systems. Minimal 

maintenance cost is sometimes associated with reduced system reliability measures; this is one 

of the outcomes of having different components in the system, which may have various 

maintenance costs and different importance to the system. This forms the basis for the 

development of this model. 

4. For the first time, a model which considers the historical trend of component failures 

and reliability parameters for forecasting spare parts inventory was developed. This is 

especially important for operations in countries like Nigeria because there are limited Original 

Equipment Manufacturers (OEM) and spare parts storage facilities available. Furthermore, 

spare parts performance deteriorates over time in hot standby, warm standby, and even cold 

standby. They can also suddenly fail due to external shocks and degradations resulting from  

imperfect storage (storage failure). 

5. For the first time, a concise methodology that integrates reliability parameters, failure 

prediction, cost, and spare part inventory forecast was developed to optimize aircraft 
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maintenance processes for continuing airworthiness. This is particularly important for 

implementing the strategies proposed in this study as a single framework instead of existing 

stand-alone models that result in prolonged planning and waste. Furthermore, the models and 

algorithms proposed were validated using operational aircraft data and can be scaled to 

multiple systems without needing specific domain knowledge. In addition, this data-driven 

approach is a more cost-effective alternative to physics-based modeling and can be utilized for 

developing data-driven aircraft prognostics frameworks. 

The validity and trustworthiness of the obtained research results have been 

confirmed by the sufficient and proper application of the mathematical apparatus of reliability 

theory, probability theory and statistics, machine learning, and predictive analytics. In addition, 

consistency of theoretical results was obtained with operational data from aircraft in Nigeria, 

as well as the results of statistical simulation modeling. 

The practical significance of the obtained results. This dissertation provides a 

scientific and technical basis for further optimization of aircraft maintenance processes and 

improved efficiency of aircraft operations. The following practical results of the research have 

been achieved:  

– A technique for reliability analysis based on exponential distribution given a 

dataset > 35; this allows aircraft operators to analyze data components, 

subsystems, systems, and structures. An operator can compare the reliability of 

the entire fleet to understand the cost of schedule interruptions, analyze solutions, 

and prioritize service bulletins based on impact on the fleet. 

– A technique for reliability analysis given a dataset <  35; this is significant because 

small datasets produce large confidence intervals at high total flight hours, 

implying lower statistical reliability; a key disadvantage of using a small dataset 

is the lack of statistical stability. The proposed technique is based on 

Kazakyavicius equation; the FR is determined using the probability of failure-free 

operations. 
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– A technique for predicting the flight hour at which a failure will occur in an 

ACSSS. This is significant because wrong maintenance predictions and 

configuration strategies can lead to untimely support, flight delays, or AOG. 

– A technique for determining optimal aircraft maintenance interval using average 

operational cost as a measure of efficiency. The proposed model is based on 

Erlang’s PDF of TBF and considers both the maintenance cost and reliability. It 

also quantifies the CM and PM costs alongside the maintenance benefits to obtain 

an optimum balance between both. 

– A technique for forecasting aircraft spare parts inventory for non-repairable items 

and exponentially distributed TBF. The quantity of spare parts is calculated using 

the required probability of failure-free operation and the estimated failure rate 

value obtained from real statistical data analysis. This is significant because 

excess spare parts inventory results in a high holding cost and impedes cash flows. 

In contrast, a lack of spare parts can lead to costly flight delays or cancellations, 

negatively impacting airline performance.  

– A concise, simple, and expandable four-step methodology which integrates all  

the proposed techniques for the optimization of aircraft maintenance processes. 

This methodology is considered a novel theoretical framework for performance-

centered aircraft maintenance which considers the operational performance and 

the condition of ACSSS.  

Personal contribution of the candidate: The main results of the research were obtained 

by the author independently. As shown in the list of author's publication in the abstract, study 

[7] were conducted independently by the author. The candidate has made the following 

contributions in the articles published in co-authorship: in [1] — development and simulation 

analysis of stochastic mathematical models using diagnostic variables and reliability 

parameters to determine optimal maintenance task interval of aircraft systems and structures.  

In [8, 9] — development of statistically simulated exponential model for reliability analysis of 

aircraft components, systems and structures using daily operations aircraft data. In [4] — 
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analysis of different learning techniques of expert system based on a probabilistic approach for 

artificial intelligence-based computer systems to emulate human-expert decision-making for 

implementing controlled and preventive aircraft maintenance strategies. In [5] — development 

of method for planning spare parts inventory during aircraft operation based on statistical data 

of times to failure of aircraft components. In [6] —development and synthesis of statistical 

data processing algorithms and models to improve efficiency of aircraft maintenance. In [2] — 

development of statistically significant algorithm and model for reliability analysis of aircraft 

systems given small data-set typical of small-scale operations. In [3] — development of a new 

software framework for modeling and forecasting failures and malfunctions of aircraft 

components, subsystems, systems, and structures. 

Approbation of results of the dissertation work. The research results were discussed 

at 12 international congresses, symposiums and conferences: 1) 2nd International Conference 

on Cyber Hygiene & Conflict Management in Global Information Networks (Kyiv-Lviv, 

Ukraine, 2020); 2) 2021 International Symposium on Network Security and Communications 

(Kyiv, Ukraine);  3)  Current Security Problems in Transport, Energy and Infrastructure 

Conference (Kherson, Ukraine, 2021);  4) 2021 International Scientific-Practical Conference 

on Problems of Transportation Organization and Air Transport Management (Kyiv, Ukraine); 

5) International Symposium on Sustainable Aviation (Bangkok, Thailand, 2021); 6) 1st 

International Conference for Condition-based Maintenance in Aerospace (Delft, Netherlands, 

2022); 7) 25th Air Transport Research Society World Conference (Antwerp, Belgium, 2022); 

8) 33rd Congress of the International Council of the Aeronautical Sciences (Stockholm, 

Sweden, 2022); 9) 10th World Congress “Aviation in XXI-st Century - Safety in aviation and 

space technology'' (Kyiv, Ukraine, 2022); 10) IEEE 12th International Conference on 

Advanced Computer Information Technologies (Ruzomberok, Slovakia, 2022); 11) Ontario 

Aircraft Maintenance Conference; The Future of Aircraft Maintenance – Performance, 

Professionalism and Pride (Toronto, Canada, 2022). 12) International Workshop on Advances 

in Civil Aviation System Development (Kyiv, Ukraine, 2023). 
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Publications. The main contents of this dissertation have been published in 17 

publications, including 8 proceedings of international congresses, symposiums, and 

conferences. All publications are indexed in scientometric databases, including 6 in Scopus 

database. 

Structure and content of the dissertation. The dissertation consists of an introduction, 

four chapters, conclusions, list of used references represented after each chapter, and three 

appendices. There are a total number of 175 pages – There are 36 figures (including 14 figures 

on seven separate pages), 17 tables (including seven tables on six separate pages), 174 

references on twenty pages and eight pages of appendices. 
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CHAPTER 1: OVERVIEW OF AIRCRAFT MAINTENANCE IN NIGERIA AND 

ANALYSIS OF EXISTING METHODS FOR OPTIMIZING 

AIRCRAFT MAINTENANCE GLOBALLY 

 

1.1 Overview of aircraft maintenance in Nigeria  

 

In Nigeria, even though domestic and international passenger traffic has grown 

tremendously recording a post-COVID-19 pandemic annual growth rate of 43.41% and 

57.61%, respectively [1]; aircraft maintenance costs are still significantly higher than the global 

average, with aircraft operators spending 75% of the estimated $1 billion annual cost in West 

Africa [2]. To maintain flight safety and reliability, aircraft maintenance is regulated by 

aviation authorities; the Nigerian Civil Aviation Authority (NCAA) is the only aviation 

regulatory authority in Nigeria [14]. The other bodies in the aviation sector are the Federal 

Airport Authority of Nigeria (FAAN) Accident Investigation Bureau (AIB), and Nigerian 

Airspace Management Agency (NAMA); these were created to comply with International Civil 

Aviation Organization (ICAO) safety regulations.  

Part 5 of the Nigerian Civil Aviation Regulations (NigCARs) presents regulatory 

requirements for the continuing airworthiness of aircraft expected to operate in Nigeria in line 

with the Standards and Recommended Practices (SARPs) in ICAO Annexes 6 (operation of 

aircraft) and 8 (airworthiness of aircraft) [15]. An aircraft is considered airworthy if it conforms 

to its design and is in a condition for safe flight. Conforming to type design defines initial 

airworthiness while being in a condition for safe flight defines continuing airworthiness. Initial 

airworthiness determines whether an aircraft or new component part is fit for entry into use 

[16]. ICAO Annex 8 defines continuing airworthiness as the set of processes by which an 

aircraft, engine, propeller, or component part complies with the applicable airworthiness 

requirements and remains in a condition for safe operation throughout its operating life [16-

17]. According to ICAO Part M which contains among other things the minimum requirements 

of maintenance and airworthiness, continuing airworthiness can be defined as all processes that 
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ensure that at any time in the operating life of an aircraft that it complies with airworthiness 

requirements and is in a condition safe for operations. Part M represents a compulsory 

operating license for aircraft operators. It covers minimum requirements for:  

1. Maintenance based on an officially approved maintenance program. A maintenance 

program is a document that outlines scheduled maintenance tasks, their frequency, and related 

procedures. 

2. Fixing any damage that could influence flight safety in addition to performing 

replacements and repairs based on approved maintenance documents and standards. 

3. Evaluating the efficiency of a maintenance program (reliability monitoring). 

4. Compliance with Airworthiness Directives and other officially issued measures [18].  

The operator is responsible for the continuing airworthiness of an aircraft and shall 

ensure that no flight takes place unless:  

1. The aircraft is maintained in an airworthy condition. 

2. Any operational, emergency equipment systems fitted are correctly installed and 

serviceable or clearly identified as unserviceable.  

3. The airworthiness review certificate remains valid.  

4. All aircraft maintenance is performed in accordance with the Approved Maintenance 

program [18]. 

Aircraft maintenance is a key aspect of airworthiness. Continuing airworthiness 

maintenance program consists of aircraft inspection, unscheduled and scheduled maintenance, 

structural inspection program or airframe overhaul, propeller, and auxiliary power unit (APU) 

repair and overhaul [19]. Aircraft maintenance includes actions and analysis that are performed 

to improve or maintain the reliability and airworthiness of aircraft systems, subsystems, and 

components all through the life cycle of the aircraft.  Actions that may be carried out in 

connection with aircraft maintenance include the development of aircraft maintenance 

programs based on the manufacturer’s guidelines, monitoring and implementation of 

airworthiness directives issued by the NCAA. The NCAA issues a certificate of airworthiness 

(C of A) on the basis that the aircraft complies with design aspects of the appropriate 
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airworthiness requirements. A certificate of airworthiness becomes invalid if the aircraft is not 

maintained in an airworthy condition [14-18].  

 

1.1.1 Aircraft maintenance processes in Nigeria 

 

Various aircraft types are in operation in Nigeria; aeroplanes include but are not limited 

to B777-200/300, B737-200/300/400/500/700/800, B747-400, A340, ERJ 135/145/190-400, 

ATR 42/72 etc. The commercial helicopter sector contributes to the economy by providing 

search and rescue services, and transportation to the offshore oil and gas industry. Helicopter 

models used in Nigeria include but are not limited S76C/D, S92, AW139 etc. Maintenance of 

these aircraft is important to operations because it affects dispatch reliability and safety of 

passengers and cargo. 

According to European Committee for Standardization EN 13306, maintenance can be 

defined as a combination of technical, managerial, and administrative actions during the life 

cycle of an item with the intention of retaining it in or restoring it to a state in which it can 

carry out the required functions [20]. Aircraft maintenance is a general term for aircraft checks 

that assess aircraft and the condition of their component parts and systems. It includes short 

pre-flight checks or detailed checks of the aircraft components and systems. Effective aircraft 

maintenance is focused on ensuring that required levels of fight safety and reliability are met 

and in the case of failure, maintenance restores the safety and reliability levels to required 

standards [21-24]. Maintenance actions for aircraft components and systems are categorized 

into Corrective Maintenance (CM), Preventive Maintenance (PM), and Predictive 

Maintenance (PdM) – Traditional aircraft maintenance methods are corrective and preventive 

while predictive maintenance is a modern approach based on machine learning principles and 

prognostics health monitoring (Fig 1.1). CM covers all repair actions for unplanned faults and 

failures. PM actions reduce the occurrence of unplanned repairs; It consists of periodic 

maintenance actions to avoid failures and breakdown of components and systems. PdM uses 

some parameters to speculate when failures may happen thereby reducing the number of 
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unplanned breakdowns by providing personnel with reliable scheduling options for preventive 

maintenance [25-27].  

 

Fig 1.1. Categories of aircraft maintenance 

 

In aviation, PM actions are referred to scheduled maintenance and can be grouped into 

predetermined and Condition-based Maintenance (CBM) actions; predetermined actions are 

further categorized into time-based (calendar time, flight hours) and usage-based (take-off and 

landing cycle) actions. CBM is a maintenance strategy in which maintenance is carried out 

based on the actual condition and trend of the component without compromising on the 

regulator's standards. The goal of CBM is to prevent failure and retain the system's condition 

using intelligent technology that continuously tracks the component condition. Elements of 

PM actions are inspection, servicing, calibration, testing, alignment, adjustment, and 

installation. CM actions are called unscheduled maintenance; they are classified into 

immediate and deferred corrective maintenance. Its elements are fail-repair, salvage, rebuild, 

servicing and overhaul [19, 26, 28-29].  
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In accordance with Part 9 of the NigCARs, operators are mandated to provide a 

maintenance program for each of their aircraft [30]. The maintenance program includes 

scheduled maintenance tasks and frequencies required by the Maintenance Review Board 

Report (MRBR) and other mandatory requirements, complemented by additional maintenance 

tasks considered for their economical effectiveness, reliability improvement as well as for 

passenger comfort and appearance reasons. The MRBR is a guideline that specifies minimum 

requirements for the maintenance of an aircraft type. It is a generally approved starting point 

for creating a maintenance program and is globally accepted by aviation authorities as a key 

basic maintenance document of an aircraft type. The report is aligned to the world fleet of an 

aircraft type but at the same time considers different aircraft configurations as well as 

individual usage behavior and extent [31-33]. The framework of an aircraft maintenance 

program is usually pre-determined by the manufacturer, but operators must adapt their 

maintenance program to the respective aircraft configuration and the individual requirements 

of their fleets. For this reason, the maintenance program of the diverse aircraft types differs in 

practice; but even with identical aircraft types, the details of maintenance program can vary 

between airlines, depending on operational area and utilization, or on the individual operational 

experiences. In addition to that, maintenance programs also reflect more or less clearly the 

maintenance philosophies of operators (e.g. block or phase-related maintenance, focus on 

prevention or maximum utilization of permissible limits) [17-18, 31-32]. 

The aim of a maintenance program is to give guidance to maintenance personnel on 

regulations, procedures, limitations and/or restrictions pertinent to the safe performance of 

duties and responsibilities in areas and conditions where aircraft maintenance are conducted 

and to reflect the maintenance needs of the aircraft that shall be complied with, to ensure 

continuous safe operation. The maintenance program is part of the approved maintenance 

system. Other parts of the maintenance system are the Component Operating and Storage 

Limits List (COSL), supplementary maintenance by accomplishment of service bulletins and 

airworthiness authority requirements. The maintenance program must be monitored by 

qualified engineers for suitability at least annually [17-18, 31-32]. 
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Fig 1.2. Sample page of maintenance program of an aircraft operating in Nigeria [31] 

 

First issues as well as revisions of the maintenance program must be approved by the 

NCAA and are based on related technical documentations including the MRBR, Maintenance 

Planning Document (MPD), type certificate holder recommendations, engine maintenance 

manual, component maintenance manuals, mandatory requirements including airworthiness 

directives and other applicable requirements from the NCAA, service bulletins, in-service 

experience and industry recommendations, reliability analysis based on engineering findings, 

pilot reports, and changes in company procedures that affect the maintenance program [31-32]. 

 

1.1.2 Existing maintenance philosophies 

 

In the early stages of aviation history, aircraft maintenance was performed based on the 

mechanics’ experiences. The beginning of the jet age and the creation of aviation safety 
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authorities paved the way for a paradigm shift which resulted in structured maintenance 

planned by engineers. Aircraft maintenance was based on hard time principle which is the 

theory of preventive but expensive replacement or restoration of component parts and systems 

[19].  Maintenance activities were based on the idea that measures were more effective, the 

more they were carried out (“much helps much”). In the 1960’s it became evident that this 

principle was not sufficient because practical experience was not considered in the 

maintenance schedules. Therefore, for the first time in the context of the development of B747, 

a systematically planned maintenance program which considered the aircraft or component 

part`s condition, became the standard; this documentation was produced by Air Transport 

Association (ATA) Maintenance Steering Group (MSG) and was referred to as MSG [19, 34-

35]. 

MSG was focused on conducting a logical decision process for cost-effective and 

efficient routines acceptable to manufacturers, operators, and regulators. The MSG process 

allows defects to occur and relies upon the analysis of information about such defects to 

determine the appropriate actions. MSG evolved to MSG-2 which was designed in a document 

released by the ATA in the 1970s. MSG and MSG-2 processes follow a bottom-up approach 

while MSG-3 follows a top-down approach and was built based on the framework of MSG-2. 

MSG-2 is a decision logic technique which streamlines scheduled maintenance requirements 

by capitalizing on the inherent reliability of aircraft systems and equipment using condition 

monitoring. In the top-down approach of MSG-3, consequences of component failure and how 

aircraft operations are affected is the focus. Application of RCM also known as MSG-2 was 

introduced to the aviation industry in 1974 by United Airlines and the United States 

Department of Defense. It has been successfully implemented in offshore oil industry and 

nuclear power. Aircraft operators in Nigeria typically follow either the MSG-2 or MSG-3 

philosophy of maintenance [34-35] 
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1.2 Existing models for optimizing aircraft maintenance 

 

According to International Air Transport Association (IATA), global aircraft 

maintenance, repair and overhaul expenditure totaled $69 billion in 2018, with an annual 

growth rate of 4.1% therefore aircraft operators are constantly searching for ways to decrease 

these expenses without compromising on flight safety and reliability levels [36]. Aircraft 

maintenance optimization is typically a multi-objective solution that aims to maximize revenue 

by maintaining high availability while simultaneously minimizing cost [37]. To optimize 

aircraft maintenance, many researchers have suggested and tested a range of techniques based 

on aspects of aircraft maintenance processes such as planning, scheduling, maintenance task 

allocation, aircraft maintenance routing, spare parts inventory, personnel, and skill 

management. Other techniques use aircraft prognostics and health management data, and 

reliability models. The following sub-sections will explain these aspects of aircraft 

maintenance, the optimization techniques suggested by researchers and, advantages and 

limitations of their studies. 

 

1.2.1 Aircraft maintenance planning models  

 

Proper, reliable and flexible planning can directly contribute to the efficiency of 

maintenance [38]. However, in practice, aircraft utilization is manually managed and on a day-

to-day basis resulting in a reactive approach to allocation of aircraft flight hours in which 

problems with respect to availability, sustainability and serviceability can easily develop [39]. 

Furthermore, existing Aircraft Maintenance Planning (AMP) methods effectively outline 

maintenance work with regards to where in the aircraft it is expected to be carried out, when 

in the maintenance intervention it is expected to occur, or what technical skills are needed [40]. 

This is mostly due to various constraints such as maintenance resources, operational demand, 

locations, facilities etc. [39].  
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Scheduled aircraft maintenance tasks are performed at predetermined intervals hence the 

work is typically deterministic while on the other hand, unscheduled tasks, result from the 

carrying out scheduled activities and depends on the probabilistic nature of failures, hence is 

classified as inherently stochastic and are characterized only at the end of the aircraft 

inspection. This results in uncertainty regarding maintenance work and capacity problems in 

which planned resources are insufficient or otherwise excessive to carry out the maintenance 

work [40]. A decision support tool (Fig 1.3) can handle the stochastic nature of executing 

maintenance tasks and is generated using a combination of reliability analysis, cost analysis, 

decision alternative generation and ranking. Depending on parameter settings, this framework 

can aid operational maintenance planning and potentially reduce maintenance costs by 45 to 

90%. However, this tool doesn't consider manpower availability, and task deferral, including 

extension of the planning horizon beyond the next maintenance check.  By analyzing real-time 

data on work progress, this decision support framework can be used to monitor the progression 

of planned aircraft maintenance thereby exploring optimal task planning in the event of delays 

or maintenance being ahead of schedule [38].  

 

 

Fig 1.3. Decision support framework for maintenance planning [38] 

 

Traditionally, operators carry out hangar maintenance for its own fleet, but with the rapid 

growth of air transport demand, operators increasingly outsource hanger maintenance to 
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maintenance service companies. These companies upon receiving an order, need to determine 

maintenance schedules, aircraft movement path, parking stand allocation and staff assignment 

which can be integrated in a mixed-integer linear programming model. This model formulates 

geometric constraints and manpower assignment constraints is proposed to integrate and 

characterize the interdependent relationship of decision-making. However, the model doesn't 

consider the aircraft arrival patterns to avoid congestion of maintenance requests [41].  

Considering that a significant portion of maintenance work is stochastic in nature, a 

method for data analysis titled 3-dimensional maintenance data analysis to generally 

characterize the expected maintenance work based on a space-time-skill coordinate system 

(Fig. 1.4) in which indicators are determined from historical data. In the context of this 

methodology, space (j) refers to aircraft work zone where maintenance is carried out, time (k) 

refers to the project work phase when maintenance is performed, and skill (i) refers type of 

technicians required for maintenance to be carried out [40]. 

 

 

Fig 1.4. Matrix for the maintenance work characterization of skill i [40] 

 

An aircraft is considered available if it is not undergoing any maintenance operations 

and has enough flight hours to be assigned to a mission. Aircraft availability can also be 

considered in terms of the amount of flight hours left before mandatory maintenance [42].   In 

[43] the authors analyzed the process of AMP and developed an optimization model for aircraft 
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maintenance based on the objective function of cost minimization. Their proposed model 

which was solved using genetic algorithm didn't consider the special constraints of an old 

aircraft, major festivals and closing times of station but they assumed the flight plan was known 

and that any aircraft can operate at an airport.   

For the long-term planning of maintenance and flight operations, the authors in [42] 

generated scenarios inspired by the French Air Force fleet and formulated an exact mixed 

integer programming model to solve the problem in these scenarios. Although the study 

showed that the mathematical model's performance is robust in terms of increase in fleet size, 

size of the planning horizon and flight missions, the addition of consumption outside of flight 

mission proved challenging.  On the other hand, gains in resolution time were obtained by 

developing a construction heuristic that provided starting solutions for the cases where an 

integer solution was not easily obtained by the model.  

In [44], a Decision Support System (DSS) automates the AMP process and in one single 

solution, provides optimization of maintenance check scheduling, optimal task allocation, and 

shift planning.  In comparison to current airline practices in Europe, the DSS can improve 

aircraft utilization and minimize maintenance costs. Time needed for AMP is reduced from 

hours or days to 20–30 minutes.  

Operational aircraft maintenance planning models  

Unscheduled maintenance can result in costly delays and cancellations if the problem is 

not rectified in a timely manner. Aircraft operability is considered a major prerequisite by each 

airline operator. It refers to the aircraft's ability to meet the operational requirements in terms 

of operational reliability, operational risk, and costs [39, 45]. Short-term planning technique of 

line maintenance activities also support decision making for deferring maintenance actions that 

affect dispatch of aircraft [45].  

Operational readiness is influenced by aircraft downtime and characterized by three 

primary components: availability, serviceability, and sustainability [39, 45]. The flight and 

maintenance planning optimization framework (Fig 1.5) which doesn't cover the entire scope 

of operational readiness, simultaneously addresses the three primary components of 
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operational readiness resulting in a pro-active, efficient, and more robust scheduling effort i.e., 

schedules that can deal with delays related to the stochastic flight arrival times [39].  

An Aircraft Maintenance Operations Performance Assessment Model (AMOPAM) can 

assess the differences in performance between two different scenarios of aircraft maintenance 

operations and can capture these differences both in the form of differential- (∆V) and financial 

value (Net Present Value). This model was applied to test material unavailability only at KLM 

Engineering & Maintenance and an insight on how the model responds in different 

environments was not studied. The input variables for AMOPAM are Key Performance 

Indicators (KPIs) that have been identified as value drivers that can capture the operational and 

financial performance of aircraft maintenance procedures. The KPIs are costs, revenue, 

punctuality of maintenance check, technical delays and cancellations, aircraft on ground orders 

and outstanding deferred defects [46].  

 

 

Fig 1.5. Aircraft flight and maintenance planning optimization framework [39] 

 

1.2.2. Aircraft maintenance scheduling models 

 

Maintenance costs are typically affected by factors such as multiple types of aircraft in 

the fleet which increase the costs of aircraft maintenance due to poor management of aircraft 
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material and poor maintenance schedules.  Maintenance scheduling and rescheduling is a key 

element in achieving the reliability, availability, maintainability, and safety standard of aircraft 

operations [47]. An optimal maintenance schedule satisfies the following conditions: fleet 

availability meets operator’s demand; aircraft components can be put to great use; maintenance 

resources are evenly distributed [37]. Scheduling maintenance inspection for a large 

heterogeneous fleet is typically a complex and demanding problem. Aircraft maintenance 

schedules are typically prepared based on the experience of maintenance operators. The 

traditional approach is time-consuming, can result in poor solutions. decrease the aircraft 

utilization and increase aircraft maintenance cost [48]. 

A heuristic approach which considers origin destination pairs rather than flight legs 

provides a good solution for maintenance scheduling in reasonable computation time and can 

be used by mid-sized airline corporations [49]. An innovative condition-based maintenance 

scheduling methodology which integrates complex data processing, prognostic algorithm, 

feature extraction and maintenance scheduling optimization can provide a more predictable 

and efficient maintenance scheduling capability. Although aircraft fleet availability and the 

optimal maintenance schedules change over different levels of maintenance capacity, the 

framework of prognostic-based maintenance scheduling which can be solved by IBM CPLEX 

Optimizer which provides a tradeoff analysis in terms of key performance metrics such as cost 

and capacity expansion [47]. An optimization method which integrates aircraft maintenance 

tasks packaging and scheduling in the aircraft life cycle models the concept of prognosis-based 

maintenance. This approach is based on branch-and-bound algorithm for maintenance planning 

and a discrete-event simulation of aircraft operation but doesn't factor applicability for different 

airline business models e.g., low-cost carrier or network [50]. 

Management must decide on the timing of maintenance between arrival and departure 

of the aircraft [51]. Inspection interval decisions are traditionally based on deterministic 

analysis of crack propagation which may require too frequent or infrequent inspection and 

sometimes result in rapid crack propagation than expected [52]. Aircraft fleet reliability 

increases as inspection frequency or inspection quality increases. However, this is 
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accompanied by an increase in cost of inspection and maintenance thereby leading to a 

potential tradeoff between fleet reliability and the cost of inspection and maintenance [53]. The 

stochastic crack growth analysis method based on the equivalent initial flaw size distribution 

algorithm after which failure risk was determined compensates for the shortcomings of 

deterministic analysis applied during traditional inspection intervals [52]. An optimization 

method for aircraft periodic inspection and maintenance on the zero-failure data analysis solves 

the problem of excessive maintenance and reduces aircraft unserviceable time.  

To deal with uncertainties connected with maintenance, aircraft operators work with 

safety buffers which are defined by the due time associated with each job. The ideal size of 

these buffers can be determined using the techniques which depends on the uncertainty of the 

operation and the desired level of service to achieve. This way the goal of the maintenance 

problem can be redefined as scheduling jobs as close to their due dates as possible which means 

that deviation from the 'ideal' schedule determined by due dates is minimized [36]. An aircraft 

maintenance-scheduling model solved by artificial bee colony algorithm can establish an 

optimal maintenance date for each type of aircraft. This model considers aircraft materials and 

other factors as constraints, and aircraft on ground (AOG) loss is set as the goal function. 

Objective function is related to the loss of AOG in the entire maintenance cycle, and constraints 

ensure that every maintenance time is covered by the time window. The set of constraints 

ensure that the maintenance check should not affect commercial operation of the fleet while 

considering the material resources, human hours, and check capabilities available. The 

objective of this model is to minimize AOG and maximize efficiency, but it doesn't consider 

the constraints of operating a heterogenous fleet [54].  

A Fleet Maintenance Decision-making Model (Fig. 1.6) based on Condition-based 

Maintenance (FMDM-CBM) in combination with Collaborative Optimization (CO) not only 

minimizes fleet maintenance costs and maximizes availability but also considers the different 

conditions of aircraft structures. The effectiveness of this algorithm for fleet maintenance 

planning was demonstrated using a fleet of ten aircraft and results showed that incremental 

maintenance cost was reduced by 70.65%. The fleet maintenance costs are reduced in parallel 
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sub-systems using CO algorithm, considering maintenance capacity constraints at the system 

level. On the other hand, the system level focuses on maximizing fleet availability and 

balancing the fleet maintenance plan with maintenance resources over the planning horizon 

[55]. 

Using a practical dynamic programming-based methodology for the optimization of 

long-term maintenance check schedule, the number of maintenance checks for a fleet of 

heterogeneous aircraft can be reduced by around 7% over a period of four years, with a 

computation time of less than 15 minutes. With the goal of reducing wasted flight hours 

interval between checks, this methodology integrates different check types (A, B, C and D 

checks) in a single schedule but doesn't consider uncertainty associated with both the 

maintenance check elapse times and the aircraft utilization which not only affect the robustness 

of the schedule but also the computational time needed to calculate the optimal schedules [48].  

 

 

Fig 1.6. Framework of FMDM-CBM [55] 
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The framework proposed in [56] doesn't consider complications that may arise from 

some of the long-term maintenance types but can construct a near-optimal aircraft maintenance 

schedule within minutes. This framework involves two multi-objective mixed integer linear 

programming formulations and an iterative algorithm to develop maintenance schedules, and 

commercially viable and maintenance feasible flight. In the first formulation, the Airline fleet 

Maintenance Scheduling (AMS) with violations reduces the number of maintenance regulation 

violations and the number of aircraft which are not airworthy. The second formulation is the 

AMS with tail assignment which allows aircraft to be assigned to various flights.  

 

1.2.2 Aircraft maintenance task allocation models 

 

Maintenance planners are faced with the daily challenge of optimal allotment of aircraft 

maintenance tasks to the best maintenance opportunities. The typical approach followed is to 

group tasks into maintenance checks (e.g., A-, B-, C- and D-check) to establish a logical 

maintenance program in which all tasks are carried out before their associated due dates. 

Combining aircraft maintenance tasks into work packages is not only fundamental for 

organizing maintenance activities, but also critical for minimizing maintenance cost. To 

determine the optimal start dates of the tasks, it is usual practice to adopt a sequential process.  

Although some tasks can quickly be packaged into these letter checks, a considerable number 

of other tasks (more than 70% for an Airbus A320 aircraft) are de-phased from the intervals of 

these checks. This means that they either have to be assigned to a more recurrent letter check 

or manually allocated by maintenance operators to various maintenance events based on the 

suitability of the task to that check and the importance of performing the task in due time. In 

practice, both approaches are conducted based on the experience of maintenance planners, 

leading to inefficiencies [44, 57-58]. 

Task Allocation Problem (TAP) in aircraft maintenance refers to the process of 

optimally allocating tasks in predetermined maintenance checks. It determines the optimal start 

dates of aircraft maintenance tasks so that all preventive tasks are carried out as close to their 
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due dates as possible. Due to its combinatorial nature, TAP is complicated and has to be 

simultaneously solved for the entire fleet. In real-life applications, multiple aircraft checks can 

be scheduled in parallel, and tasks assigned to these checks will share the maintenance 

resources [58]. A combinatorial maintenance model based on maintenance cost rate and solved 

by adaptive genetic algorithm based on cluster search combines various tasks into an optimal 

work package during the decision-making phase of aircraft maintenance. However, it takes a 

long time to converge to an accurate solution around the extreme point [59]. 

The authors in [58] defined TAP as a Time-Constrained Variable-sized Bin Packing 

Problem (TC-VS-BPP), expanding the notable variable-sized bin packing problem (VS-BPP) 

by including intervals, deadlines, and arrivals for the repetition of tasks (Fig 1.7).  

 

 

Fig 1.7. Task allocation algorithm [58] 
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The planning horizon is split into variable size bins to which multidimensional tasks are 

allotted based on available labor power and task deadlines. They proposed a constructive 

heuristic based on the worst-fit decreasing (WFD) algorithm for TC- VS-BPP. This approach 

doesn’t consider the stochasticity connected with the TAP problem but can efficiently solve 

the multi-year task allocation problem for a fleet of aircraft in few minutes and is approximately 

30% faster for all the airline test cases considered.   

Line maintenance activities can interrupt routine aircraft operation due to frequency of 

their occurrence. Furthermore, frequent opening and closing of panels results in significant 

wear and tear, thereby reducing the inherent reliability of the aircraft.  A simulation model 

which predicts the maintenance requirements of an aircraft in an airline operating under known 

condition can be used to group maintenance tasks into manageable packages that can be 

performed at extended maintenance intervals and within specified periods thereby increasing 

aircraft availability. This model can also be used to vary and adapt line maintenance packages 

in case an aircraft visits the hangar for non-routine maintenance [60].  

 

1.2.4 Aircraft maintenance routing models 

 

The assignment of route to an aircraft while considering its maintenance requirements 

is called Aircraft Maintenance Routing Problem (AMRP) [61]. AMRP determines the route of 

individual aircraft (tail number) in an array of revenue flight legs, such that each route will 

have adequate opportunities for the needed maintenance tasks to be carried out [62]. Fast and 

simple polynomial-time algorithms can be used for finding a routing of aircraft in a graph 

whose routings during the day are fixed. A polynomial-time algorithm can find a Euler tour 

that represents a routing in Lines of Flying (LOF) graph. The algorithm is embedded into a 

three-stage routing system that creates LOFs to satisfy all the necessary conditions for the 

existence of a maintenance routing [63]. Given a set of flight legs for a specific aircraft type 

with the specified maintenance locations and known remaining flying hours, a combination of 

breadth first search and Dijkstra’s algorithm generates the most optimal maintenance feasible 
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routes. Maintenance cost is significantly reduced while factoring in the maintenance 

requirements such as slot availability, availability of man hours and turn-around time of aircraft 

[61].  

A hybrid optimization-simulation approach based on a novel mixed-integer nonlinear 

programming model can be used for robust weekly aircraft maintenance routing problem. This 

approach integrates mixed-integer programming with Monte-Carlo simulation to obtain robust 

aircraft schedules thereby improving on-time performance, while satisfying maintenance 

constraints and stochastic delays. In comparison with the traditional airline approach, this 

model improved on time performance by 9.8–16.0% and reduced delays by 25.4–33.1% [64].  

In [62], an interactive mechanism between aircraft routing and maintenance planning 

decisions is suggested for reducing maintenance misalignment usage. A formulation of AMRP 

in which maintenance requirements are designed as generalized capacity constraints, ensuring 

satisfactory maintenance opportunities are feasible within the planned routes to meet the 

maintenance demands of individual aircraft. To generate the week-length routes per individual 

aircraft, the AMRP is initially formulated as a new integer programming (IP) model. A capacity 

planning-based strategy is applied to build the generalized maintenance constraints whereby 

sufficient maintenance opportunities (or capacity) must be available within the planned routes 

to satisfy the projected maintenance workload due. However, the limitation of this mechanism 

is that  doesn't consider uncertainty due to unscheduled maintenance demand and unforeseen 

aircraft grounding.  

A multi-integer linear programming model (Model I) for AMRP with the goal of 

minimizing the number of aircraft and total remaining flying time was developed in [65]. 

Model I was then extended to Model II and Model III. In Model II, the authors considered the 

robustness based on the likelihood of aircraft delay and then added the robust constraints to the 

model with the aim of reducing total aircraft delay costs.  For Model III, the authors considered 

the fleet type of aircraft, whose aim is to reduce the total flying cost. In terms of solution 

method, they improved a heuristic of the variable neighborhood search (VNS) algorithm to 

solve the Model I and Model II which can quickly generate a suboptimal solution in reasonable 
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time. Experimental results demonstrated that Model I can effectively solve the AMRP by 

arranging the necessary routine maintenance for the aircrafts to ensure the safety of the flights. 

Based on this, the flight mission can be achieved with the minimum number of aircraft and the 

least total remaining flying hours of the aircrafts, which increases the utilization of the aircrafts. 

Based on the probability of the flight delay, Model II can achieve a robust airline flight 

scheduling plan with the ability to resist disturbance by adding more cushion time.  

Operational aircraft maintenance routing models 

Airlines periodically revise aircraft routes through the Operational Aircraft Maintenance 

Routing Problem (OAMRP). The OAMRP determines the route for each individual aircraft 

while integrating operational maintenance considerations and this short-term planning problem 

requires building aircraft routes that satisfy maintenance requirements [66, 67]. To address this 

problem, branch-and-price algorithm can be used because of the resource constraints which 

require a modification of the branch-on, follow-on branching rule generally used for solving 

similar problems [68]. To maximize utilization of the total remaining flying time of aircraft 

fleet, an integer linear programming (ILP) model which doesn’t consider crew scheduling was 

formulated by modifying the connection network representation and is solved using branch-

and-bound under various priority settings for variables to branch on. Based on compressed 

annealing (CA), a heuristic method is applied to the OAMRP, and a comparison of exact and 

heuristic methods show that CA is effective in quickly finding high quality solutions. The CA 

returns feasible solutions within the first two minutes and reduces the number of lost flight 

opportunities values to acceptable amounts at the end of the first hour which is key to providing 

the responsiveness needed by the airline industry. A rolling horizon-based procedure updates 

the existing routes where some maintenance decisions are already fixed [69]. 

An exact mixed-integer programming model that consists of a polynomial number of 

variables and constraints can solve the OAMRP. Although this model also doesn't consider 

crew pairing, evidence shows that it delivers optimal solutions for example with up to 354 

flights and 8 aircraft, and that the heuristic approach generally delivers high-quality solutions. 

A graph reduction procedure and valid inequalities that improve solvability of the model [67].  
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In [66] OAMRP was studied with two objectives. First, the authors formulated a mixed 

integer linear programming model that considers all operational maintenance requirements. 

The proposed model is solved using commercial software for small size problems. Second, 

they develop a solution algorithm that quickly and efficiently solves the model while tackling 

medium and large-scale problems. The performance of the proposed solution algorithm is 

checked based on real data from an airline, the results show high quality solutions and 

significant savings in computational time. The results of this study demonstrate that the 

performance of the proposed algorithm exceeds those of the existing methods such as CA and 

considers the capacity of the maintenance workforce. However, because the OAMRP was 

considered deterministic, this model wouldn't be exactly useful in real life because aircraft 

operators typically face disruptions and unforeseen circumstances.  

A Flight Delay-based OAMRP (OAMRPFD) with a limited scope of four days was 

proposed in [70]; A joint optimization model for a coordinated configuration a scenario-based 

OAMRPFD and Maintenance Staffing Problem (MSP) using the Stackelberg game. In this 

game, the scenario based OAMRPFD is handled by the airline and plays the leader's role for 

reducing the propagated delay cost. A bi-level optimization model is used to present the game 

and is solved by a bi-level nested ant colony optimization algorithm. The MSP, which is 

handled by the maintenance company, performs the role of the follower that reacts logically to 

the leader’s decision regarding the departure time of the airline’s aircraft from the maintenance 

company.  

 

1.2.5 Spare parts planning models for aircraft maintenance  

 

Spare parts guarantee the safe and economic operation of aircraft and serve aircraft 

maintenance planning, but unnecessary spart part delivery is a result of incorrect choice of the 

maintenance strategy. An excess of spare parts inventory results in a high holding cost and 

impedes cash flows, while lack of spare parts can lead to costly flight delays or cancellations 

which negatively impact airline performance [71-73].  Aircraft maintenance waiting time can 
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be reduced by 10.34% and total inventory budget decreased by 12.55% using a model which 

considers the total spare part provision cost as a constraint to optimize aircraft average waiting 

time. A heuristic algorithm then solves the model based on analysis of marginal utility of spare 

parts unit cost [74].  

Maintenance decisions and provision of spare parts can be simultaneously carried out 

for aircraft deteriorating parts [75]. A planning method based on queuing theory and Vari-

Metric model can also be used to deploy aircraft spare parts and ground maintenance 

equipment thereby solving the multi-echelon inventory allocation problem with finite repair 

capacity for civil aviation [76].  

Reinforcement learning driven maintenance strategy (Fig 1.8) is designed to process the 

future requirement of aircraft mission, spare components storage, repair costs and aircraft PHM 

output. Limitations of this approach lie in the fact that its development was based on only one 

aircraft and scenarios for multiple types of planes were not considered. In addition, the aircraft 

for this research was considered as one-line replaceable unit which can be repaired as good as 

new; this is not a logical maintenance scenario [37].   

 

 

Fig 1.8. Reinforcement learning driven maintenance strategy [37] 
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A multi-objective simulation optimization framework which integrates multi-objective 

evolutionary algorithm with multi-objective computing budget allocation method can be used 

to solve the aircraft spare parts allocation problem to provide a non-dominated Pareto set of 

solutions to the decision makers. This solution framework also handles the uncertainty 

involved in performance measures for aircraft maintenance planning by efficiently searching 

for the non-dominated designs over the solution space [77]. Two non-linear programming 

models forecast impending demands based on installed parts failure distribution. The optimal 

order time and quantity can be found by minimizing total cost [72]. 

 

1.2.6 Aircraft maintenance personnel and skill management models 

 

Aircraft maintenance resources consist of equipment, materials, and a set of labor hours 

from various skills [58].  Labor is generally a significant percentage of expenditure therefore 

an efficient scheduling of the workforce is important [78]. A good personnel schedule ensures 

that all flights can be maintained with the workers available and their respective skills [78-79]. 

However, management decisions on timing of maintenance between arrival and departure of 

the aircraft, constraints by labor union agreements, and stochastic arrival delays resulting in 

insufficient maintenance personnel capacity are problems associated with scheduling aircraft 

maintenance personnel. A model enhancement heuristic which optimizes a mixed integer linear 

programing model with a stochastic service level constraint can be used to build robust aircraft 

maintenance personnel rosters that attains optimal service level while reducing the total labor 

costs [40]. Hall's marriage theorem can help decision makers to manage the assignment of skills 

to maintenance activities while considering complex restrictions [80].  

Through communication and reasoning among agents, a multi agent-based fleet 

maintenance personnel configuration method (Fig 1.9) can be used to solve the problem of 

aircraft fleet maintenance personnel configuration thereby leading to an optimal maintenance 

strategy. In the process of configuration of fleet maintenance personnel, the model 

systematically considers the interaction between human error, cooperation among personnel 
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and concurrent maintenance [81]. A three-stage mixed integer programming approach provides 

optimization of the skill mix and training schedule. In the first and second stage, a trade-off is 

made between the training costs and the resulting cheaper workforce schedule while in the 

third phase, an optimal and feasible training schedule obtains the desired skill mix with 

minimal costs.  Results based on data from a maintenance repair and overhaul services provider 

located in Europe show that the model can find good solutions in reasonable computation 

times. The model provides an excellent tradeoff between cheaper rosters that need higher 

skilled workers and the training costs to obtain this higher skilled workforce. The downside of 

this approach is the assumption that during training, workers are unavailable to work but in 

practice, this is only applicable if the required training can be carried out without posing a 

threat to the current aircraft maintenance operations [78].  

 

 

Fig. 1.9. Fleet maintenance decision making based on multi-agent [81] 
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1.2.7 Aircraft maintenance models based on prognostics and health management 

data  

 

Prognostics and Health Management (PHM) technology estimates the Remaining Useful 

Life (RUL) and health state of systems and components. PHM is made up of a set of techniques 

that use measurement analysis to assess health state and forecast imminent of the monitored 

equipment’s. Advancements in PHM technology in the aeronautical sector has been of value 

to aircraft manufacturers, aircraft operators, Original Equipment Manufacturers (OEM) and, 

maintenance, repair, and overhaul service providers to achieve important competitive 

advantages such as minimized operational cost and increase in fleet reliability [82-83]. A 

combination of system architecture information and RUL estimations for all components in the 

system allows for the overall estimation of system-level RUL (S-RUL). The S-RUL 

information can be used to support maintenance decisions with regards to the replacement of 

multiple components [82-83]. Deterioration trends and future wear values of aeronautical 

systems are estimated by considering an implementation of a multiple model approach of the 

extended Kalman filter technique [84]. 

 

1.2.8 Reliability-centered maintenance models for aircraft maintenance  

 

Reliability-centered maintenance (RCM) models allow for the calculation of system 

reliability considering different kinds of maintenance checks and their intervals thereby 

providing information for optimizing operational cost, safety, and reliability. Typical 

framework of RCM includes data collection, including mean time to failure and failure rate 

function, failure mode and effect analysis, and preventive maintenance interval optimization 

[85-86].  

In [85], a practical approach for analysis of aircraft systems was proposed. This 

analytical model can be used to determine maintenance check intervals, optimize redundancy 

and aircraft minimum equipment list. The authors assumed that Markov homogeneous process 
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can be used as a mathematical model for determining the reliability of aircraft system if a 

correlation can be established between the state of aircraft systems, their probabilities of 

failure, failure rates of the element on one hand and on the other hand, Markov process, process 

transit rates and state probabilities. In addition to these, checks and repairs should be 

considered.  A model of Markov homogeneous process shows that the probabilities of the states 

of aircraft system can be presented as a product of two multipliers. The first one which depends 

on flight duration and failure rates of component can be determined using Markov processes 

and Boolean logic. The second one depends on the check and repair intervals for the 

components and system states, as well as the flight phase limits. Probability of system failure 

in any flight was determined using (1.1)  

           (1.1) 

                      (1.2) 

                             (1.3) 

where Qz – probability, tf l – flight duration, M – number of flights between full system 

restoration at the j-th maintenance check, λα, λβ, λρ, λσ – element failure rates, r – number of 

failures which moved the system from serviceable condition to the given state, Kz – coefficients 

of the system maintenance policy effect on the system failures’ probabilities.  

The first factor (1.2) defines the probability of in-flight system failure state Hz which 

occurs under a condition of restoring serviceability of all failed elements before take-off. The 

second factor (1.3) does not depend on the element's reliability λμ and shows how much the 

probability Qz increases with actual values of the check intervals for the corresponding system 

states. Optimization of maintenance intervals was carried out in main stages; 1) determination 

of unreliability and cost functions; 2) optimization of individual maintenance task intervals 

using Lagrange's method for convex functions; 3) estimation of logical maintenance task 
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intervals by integrating tasks with optimal values into appropriate scheduled maintenance 

check with known bases intervals using rank values. 

To optimize aero-engine maintenance, the authors in [87] proposed a methodology 

which evaluates the reliability of an aircraft engine or its module by considering condition 

monitoring parameters, pilot reports or data history. The mean time between failures is 

calculated based on these results and maintenance tasks are planned based on the lead time. 

These actions improve the likelihood of implementing Lean and Six sigma principles in 

maintenance of aircraft or aero engines through RCM. The proposed methodology consists of 

5 stages: data analysis; reliability estimation; estimation of parameters; implementation of the 

lean and six sigma tools for cost optimization; and control chart to compare the failure rates.  

For the data analysis, randomized block design is used to model (1.4) to observe the significant 

difference between and within the engine. Reliability estimation is carried out using Weibull 

distribution, New Weibull distribution (NWD) and Exponential Inverted Weibull distribution 

(EIWD) after which an estimation of parameters for the  NWD and EIWD is performed.  

 for i=1, 2… and j=1,2…b           (1.4) 

where Yij – observation connected to the i-th treatment and j-th block 

The optimization of PM interval for aircraft indicators by reducing the expected long-

term cost of operations based on the reliability information of aircraft indicators was proposed 

by [86]. The authors identified major failure modes of two indicator applications from two 

suppliers using information from failure mode and effect analysis (FMEA) reports. Mean time 

to failure (MTTF) and mean time between unscheduled replacement (MTBUR) metrics were 

determined and used as inputs for the preventive maintenance interval optimization model. The 

MTBUR under PM was evaluated using (1.5). The optimal PM schedule is obtained by 

minimizing the average cost rate (1.6)  

               (1.5) 
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where  is an infinite geometric series, RT0 is between 0 and 1.  

            (1.6)  

 

1.2.9 Research motivation  

 

Decision frameworks and models based on planning, scheduling, maintenance task 

allocation, maintenance routing, spare parts inventory, personnel, and skill management have 

been proposed by researchers for the optimization of aircraft maintenance processes. However 

not much attention has been paid to reliability theory models, machine learning, regression 

models and, probability and statistics theories for optimizing aircraft maintenance in the first 

three phases of aircraft lifecycle. Aircraft systems and components may have inherent failures 

and their reliability may vary based on previous scheduled checks and repairs. Therefore, a 

concise understanding of the interaction between reliability levels and historical trends of faults 

and failures will significantly improve the design, manufacturing, and operation of aircraft. 

Furthermore, in the aviation industry, realism is needed in mathematical models and the way 

optimization problem is formulated; system reliability, maintenance processes, and cost must 

be considered from the design phase of the aircraft lifecycle.  For this study, data from aircraft 

in Nigeria will be used to validate the mathematical models developed for the optimization of 

aircraft maintenance processes for continuing airworthiness.  
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1.3 Numerical reliability analysis of aircraft in Nigeria 

 

1.3.1 An overview of aircraft reliability  

 

Aircraft are expensive industrial systems which at the same time have the highest 

reliability and safety requirements [88]. Maximizing aircraft availability and minimizing cost 

are best achieved by designing the aircraft to be reliable and maintainable. Therefore, reliability 

requirements are typically determined during the research and development phase of the 

aircraft life cycle and is applied to other 3 phases of the aircraft life cycle: manufacturing and 

acquisition, operation and support, and disposal. During the operation and support phase, 

reliability of the aircraft and its components is of paramount importance to flight safety and 

availability. The reliability process allows aircraft operators to analyze data of aircraft and 

component part. An operator can compare its reliability to the entire fleet to understand the 

cost of schedule interruptions, analyze solutions, and prioritize service bulletins based on 

impact to the fleet [89]. For practical purposes, reliability is defined as the ability of a 

component part, subsystem, or system to perform as intended without any failure and within 

predetermined performance limits for a defined time interval, in its lifecycle conditions [90]. 

From a quantitative point of view, reliability is typically evaluated as the probability that a 

device performs its function for a required period, under specified environmental and 

operational conditions [91].  

An aircraft is a complex combination of subsystem, systems and component parts which 

are never 100% reliable because sometimes they fail; these failures can more usually be 

reparable or catastrophic. Therefore, the goal of an aircraft operator is to retain or restore the 

reliability levels of an aircraft at a minimum cost using a Reliability Control Program (RCP); 

The RCP of any aircraft focuses on maintaining failure rates below a predetermined value [92]. 

Reliability theory and methodologies have developed via several phases and there are 3 main 

areas that evolved during this growth process: 1) reliability engineering, which consists of 

system reliability analysis, design review, and related task; 2) Operation analysis, which 
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consists of failure investigation and corrective action; 3) Reliability mathematics, which 

consists of statistics and related mathematical knowledge [19]. 

All 3 areas of reliability theory and methodologies will be explored for this study which 

studies the optimization of maintenance processes for the continuous airworthiness of aircraft 

in Nigeria.  

 

1.3.2 Numerical reliability analysis of aircraft in Nigeria 

 

Reliability analysis evaluates the probability of the failure of component parts, 

subsystems, or systems, in the presence of randomness. In mathematical framework, it is 

formulated using random variables to model variability sources in product and process 

developments [93]. Considering that optimization of maintenance requires reliability models 

to find the maintenance strategy where the cost of repairs, inspection and other consequences 

are minimal, mathematical models using reliability parameters will be developed throughout 

this study.  To get a brief overview of reliability levels of aircraft components and systems in 

Nigeria, a numerical reliability analysis to determine numerical reliability parameters of 

aircraft systems is carried out in this chapter. The aircraft systems were categorized using the 

ATA Spec 100 numbering system which is a world-wide standard for defining and structuring 

all sections of modern passenger aircraft.  

The analysis was carried out using data provided by airlines, helicopter operators and 

the NCAA. Data for helicopters: seven S–76c++ and four S–92, and aeroplanes: two ERJ–135, 

two ATR 42–300, one ATR–72 and three MD–83 for the period 2014 – 2018 were used. For 

the context of this study the term ‘failure” refers to faults and failures of aircraft component, 

subsystems, systems or structure, the reliability parameters are defined as follows:  

1. Time t which is the sum of flight hours of each aircraft fleet for the stated time interval 

extracted from the utilization report. 
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2. Mean time between failures T∑, which is computed as ratio between the time t to the 

cumulative number of failures n which occurred during the stated time interval; failure data of 

aircraft systems were gotten from the aircraft technical log. 

3. Failure rate λ∑ refers to the frequency at which a system or component develops a 

fault or fails. It is computed as the i.e., the inverse ratio of the mean time between failures. 

4. Number of failures per 1000 flight hours K1000 which is computed as λ∑ multiplied by 

1000.  

5. Sum of failures which occurred during flight and those observed during maintenance 

for the corresponding ATA for the stated interval is denoted by nT  

6. Failures in flight for the corresponding ATA for the stated interval is denoted by nF 

Table 1.1 

Formular for numerically calculating the reliability parameters 

Parameter Formular 

Mean time between failure T∑  𝑡
𝑛⁄  

Failure rate λ∑ 1 𝑇∑⁄  

Number of failures per 1000 flight hours K1000 1000 𝑛 𝑡⁄  

 

Table 1.2  

Failure information of S-76 helicopters for the period 2014 – 2018 

ATA  ATA Chapter Name nT  nF 

21 Air conditioning  11 3 

22 Auto flight  104 49 

23 Communications 39 12 

24 Electrical power  57 20 

25 Equipment/furnishings  27 2 

26 Fire protection  15 
 

28 Fuel 9 3 

29 Hydraulic power  46 3 

30 Ice and rain protection   14 4 

31 Indicating/recording systems  31 18 

32 Landing gear 211 16 

33 Lights 76 16 
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Continuation of table 1.2  

34 Navigation 173 91 

39 Electrical - electronic panels and multipurpose components 9 2 

45 onboard maintenance system 17 1 

51 Structures  70 3 

52 Doors 53 7 

53 Fuselage 165 21 

55 Stabilizers  13  

56 Windows  4  

65 Tail rotor drives  192 8 

66 Folding blades  37 4 

67 Rotors flight control  76 12 

71 Power plant  24 2 

72 Engines  20 6 

73 Engine fuel and control  48 16 

74 Engine ignition  1  

75 Engine air  54 18 

76 Engine controls  5 1 

77 Engine indicating 8 6 

78 Engine exhaust  4  

79 Engine oil  48 1 

80 Starting  15 3 

Cumulative failures for the stated Interval  1676 348 

 

Table 1.3  

Failure information of S-92 helicopters for the period 2014 – 2018 

ATA ATA Chapter Name nT nF 

21 Air conditioning  35 13 

22 Auto flight  25 10 

23 Communications 22 8 

24 Electrical power  25 4 

25 Equipment/furnishings  19 
 

26 Fire protection  12 4 

28 Fuel 5 
 

29 Hydraulic power  19 2 

30 Ice and rain protection   9 3 

31 Indicating/recording systems  21 1 

32 Landing gear 59 4 

33 Lights 23 5 

34 Navigation 37 11 

44 Cabin Systems  2 1 

49 Airborne auxiliary power  11 1 

50 Cargo and Accessory Compartments 2 
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                                                                                            Continuation of table 1.3  

51 Structures  2 1 

52 Doors 48 11 

53 Fuselage 39 3 

54 Nacelles/pylons 6  

55 Stabilizers  2  

56 Windows  1  

62 Main rotors  76 2 

63 Main rotor drives  33 4 

64 Tail rotor  83 2 

65 Tail rotor drives  7 1 

67 Rotor flight control  28 2 

71 Power plant  13 1 

72 Engines  4 1 

73 Engine fuel and control  2  

74 Engine ignition  15 2 

75 Engine air  4  

76 Engine controls  4 1 

78 Engine exhaust  9  

79 Engine oil  4  

80 Starting  5  

Cumulative failures for the stated interval 712 98 

 

Table 1.4  

Failure information of ERJ–135 aeroplanes for the period 2015 – 2018 

ATA ATA Chapter Name nT nF 

21 Air conditioning  25 6 

22 Auto flight  5 1 

23 Communications 45 15 

24 Electrical power  27 5 

25 Equipment/furnishings  56 17 

26 Fire protection  9 2 

27 Flight controls 40 21 

28 Fuel 7 2 

29 Hydraulic power  7 2 

30 Ice and rain protection   20 13 

31 Indicating/recording systems  36 20 

32 Landing gear 149 38 

33 Lights 109 13 

34 Navigation 50 14 

35 Oxygen 11 
 

36 Pneumatics 25 15 

38 Vacuum 4 
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Continuation of table 1.4  

45 Onboard Maintenance Systems 1  

49 Airborne auxiliary power  22 8 

52 Doors 10 2 

53 Fuselage 7 1 

55 Stabilizers  4  

56 Windows  6  

57 Wings 7 1 

71 Power plant  3  

72 Engines  4 1 

73 Engine fuel and control  6 4 

74 Engine ignition  2  

75 Engine air  3 3 

76 Engine controls  2 1 

77 Engine indicating 1  

78 Engine exhaust  6 3 

79 Engine oil  1  

80 Starting  5 2 

Cumulative failures for the stated interval 716 210 

 

Table 1.5  

Failure information of ATR 42-300 aeroplanes for the period  

June 2016 – December 2018 

ATA ATA Chapter Name nT  nF 

21 Air conditioning  24 8 

23 Communications 11 4 

24 Electrical power  21 5 

25 Equipment/furnishings  5 2 

26 Fire protection  3 1 

27 Flight controls 3 2 

28 Fuel 6 1 

29 Hydraulic power  2 1 

30 Ice and rain protection   8 1 

31 Indicating/recording systems  4 1 

32 Landing gear 156 45 

33 Lights 48 14 

34 Navigation 25 12 

35 Oxygen 2 
 

36 Pneumatics 3 
 

38 Vacuum 4 
 

42 Integrated Modular Avionics 1 
 

51 Structures  1 
 

52 Doors 5 2 
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Continuation of table 1.5  

53 Fuselage 1  

56 Windows  1  

57 Wings 2  

61 Propellers/ Propulsors 1  

72 Engines  16 5 

73 Engine fuel and control  2 1 

77 Engine indicating 3 1 

79 Engine oil  1  

Cumulative failures for the stated interval 359 106 

 

Table 1.6 

Failure information of MD-83 aeroplanes for the period 2015 – 2018 

ATA ATA Chapter Name nT nF 

21 Air conditioning  734 670 

22 Auto flight  142 119 

23 Communications 321 272 

24 Electrical power  250 152 

25 Equipment/furnishings  1869 1752 

26 Fire protection  85 38 

27 Flight controls 104 87 

28 Fuel 62 30 

29 Hydraulic power  52 32 

30 Ice and rain protection   77 67 

31 Indicating/recording systems  30 25 

32 Landing gear 965 209 

33 Lights 1239 613 

34 Navigation 378 285 

35 Oxygen 73 28 

36 Pneumatics 30 27 

38 Vacuum 68 60 

39 

Electrical - Electronic Panels and Multipurpose 

Component 1 1 

45 Onboard Maintenance Systems 1 1 

46 Information Systems  2 2 

49 Airborne auxiliary power  199 107 

51 Standard practices and structures  6 2 

52 Doors 113 104 

53 Fuselage 8 1 

56 Windows  26 22 

57 Wings 3 2 

71 Power plant  28 22 

72 Engines  46 38 
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 Continuation of table 1.6  

73 Engine fuel and control  52 34 

74 Engine ignition  12 5 

75 Engine air  22 10 

76 Engine controls  18 13 

77 Engine indicating 29 24 

78 Engine exhaust  21 13 

79 Engine oil  37 25 

80 Starting  40 29 

Cumulative failures for the stated interval 4921 7143 

 

The failure information alongside flight hour data was used to determine T∑,  λ∑ and  K1000 

for each of the aircraft fleet; the results are as shown in the table 1.7. 

Table 1.7 

Results of numerical reliability analysis of aircraft fleet in Nigeria 

Aircraft Flight hours nT T∑,   λ∑ K1000 

Helicopters  S-76  29116 1676 17.37 0.06 58 

S-92 12991 712 18.25 0.06 55 

Aeroplanes  MD-83 16006 7143 2.24 0.45 446 

ERJ-135 4492 716 6.27 0.16 159 

ATR 42-300 4755 359 18.79 0.08 76 

 

The charts in Fig 1.10-1.14 pictorially illustrate the topmost failing ATA chapter in flight 

for all the examined fleets.  
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Fig. 1.10. Topmost failing ATA chapters in flight for S-76. 

 

Fig. 1.11. Topmost failing ATA chapters in flight for S-92. 
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Fig. 1.12. Topmost failing ATA chapter in flight for ERJ-135. 

 

Fig. 1.13. Topmost failing ATA chapter in flight for ATR 42-300. 
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Fig. 1.14. Topmost failing ATA chapter in flight for MD-83. 

 

For the S-76 helicopters (Fig. 1.10), the aircraft systems and structures with the lowest 

reliability levels are the auto flight, communications, electrical power, indicating/recording 

systems, landing gear, lights, navigation, rotors flight control, engine fuel and control, and 

engine air. 

For the S-92 helicopters (Fig. 1.11), the aircraft systems and structures with the lowest 

reliability levels are the air conditioning, auto flight, communications, electrical power, fire 

protection, landing gear, lights, navigation, doors and main rotor drives. 

For the ERJ-135 aeroplanes (Fig. 1.12), the aircraft systems and structures with the 

lowest reliability levels are the communications, equipment/furnishings, flight controls, ice and 

rain protection, indicating/recording systems, landing gear, lights, navigation, pneumatics and 

airborne auxiliary power.  
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For the ATR 42-300 aeroplanes (Fig. 1.13), the aircraft systems and structures with the 

lowest reliability levels are the air conditioning, communications, electrical power, 

equipment/furnishings, flight controls, landing gear, lights, navigation, doors and engines.  

For the MD-83 aeroplanes (Fig. 1.14), the aircraft systems and structures with the lowest 

reliability levels are the air conditioning, auto flight, communications, electrical power, 

equipment/furnishings, landing gear, lights, navigation, airborne auxiliary power, and doors.  

 

1.3.3 Analysis of results of numerical reliability indicators using the bathtub curve  

 

The bathtub curve (fig. 1.15) is a well-known concept used to represent failure behavior 

of engineering items because the failure rate of such items is a function of time (i.e., it changes 

with time).  

 

 

Fig 1.15. Bathtub curve for representing failure behavior of engineering items [94] 
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A bathtub curve is shown in the figure above and is divided into three regions. Region I 

is known as the burn-in region, debugging region, infant mortality region, or break-in region. 

During this period, the time-dependent failure rate decreases because of failures occurring for 

reasons such as poor manufacturing methods, Substandard materials and workmanship, poor 

quality control, poor processes poor debugging, and human error. Region II is referred to as 

the “useful life period,” during which the failure rate remains constant. Some of the reasons 

for the occurrence of failure in this region are undetectable defects, human errors, higher 

random stress than expected and natural failures.  Region III is known as the “wear-out period,” 

during which the failure rate increases because of reasons such as wear caused by friction and 

aging, incorrect overhaul practices, poor maintenance, corrosion, and creep [19, 29, 95]. 

The dynamics of the inflight failure rate of the systems and structures of the helicopters 

is shown in Fig. 1.16. The transition period from the normal operation phase (2014 – 2015) to 

the third operational phase is clearly traced; the stage of increased wear of helicopter 

component parts, where the failure rate increases (2016 - 2018).  

 

Fig. 1.16. Dynamics of λ ∑ for the helicopters. 
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The dynamics of the inflight failure rate of the systems and structures of the aeroplanes 

is shown in Fig. 1.17. The ATR 42-300 aircraft are in the useful life period of bathtub curve. 

 

 

Fig. 1.17. Dynamics of λ ∑ for the aeroplanes. 

 

For the ERJ–135 fleet manufactured in 1999, the initial decrease (2015 – 2017) in failure 

rate can be linked to major repairs carried out before its first flight in 2015 by the current 

operator. The MD-83 in the third stage of the bathtub curve characterized by increased wear 

hence they are considered an “aging” fleet.  

 

CONCLUSIONS 

 

1. An overview of aircraft maintenance in Nigeria is given as follows:  

– Various aircraft types are in operation in Nigeria and the commercial helicopter sector 

contributes to the economy by providing search and rescue services, and 

transportation to the offshore oil and gas industry; 
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– The NCAA is the only aviation regulatory authority in Nigeria; Part 5 of the NigCARs 

presents regulatory requirements for the continuing airworthiness of aircraft 

expected to operate in Nigeria in line with the SARPs in ICAO Annexes 6 and 8; 

– ICAO Part M represents a compulsory operating license for aircraft operators and 

contains the minimum requirements for maintenance and airworthiness; 

– The MRBR forms the basis for the maintenance program which is part of the approved 

maintenance system and must be monitored by qualified engineers for suitability 

at least annually; 

– Operators in Nigeria typically follow either the MSG-2 or MSG-3 philosophy of 

aircraft maintenance. 

2. Aircraft maintenance optimization is a multi-objective solution which aims to 

maximize revenue by maintaining high availability while simultaneously minimizing cost. 

Many researchers have suggested and tested a range of techniques based on aspects of aircraft 

maintenance processes such as planning, scheduling, maintenance task allocation, aircraft 

maintenance routing, spare parts inventory, personnel, and skill management, use of aircraft 

prognostics and health management data, and reliability models. An in-depth analysis of these 

models present the following findings: 

– Insufficient attention is being paid to the use of reliability theory models, machine 

learning, predictive analytics, regression models and, probability and statistics 

theories for optimizing aircraft maintenance. These industry 4.0 concepts form a 

framework for data-driven predictive aircraft maintenance which will in the 

nearest future be the basis for carrying out aircraft maintenance tasks.  

– Insufficient attention is being paid to understanding the interaction between reliability 

levels and historical trends of faults and failures. This is especially important 

because systems and components may have inherent failures and their reliability 

may vary based on previous scheduled checks and repairs. Furthermore, an in-

depth understanding of this interaction will significantly improve the design, 

manufacturing, and operation of aircraft.  
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– Little or no scientific research is being carried out to find solutions to the problem of 

significantly higher than normal aircraft maintenance cost in Nigeria and the West 

African region for continuing airworthiness. 

3. A good place to begin this study devoted to the optimization of aircraft 

maintenance processes for continuing airworthiness of aircraft in Nigeria to carry out a simple 

numerical reliability analysis using daily aircraft operations data. This analysis revealed the 

following insights: 

– The least reliability aircraft systems or structure for each of the fleet analyzed 

– The dynamics of failure rate of each aircraft fleet and where it lies in the bathtub 

curve. 
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CHAPTER 2:  MATHEMATICAL MODELLING FOR THE OPTIMIZATION OF 

AIRCRAFT MAINTENANCE PROCESSES FOR CONTINUING 

AIRWORTHINESS  

 

As shown in chapter 1, maintenance accounts for 10-20% of aircraft operations cost. 

This figure is significantly higher in the West African region with Nigeria being the highest 

and hence the need for aircraft maintenance optimization models. Furthermore, a review of 

literature related to aircraft maintenance optimization shows a lack of models based on 

reliability theory, predictive analytics, regression, machine learning, probability, and statistics 

theory. This chapter explores the development of aircraft maintenance optimization models 

and algorithms based on the principles of these theories and their validity.  As stated in chapter 

1, the term ‘failure” refers to faults and failures of aircraft components, subsystems, systems, 

or structures.  

 

2.1 Use of daily aircraft operations data for statistical data processing algorithms  

 

An aircraft typically comprises of million parts that are collected globally and assembled 

in an extremely complex process. Its’ life cycle consists of four phases – The first phase is for 

design and development which consists of planning and conceptual design, preliminary design 

and system integration, detailed design. The second phase is the production and/or 

manufacturing stage. The third phase is for operation, and the final stage is disposal. The 

longest phase is the operation stage and generates most of the statistical data in the aircraft life 

cycle. In the operational phase of the avionics and flight control systems alone, the aircraft 

generates a wealth of real-time data, which is collected, transferred, and processed with 70 

miles of wire and 18 million lines of code [12-13]. 

Recent research highlights that statistical data processing algorithms can be related to 

intelligence-based information technologies can be implemented to improve efficiency [6-10]; 
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Statistical data processing algorithms can be used to improve the efficiency of aircraft 

operations given diagnostic variables and reliability parameters as initial data [11]. In general, 

the trends of these variables and parameters are non-stationary random processes [97]. The 

trends contain quasi-stationary intervals for the period of normal operation of aircraft 

components and systems. During the deterioration phase of aircraft systems, there are changes 

to statistical characteristics of observed trends. Such changes can occur due to different 

reasons: personnel errors, aging of components and systems, etc. [98-100]. Statistical data 

processing algorithms based on the principles of artificial intelligence estimate the time of 

possible failure with the aim of preventing it based on correct and timely operational action 

[101]. To implement these principles, the operational system (OS) can be used. The structural 

diagram of the operational system of an aircraft using artificial intelligence-based principles is 

presented in Fig. 2.1. 

 

 

Fig. 2.1 Structural diagram of the operational system of an aircraft 
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According to Fig. 2.1, the OS of an aircraft is an organization of systems that includes 

equipment, facilities, organizational structure, processes, personnel, documentation, resources, 

information technologies etc. Units 1 and 2 are international and national regulators, unit 3 is 

for the passengers and cargo. Unit 4 is a key component of flight safety, units 5 – 9 determine 

and maintain the reliability levels and efficiency of aircraft systems. Unit 10 provides an 

adaptive control of operation under conditions of prior uncertainty [102-104].  The OS of an 

aircraft contains subsystems, which evaluate the quality of maintenance and operations. The 

results of this evaluation are used to generate and implement predictive and preventive 

maintenance actions. In addition, the OS is based on artificial intelligence principles, which 

allow for the processing of big data streams. This creates an organizational structure that 

provides required levels of flight safety, reliability, and aircraft availability.  

The data generated by the operations phase of aircraft life cycle can be used to develop 

the following data processing algorithms: 

– Algorithms for the development of mathematical models. 

– Algorithms for the optimization of aircraft maintenance task intervals. 

– Regression analysis. 

– Detection algorithms. 

– Estimation algorithms. 

– Diagnostics. 

– Adaptive monitoring. 

– Heteroscedasticity analysis. 

– Correlation analysis. 

– Heuristic algorithms. 

– Prognostics [105] 

This study focuses on developing models and algorithms based on these principles using 

daily operations aircraft data of various fleet in Nigeria shown in Chapter one.  
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An overview of models  

The initial step for studying a system is to formulate a model from which predictions 

concerning the system's behaviors can be made; building a model involves formulating the 

objective function which is a mathematical function of the decision variable [106]. According 

to [107] and [108], three types of models exist: 

1) Iconic models which visually represent some aspects of a system. 

2) Analog models which use one set of properties to represent another set of properties 

possessed by the system being studied. 

3) Abstract models which require mathematical or logical operations to formulate a 

solution to the problem. 

For the context of this study, models mean an abstraction of Aircraft Components, Subsystems 

Systems and Structures (ACSSS) that can provide a framework for the optimization of aircraft 

maintenance processes. 

This study proposes models based on analytical, numerical and simulation methods 

which are data-driven and can be scaled to other systems. More precisely, the use of stochastic 

computer simulation often referred to as Monte Carlo simulation (MCS) is employed 

throughout the study. Computer simulation serves as an important tool in the optimization of 

maintenance activities; recent advances in simulation methodology and stochastic optimization 

have combined to make simulation one of the widely accepted tools in system analysis and 

operation research [105]. MCS is one of the three reliability predicting methods widely used 

in the aviation industry – the other two are: a) Markov chain modeling method, and b) Classic 

fault tree analysis and reliability block diagram combined methods. MCS is a mathematical 

technique for modelling phenomena with significant uncertainty. It is performed based on 

random samples of hazard intensities – Introducing randomness in a system can help solve 

optimization problems. In quantitative analysis and decision making, MCS provides an 

effective means to account for risk through models of a range of value sampling from 

probability distributions [19].  



73 
 

Optimization is a mathematical process; maintenance risks can be evaluated by 

probabilistic analysis methods, because in addition to design variables, operational 

environments and damage characteristics are probabilistic in nature. Uncertainties exist in all 

phases of the aircraft life cycle - probabilistic analysis practically addresses all malfunction 

cases instead of considering them in the worst-case scenarios. Therefore, with sufficient design 

and available data, maintenance plans can be optimized resulting in cost reduction while 

maintaining an acceptable risk level [109]. To assess the overall reliability performance of 

aircraft systems, Monte Carlo-based techniques are proposed in this study to evaluate 

performance of system using probability distribution of reliability indices. The proposed 

mathematical models are based on probability theory and statistics, reliability theory, 

predictive analytics, machine learning, and regression models for the optimization of aircraft 

maintenance processes for continuing airworthiness of aircraft in Nigeria. This chapter 

introduces statistical, probabilistic and regression approaches which are beyond the scope of 

experience of MSG-2 and MSG-3. These approaches are data driven and are reliable in 

determining optimized intervals for aircraft maintenance actions. 

 

2.3 Algorithms and models for reliability analysis of aircraft components, 

subsystems, systems, and structures 

 

Reliability centered maintenance (RCM) plans for future maintenance based on the 

current technical state of a system. It is defined as “methods to identify and select failure 

management policies to achieve the required safety, availability, and economy of operation 

efficiently and effectively” [28]. This is carried out based on a) statistical and reliability 

calculations of the system’s operation and b) Basic components of PM, repair, and removal 

actions. RCM provides information for planning PM and PdM actions thereby reducing 

operational cost.  

Reliability is generally measured by a failure probability and optimization ensures that 

the latter remains lower than the given threshold [110]. Over the last two decades, reliability 
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analysis methods have been developed – these have stimulated interest for probabilistic 

treatment of structures [109].  Reliability analysis involves the evaluation of the level of safety 

of a system. Given a probabilistic model (an n-dimensional random vector X with probability 

density function  fX) and a performance model (a function g), it  uses mathematical techniques 

to estimate the system safety level in the form of a failure probability [111]. The MCS 

technique makes use of the numerical simulation of the performance function through the 

probabilistic model. Failure is generally defined as an event F= {g(X)≤0} and the probability 

of failure is defined as:  

                      (2.1) 

Engineering problems generally involve uncertainties. Therefore, reliability methods provide 

powerful tools for handling these uncertainties based on the performance function or limit state 

function [112]. 

A review of literature shows significant research in the development of models for RCM 

strategies but there is a gap in mathematical models to determine characteristic reliability of 

aircraft systems for optimizing aircraft maintenance.  The authors in [97] developed a 

reliability model which can increase efficiency of electronic components of wind generators in 

the Black Sea region. Data was collected during wind turbine operation and the obtained results 

can be used to improve the efficiency of wind generators. Their work highlighted the feasibility 

of developing reliability models for other complex systems and the insight gleaned is applied 

to the modelling approach presented in this study.  Furthermore, the numerical reliability 

analysis carried out in chapter 1 was not tested for goodness of fit because it was based on 

simple formulars and therefore contains errors. Therefore, statistical simulation reliability 

analysis models are developed in the subsections that follows.  
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2.3.1.  Statistical simulation models for aircraft reliability analysis  

 

Many mathematical definitions and probability distributions are used to perform 

different types of maintenance, and reliability studies. Weibull distribution is typically used to 

model fatigue or wear out. However, during the operational phase of any component, 

subsystem or system, the most common probability distribution used is the exponential 

distribution because it is easily applied in various types of analysis of failure rates during useful 

life. The probability of failure-free operation and steady state availability for exponential 

distribution is calculated as follows [29]: 

                                       𝑅(𝑡) = 𝑒−𝜆𝑡,                    (2.2) 

  

                                   𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
=  

µ

𝜆+µ
 ,                   (2.3) 

 

𝑀𝑇𝐵𝐹 =  
1

𝜆 
 ,                     (2.4) 

 

𝑀𝑇𝑇𝑅 =
1

µ 
 ,                      (2.5) 

 

𝑀𝑇𝐵𝐹 =  ∫ 𝑅(𝑡)𝑑𝑡
∞

0
 ,                   (2.6) 

where R – reliability at time t; λ – failure rate; A – steady state availability; µ – repair rate.  

The exponential distribution probability density function is defined by 

       ƒ(t) = λ𝑒−𝜆𝑡 for t ≥ 0 λ > 0                   (2.7) 

where t is time, ƒ(t) is the Probability Density Function (PDF) and λ is the distribution 

parameter, which in reliability studies refers to the constant failure rate [29]. Cumulative 

Distribution Function (CDF) is expressed by 

                                   (2.8) 

By substituting equation (7) into (8) we get the expression for the exponential distribution 

CDF 
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                   (2.9)        

Considering that the most used probability distribution for mean time between failures 

is the exponential distribution, this study proposes an exponential distribution of failures of 

ACSSS for calculating reliability indices.  For the proposed model, the ACSSS were 

categorized in accordance with the ATA Spec 100 numbering system. Input data nT is extracted 

from pilot and maintenance reports of a fleet of aircraft in Nigeria – these are shown in Chapter 

1.  The following reliability indices are determined for each ATA chapter using PDFs: 

– Failure rate λ 

– Mean time between failure (MTBF) 

– Number of failures per 1000 flight hours (K1000) 

The nomenclature for the parameters is shown in Fig. 2.2 

Nomenclature for the parameters and variables used in the simulation  

A:  matrix of nT 

a:  additional variable for calculation 

i:  index of initial matrix  

j:  additional index of matrix 

k:  index of matrix obtained during simulation 

p:  index of final matrix 

m: number of aircraft ATA chapters observed  

s:  additional variable for calculation 

t:  mean time between failure  

x:  value of random variable 

Bi: cumulative number of observed failures in time  

C:  random numbers of exponential distribution of N and λ 

Dk: time series of observed failures  

Ek: random number with uniform distribution in the range 0...1 

Fi,k: time moment i-th system failure occurs 

M: total of observed failures for all aircraft ATA chapters 

N:  number of iterations  

T: cumulative flight hours for the observed interval  

     λ:  failure rate  

Fig. 2.2 Nomenclature for parameters and variables for reliability analysis 
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The input data nT is an m ×1 matrix A. Function B is formulated to decide on which    

ATA chapter failed. The Bi+1–Bi value corresponds to the probability of i-th component failure. 

The function Bi is referred to as the graph of monitoring data (Fig. 2.3) and is used to visually 

analyze how the failures occur. 

   ;   ,     i ={0…m}        (2.10) 

The Time Between the Failures (TBF) is described by an exponential distribution with 

parameter λ and it is assumed that only one failure can occur at a time. To determine which 

ATA chapter failed, calculation of the specific number of failures per component, subsystem, 

system, or structure is carried out. MCS is applied to generate random numbers with sample 

size N=10000 – these numbers have a uniform distribution in the range [0; 1]. 

 

Fig. 2.3 Graph of monitoring data 

 

The next step is computing the time series of observed failures Dk     

                     (2.11) 

where Cj is the exponential distribution of N and λ. The time moment F at which the i-th failure 

occurs is defined as follows   
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;           (2.12) 

The output F is a two-dimensional array that cannot be used for plotting the PDFs needed for 

calculating the reliability parameters. Therefore, Ai is formulated 

              (2.13) 

The resulting PDFs for are plotted and further analyzed for reliability parameters – λi, MTBFi 

and K1000.  The flowchart for the statistical simulation is given in Fig. 2.4.  

 

 

Fig. 2. 4 Flowchart for the statistical simulation modelling for reliability analysis 
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Goodness-of-fit test. 

The proposed model is based on assumption and to check for accuracy, the goodness-

of-fit test is applied to them to verify if it obeys the exponential distribution. The 𝜒2-test was 

chosen to test the goodness of fit using one of the obtained PDFs. The calculated 𝜒2 should be 

less than the threshold value 𝜒𝑡ℎ
2 = 19.675. If this is followed, the hypothesis for the 

exponential distribution law of mean time to failure of ACSSS is accepted with the 

corresponding significance level equal. Furthermore, the theoretical exponential distribution is 

given as: 

ƒ(t) = 𝜆𝑐𝑎𝑙𝑐𝑒−𝜆𝑐𝑎𝑙𝑐𝑡ɸ(t)           (2.14) 

where 𝜆𝑐𝑎𝑙𝑐 is the failure rate calculated based on the resulting PDF, ɸ(t) is the Heaviside 

function.  

The limitation of this model based on the 𝜒2- test is that it is only suitable for a minimum 

sample size of 35. Therefore, a model for aircraft operations which generate a small dataset is 

proposed in the next section.  

 

2.3.2. Statistical simulation model for reliability analysis given a small dataset 

 

A small dataset reduces statistical significance and poses limitations [113] thereby 

making it difficult to reach any general conclusions [114]. A small dataset causes the estimation 

performance of a developed model to be poor. When there are many independent variables, a 

model becomes complicated, and a small dataset further invalidates the estimation method. At 

high total flight hours, small datasets produce large confidence intervals which imply lower 

statistical reliability – a key disadvantage of using a small dataset is the lack of statistical 

stability [115-116]. In specific cases of testing predictive models, small datasets are tougher 

because they are not offset with large effect sizes, and they undermine accurate tests with 

predictive models [117]. 

For small dataset the model selected by the Akaike information criterion appears to be 

anti-conservative even with regards to the maximum Type I error rate of the maximal model 
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[118]. A possible solution to the small dataset problem is the use of pre-trained networks also 

referred to as transfer learning. This is achieved by initializing the neural network with the 

weights trained in the related domains and finetuning the model with in-domain data. This 

approach speeds up training and has gained popularity in various industries for handling the 

lack of significant samples in a dataset [119]. Additionally, exact non-parametric tests can be 

used to overcome problems associated with small datasets in hypothesis testing. The p-values 

in nonparametric tests calculate the exact probability of obtaining observed or extreme results 

under the null hypothesis [120]. Deep convolutional neural networks can be used to fit small 

datasets with simple and proper modification without the need to redesign specific small 

network [121]. Proportion distribution of outliers and small dataset narrow the performance 

difference between models in a test set, because the advantages and disadvantages of the model 

are not fully discovered [122]. In the case of the small dataset with the existing outliers, [123] 

proposed a generalized mean distance-based K-nearest neighbor by introducing multi-

generalized mean distances and the nested generalized mean distance which are based on the 

characteristic of the generalized mean. 

In comparison to conventional analysis, Bayesian approach to inference has an 

advantage of handling uncertainty for small dataset in aircraft fleet-wide prognostics [124]. 

The Bayesian Markov chain Monte Carlo approach allows for accurate reliability evaluation 

using a numerical simulation method given non-informative prior information but only works 

when the sample size is at least ten [125]. A combination of variable importance in projection 

analysis method and regression models can be used to tackle the problem of small dataset 

studies of cost estimation for general aviation aircraft [126]. Decoding performance is shown 

by how much classification results depart from the rate obtained by purely random 

classification. In a 2-class or 4-class classification problem, the chance levels are 50% or 25% 

respectively but these thresholds do not hold for small dataset [127]. 

The proposed model for small dataset calculates the failure rate based on the probability 

of failure-free operations. The input data is a continuous statistical data xi with sample size n  
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extracted from preprocessed pilot and maintenance reports of  failures for the observed 

interval. The steps for finding the probability of failure-free operation is as follows:  

Step 1  Determine the number of observations for tails approximation j=𝟏. 𝟓∛𝒙. For the 

approximation, Chauvenet’s criterion is used with transformation of the following type 

𝑄𝑖 = 𝑀𝑒𝑑. 𝐹𝐾𝑖𝑉               (2.15) 

 where 𝑄𝑖 is an approximated variable, Med is the median value of the sample, F is the 

basis function, Ki is a quantile of normal distribution with zero expectation and standard 

deviation of 1, V is the variation coefficient       

Step 2   To obtain the values of the lower (yi lower) and upper tail (yi upper), the transformed 

sample (order) is obtained as follows: 

                                                                      (2.16) 

 where 𝑥𝑖
(𝑜𝑟𝑑𝑒𝑟)

 is the order statistics for input data 𝑥𝑖. 

Step 3   Calculate the sums of first (𝛿1) and last (𝛿2) random variables using the 

transformed order statistic is given as  

    ;                                    (2.17) 

where j depends on the sample size  

Step 4  Corresponding quantiles of the standard normal distribution after the 

transformation are calculated according to Kazakyavicius equation  

                                        (2.18) 

where 𝑝𝑖  is the empirical probabilities of each observation of order statistic , i = 

0…n 

Step 5  The products of the variation coefficient and the sum of corresponding quantiles 

is calculated as follows 



82 
 

     ;                 (2.19) 

Step 6  The transformation basis for the minimum (β1) and maximum (β2) are determined 

using  

    ;                 (2.20) 

Step 7  Calculation of the basis function F using the following formulas  

   ,               (2.21) 

   ,                   (2.22) 

                 (2.23) 

where Ksw is quantile value that corresponds to the switching point, b is a coefficient 

determined by the formula  

                     (2.24) 

Step 8  Computing the values of the variables Q1, Q2 and Q3 and plotting graphs 

    

    

    

  Q1, Q2 define the failures using the methodology for small dataset while Q3 is in 

accordance with exponential distribution model proposed in 2.2.1 Lm which visually proves 

that Lm isn’t accurate for small dataset.  

Step 9   The graphs are used to visually check the goodness of fit of the proposed model  

Application of the model   

The resulting graph can be used to determine the probability that i number of failures will occur 

during the observed interval.   
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2.4 Mathematical models for the optimization of aircraft maintenance task 

intervals 

 

Aircraft maintenance optimization refers to the development and analysis of 

mathematical models for improving maintenance policies. In recent years, significant research 

is being focused on the development of various maintenance optimization strategies. However, 

review of relevant literature shows that no study has proposed reliability models based on time 

between failures, observed time and repair cost to improve the efficiency of aircraft operations. 

This forms the basis for the development of mathematical models for the optimization of 

aircraft maintenance task intervals. These models quantify the cost and benefits of maintenance 

with the goal of obtaining an optimum balance between both. The limitation of this study is 

that only two failure models (exponential and Erlang models) were considered.  

An optimal aircraft maintenance task interval is important because: 

– As aircraft components and systems deteriorate, it is important to carry out maintenance 

actions and this results in an increase in operational cost. Therefore, there is the need for 

an optimal interval that balances the frequency of aircraft maintenance tasks and the 

failure rate. 

– Maintenance decisions are based on results of the analysis of aircraft operational data. 

– The proposed models in this section can be used to optimize aircraft operations. 

– The proposed models can be considered as a part of artificial intelligence-based OS of 

an aircraft. 

 

2.4.1 Methodology for the optimization of aircraft maintenance task interval. 

 

Statistical simulation allows for the investigation of maintenance processes while 

considering various operational conditions. The steps for the optimization of maintenance task 

intervals of aircraft systems are outlined as follows: 
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1. Analysis of maintenance tasks of aircraft systems to identify parameters for the models. 

2. Development of basic failure models and analysis of aircraft operational data. 

3. Parameterization of models, setting the tolerance values of parameters. 

4. Determining efficiency indicators for the maintenance of aircraft components, 

subsystem, systems, and structure 

5. Defining one or more criteria to measure efficiency of optimized aircraft maintenance 

task interval.  

6. Determining equations for evaluating the efficiency of optimized aircraft maintenance 

task intervals. 

7. Computing equations for the optimization of aircraft maintenance task intervals, this 

means designing mathematical models for finding optimal values [128-131]. 

For this study, the key objective is the optimization of aircraft maintenance task intervals. The 

aircraft maintenance tasks considered are: 

– Monitoring and control of the technical condition of aircraft systems. 

– Adjusting and repairing component parts/systems to meet regulatory standards. 

The efficiency indicators of aircraft components, subsystem and systems are defined as: 

– Costs incurred by airlines due to failure of aircraft components, subsystem, and systems. 

– Steady state availability of aircraft components, subsystem, and systems. 

– Overall operational costs. 

– Probability of failure-free operation of aircraft components, subsystem, and systems 

[132]. 

Selecting the PDF of the TBF is the initial step for mathematical modelling. Based on 

the PDF, the efficiency of the maintenance processes is calculated; the average operational cost 

per unit time is chosen as the efficiency indicator and it is calculated using the equation 

 
M

MRM
M

)/(
)/(

T

CCTnE
TCE

+
= ,                                                                       (2.25) 



85 
 

where )/( MTnE  is expected value of number of failures, RC  is CM cost, MC  is PM cost, MT  

is the maintenance interval based on flight hours/cycles. exponential and Erlang mathematical 

models of TBF are further considered. 

 

2.4.2 Mathematical modelling of exponential model of time between failures to 

determine an optimal aircraft maintenance task interval  

 

The PDF of the exponential model of TBF is defined by 

tetf −=)( , 0 , 0t , 

The number of failures is determined using a Poisson distribution 

t
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The expected number of failures for the observed time interval MT  of the aircraft component, 

subsystem, or systems i defined by 

MM )/( TTnE =  

Equation (2.25) can be presented as  
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The dependence of equation (2.26) on MT  does not contain minimum values because 
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Therefore, for the exponential model of TBF, an optimized aircraft maintenance task 

interval is not feasible because optimal maintenance task interval tends to infinity. 
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2.4.3.  Mathematical modelling of Erlang model of time between failures to 

determine an optimal aircraft maintenance task interval  

 

The PDF of the Erlang model of TBF is defined by 

ttetf −= 2)( , 0 , 0t  

The PDF for the duration of n-th failure is 
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Mathematical transformation of equation (2.27) gives the following result  
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The probability of occurrence of n failures during the observed time interval is defined by the  

CDF 
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The distribution of number of failures can be calculated as  
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Therefore, the expected number of failures during the observed time interval MT  is expressed 

as  
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The efficiency (2.26) can be presented as 
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Equation (2.29) is analyzed to find the minimum value by calculating the derivative 
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The optimal aircraft maintenance task interval can be found by solving the equation 

042 MR
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In this case the approximate equation can be used 
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The optimal maintenance task interval is defined as  
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Equation (2.31) is an approximate value. The exact equation for optimal aircraft maintenance 

interval can be obtained by solving equation (2.30) using Lambert function )(xW  
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Therefore, for the Erlang model of TBF, an optimized aircraft maintenance task interval 

exists. 

 

2.4.4 Methodology for determining an optimal aircraft maintenance task interval   
 

In accordance with mathematical analysis of the exponential and Erlang model of TBF, 

the step-by-step procedure for optimizing maintenance task interval is as follows:  

1. Calculation of the duration of n-th failure for any given PDF )(tf TBF using the theory 

of functional transformation of random variables  
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2. Calculation of the probability )(tFn  of n failures which occurred during the observed time 

interval using (2.28) 

3. Determining the distribution of number of failures during the observed time interval 

)()()/( 1 tFtFtnP nn +−=
; 

4. Calculating the expected value of number of failures during observed time interval MT  

)/()/( M

1

M TnPnTnE
n




=

=

; 

5. Analyzing the obtained equation for optimality i.e. finding the value of the optimal 

aircraft maintenance task interval. 

The model development flowchart is presented in Fig. 2.5. 

 

 

Fig. 2.5 Flowchart for finding an optimal aircraft maintenance task interval 
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2.5 Regression mathematical model for predicting the occurrence of aircraft 

component, subsystem, or system failures   

 

  Regression analysis is a simple predictive tool which investigates the relationship 

between independent and dependent variables [133]. Regression models are statistical models 

where we make a regression assumption [134]. They can be integrated to improve prediction 

accuracy of failures of aircraft components, subsystems, systems, and structures thereby 

providing valuable insights for aircraft maintenance planning. For the scope of this study, 

regression models are applied to predict the occurrence of failures during aircraft operations.   

Regression analysis can also be viewed as a set of data analytic techniques that help 

understand the interrelationships among variables. The relationship is expressed in the form of 

a model or an equation which connects the dependent or response variable and one or more 

explanatory or predictor variables [135]. The dependent or response variable is denoted by y 

and is of particular interest. The independent, explanatory or regressor variables are used to 

predict the behaviors of Y and are denoted by X1,X2,. . . , Xk [136]. The relationship between y 

and xi’s can be expressed via a function f 

Y ≈ 𝑓(𝑋1 , 𝑋2 , . . . , 𝑋𝑘) 

The relationship between the response variable Y and predictor variable X is given as a linear 

model  

   Y = β0 +β1X+ ɛ                                                  (2.33) 

where β0 and β1 are referred to as the model regression unknown coefficients and ɛ is a random 

disturbance or error. Equation (3.33) gives an acceptable approximation of the true relation 

between Y and X i.e. Y is an approximate linear function of X and ɛ measure the difference in 

that approximation. According to the observed sample, equation (3.33) can be written as  

yi = β0 +β1xi+ ɛi    i={1, 2,…n}     (2.34) 

where yi represents the ith value of the response variable Y, xi represents the ith value of the 

predictor variable X, and ɛi represents the error in the approximation of yi. 
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2.5.1 Regression analysis models for optimizing aircraft maintenance  

 

There are no predetermined coefficients for the regression analysis because calculations 

are based on aircraft operational data. Nomenclature for the parameters and variables used in 

the regression analysis are given as follows:  

a: matrix of n 

n: sample size 

m: switching point   

𝜙: Heaviside step function which is equal to 0 before the switching point and 1 after the 

switching point  

Ti: time moment of failure 

Y: predicted value i.e. optimal maintenance flight hour  

X:  ith number of failures , i   

 

After the parameters are defined, the next step is determining which regression model is 

optimal for predicting the time moment of the next failure – for this purpose, three segmented 

(piecewise) models are tested. Segmented regression models are models where two or more 

lines are joined at unknown points called the switching points representing the threshold [137]. 

It partitions the data into different regions and a regression function is fitted to each one [135].  

Segmented regression is an alternative variant of approximating empirical curves.  Its use in 

aircraft operations will allow for increased correctness for the calculation of extreme 

probability values of occurrence of failures in ACSSS. The segmented regression models 

considered in this research are:  

– Quadratic-linear segmented regression model 

– Linear-linear segmented regression model 

– Quadratic-quadratic segmented regression model 

The matrix of unknown coefficients in the segmented regression models are estimated 

using the least square method. The vertical distances represent errors in the response and the 

least squares method gives the line that minimizes the sum of squares of vertical distances from 

each point to the line. These errors can be obtained by writing equation (34) as  

ɛi = yi – β0 – β1xi,  i=1, 2, …n        (2.35) 
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The sum of squares of these distances can be written as  

 

The values of  𝛽0̂ and 𝛽1̂ that minimize  are given as  

𝛽1̂ =
∑(𝑦𝑖 − 𝑦)(𝑥𝑖 − 𝑥̅)

∑(𝑥𝑖 − 𝑥̅)2  

   and  

        

The estimates  𝛽0̂ and 𝛽1̂ are called the ordinary least squares estimates of β0 and β1 because 

they are the solution to the ordinary least squares method [135].  

 

2.5.2 Quadratic-linear segmented regression model 

 

The quadratic-linear segmented regression model for predicting the time moment of the 

next failure of an aircraft component, subsystem, system, or structure has the following form: 

           (2.36) 

This model uses two segments joined together at the switching point m and three unknown 

coefficients β0,1, β1,1 and β2,1. Using the ordinary least square method unknown coefficients are 

calculated as follows: 
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2.5.3 Linear-linear segmented regression model 

 

The functional dependence (2.37) for the linear-linear segmented regression model uses 

two segments joined together at the switching point m.  

        (2.37) 

The unknown coefficients β0,2, β1,2 and β2,2. are calculated as follows: 

 

 

2.5.4 Quadratic-quadratic segmented regression model 

 

The quadratic-quadratic segmented regression model for predicting the time moment of 

the next failure of an ACSSS has the following form: 

                (2.38) 

The five unknown coefficients β0,3, β1,3,  β2,3, β3,3  and β4,3. are calculated as follows: 
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After determining the co-efficient of all three segmented regression model, the value of 

the optimal switching point m is selected for each model based on the corresponding least value 

of standard deviation 𝜎. 

  

where l is the degree of freedom for each of each selected model, 𝑌 ̂corresponds to the response 

variable for each of the segmented regression models i.e. Y1(X), Y2(X) and Y3(X). From the 

observations of m and σ, the optimal values of the switching point for the three segmented 

regression models are calculated. The segmented regression model that has the least value of 

m is considered the most precise prediction model for the flight hour at which a failure is likely 

to occur in the observed component, subsystem, system, or structure. The goodness of fit test 

for each of the model is visually carried out to check for fitting.  

 

2.6 Mathematical models for forecasting aircraft spare parts 

 

Billions of dollars is currently being spent in high technology aircraft in view of 

sustainable aviation. Aircraft systems are very complex and sophisticated owing to the number 

of functions and components. Failure and repair behaviors of aircraft system can be directly or 

indirectly associated with thousands of different safety implications and/or reliability 

expectations. Therefore, the activities of planning, design, management, control, and 

optimization of maintenance issues are very critical topics in aircraft operations.  

Spare parts and maintenance are closely related because maintenance activities generate 

the need for spare parts; spare parts inventory serve maintenance planning. Spare parts account 

for 60-80% of maintenance expenditure [138] and 80% of downtime is caused by 20% of 

equipment [139]. Excessive spare parts lead to high holding costs and impedes cash flows 

while inadequate spare parts can result in expensive flight cancellations or delays with a 

negative impact on airline performance. The aircraft spare parts industry is unique because of 
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a combination of market characteristics: demand unpredictability, high cost of spare part 

related downtimes, traceability of parts for safety reasons and global need for parts [72]. The 

complexity of spare parts management has increased the percentage of procurement and 

storage costs in aircraft operations. According to the TeamSAI’s statistics, the global civil 

aviation industry currently stores approximately $50 billion in spare parts, which accounts for 

approximately 75% of airlines inventory funds and 25% of working capital. However, the 

turnover and utilization rate of most civil aircraft spare parts are low, only 25% are used, and 

even more there is a problem of excessive backlog [71]. Aircraft spare parts are categorized 

into three:  1) spare parts which can be rotated among any type of aircraft are classified as 

rotable spare parts; (2) spare parts with characteristics similar to rotable spare parts but with 

lower price are called repairable spare parts; (3) spare parts that can only be used once are 

classified as nonrepairable or consumable spare parts [140].  

The numerous aircraft components and parts have their own inherent reliability and 

failure rate. In addition to this, different strategies are applied to improve the reliability of 

aircraft systems. These strategies include but are not limited to system redundancy and the use 

of a Minimum Equipment List (MEL). The MEL is a list which allows for aircraft operations 

subject to specific conditions in which a particular equipment, system or component is 

inoperative. It specifies a list of equipment, system or component that must be operable for the 

aircraft to be considered  airworthy [141]. In Nigeria, most operators plan spare inventory 

based on the MEL – items not the MEL are kept in the inventory but considering logistic factors 

and the stochastic nature of failures, downtimes and delays due to lack of spare parts may 

occur. It is therefore important to develop a model which factors in failure rates of various 

component parts and system. This will improve the maintenance program and minimize the 

cost of operations.  

This study proposes models and formulas for optimal spare parts planning. An algorithm 

is developed for the optimal forecast of spare parts demand (sufficiency) using a combination 

of analytical approaches. The models are tied to failure rates and probability of failure free 
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operations calculated based on real data. The failure rate gives reliable information for accurate 

forecast of spare parts need. The models can be combined for optimal result.  

 

2.6.1 Reliability-centered models for aircraft spare parts management  

 

Forecasting spare parts demand can be a difficult exercise because demand is stochastic 

in nature. However, a good knowledge of the failure trend and distribution can provide optimal 

solutions. Spare parts forecast can significantly improve if is based on trends and failure 

history. The models described in this section create an efficient spare parts inventory 

management to provide effective services for maintenance needs. In the context of the models 

developed, it is assumed that the items are non-repairable items and are not listed in the MEL. 

The models are focused on the interaction between failure rates and spare parts inventory. The 

Poisson method, which is based on the Poisson distribution predicts the probability of a rare 

event. When applied for spare parts forecasting, it provides an estimate of the consumption 

probability for a fixed value of spare parts [142]. The spare parts demand which is generated 

because of maintenance actions are described by Poisson distribution provided that the number 

events occurring in one interval are independent of the events occurring in any other interval 

[143].  

Considering reliability parameters of aircraft system and component parts, Poisson 

distribution can be expressed as follows 

             (2.39) 

where λ is the failure rate, t is the observed time interval and x number of failures i.e., number 

of spare parts needed. The cumulative probability of the maximum consumption of spare parts 

x is given by 

           (2.40) 

For the proposed model, the following assumptions are made:  
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– The component parts are non-repairable; 

– The reliability of the item to be spared is expressed as a failure rate λ i.e. the inverse of 

MTBF; 

– The number of the component parts (items) installed in the aircraft N = 1..19. 

the. The value for N is based on the component maintenance information extracted 

from maintenance planning data [144] – the highest value of the number of components 

is 19.  

– The intended fill rate i.e. the probability of having a spare part in inventory when needed 

P =0.90..0.95.  

– The number of aircraft to be supported by the spare part inventory, A=1..50 

– The operational period to be supported given in calendar time (months), T=1..12 

– The average aircraft utilization U in flight hours per month  

 

Model № 1 

The steps for the spare parts forecasting model are as follows:  

1. Choose an aircraft system or structure to further analyze its components for reliability 

parameters. It is assumed that the aircraft system consists of k simultaneously operating 

non-repairable components that are arranged in a parallel network as shown in Fig 2.6  

 

Fig. 2.6 Block diagram of k-components parallel system 
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2. Input data for  𝑚 × 1 matrix of λ 

3. Input data for 𝑚 × 1 matrixes of x – for non-repairable aircraft component x is equal to 

the number of failures for the observed interval.  

4. The probability of the required minimum quantity of k spares for ith component failure 

is expressed as 

          (2.41) 

5. The output P is a table which allows for computing the number of required component 

parts to be kept in the inventory for the corresponding probability of the fill rate.  

 

Model № 2 

In the second model for forecasting spare parts demand, for the time interval t and a 

failure rate λi, the probability of the number of failures xi (which is equal to the ni spare parts) 

is expressed by Poisson formula 

               (2.42) 

where ni = {1,2,3….}. Formula (2.42) can be described using the exponential law and is 

expressed as 

             (2.43) 

The probability that the spare parts in the inventory will be sufficient for the aircraft operation 

is defined as 

          (2.44) 

The function  for computing the required number of spare parts ni is plotted as 

nomogram using λi of each component of the aircraft system considered.  
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Goodness-of-fit test  

For both models, an analytical goodness of fit test using MCS method is carried out for 

the output P (equation 2.41) and the nomogram (equation 2.44). For each ith component, find 

the first value for which the probability P = 0.90 (or any figure 0.80…0.95), select the 

corresponding k quantity of spare and designate this as m=k+1. For the simulation, M=10000 

iterations and the simulation process is as follows  

Step 1    where Ai, j is an exponential distribution [1, λi] 

Step 2   

 

Step 3   

For validity of the model, the value of Pi  should correspond to the value in the output table P 

and the Nomogram.  This proves the accuracy of the models for forecasting aircraft spare part 

demand. Furthermore, the results of both models for each failure rate λi should be the same. 

 

CONCLUSIONS 

 

1. The operations phase of aircraft lifecycle generates most of the statistical data in the 

aircraft life cycle which can be used to generate statistical data processing algorithms 

for improving the efficiency of aircraft operations. This forms the basis for this 

chapter for developing mathematical models and algorithms for the optimization of 

aircraft maintenance processes for continuing airworthiness. 



99 
 

2. A statistical simulation model based on exponential distribution for reliability 

analysis of aircraft components, subsystems, systems and structures given a dataset 

> 35 was developed in section 2.2.1. 

3. A statistical simulation model for reliability analysis of aircraft components, 

subsystems, systems, and structures given a dataset < 35 is developed in 2.2.2. The 

proposed model calculates the failure rate based on the probability of failure-free 

operations which is determined using Kazakyavicius equation. 

4. A review of relevant literature shows that no study has proposed reliability models 

based on time between failures, observed time and repair cost to improve the 

efficiency of aircraft operations. This forms the basis for the developing a 

mathematical model for the optimization of aircraft maintenance task intervals in 

section 2.3. The exponential and Erlang models were considered; for the exponential 

model of time between failures, the analytical calculations showed that the possibility 

of optimizing maintenance task interval does not exist. On the other hand, a minimum 

which corresponds to the optimal maintenance task intervals exists for the Erlang 

model. These models quantify the cost and benefits of maintenance with the goal of 

obtaining an optimum balance between both. 

5. The application of segmented regression in aircraft operations allows for increased 

correctness for the calculation of extreme probability values of occurrence of failures 

in aircraft components, subsystems, systems, and structures. In section 2.4, three 

segmented regression models were developed: quadratic-linear segmented regression 

model, linear-linear segmented regression model and quadratic-quadratic segmented 

regression model. The models for determining the coefficient of each of the model 

was also determined. 

6. Spare parts and aircraft maintenance are closely related because maintenance 

activities generate the need for spare parts; spare parts inventory serve maintenance 

planning. Spare parts account for 60-80% of maintenance expenditure and 80% of 

downtime is caused by 20% of equipment. In section 2.5, an algorithm is developed 
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for the optimal forecast of aircraft spare parts demand (sufficiency) using a 

combination of analytical approaches. The proposed model is based on reliability 

parameters and Poisson distribution. 
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CHAPTER 3. ANALYSIS OF PROPOSED MATHEMATICAL MODELS FOR THE 

OPTIMIZATION OF AIRCRAFT MAINTENANCE PROCESSES FOR 

CONTINUING AIRWORTHINESS  

 

In chapter 2, various models were developed which can form the framework for an 

optimized aircraft maintenance process which is predictive, and data driven.  Furthermore, the 

civil aviation industry needs realism in mathematical models and the way optimization problem 

is formulated; system reliability, maintenance processes and cost must be considered during 

the design and manufacturing phases of aircraft lifecycle; these proposed models can serve as 

a basis for this. The validity of the proposed models is checked in this chapter using daily 

aircraft operations data from Nigeria. An overview of predictive data-driven aircraft 

maintenance is given to justify this approach. As stated in previous chapters, the term ‘failure” 

refers to faults and failures of aircraft components, subsystems, systems, or structures. 

  

3.1 An overview of predictive aircraft maintenance   

 

The most widely applied aircraft maintenance strategies are CM and PM actions. CM 

tasks are connected to run-to-failure maintenance strategies while PM work is performed as 

part of a fixed interval to replace, repair, or restore. It encompasses work done under a fixed-

interval restoration/repair strategy and conducted based on a time or machine-run-based 

schedule that detects, precludes, or mitigates degradation [3]. These traditional aircraft 

maintenance strategies lack predictive capability and often lead to maintenance being 

performed too early, i.e., before the end of a machine’s useful life, or too late, i.e., after a costly 

failure [4]. Therefore, data-driven predictive and condition-based aircraft maintenance 

approach will result in lower maintenance costs, avoiding unnecessary PM actions and 

reducing unexpected failures. A combination of PM and PdM results in 18.5 % less unplanned 
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downtime and 87.3 % less defects for more reliance on predictive than preventive maintenance 

[145]. 

Predictive Maintenance is one of the core pillars of Industry 4.0 and in comparison to 

CM and PM, it allows for more cost-effective operations. It is performed as part of a condition-

based strategy which involves measuring the condition of equipment and assessing whether it 

will fail during some future period. Early approaches to PdM focused on  hand-crafted, 

physical models and heuristics and lately, data-driven methods are on the rise because they can 

be scaled to multiple systems without the need for specific domain knowledge [146-147]. 

Cloud-computing, wider availability of data and models and other industry 4.0 developments 

are creating a paradigm shift in how maintenance work is planned and executed. In the nearest 

future, aircraft maintenance will be initiated once a potential failure has been detected and thus 

completed prior to the occurrence of  functional failure. PdM tasks are determined by the 

OEM’s recommendations and strategy development decision trees such as RCM that considers 

failure behavior and consequence [3]. 

 

Data-driven predictive aircraft maintenance  
 

Data-driven maintenance methods originate from statistics and machine learning 

techniques. To use data-driven methods in a purposeful way, structural understanding of the 

behavior being modelled is not needed but run-to-failure data for each fault mode of the system 

should be made available [148]. In [4], the authors investigated how historical machine failures 

and maintenance records can be used to determine future estimates of machine failure and, 

consecutively, prescribe improvements of scheduled preventive maintenance interventions.  

The authors modelled the problem using a finite horizon Markov decision process with a 

variable order Markov chain, in which the chain length varies based on the time since the last 

preventive maintenance action was conducted. The prescriptive optimization model captures 

the dependency of a machine’s failures on both recent failures in addition to preventive 
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maintenance actions. To improve predictions for machine failure behavior, the authors pooled 

dataset over different machine classes using a Poisson generalized linear model [4]. 

Operational data such as past aircraft failures and maintenance actions can be used to 

estimate the probability of ACSSS failure and plan maintenance actions accordingly. In this 

chapter, the models developed in the previous chapter will be applied to real-life aircraft 

operations data to validate the proposed models and prove their applicability. Historical dataset 

of pilot and maintenance records of failures from aircrafts operating in Nigeria are utilized for 

this study. The datasets were preprocessed as shown in chapter 1 but to be used input data for 

the proposed models, further transformation was carried to obtain more usable forms of data. 

The results of the analysis described in this chapter can provide insights into future failures of 

ACSSS – it can supplement an existing aircraft maintenance strategy. This results in reduced 

waste which arises due to early maintenance and failure costs connected with late maintenance 

actions [4]. 

 

3.2. Reliability analysis of aircraft components, subsystems, systems, and 

structures given a large dataset  

 

 The operational phase of aircraft life cycle generates statistical data that can be used to 

determine the reliability of aircraft components and systems. A model based on exponential 

distribution was described in the previous chapter and the methodology is given in Fig. 3.1. To 

test the model, statistical data was generated from pilot and maintenance reports of aircraft for 

three MD–83 aircraft over an operational period of four years [149]. As shown in Table 1, the 

failure information of each aircraft system and structure was grouped according to the ATA 

Spec 100 numbering system – nT refers to the total number of failures observed by both pilots 

and maintenance personnel for the time interval.  

The input data is a matrix of nT and  Bi+1–Bi is the probability of i-th component failure. 

The values of Bi are shown in Table 2 and the graph (Fig.3.2) is used to visually analyze how 

the failures occur. The simulation is performed for 10000 iterations and the probability density 
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functions (PDFs) are plotted based on the output. For this study, the top-most failing ATA Spec 

100 will be analyzed i.e., ATAs 21, 22, 23, 24, 25, 32, 33, 34, 49 and 52. 

Table. 3.1  

Failure information of aircraft systems and structures 

ATA nT ATA nT ATA nT ATA nT 

21 734 30 77 45 1 72 46 

22 142 31 30 46 2 73 52 

23 321 32 965 49 199 74 12 

24 250 33 1239 51 6 75 22 

25 1869 34 378 52 113 76 18 

26 85 35 73 53 8 77 29 

27 104 36 30 56 26 78 21 

28 62 38 68 57 3 79 37 

29 52 39 1 71 28 80 40 

 

 

Fig. 3.1. Flowchart for reliability analysis based on exponential distribution 
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Fig 3.2. Graph of monitoring data 

 

Table. 3.2 

Cumulative number of observed failures in time Bi 

Bi Bi Bi Bi 

B1 0.103 B10 0.517 B19 0.907 B28 0.968 

B2 0.123 B11 0.522 B20 0.908 B29 0.975 

B3 0.168 B12 0.657 B21 0.935 B30 0.977 

B4 0.203 B13 0.830 B22 0.936 B31 0.980 

B5 0.464 B14 0.883 B23 0.952 B32 0.982 

B6 0.476 B15 0.893 B24 0.953 B33 0.986 

B7 0.491 B16 0.898 B25 0.957 B34 0.989 

B8 0.499 B17 0.907 B26 0.957 B35 0.994 

B9 0.507 B18 0.907 B27 0.961 B36 1.000 

 

The PDFs of the top-most failing ATAs are in Fig. 3.3 – 3.12. The reliability indices of 

each of the aircraft system or structure are further calculated and are shown in Table 3. 3 

 



106 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Probability density function of  
observed time between failures for the   

communication system 

 

Fig. 3.6 Probability density function of  
observed time between failures for the   

electrical power system 

 

Fig. 3.3. Probability density function of  

observed time between failures for the   

air-conditioning system 

Fig. 3.4. Probability density function of  

observed time between failures for auto 

flight system 
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Fig. 3.7. Probability density function of  observed 

time between failures for the furnishing  
Fig. 3.8. Probability density function of  observed 

time between failures for the landing gear  
 

Fig. 3.9. Probability density function of  
observed time between failures for the 

light system  

Fig. 3.10. Probability density function of  

observed time between failures for the 

navigation system   
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Table 3.3  

Reliability indices based on the PDFs 

ATA ATA Chapter Name MTBFcalc λcalc K1000 calc 

21 Air conditioning  22.601 0.044 44 

22 Auto flight  120.289 0.008 8 

23 Communications 50.271 0.020 20 

24 Electrical power  58.204 0.017 17 

25 Equipment/furnishings  8.475 0.118 118 

32 Landing gear 16.214 0.062 62 

33 Lights 13.076 0.076 76 

34 Navigation 44.419 0.023 23 

49 Airborne auxiliary power 75.507 0.013 13 

52 Doors 126.959 0.008 8 

 

The goodness-of-fit test is applied to the mathematical model to verify if it obeys the 

exponential distribution. The 𝜒2-test was chosen to test the goodness of fit using one of the 

obtained PDFs and following value was the result:  

Fig. 3.11. Probability density function of  observed 

time between failures for the airborne auxiliary 
power  
 

Fig 3.12. Probability density function of  

observed time between failures for the Doors  
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𝜒𝑐𝑎𝑙𝑐
2 = 13.531 

The calculated 𝜒2 is less than the threshold value 𝜒𝑡ℎ
2 = 19.675. Therefore, the hypothesis for 

the exponential distribution law of mean time between failures of aircraft systems and 

structures is accepted with a significance level equal to 0.05. Additionally, the theoretical 

exponential distribution is given as: 

ƒ(t) = 𝜆𝑐𝑎𝑙𝑐𝑒−𝜆𝑐𝑎𝑙𝑐𝑡ɸ(t) 

where 𝜆𝑐𝑎𝑙𝑐 is the failure rate calculated based on the resulting PDF for each ATA chapter, ɸ(t) 

is the Heaviside function. The blue line in all the PDFs proves that the simulation results 

coincide with theoretical distribution. The limitation of this study is that it requires a minimum 

sample size of 35 and may not be suitable for aircraft operations which generate a small dataset 

[19, 26,  29,  95,  97, 106, 150].  Therefore, another methodology for reliability analysis for 

small dataset was developed in the previous chapter and in the next section, real-life operational 

dataset will be used to prove it’s applicability.  

 

3.3 Reliability analysis of aircraft components, subsystems, systems, and structures 

given a small dataset.  

 

The relationship between reliability and failure probability of an aircraft component or 

system j is given by 

                    (3.1) 

where  – failure probability and  – reliability.  The proposed methodology for reliability 

analysis for small dataset is based on first finding the failure probability as described in the 

Fig. 3.13 [151-156].  

Real-life historical dataset of pilot and maintenance reports of failures from an aircraft  

operating in Nigeria is utilized for this study. To further reduce the sample size, one system 

was selected from a basic sample of the statistical data and the dataset was transformed to a 
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more usable form to be used as input data for the proposed algorithm. The number of failures 

nTS are given in Table 3.4.   

 

 

Fig. 3.13. Flow chart of the methodology for reliability analysis given a small dataset 

 

Table 3.4  

Failure information of an aircraft system 
xi nTS xi nTS xi nTS xi nTS xi nTS 

x0 3 x3 1 x6 3 x9 5 x12 4 

x1 1 x4 8 x7 3 x10 7 x13 5 

x2 1 x5 2 x8 5 x11 10 x14 9 

 

There are no outliers therefore the Chauvenet’s criterion is not applied. 

j = 3.615 ;  𝛿1 =  −2.273; 𝛿2 =  1.727 

Corresponding quantiles of the standard normal distribution are shown in Table 3.5 

 

Table 3.5  

Quantiles of the standard normal distribution 
Ki Ki Ki Ki Ki 

K0 -3.111 K3 -2.252 K6 -1.735 K9 1.897 K12 2.464 

K1 -2.727 K4 -2.066 K7 0 K10 2.066 K13 2.727 

K2 -2.464 K5 -1.897 K8 1.735 K11 2.252 K14 3.111 
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𝛿𝑘 𝑚𝑖𝑛 =  −3.693; 𝛿𝑘 𝑚𝑎𝑥 = 3.693; 𝛽1 =  2.119; 𝛽2 = 1.596 

The values of the basis function are given in Tables 3.6-3.7 

 

Table 3.6 

Values of basis function F1 (Ki) 
F1 (Ki) F1 (Ki) F1 (Ki) F1 (Ki) F1 (Ki) 

F1 (K0) 2.118 F1 (K3) 2.113 F1 (K6) 2.103 F1 (K9) 1.608 F1 (K12) 1.600 

F1 (K1) 2.117 F1 (K4) 2.111 F1 (K7) 1.858 F1 (K10) 1.605 F1 (K13) 1.599 

F1 (K2) 2.115 F1 (K5) 2.107 F1 (K8) 1.612 F1 (K11) 1.602 F1 (K14) 1.597 

 

Table 3.7 

Values of basis function F2 (Ki) 
F2 (Ki) F2(Ki) F2(Ki) F2 (Ki) F2 (Ki) 

F2 (K0) 2.119 F2 (K3) 2.707 F2 (K6) 2.572 F2 (K9) 1.623 F2 (K12) 1.475 

F2 (K1) 2.831 F2 (K4) 2.659 F2 (K7) 2.119 F2 (K10) 1.579 F2 (K13) 1.407 

F2 (K2) 2.762 F2 (K5) 2.614 F2 (K8) 1.666 F2 (K11) 1.531 F2 (K14) 1.596 

 

The prognostic variables Q1 and Q2, are calculated based on the proposed methodology 

for reliability analysis given a small dataset. The graph in Fig. 3.14 shows the quantiles of 

normal distribution according to Kazakyavicius equation. An additional graph (fig. 3.15) 

referred to as the failure probability graph is also plotted in accordance with formula (3.2).  

                   (3.2) 

where p(x) is the failure probability  

To determine the reliability of an aircraft component, subsystem or system over a given 

period, the first step is to determine the quantile after which the failure probability is 

determined using Fig. 3.14.  For example, the forecast of five failures is in the 0.7 quantile, this 

corresponds to a failure probability (fig 3.15) of 0.25 (25%) and reliability of 0.75 (75%).  
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Fig. 3.14. Quantiles of normal distribution 

 

Fig. 3.15.  Failure probability graph 
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The goodness of fit test is carried out visually using fig 3.14; the prognostic variables 

Q1 and Q2  are in accordance with the proposed model while xi is based on the exponential 

distribution. The dots which do not connect for xi visually proves that the model based on 

exponential distribution isn’t suitable for a small dataset.  

 

3.4. Optimal regression model for predicting time moment of aircraft component, 

system, or structure’s failure  

 

To predict the time moment at which a failure will occur, three segmented models were 

previously developed in this dissertation. To determine which of the segmented regression 

models gives the most prediction accuracy, all models will be tested using real-life aircraft 

operational data from one of the aircraft analyzed in chapter 1. The selected aircraft system is 

further transformed for the analysis (Table 3.8) 

Table 3.8 

Statistical data generated from aircraft operations 

Failure i  

Time 

between 

failures Failure i  

Time 

between 

failures Failure i  

Time 

between 

failures Failure i  

Time 

between 

failures 

1 0 19 1.5000 37 2.5000 55 24.9501 

2 510.9672 20 3.3333 38 0.1000 56 32.6334 

3 17.0833 21 6.3833 39 2.5000 57 2.4500 

4 0.0833 22 0.4000 40 2.5000 58 44.7332 

5 20.2667 23 0.4000 41 4.3000 59 5.0333 

6 4.336 24 0.4000 42 1.8333 60 10.3833 

7 54.6334 25 0.0833 43 1.8333 61 13.3600 

8 90.8332 26 0.0833 44 1.8333 62 0.1333 

9 161.7500 27 33.2168 45 1.8333 63 0.1333 

10 0.5000 28 48.7167 46 1.8333 64 0.6167 

11 4.1667 29 5.6667 47 1.8333 65 0.3334 

12 4.1667 30 2.4833 48 20.9167 66 2.6667 

13 56.0999 31 78.2099 49 2.4167 67 83.8634 

14 56.0999 32 4.3333 50 1.5667 68 22.4334 

15 330.5002 33 1.5000 51 8.2334 69 11.3999 

16 111.7334 34 8.8166 52 18.9332 70 3.0666 

17 42.7768 35 0.1000 53 18.9332 

 18 1.5000 36 0.1000 54 53.1834 
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The transformed statistical data is a matrix A and is the input data for the simulation. 

Each of the proposed segmented model is tested using the input data and the graphs plotted to 

check the fitting (fig. 3.16 - 3.18). The matrix of unknown coefficients for each model is 

calculated using the ordinary least square method.  

 

Fig. 3.16. Quadratic-linear segmented regression model 

 

Fig. 3.17. Linear-linear segmented regression model 
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Fig. 3.18. Quadratic-quadratic segmented regression model 

 

Designing an accurate predictive model involves fitting it to a set of training data and 

then adjusting its parameters such that this model will be able to make reliable predictions on 

new untrained data. Overfitting or underfitting is a common concern when designing a 

predictive model and it is possible to create a complex structure when fitting the regression 

model which results in poor performance [133]. Fig. 3.19 illustrates this problem, and we 

compare it to Fig 3.16 - 3.18 to confirm that the three proposed regression models in chapter 2 

can be used to forecast time moments of failures of aircraft component, sub-system, system or 

structure.  

To determine which of the three models gives the most precise prediction and at which 

optimal switching point m, analysis of the values of standard deviation σ for each value of 

m=15-30 is carried out. The results are given in Table 3.9 – Y1, Y2 and Y3 respectively refer 

to quadratic-linear segmented model, linear-linear segmented model, and quadratic-quadratic 

segmented model [137, 157-166].  

 



116 
 

 

Fig. 3.19 Pictorial representation of over- and underfitting in regression [133] 

 

Table 3.9  

Values of standard deviation σ for each value of m=15-30 

m 

σ 

m 

σ 

Y1 Y2 Y3 Y1 Y2 Y3 

15 115.084 74.426 51.332 23 80.537 84.681 72.787 

16 108.777 67.825 47.939 24 79.201 89.517 73.757 

17 102.827 64.736 50.674 25 78.425 94.120 74.199 

18 97.404 64.643 55.727 26 78.127 98.415 74.243 

19 92.615 66.781 60.859 27 78.232 102.525 74.104 

20 88.523 70.386 65.227 28 78.683 106.613 73.949 

21 85.154 74.862 68.655 29 79.434 110.618 73.780 

22 82.503 79.730 71.137 30 80.435 114.485 73.599 

 

According to Table 3.9, the least value of standard deviation σ is observed with the 

quadratic-quadratic segmented model when m=16. Therefore, this model is considered the 

most precise of the three proposed regression models for predicting failure of an aircraft 

component, subsystem, system, or structure. Based on the resulting matrix of coefficients of 

the quadratic-quadratic segmented regression model, the final formula for the prediction is 

given as follows 

     (3.3) 
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3.5 An approach to optimizing maintenance task interval of aircraft components, 

subsystems, systems, or structures 

 

A significant percentage of maintenance cost is attributed to failures of aircraft 

components and systems. These failures are random and provide a database which can further 

be analyzed to aid decision-making for maintenance optimization. Maintenance optimization 

tasks of ACSSS can be conducted based on analytical, numerical or simulation approaches 

(fig. 3.20). The analytical approach is based on the determination of exact equation; the 

numerical approach is based on descent methods, evolutionary methods, and pattern search 

methods; the simulation approach is based on Monte-Carlo methods [167-168] 

 

Fig. 3.20. Approaches to optimizing aircraft maintenance task interval 

 

 To determine an optimal maintenance task interval of aircraft systems, mathematical 

models which consider the average operational cost per unit time )/( MtCE  as a measure of 

efficiency were analyzed for optimality in the previous chapter using the methodology in Fig. 

3.21.  

To prove the applicability of the model, simulation analysis was performed. The initial 

data are diagnostic variables and reliability parameters which formed the basis for selecting 

the PDF for TBF according to the exponential and Erlang models. Based on the PDF, the 

efficiency of the maintenance processes was calculated using average operational cost per unit 

time. For the exponential model,  the initial data (TBF) is exponentially distributed with failure 

rate 001.0=  and sample size 1000=n , PM cost 100M =C  and CM cost 1000R =C , number of 

iterations 10000=N  [169]. 
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Fig. 3.21. Flowchart for determining optimal maintenance task interval for aircraft systems 

 

Fig. 3.22. The dependence of efficiency on maintenance task interval obtained based on 

analytical equation (blue line) and statistical simulation (red line) for exponential time 

between failures 
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Fig. 3.23. The dependence of efficiency on maintenance task interval obtained based on 

analytical equation (blue line) and statistical simulation (red line) for Erlang distribution of 

time between failures. 

 

Simulation results shown in fig. 3.22 prove that for the exponential model TBF, an optimal 

maintenance task interval which corresponds to a local minimum point on the graph of average 

operational cost per unit time vs maintenance task interval TM  does not exist; →opt MT . For the 

Erlang model, the initial data are 0005.0= , sample size 1000=n , PM cost 200M =C  and CM cost 

1000R =C , number of repetitions 10000=N . The simulation results in Fig. 23 prove the existence 

of a “minimum” which corresponds to an optimal maintenance task interval. The simulation 

results in this chapter coincide with the analytical results in chapter 2 and further proves that it 

is possible to optimize maintenance task interval of ACSSS using the Erlang model [169].  

 

3.6. Planning spare parts inventory during aircraft operation 

 

Spare parts are common inventory stock items, which exist to satisfy maintenance needs. 

Spare parts unavailability may prolong aircraft downtime and incur unnecessary costs – its 

provision and planned maintenance are related logistic activities and should be considered 
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together [170].  In section 2.5 of this dissertation, an algorithm is developed for forecasting 

spare parts demand using a combination of analytical approaches. The models which are tied 

to probability of failure-free operations and failure rates (Section 3.1) are calculated based on 

real-life statistical data generated by aircraft operations. The process of spare parts 

management is shown in Fig. 3.24. Based on the results of condition monitoring, the failure of 

any aircraft component can be detected. This system is replaced by corresponding spare part 

that is in serviceable condition with probability equal to one.  To analyse the applicability of 

the proposed model in section 2.4, operational data from pilot and maintenance reports of an 

aircraft operating in Nigeria is generated [149]. The component failures of the top-most failing 

aircraft system are further analyzed resulting in fifteen aircraft components ( 15=n ) for the 

observed time interval – reliability analysis of the component is carried out (Table 3.10) using 

the models described in section 2.2 and 3.1 of this dissertation. Considering the risk of aviation 

incidents or accidents, the required level probability of failure-free operation of aircraft 

components is 95.0)( =Tp .  

 

 

        Fig. 3.24. The process of spare parts management 
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Table 3.10 

Component failure rate of an aircraft navigation system. 

№ Aircraft Component λ № Aircraft Component λ 

1 Standby attitude indicator 0.0003185 9 Navigation control unit 0.0006370 

2 Navigation receiver 0.0006370 10 TCAS Antenna 0.0006370 

3 Transponder  0.0009555 11 TCAS Encoder 0.0003185 

4 DME 0.0003185 12 GPS  0.0006370 

5 Weather radar  0.0050962 13 EFIS 0.0006370 

6 Automatic direction finder  0.0003185 14 EFIS display 0.0003185 

7 Radio altimeter 0.0127406 

15 EFIS display controller 0.0003185 8 Altitude control 0.0012740 

 

The aircraft component failure rate in Table 3.10 is the input data for the simulation and 

the optimal value of the spare parts that should be kept in the inventory is determined using the 

model described in section 2.5 – the flowchart is shown in Fig. 3.25. To determine the 

guaranteed probability of failure-free operations of aircraft components and the entire aircraft 

system, the basic theorems of probability theory is taken into consideration – the product of 

failure rate and observation interval is equal to average number of failures for the observed 

component. The simulation results are shown in Fig. 3.26 and Fig.3. 27.   

 

 

Fig. 3.25. Flowchart for determining optimal aircraft component spare parts for inventory 
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Figure 3.26 presents the dependence of guaranteed probability on number of possible 

failures for each aircraft component, and Fig. 3.27 shows the dependence for the whole aircraft 

system. 

 

Fig. 3.26. Dependence of guaranteed probability of failure-free operation on number of 

possible failures for each aircraft component. 

 

 

Fig. 3.27. Dependence of guaranteed probability of failure-free operation on number of 

possible failures for the whole aircraft system 

 

According to the graph families in Fig. 3.26, the probability of failure-free operation 

dependence on number of possible failures for each aircraft component has the tendency of 

accelerated decrease in case of optimal value of spare parts increase. The dependence in Fig. 
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3.27 gives the conclusion that obtained spare parts demand is almost equal to a probability of 

one for failure-free operation of the whole aircraft system even in case of 120 failures in 

different systems. The values of optimal number spare parts of each component for the 

inventory is shown in Table 3.11.  

 

Table 3.11 

Simulation results for optimal spare parts planning. 

№ Aircraft Component λ 

Optimal Number of 

Spare parts  

1 Standby attitude indicator 0.0003185 5 

2 Navigation receiver 0.0006370 7 

3 Transponder  0.0009555 9 

4 DME 0.0003185 5 

5 Weather radar  0.0050962 28 

6 Automatic direction finder  0.0003185 5 

7 Radio altimeter 0.0127406 58 

8 Altitude control 0.0012740 10 

9 Navigation control unit 0.0006370 7 

10 TCAS Antenna 0.0006370 7 

11 TCAS Encoder 0.0003185 5 

12 GPS  0.0006370 7 

13 EFIS 0.0006370 7 

14 EFIS display 0.0003185 5 

15 EFIS display controller 0.0003185 5 

 

Analysis of simulation results in Table 3.11 show that there are various spare parts demands 

for the components ranging from 5 (for the most reliable component) to 58 (for radio altimeter). 

To analyse the accuracy of proposed method, simulation based on Monte Carlo method 

was performed [106]. The simulation procedure consists of the following steps: a) generation 

of two-dimensional array with exponentially distributed random numbers (times to failure) 

with failure rate for each i-th aircraft component (the first dimension corresponds to the sample 

size and is equal to optimal value of spare parts ik , and the second dimension corresponds to 

the number of reiteration); b) calculation of the cumulative time of last failure; c) calculation 

of probability of failure-free operation for each aircraft component as the ratio of the number 

of times the cumulative time of last failure exceeded the observation interval to the number of 
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reiteration. The simulation results favourably coincided with required and calculated 

probability of failure free operation. 

 

CONCLUSIONS 

 

1. The models proposed in chapter 2 can form the framework for an optimized aircraft 

maintenance process which is predictive, and data driven. In this chapter daily aircraft 

operations data was applied to analyse and validate these models. A concise overview 

of predictive data-driven aircraft maintenance which justifies application of the 

models was given in section 3.1. 

2. An analysis of the proposed model for reliability analysis of aircraft components, 

subsystems, systems, and structures given a large dataset was carried out in section 

3.2.1 using real-life aircraft operations data. The 𝜒2goodness-of-fit test was applied 

to the mathematical model to verify if it obeys the exponential distribution; the 

calculated 𝜒2 is less than the threshold value 𝜒𝑡ℎ
2  hence the hypothesis for the 

exponential distribution law of mean time between failures of aircraft systems and 

structures is accepted with a significance level equal to 0.05.  

3. An analysis of the proposed model for reliability analysis of aircraft components, 

subsystems, systems, and structures given a small dataset was carried out in section 

3.2.2. The reliability parameter is determined based on the failure probability graph 

determined using Kazakyavicius equation. Using the resulting graphs, a visual 

goodness-of-fit test is carried out; the prognostic variables Q1 and Q2 are in 

accordance with the proposed model while xi is based on the exponential distribution. 

The dots which do not connect for xi visually proves that the model based on 

exponential distribution isn’t suitable for a small dataset. 

4. To determine which of the segmented regression models proposed in chapter 2 gives 

the most prediction accuracy, all models were tested using real-life aircraft operational 



125 
 

data from one of the aircrafts analysed in chapter 1; the matrix of unknown 

coefficients for each model is calculated using the ordinary least square method.  To 

determine which of the three models gives the most precise prediction and at which 

optimal switching point m, analysis of the values of standard deviation σ for each 

value of m=15-30 is carried out; the least value of standard deviation σ is observed 

with the quadratic-quadratic segmented model when m=16 hence, this model is 

considered the most precise of the three proposed regression models for predicting 

failure of an aircraft component, subsystem, system, or structure. A pictorial 

representation of good, over- and underfitting in regression was used to compare all 

the resulting graphs of the proposed regression models; all the models were in 

accordance with good fitting. 

5. Simulation analysis was carried out using the Monte Carlo method to prove the 

applicability of the models developed in chapter 2 for determining the optimal 

maintenance task interval using average operational cost as a measure of efficiency. 

Results prove that for the exponential model of time between failures, an optimal 

maintenance task interval which corresponds to a local minimum point on the graph 

of average operational cost per unit time vs maintenance task interval TM  does not 

exist; →opt MT . For the Erlang model, simulation results prove the existence of a 

“minimum” which corresponds to an optimal maintenance task interval. These results 

coincide with the analytical results in chapter 2 and further prove that it is possible to 

optimize maintenance task interval of aircraft systems using the Erlang model.  

6. In chapter 2, a model is developed for determining the spare parts of aircraft 

components for non-repairable items and exponentially distributed times to failure. 

The quantity of spare parts is calculated using the required probability of failure-free 

operation and the estimated failure rate value obtained from real statistical data 

analysis. To analyse the accuracy of proposed model, simulation based on Monte 
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Carlo method was performed and results favourably coincided with required and 

calculated probability of failure free operation. 
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CHAPTER 4. A CONCISE METHODOLOGY FOR OPTIMIZING AIRCRAFT 

MAINTENANCE PROCESSES FOR CONTINUING 

AIRWORTHINESS OF AIRCRAFT IN NIGERIA   

 

The operations phase of an aircraft life cycle is the longest, and despite the revenue 

aircrafts generate for an economy, the average operational cost may exceed the initial purchase 

price by as much as 10-20 times; Maintenance, Repair, and Overhaul (MRO) are estimated to 

be about 10-20% of operational costs [36, 44]. Furthermore, according to IATA, global 

maintenance, repair, and overhaul expenditure is expected to increase at an annual growth rate 

of 4.1%; therefore, airlines are constantly searching for ways to decrease these expenses 

without compromising on airworthiness [36]. This justifies the need for realism in 

mathematical models and the way optimization problem is formulated from the design phase 

of the aircraft lifecycle; system reliability, maintenance processes and cost must be considered. 

This chapter explains a concise methodology for the optimization of aircraft maintenance 

processes.  

 

4.1. Justification of the proposed methodology for the optimization of aircraft 

maintenance processes for continuing airworthiness  

 

In the West African regions, operational costs are still significantly higher than the 

global average figure, with aircraft operators spending over $1 billion annually; Nigerian 

operations account for 75% of this figure [2]. This high figure is due to a lack of component 

overhaul MRO facilities that carry out heavy aircraft maintenance checks. Emerging MROs in 

Nigeria carry out checks on smaller aircraft up to the highest maintenance checks available. 

However, they are few, and the scope of work is mainly on helicopters and small fixed-wing 

aircraft. Therefore, most operators incur an additional cost of ferrying these aircraft overseas. 

Since scheduled and unscheduled line maintenance activities are still being carried out locally 

coupled with a significantly high global percentage allotted to aircraft maintenance, the global 
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aviation industry, especially West Africa, can move towards a modern approach by 

implementing Industry 4.0 solutions to optimize aircraft maintenance processes without 

compromising on safety and reliability.  

Traditional maintenance actions including CM and PM are no longer able to address 

increased complexity of systems therefore a shift towards complex maintenance approaches 

can be implemented to ensure quality and reliability. Unscheduled maintenance results in 

costly delays and inconvenience to passengers. A significant reduction in the number of 

unscheduled maintenance tasks would transform the aviation industry. This may be enabled by 

an intelligent aircraft system that identifies and communicates component/system anomalies 

and self-diagnoses faults/failures, wear, software glitches, low fluids, etc. The era of big data 

mirrors the scientific computing revolution of the 1960s, which led to transformative 

engineering paradigms and allowed for the exact simulation of complex, engineered systems. 

This enabled prototyping of aircraft design using physics-based emulators that resulted in 

significant cost savings to aerospace manufacturers. Similarly, Machine Learning and (ML) 

and Artificial Intelligence (AI) algorithms are welcoming great technological developments in 

our generation and its’ success is emerging in the aviation industry [12].  

Despite the availability of many computer-aid solutions, aircraft maintenance planning 

is challenging due to the lack of optimization approaches for planning maintenance checks, 

and task and lack of realism in mathematical models and the way the maintenance optimization 

problem is formulated from the design phase. Existing maintenance optimization research 

focuses on modelling methods of system degradation process, repair threshold, maintenance 

cost and developments of heuristic algorithms for searching for the optimal decisions within 

the constraints.  These methods are not the best solutions for the optimization of aircraft 

maintenance because: a) the current methods are considered static because optimization is 

based on fixed known maintenance scenarios and because of this, needs to be regularly 

modified because fundamental factors like component health state, repair cost, spare 

component orders vary with time. b) Inputs of these methods such as failure rate, average 

working time, aircraft availability requirement, etc. do not entirely cover other factors in 
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aircraft maintenance such as repair cost, PHM information, availability of spare components; 

these need to be jointly considered. c) the effect of long-term performance is rarely considered 

in current maintenance optimization research [37]. Hence, the primary contribution of this 

study is a simple and expandable four-step methodology (Fig 4.1) which consolidates 

approaches for reliability analysis of aircraft systems and structures, prediction of aircraft 

system faults/failures, optimization of aircraft maintenance task interval using average 

operational cost as a measure of efficiency and forecast of spare parts inventory for the 

optimization of aircraft maintenance processes. One of the needs for maintenance optimization 

arises from the necessity to minimize line maintenance activities that interrupt routine aircraft 

operations due to the frequency of their occurrence. Furthermore, frequent opening and closing 

of panels result in significant wear and tear, thereby reducing the inherent reliability of the 

aircraft [60]. 

 

 

Fig 4.1.  Methodology for the optimization of aircraft maintenance processes for continuing 

airworthiness of aircraft 
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The proposed four-step methodology takes advantage of latest data-driven predictive 

maintenance techniques based on ML, reliability, probability, and statistics theories and allows 

for optimized aircraft maintenance processes with reduced maintenance costs and downtime 

without compromising on safety. The outcomes of the proposed methodology will result in 

more predictable and efficient aircraft maintenance planning capability and can be 

implemented in the first three phases of aircraft lifecycle.   As stated in previous chapters, the 

term ‘failure” refers to faults and failures of aircraft components, subsystems, systems, or 

structures.  

 

4.2. Overview of the proposed four-step methodology for optimizing aircraft 

maintenance processes for continuing airworthiness 

 

In the aviation industry, health monitoring technologies are increasingly widespread. 

Various data-driven and model-based prognostics methods for remaining useful life estimation 

which aim at improving predictive maintenance for different types of components have 

recently appeared. However, the ability to pinpoint times to failure is not enough to yield better 

maintainability because scattered standalone interventions may increase total downtime [171]. 

Therefore, a four-step methodology was proposed in this dissertation (fig. 4.1).  The 

methodology incorporates theoretical models based on daily aircraft operations data-driven 

predictive maintenance techniques based on ML, reliability, probability, and statistics theories.  

The methodology launches the basis for further developments in terms of its future 

expansion, validation, and implementation. Its uniqueness resides in the fact that while most 

studies focus on individual components or systems, the proposed methodology takes into 

consideration all aircraft components and systems in a single framework. The models and 

algorithms proposed were validated using operational aircraft data and can be scaled to 

multiple systems without the need for specific domain knowledge. In addition, this data-driven 

approach is a more cost-effective alternative to physics-based modelling and can be utilized 
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for developing data-driven aircraft prognostics frameworks. An overview of the steps in the 

methodology is described in the following subsections.  

 

4.2.1. Step 1 – Statistical simulation to determine reliability parameters  

 

The evaluation of the reliability parameters of aircraft components, subsystem, systems, 

and structures is carried out using records of pilot reports and maintenance observations of 

fault/failures. The mean time between failures (MTBFi), failure rates (λi), and failures per 1000 

flight hours (K1000) are calculated. For this step, two models depending on the size of dataset 

were developed and tested in the previous chapters.  When dataset < 35, Kazakyavicius 

equation is used to determine the failure probability but if the dataset > 35, a model based on 

exponential distribution is used.  

 

4.2.2. Step 2 – Statistical simulation to predict the flight hour at which a failure will 

occur in an aircraft component, subsystem, system, or structure 

 

Wrong maintenance predictions and configuration strategies can lead to untimely 

support, flight delays, or AOG hence this step demonstrates a correlation between the failure 

of the system or component and the flight hour at which it will occur. As demonstrated in 

chapter 3, quadratic-quadratic segmented regression model is the model with the least standard 

deviation for predicting the occurrence of failures using daily aircraft operations data. This step 

provides high precision predictions for future unprecedented maintenance interventions using 

operational data that are generated and stored but often disregarded. 
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4.2.3. Step 3 – Estimate the optimal maintenance task interval using average 

operational cost as a measure of efficiency 

 

Most literature on optimal maintenance task models use the maintenance cost rate as an 

optimization criterion but overlook the reliability performance. Reducing the system 

maintenance cost rate does not imply that the system reliability performance is optimized in 

terms of cost, specifically for multicomponent systems. Minimal maintenance cost is 

sometimes associated with reduced system reliability measures; this is one of the outcomes of 

having different components in the system, which may have various maintenance costs and 

different importance to the system. Considering an aircraft consists of various systems and 

components, an optimal maintenance task interval should always consider both the 

maintenance cost and reliability [172]; this is the motivation for introducing the cost-adjusted 

measure to determine the optimal maintenance task interval. Therefore, in this step, the 

estimation of the optimal maintenance task interval of the aircraft component or system is 

carried out using average operational cost as a measure of efficiency. In chapter 2, two 

reliability models, the exponential and Erlang models of time between failures were analyzed 

for optimality using average operational cost per unit time as the efficiency indicator.  

Analytical equations and statistical simulations of the PDFs for the exponential model of TBF 

show that an optimal aircraft maintenance task interval does not exist because no minimum 

and optimal maintenance task interval tends to infinity. For the PDF of the Erlang model for 

TBF, a minimum exists for average operational cost per unit time. The optimal maintenance 

task interval values obtained according to analytical equations, numerical optimization, and 

simulation results are approximately the same. Therefore, the Erlang model can estimate the 

optimal maintenance task intervals for aircraft systems and components. 
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4.2.4. Step 4 – Forecast the spare parts inventory for aircraft operations 

 

Standby redundancy technique system has been widely used to improve reliability and 

prolong the operating time of systems. In this technique, some spare parts are provided for the 

operating component i.e., if an operating component fails, the spare part is switched on for 

replacement. Standby redundancy technique includes hot standby, warm standby, and cold 

standby. However, it is common knowledge that spare parts performance deteriorate over time 

in hot standby, warm standby and even cold standby. Spare parts can also can suddenly fail 

due to external shocks. Degradation in performance of spare parts which typically leads to 

storage failure is because of deteriorations which occur over time due to inner mechanism and 

imperfect storage. Overstocking spare parts can result in significant unnecessary inventory 

costs and storage failure which result in waste. On the other hand, shortage of spare parts may 

result in downtime and loss of revenue [173]. Spare parts inventories serve maintenance 

planning; an excess of spare parts inventory results in a high holding cost and impedes cash 

flows, while lack of spare parts can lead to costly flight delays or cancellations which 

negatively impact airline performance [72]. Currently the global civil aviation industry spends 

approximately $50 billion in spare parts, which accounts for 75% of inventory funds. However,  

utilization and turnover rates are low and only 25% are used hence there is a problem of 

excessive backlog. On the other hand, wrong spare parts forecast can lead to flight delays and 

AOGs [71]. Therefore, an accurate or near accurate forecast of spare sparts inventory can 

significantly optimize aircraft maintenance processes – this is the final step of the proposed 

methodology and is carried out using the statistical model described in chapter 2 and 3. 

  

4.3 Technique for the calculation of reliability indices of aircraft systems and 

components 

 

When the dataset > 35, the statistical simulation steps for reliability analysis are as 

follows:  
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1) Input the matrix of the processed statistical data of failures  

2) Computation of time series of observed failures Dk 

  

3) Determination of time moment F at which the i-th failure occurs is defined as follows   

;     

4) Formulation of one-dimensional array Ai  

 

5) Plotting of the PDFs 

6) Analysis of PDFs to determine λi, MTBFi and K1000 

If a small dataset i.e., < 35 is generated then the reliability analysis is carried out as follows:  

1. Matrix of processed statistical data of failures xi 

2. Determine the number of observations for tails approximation j=1.5∛𝑥. 

3. Calculate the values of the lower (yi lower) and upper tail (yi upper) 

 

4. Calculate the sums of first (𝛿1) and last (𝛿2) random variables 

;    

5. Calculation of the corresponding quantiles of the standard normal distribution after the 

transformation in accordance with Kazakyavicius equation 
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6. Estimation of the products of variation coefficient and the sum of corresponding 

quantiles 

;   

7. Determination of the transformation basis for the minimum (β1) and maximum (β2)  

;      

8. Calculation of the basis function F1 (Ki) and F2 (Ki)  

, 

 

9. Calculation of prognostic variables Q1 and Q2 

 

 

10.  Plotting of graphs using values of  xi, Q1 and Q2 

11.  Plotting of failure probability graph 

 

12.  Using the graphs determine the values of the failure probability and reliability 

 

4.4 Technique for predicting the flight hour at which a failure will occur in aircraft 

component or system  

 

1) Input the matrix of processed statistical data of failures i  

2) Predict the time moment of the next failure of the aircraft system or component i 

 

3) Determine the coefficients of the model  
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4) Calculate the value of the optimal switching point m for based on the corresponding 

least value of standard deviation σ 

 

5) Based on the values of m and σ, the optimal value of the switching point is calculated. 

This value is input into the model alongside the corresponding coefficients; this is 

considered the most precise mathematical model for predicting the flight hour at which 

a failure is likely to occur in the observed aircraft system or component. 

 

4.5 Estimation of the optimal aircraft maintenance task interval  

 

The step-by-step procedure for determine the optimal aircraft maintenance task interval 

is as follows:  

1) Define the Erlang PDF as  

ttetf −= 2)( ,  0 , 0t  

2) Calculation of the PDF for the duration of n-th failure for any given PDF )(tf for TBF 

using the theory of functional transformation of random variables 

dwdtetftf

n
i

i

iwt

n  


−
















=

0

)()(

 

 



137 
 

3) Define the probability of occurrence of n failures during the observed time interval using 

CDF 
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4) Determine the distribution of number of failures during the observed time interval 
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6) Analyze for optimum value  
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RC  is CM cost, MC  is PM cost , λ is the failure rate. 

 

4.6 An optimized approach for forecasting spare parts inventory of aircraft 

operations 

 

1. Monitor the condition of the aircraft systems/structures using the methodology for 

reliability analysis (4.2) and prognostic health monitoring. 

2. Calculate the cumulative probability of the maximum consumption of spare parts  x 
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3. The value of F(x) corresponds to the required probability of failure-free operation )( Tpi  

for each aircraft system or component; )( Tp  is estimated using the probability 

multiplication theorem 
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4. Determine the values of )( Tpi  using the graphical method of plotting the graph families 

for F(x).  

5. Estimate the optimal number of spare parts; this value is an abscissa of the intersection 

point of the corresponding graph for the calculated failure rate and the required value of 

the probability of failure-free operation. 
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4.7 Advantages of the proposed four-Step methodology for the optimization of 

aircraft maintenance processes for continuing airworthiness 

 

Maintenance optimization in practical cases focuses on determining what actions are 

mandatory and when to apply them mathematically, the problem is a sequential decision-

making problem in an uncertain environment and its resolution is challenging. Much research 

effort especially in the structural and reliability engineering community has been dedicated to 

finding optimal inspection and maintenance strategies; formulation of the problem and 

suitability of various resolution approaches may vary based on the application considered. The 

selection of the most cost-effective strategy is rarely straightforward [174]; hence the proposed 

methodology provides a concise step by step easy-to-use approach for optimizing aircraft 

maintenance for continuing airworthiness. The application of this methodology is expected to 

yield significant benefits in choosing the most appropriate maintenance intervention based on 

objective criteria, in estimating the likelihood of nonscheduled maintenance and in estimating 

the number of spare components needed for both scheduled and nonscheduled maintenance.  

Higher Reliability, Availability, Maintainability, and Safety (RAMS) standard is the 

goal for aircraft operations. Optimal predictive data-driven maintenance scheduling and 

rescheduling is a key element for the actualization of the RAMS goal – the proposed 

methodology provides the framework for achieving this. It can also be implemented in the 

design and manufacturing phase of aircraft life cycle because built-in prognostic capability for 

scheduling maintenance results in reduced maintenance delays and increase in aircraft 

availability and higher operational readiness level. Furthermore, implementing prognostic-

based maintenance scheduling requires different state-of-the-art technologies and 

methodologies including an efficient data processing and management system, advanced data 

mining and computing techniques, sophisticated prognostic algorithms, as well as optimization 

algorithms for solving the maintenance scheduling problem of complex and large-scale 

optimization formulations [47] – the easy to use proposed methodology can be implemented 

to optimize prognostic-based maintenance strategy.  



140 
 

The proposed methodology provides a framework for maximizing the utilization of daily 

aircraft operations data which is often stored but largely disregarded. The insights can be used 

to estimate the probability of aircraft component failure, estimate an optimal maintenance task 

interval, and plan maintenance actions accordingly. As shown in Fig 4.2, this approach is 

expected to reduce waste which arises because of early maintenance and failure costs 

connected with late maintenance actions.  

The effectiveness of the proposed method is proven by analytical and numerical 

examples. The proposed models and algorithm have both good experimental effect and 

theoretical convergence. Their performance was demonstrated with a comprehensive 

computational experiment using real life data of a aeroplanes and helicopters operating in 

Nigeria; the results of the analysis in Chapter 3 show that the proposed models and algorithms 

are effective for an optimizing aircraft maintenance for all three phases of aircraft life cycle.  

Hence, it can be implemented not just in Nigeria, a country in the west African region but also 

globally while considering safety and airworthiness standards. 

 

 

Fig. 4.2. An illustration of the advantages of an optimized data-driven predictive aircraft 

maintenance 
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The effectiveness of the proposed method is proven by analytical and numerical 

examples. The proposed models and algorithm have both good experimental effect and 

theoretical convergence. Their performance was demonstrated with a comprehensive 

computational experiment using real life data of a aeroplanes and helicopters operating in 

Nigeria; the results of the analysis in Chapter 3 show that the proposed models and algorithms 

are effective for an optimizing aircraft maintenance for all three phases of aircraft life cycle.  

Hence, it can be implemented not just in Nigeria, a country in the west African region but also 

globally while considering safety and airworthiness standards. 

  An optimized data-driven aircraft maintenance approach using the proposed 

methodology can result in reduced aircraft downtime, more targeted maintenance, increased 

steady state availability of aircraft, reduced no faults found and more efficient inventory 

management.  The insight from implementing the proposed methodology allows engineers and 

technicians to take a proactive approach to aircraft maintenance planning  by addressing real 

issues before they create problems thereby maximizing availability and reliability of aircraft. 

Additionally, spare parts procurement, ordering and decision making is significantly improved 

with increased accuracy in forecasting and usage.  

 

CONCLUSIONS 

 

1. Traditional maintenance actions including CM and PM are no longer able to address 

increased complexity of systems therefore a shift towards complex maintenance 

approaches on the basis of  Industry 4.0 solutions can be implemented to optimize 

aircraft maintenance processes without compromising on safety and reliability. 

2. Existing maintenance optimization research models are not the best solutions for the 

optimization of aircraft maintenance due to: a) they are considered static because 

optimization is based on fixed known maintenance scenarios which requires regular 

modification due to fundamental factors such  as component health state, repair cost, 
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spare component orders which vary with time. b) Inputs of these models such as 

failure rate, average working time, aircraft availability requirement, etc. do not 

entirely cover other factors in aircraft maintenance such as repair cost, PHM 

information, availability of spare components; these need to be jointly considered. c) 

the effect of long-term performance is rarely considered. 

3. Given the drawbacks of existing maintenance optimization models, the primary 

contribution of this study is a simple and expandable four-step methodology which 

consolidates approaches for reliability analysis of aircraft systems and structures, 

prediction of aircraft system faults/failures, optimization of aircraft maintenance task 

interval using average operational cost as a measure of efficiency and forecast of spare 

parts inventory for the optimization of aircraft maintenance processes. The proposed 

four-step methodology takes advantage of latest data-driven predictive maintenance 

techniques based on ML, reliability, probability, and statistics theories and allows for 

optimized aircraft maintenance processes with reduced maintenance costs and 

downtime without compromising on safety. 

4. The proposed methodology provides a framework for maximizing the utilization of 

daily aircraft operations data which is often stored but largely disregarded. The 

insights can be used to estimate the probability of aircraft component failure, estimate 

an optimal maintenance task interval, and plan maintenance actions accordingly 

thereby resulting in more predictable and efficient aircraft maintenance planning 

capability. Its’ application is expected to yield significant benefits in choosing the 

most appropriate maintenance intervention based on objective criteria, in estimating 

the likelihood of unscheduled maintenance and in estimating the number of spare 

components needed for both scheduled and unscheduled maintenance. Furthermore,  

insights gleaned from its usage can be beneficial in solving the maintenance 

optimization problem from the design phase of the aircraft life cycle.  
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RESEARCH CONCLUSIONS 

 

In this dissertation, using Nigerian aircraft operations as a case study, the scientific task 

of developing statistical and mathematical models for the optimization of aircraft maintenance 

processes was carried out. The models and algorithms proposed provide a framework for 

maximizing the utilization of daily aircraft operations data, which is often stored but primarily 

disregarded. The models are further consolidated into a four-step methodology expected to 

reduce waste that arises because of early maintenance and failure costs connected with late 

maintenance actions. The following key results of the research were obtained: 

1. The operations phases of the aircraft lifecycle cost 10-20 times the design and 

manufacture phases; this justifies the need for realism in mathematical models and the way 

optimization problem is formulated; system reliability, maintenance processes, and cost must 

be considered from the first phase of the aircraft lifecycle.  

2. In-depth analysis of aircraft operations in Nigeria, a country in West Africa, to 

understand the reason for the significantly higher than average cost of aircraft maintenance 

despite a post-COVID-19 pandemic annual growth rate of 43.41% and 57.61% respectively 

for domestic and international passenger traffic. Research surveys using personnel working 

with aircraft operators and regulators in Nigeria revealed many problems. This justifies a need 

for operators in Nigeria and globally to adopt an optimized data-driven predictive maintenance 

process based on industry 4.0 principles. This research was devoted to developing these models 

and algorithms using real daily operations aircraft data from ERJ 135, ATR 42-300, MD-83 , 

S-76, and S-92 operating in Nigeria.  

3. RCM was initially designed for use in the aircraft industry; It allows for the 

calculation of system reliability considering different kinds of maintenance checks and their 

intervals, thereby providing information for optimizing operational cost, safety, and reliability. 

However, analysis reveals significant research in the development of models for RCM 

strategies. However, there is a gap in mathematical models to determine the characteristic 

reliability of aircraft systems for optimizing aircraft maintenance. The need for such models 



144 
 

justifies the development of statistical simulation models in this study to provide an in-depth 

understanding of the interaction between reliability levels and historical trends of faults and 

failures in aircraft operations. Depending on the sample size, 2 statistical simulation models 

which can significantly improve the existing framework of RCM in aviation were developed.  

4. To significantly reduce the occurrence of unscheduled aircraft maintenance tasks, 

an accurate or near-accurate prediction of the occurrence of faults/failures is needed. In this 

research, an initial attempt to carry out failure prediction of aircraft components, subsystems, 

systems, and structures using daily aircraft operations data was explored and validated. The 

model for this prediction was developed using a combination of statistical and ML techniques; 

computational evaluation demonstrates its applicability to aircraft operations.  

5. Line maintenance activities interrupt routine aircraft operations due to the 

frequency of their occurrence. Additionally, they result in frequent opening and closing of 

panels which lead to significant wear and tear, thereby reducing the inherent reliability of the 

aircraft. This justifies the need for an optimal aircraft maintenance task interval, and significant 

research has been carried out. However, existing models use maintenance cost rate as an 

optimization criterion but overlook the reliability performance, which isn't ideal for aircraft 

operations; both maintenance cost and reliability should be considered. This justifies the 

development of a model in this study to determine optimal aircraft maintenance task interval 

using average operational cost per unit time. The proposed model quantifies the cost and 

benefits of maintenance to obtain an optimum balance between both.  

6. Spare parts account for 60-80% of maintenance expenditure, and 80% of 

downtime is caused by 20% of equipment. Excessive spare parts lead to high holding costs and 

impede cash flows. In contrast, inadequate spare parts can result in expensive flight 

cancellations or delays, negatively impacting airline performance. The global civil aviation 

industry currently stores approximately $50 billion in spare parts, which accounts for 

approximately 75% of airlines' inventory funds and 25% of working capital. However, the 

turnover and utilization rate of most civil aircraft spare parts are low, only 25% are used, and 

even more, there is a problem of excessive backlog. These justify the need for an optimal 
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forecast of spare parts demand (sufficiency). The proposed models in this dissertation were 

developed using a combination of analytical approaches which focus on the interaction 

between failure rates and spare parts inventory. The models are tied to failure rates and the 

probability of failure-free operations is determined using real aircraft data; The failure rate 

gives reliable information for an accurate forecast of spare parts demand. 

7. The ability to pinpoint times of failure is not enough to yield better maintainability 

because scattered standalone interventions may increase total downtime. Therefore, the models 

for reliability analysis, prediction of failure, determining optimal maintenance task interval, 

and forecasting spare parts demands were consolidated into a four-step methodology, which 

launches the basis for further developments in terms of its future expansion, validation, and 

implementation. Its uniqueness resides in the fact that while most studies focus on individual 

components or systems, the proposed methodology takes into consideration all aircraft 

components and systems in a single framework. Furthermore, the models and algorithms 

proposed were validated using operational aircraft data and can be scaled to multiple systems 

without needing specific domain knowledge. 

8. The maintenance review board reports of any new aircraft is developed without 

in-service experience, resulting in the tendency to be conservative in the decision-making 

process. As the aircraft accumulates service experience, task intervals should be adjusted to 

follow the results of professional analysis of actual in-service data because 

intervention/replacement intervals are often not seriously based on actual system reliability; 

this results in maintenance costs that are higher than optimum. The proposed four-step 

methodology can be applied during the design and manufacturing phase of the aircraft life 

cycle as well as during the operations phase as the aircraft accumulates service experience.  

9. The novel four-step methodology proposed in this study is a data-driven approach 

that provides a general theoretical framework for optimizing aircraft maintenance processes 

for continuing airworthiness. These proposed models and algorithms can be translated into 

solutions for cost-effective and efficient aircraft operations. Practical and beneficial 

applications of this approach include a reduced number of NFFs because of preventive 
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maintenance actions, an optimal maintenance task interval, and reduced downtime due to a 

lack of spare parts. Based on existing literature and an industry example, the proposed 

methodology is considered a novel theoretical framework for performance-centered aircraft 

maintenance, which considers the operational performance and the condition of an aircraft 

component or system. The core concepts of the theories applied were explained in the 

dissertation.  

10. Based on existing knowledge and aircraft maintenance experience, the models 

and algorithms in the proposed methodology for the optimization of aircraft maintenance 

processes for continuing airworthiness will be one of the prerequisites for the application of 

data-driven aircraft maintenance. In addition, these concepts can be implemented in the design 

and manufacturing phases of the aircraft life cycle to implement higher levels of inherent 

reliability and initial airworthiness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



147 
 

REFERENCES 

1. National Bureau of Statistics. Air Transportation Data (Full Year 2021). URL: 

https://nigerianstat.gov.ng/elibrary/read/1241160. 

2. Lawani M. Airlines choking on high repair, fuel costs — REPORT. Vanguard News 

Nigeria. 2021. URL: https://www.vanguardngr.com/2021/08/airlines-choking-on-high-

repair-fuel-costs-report/. 

3. Hodkiewicz M., Lukens S., Brundage M. P., and Sexton, T. Rethinking maintenance 

terminology for an industry 4.0 future. International Journal of Prognostics and Health 

Management. 2021. Vol. 12 No. 1. doi.org/10.36001/ijphm.2021.v12i1.2932. 

4. van Staden H. E., Depre L., and Boute R. N. A dynamic “predict, then optimize” preventive 

maintenance approach using operational intervention data. European Journal of Operational 

Research. 2022. Volume 302 (3),  P. 1079-1096. doi.org/10.1016/j.ejor.2022.01.037. 

5. Livne E. Reflections on Active Aeroelastic Control and the Multidisciplinary Design 

Optimization of Aircraft. 33rd Congress of The International Council of the Aeronautical 

Sciences Enoch Thulin Lecture for Innovation in Aeronautics. 2022. 

6. Sushchenko O.A., Golitsyn V.O. Data processing system for altitude navigation sensor. 

Proceedings of IEEE 4th International Conference on Methods and Systems of Navigation 

and Motion Control, Ukraine. 2016. P. 84-87. doi.org/10.1109/MSNMC.2016.7783112. 

7. Kharchenko V.P., Kuzmenko N.S., Ostroumov I.V. Identification of Unmanned Aerial 

Vehicle Flight Situation. Proceedings of IEEE 4th International Conference on Actual 

Problems of Unmanned Air Vehicles Developments, Kyiv, Ukraine.  2017. P. 116-120. 

doi.org/10.1109/APUAVD.2017.8308789. 

8. Prokopenko I. G., Migel S. V., Prokopenko K. I. Signal Modeling for the Efficient Target 

Detection Tasks. Proceedings of International Radar Symposium, Dresden, Germany.  

2013, Vol. II. P. 976-982. 

9. Shmelova T., Sikirda Yu., Kasatkin M. Applied Artificial Intelligence for Air Navigation 

Sociotechnical System Development. Proceedings of ICT in Education, Research and 

https://nigerianstat.gov.ng/elibrary/read/1241160
https://www.vanguardngr.com/2021/08/airlines-choking-on-high-repair-fuel-costs-report/
https://www.vanguardngr.com/2021/08/airlines-choking-on-high-repair-fuel-costs-report/


148 
 

Industrial Applications. Integration, Harmonization and Knowledge Transfer; Part V: 

Posters, Kherson, Ukraine. 2019. P. 470-475. 

10. Shmelova T., Sikirda Yu., Scarponi C., and Chialastri A. Deterministic and Stochastic 

Models of Decision Making in Air Navigation Socio-Technical System. Proceedings of ICT 

in Education, Research and Industrial Applications. Integration, Harmonization and 

Knowledge Transfer; Part III: Theory of Reliability and Markov Modelling for Information 

Technologies (TheRMIT 2018), Kyiv, Ukraine. 2018, Vol. II. P. 649-656. 

11. Solomentsev O., Zaliskyi M., Herasymenko T., Kozhokhina O., and Petrova Y. Efficiency 

of Operational Data Processing for Radio Electronic Equipment. Aviation.  2019, Vol. 23 

(3). P. 71-77. doi.org/10.3846/aviation.2019.11849 

12. Brunton S.L., Nathan Kutz J., Manohar K., Aravkin A.Y., Morgansen K., Klemisch J., 

Goebel N., Buttrick J., Poskin J., Blom-Schieber A.W. and Hogan T. Data-driven aerospace 

engineering: reframing the industry with machine learning. AIAA Journal,. 2021,  59(8).    

P. 2820-2847. 

13. Schmidt M., Ploetner K.O., Öttl G., Isikveren A.T. and Hornung M.  Scenario-based life-

cycle cost assessment of future air transport concepts. International Journal of Aviation 

Management. 2015,  2(3/4). P. 167-182. 

14. Nigeria Civil Aviation Authority (NCAA). About NCAA. Extracted July 2020 URL: 

https://ncaa.gov.ng/about/about-ncaa/ 

15. Nigeria Civil Aviation Regulations (Nig.CARs) - Part 5. Extracted July 2020. URL: 

https://ncaa.gov.ng/documents/regulations/nigeria-civil-aviation-regulations-nig-cars-part-

5/. 

16. Gratton G. Initial airworthiness: Determining the acceptability of new airborne systems. 

Springer International Publishing, Switzerland. 2015. 319 p. 

17. Coutu A., Alblowi M. ICAO Doc 9760 (Airworthiness Manual) 3rd Edition. 2014.166 p. 

18. Part M Continuing Airworthiness Managements Organization. International Civil Aviation 

Organization (ICAO) Documents. Extracted July 2020. URL:  

https://ncaa.gov.ng/about/about-ncaa/
https://ncaa.gov.ng/documents/regulations/nigeria-civil-aviation-regulations-nig-cars-part-5/
https://ncaa.gov.ng/documents/regulations/nigeria-civil-aviation-regulations-nig-cars-part-5/


149 
 

www.icao.int/MID/Documents/2019/ACAO-

ICAO%20Airworthiness/Session%207%20Part%20M%20CAMO%20final.pdf 

19. Ren, H., Chen, X. and Chen, Y., 2017. Reliability based aircraft maintenance optimization 

and applications. Shanghai Jiao Tong University Press, Published by Elsevier Inc. 2017. 

237 p. 

20. European Committee for Standardization (CEN). EN 13306:2017 Maintenance 

Terminology. European Standard, Brussels. 

21. Halm J., Hechtenberg K.V. and Kolander W. System and method for diagnosing aircraft 

components for maintenance purposes. EADS Deutschland GmbH and Airbus Operations 

GmbH. 2006, U.S. Patent 7,050,894. 

22. Marwedel S., Reitmann J. and Poupard M. Platform for aircraft maintenance services. 

Airbus Operations GmbH. 2013, U.S. Patent Application 13/508,515. 

23. Huet J.M., Besseau S., Maillard B. and Michaud F. Method and computer program for the 

maintenance aid of aircraft equipment. Airbus Operations SAS and Airbus SAS. 2017, U.S. 

Patent 9,767,413. 

24. Hinsch M. Industrial aviation management: A primer in European design, production and 

maintenance organisations. Springer-Verlag GmbH Germany. 2019. 345 p. 

25. Celikmih K., Inan O. and Uguz H. Failure prediction of aircraft equipment using machine 

learning with a hybrid data preparation method. Scientific Programming. 2020, Article ID 

8616039. doi.org/10.1155/2020/8616039 

26. Dhillon B.S. 2002. Engineering maintenance: a modern approach. CRC Press LLC. 2002. 

222p. 

27. Sharma A., Yadava G.S. and Deshmukh S.G. A literature review and future perspectives 

on maintenance optimization. Journal of Quality in Maintenance Engineering. 2011, Vol. 

17 No. 1. P. 5-25. 

28. Niu G., Yang B.S. and Pecht M. Development of an optimized condition-based 

maintenance system by data fusion and reliability-centered maintenance. Reliability 

engineering & system safety.  2010. 95(7). P. 786-796. 

http://www.icao.int/MID/Documents/2019/ACAO-ICAO%20Airworthiness/Session%207%20Part%20M%20CAMO%20final.pdf
http://www.icao.int/MID/Documents/2019/ACAO-ICAO%20Airworthiness/Session%207%20Part%20M%20CAMO%20final.pdf


150 
 

29. Dhillon B.S. Maintainability, maintenance, and reliability for engineers. Taylor & Francis 

Group, LLC. 2006. 221p. 

30. Nigeria Civil Aviation Regulations (Nig.CARs) - Part 9. Extracted July 2020. URL: 

https://ncaa.gov.ng/documents/regulations/nigeria-civil-aviation-regulations-nig-cars-part-

9/. 

31. ATR 42-300/320 Series Maintenance Programme. 2021, Issue 5. 

32. QID 927-S76C++ Maintenance Programme. 2018, Issue 2. 

33. Maisonneuve P.L., Glade M., Ghelam S. and Lyonnet P. Method of organizing aircraft 

maintenance. Eurocopter France SA. 2013, U.S. Patent 8,478,477. 

34. A'Hearn F.W. The MSG-2 Commercial Airline Concept: A Department of Defense 

Program for Reliability-Centered Maintenance. Defense Systems Management College, 

Fort Belvoir, Virginia.  1977. 73 p 

35. ATA MSG-3 Operator/Manufacturer Scheduled Maintenance Development. Air Transport 

Association of America, Inc. 2002, Revision 2002.1. 92 p 

36. Shaukat S., Katscher M., Wu C.L., Delgado F. and Larrain, H. Aircraft line maintenance 

scheduling and optimisation. Journal of Air Transport Management. 2020 (89). P. 101914. 

37. Hu Y., Miao X., Zhang J., Liu J. and Pan E. Reinforcement learning-driven maintenance 

strategy: A novel solution for long-term aircraft maintenance decision optimization. 

Computers & Industrial Engineering. 2021(153). P. 107056. 

38. Callewaert P., Verhagen W.J. and Curran R. Integrating maintenance work progress 

monitoring into aircraft maintenance planning decision support. Transportation Research 

Procedia. 2018(29). P. 58-69. 

39. Verhoeff M., Verhagen W.J.C. and Curran R. 2015. Maximizing operational readiness in 

military aviation by optimizing flight and maintenance planning. Transportation Research 

Procedia. 2015(10). P. 941-950. 

40. Dinis D., Barbosa-Póvoa A. and Teixeira Â.P. A supporting framework for maintenance 

capacity planning and scheduling: Development and application in the aircraft MRO 

industry. International Journal of Production Economics. 2019(218). P. 1-15. 

https://ncaa.gov.ng/documents/regulations/nigeria-civil-aviation-regulations-nig-cars-part-9/
https://ncaa.gov.ng/documents/regulations/nigeria-civil-aviation-regulations-nig-cars-part-9/


151 
 

41. Qin Y., Zhang J.H., Chan F.T., Chung S.H., Niu B. and Qu T. A two-stage optimization 

approach for aircraft hangar maintenance planning and staff assignment problems under 

MRO outsourcing mode. Computers & Industrial Engineering. 2020(146). P. 106607. 

42. Peschiera F., Battaïa O., Haït A. and Dupin N. Long term planning of military aircraft flight 

and maintenance operations. ISAE-SUPAERO, Universite de Toulouse, France. 2020 

43. Yang Z. and Yang, G. Optimization of aircraft maintenance plan based on genetic 

algorithm. Physics Procedia. 2012(33). P. 580-586. 

44. Deng Q., Santos B.F. and Verhagen W.J. 2021. A novel decision support system for 

optimizing aircraft maintenance check schedule and task allocation. Decision Support 

Systems. 2021(146). P. 113545. 

45. Papakostas N., Papachatzakis P., Xanthakis V., Mourtzis D. and Chryssolouris G. An 

approach to operational aircraft maintenance planning. Decision support systems. 2010, 

Vol. 48(4). P. 604-612. 

46. Goossens H., Van Blokland W.B. and Curran R. The Development and Application and of 

a Value-Driven Aircraft Maintenance Operations Performance Assessment Model 

Combined with Real Options Analysis. 11th AIAA Aviation Technology, Integration, and 

Operations (ATIO) Conference, including the AIAA Balloon Systems Conference and 19th 

AIAA Lighter-Than. 2011. P. 6992 

47. Li Z., Guo J. and Zhou R. 2016, January. Maintenance scheduling optimization based on 

reliability and prognostics information. In IEEE 2016 Annual Reliability and 

Maintainability Symposium (RAMS). P. 1-5 

48. Deng Q., Santos B.F. and Curran R. A practical dynamic programming based methodology 

for aircraft maintenance check scheduling optimization. European Journal of Operational 

Research. 2020 Vol. 281(2). P. 256-273. 

49. Sriram C. and Haghani A. An optimization model for aircraft maintenance scheduling and 

re-assignment. Transportation Research Part A: Policy and Practice. 2003, Vol. 37(1). P. 

29-48. 



152 
 

50. Hölzel N.B., Schröder C., Schilling T. and Gollnick V. A maintenance packaging and 

scheduling optimization method for future aircraft. In Air Transport and Operations, IOS 

Press.  P. 343-353 

51. De Bruecker P., Van den Bergh J., Beliën J. and Demeulemeester E. A model enhancement 

heuristic for building robust aircraft maintenance personnel rosters with stochastic 

constraints. European Journal of Operational Research. 2015, Vol. 246(2).  P. 661-673. 

52. Lee Y., Park J. and Lee D. Inspection interval optimization of aircraft landing gear 

component based on risk assessment using equivalent initial flaw size distribution method. 

Structural Health Monitoring. 2022, Vol.21(4).  P. 1396-1406. 

53. Yang J.N. and Trapp W.J. Inspection frequency optimization for aircraft structures based 

on reliability analysis. Journal of aircraft. 1975, Vol.12(5).  P. 494-496. 

54. Jiang L.P. 2012. An optimization model for aircraft maintenance scheduling based on ABC 

algorithm.  Advanced Materials Research,  Trans Tech Publications Ltd. 2012, Vol. 490. P. 

147-151. 

55. Lin L., Wang F. and Luo B. An optimization algorithm inspired by propagation of yeast for 

fleet maintenance decision making problem involving fatigue structures. Applied Soft 

Computing. 2019, Vol. 85.  P. 105755. 

56. Sanchez D.T., Boyacı B. and Zografos K.G. An optimisation framework for airline fleet 

maintenance scheduling with tail assignment considerations. Transportation Research Part 

B: Methodological.  2020. Vol. 133. P. 142-164. 

57. Li H., Zuo H., Lei D., Liang K. and Lu T. Optimal combination of aircraft maintenance 

tasks by a novel simplex optimization method. Mathematical Problems in Engineering. 

2015. 

58. Witteman M., Deng Q. and Santos B.F. A bin packing approach to solve the aircraft 

maintenance task allocation problem. European Journal of Operational Research. 2021, 

Vol 294.  P. 365-376. 



153 
 

59.  Li H., Zuo H., Liang K., Xu J., Cai J. and Liu J. Optimizing combination of aircraft 

maintenance tasks by adaptive genetic algorithm based on cluster search. Journal of 

Systems Engineering and Electronics. 2016,  Vol. 27(1).  P. 140-156. 

60. Muchiri A.K. and Smit K. Optimizing aircraft line maintenance through task re-clustering 

and interval de-escalation. Faculty of Aerospace Engineering, Delft University of 

Technology. 2017. 

61. Ali B., Kamal K., Usman M., Mah-e-Zehra. Optimization of aircraft maintenance routing 

using uninformed and informed search algorithms. International Journal of Mechanical 

Engineering and Robotics Research. 2019.  P. 141-145 

62. Safaei N. and Jardine A.K. Aircraft routing with generalized maintenance constraints. 

Omega (United Kingdom). 2018, Vol. 80. P. 111-122. 

63. Gopalan R. and Talluri K.T. The aircraft maintenance routing problem. Operations 

research. 1998,  46(2). P. 260-271. 

64. Ahmed M.B., Mansour F.Z. and Haouari M.  A two-level optimization approach for robust 

aircraft routing and retiming. Computers & Industrial Engineering. 2017, Vol. 112. P. 586-

594. 

65. Cui R., Dong X. and Lin Y.  Models for aircraft maintenance routing problem with 

consideration of remaining time and robustness. Computers & Industrial Engineering. 

2019, Vol. 137. P. 106045. 

66. Eltoukhy A.E., Chan F.T., Chung S.H. and Niu B. 2018.  A model with a solution algorithm 

for the operational aircraft maintenance routing problem. Computers & Industrial 

Engineering. 2018, Vol. 120. P. 346-359. 

67. Al-Thani N.A., Ahmed M.B. and Haouari M. A model and optimization-based heuristic for 

the operational aircraft maintenance routing problem. Transportation Research Part C: 

Emerging Technologies. 2016, Vol. 72. P. 29-44. 

68. Sarac A., Batta R. and Rump C.M. A branch-and-price approach for operational aircraft 

maintenance routing. European Journal of Operational Research. 2006, Vol. 175(3). P. 

1850-1869. 



154 
 

69. Başdere M. and Bilge Ü. Operational aircraft maintenance routing problem with remaining 

time consideration. European Journal of Operational Research. 2014, Vol. 235(1). P. 315-

328. 

70. Eltoukhy A.E.E., Wang Z.X., Chan F.T.S., Chung S.H. Joint optimization using a leader-

follower Stackelberg game for coordinated configuration of stochastic operational aircraft 

maintenance routing and maintenance staffing. Computers & Industrial Engineering. 2018.  

doi.org/10.1016/j.cie. 2018.08.012 

71. Feng Y.W., Chen J.Y., Lu C. and Zhu S.P. Civil aircraft spare parts prediction and 

configuration management techniques: review and prospect. Advances in Mechanical 

Engineering. 2021, Vol.13(6).   

72. Gu J., Zhang G. and Li K.W. Efficient aircraft spare parts inventory management under 

demand uncertainty. Journal of air transport management. 2015, Vol. 42. P. 101-109. 

73. Fritzsche R. and Lasch R. An integrated logistics model of spare parts maintenance 

planning within the aviation industry. Proceedings of world academy of science, 

engineering and technology. 2012, Vol. 68. 

74. Ni X., Zuo H. and Liu, M. Research on optimization model of civil aircraft spare parts 

inventory allocation. IEEE Chinese control and decision conference. 2008. P. 1042-1045.   

75. Cai J., Li X. and Chen X. Joint optimization of maintenance inspection and spare 

provisioning for aircraft deteriorating parts. Journal of Systems Engineering and 

Electronics. 2017, Vol. 28(6). P. 1133-1140. 

76. Li Y., Feng Y., Xue X. and Lu C. A united allocation method of spare parts and ground 

maintenance equipment for civil aircraft. MATEC Web of Conferences EDP Sciences. 

2017, Vol. 114. P. 03006. 

77. Lee L.H., Chew E.P., Teng S. and Chen Y. Multi-objective simulation-based evolutionary 

algorithm for an aircraft spare parts allocation problem. European Journal of Operational 

Research. 2008, Vol. 189(2). P. 476-491. 

78. De Bruecker P., Beliën J., Van den Bergh J. and Demeulemeester E. A three-stage mixed 

integer programming approach for optimizing the skill mix and training schedules for 



155 
 

aircraft maintenance. European Journal of Operational Research.  2018, Vol. 267(2). P. 

439-452. 

79. De Bruecker P., Van den Bergh J., Belien J. and Demeulemeester E. A two-stage mixed 

integer programming approach for optimizing the skill mix and training schedules for 

aircraft maintenance. 2015. Available at SSRN 2697491. 

80. Stadnicka D., Arkhipov D., Battaïa O. and Ratnayake R.C. Skills management in the 

optimization of aircraft maintenance processes. IFAC-PapersOnLine. 2017, Vol. 50(1). P. 

6912-6917. 

81. Feng Q., Li S. and Sun B. 2014. A multi-agent based intelligent configuration method for 

aircraft fleet maintenance personnel. Chinese Journal of Aeronautics. 2014, Vol. 27(2). P. 

280-290. 

82. Rodrigues L.R., Gomes J.P., Ferri F.A., Medeiros I.P., Galvao R.K. and Júnior C.L.N. Use 

of PHM information and system architecture for optimized aircraft maintenance planning. 

IEEE Systems Journal. 2014, Vol. 9(4). P. 1197-1207. 

83. Ferri F.A.S., Rodrigues L.R., Gomes J.P.P., de Medeiros I.P., Galvão R.K.H. and 

Nascimento C.L. Combining PHM information and system architecture to support aircraft 

maintenance planning. IEEE International Systems Conference (SysCon). 2013. P. 60-65. 

84. Vianna W.O.L. and Yoneyama T. Predictive maintenance optimization for aircraft 

redundant systems subjected to multiple wear profiles. IEEE Systems Journal. 2017, Vol. 

12(2). P. 1170-1181. 

85. Susova G.M. and Petrov A.N. Markov model-based reliability and safety evaluation for 

aircraft maintenance-system optimization. IEEE Annual Reliability and Maintainability 

Symposium. 1997.  P. 29-36. 

86. Guo J., Li Z. and Wolf J. 2016, January. Reliability centered preventive maintenance 

optimization for aircraft indicators. IEEE Annual Reliability and Maintainability 

Symposium (RAMS). 2016. P. 1-6. 



156 
 

87. Shanmuganathan V.K., Haran A.P., Ragavendran S. and Gayathri N. Aero-Engine 

Maintenance cost optimization by RCM. Life Science Journal. 2013, Vol.10(1).  P. 2891-

2896. 

88. Dekker R. and Scarf P.A. On the impact of optimisation models in maintenance decision 

making: the state of the art. Reliability Engineering & System Safety. 1998, Vol.60(2). P. 

111-119. 

89. International Air Transport Association (IATA). Best Practices for Component 

Maintenance Cost Management. 2015. 

90. Jiang Y., Zhang H., Song X., Jiao X., Hung W.N., Gu M. and Sun J.  Bayesian-network-

based reliability analysis of PLC systems. IEEE transactions on industrial electronics.  

2012, Vol. 60(11). P. 5325-5336. 

91. Pandian G.P., Diganta D.A.S., Chuan L.I., Enrico Z.I.O. and Pecht M. A critique of 

reliability prediction techniques for avionics applications. Chinese Journal of Aeronautics. 

2018, Vol. 31(1). P. 10-20. 

92. Uganda Civil Aviation Authority (CAA Uganda). Maintenance Control by Reliability 

Methods, Advisory Circular CAA-AC-AWS010. 2013. 

93. Hu C. and Youn B.D. Adaptive-sparse polynomial chaos expansion for reliability analysis 

and design of complex engineering systems. Structural and Multidisciplinary Optimization. 

2011, Vol. 43(3). P. 419-442. 

94. General information from the theory of reliability, Reliability of Aircraft lecture notes,  

Burlakov V.I, National Aviation University, Kyiv, Ukraine, In Russian 

95. Nakagawa T. Maintenance theory of reliability. Springer Science & Business Media. 2005. 

96. Huang J., Song Y., Ren Y. and Gao Q. An optimization method of aircraft periodic 

inspection and maintenance based on the zero-failure data analysis. IEEE Chinese 

Guidance, Navigation and Control Conference. 2014. P. 319-323. 

97. Zaliskyi M., Petrova Y., Asanov M. and Bekirov E. Statistical data processing during wind 

generators operation. International Journal of Electrical and Electronic Engineering & 

Telecommunications.  2019, Vol. 88(1). P. 33-38. doi.org/10.18178/ijeetc.8.1.33-38. 



157 
 

98. Zaliskyi M., Solomentsev O., Kozhokhina O. and Herasymenko T. Reliability parameters 

estimation for radioelectronic equipment in case of change-point. IEEE Signal Processing 

Symposium (SPSympo), Jachranka Village, Poland. 2017. P. 1-4. 

doi.org/10.1109/SPS.2017.8053676. 

99. Solomentsev O., Zaliskyi M., Herasymenko T. and Petrova Y. Data processing method for 

deterioration detection during radio equipment operation. IEEE Microwave Theory and 

Techniques in Wireless Communications (MTTW). 2019, Vol. 1. P. 1-4. 

100. Solomentsev O., Zaliskyi M., Nemyrovets Y. and Asanov M. Signal processing in case 

of radio equipment technical state deterioration. IEEE Signal Processing Symposium 

(SPSympo), Debe, Poland. 2015. P. 1-5. doi.org/10.1109/SPS.2015.7168312. 

101. Hryshchenko Y. Reliability Problem of Ergatic Control Systems in Aviation.  IEEE 4th 

International Conference on Methods and Systems of Navigation and Motion Control 

(MSNMC), Kyiv, Ukraine. 2016. P.126-129. doi.org/10.1109/MSNMC.2016.7783123. 

102. Melkumyan V. Technological Systems of Service Type. Elements of Design Theory and 

Applied Problems of Operation, National Aviation University, Kyiv. 2003, P. 171. (in 

Ukrainian) 

103. Solomentsev O.V., Melkumyan V.H., Zaliskyi M.Y. and Asanov M.M. UAV operation 

system designing. IEEE International Conference Actual Problems of Unmanned Aerial 

Vehicles Developments (APUAVD), Kyiv, Ukraine. 2015. P. 95-98. 

doi.org/10.1109/APUAVD.2015.7346570. 

104. Taranenko A.G., Gabrousenko Ye.I., Holubnychyi A.G. and Slipukhina, I.A. Estimation 

of Redundant Radionavigation System Reliability. Proceedings of IEEE 5th International 

Conference on Methods and Systems of Navigation and Motion Control, Kyiv, Ukraine. 

2018. P. 28-31. doi.org/10.1109/MSNMC.2018.8576282. 

105. Barlow R. E. and Proschan F. Mathematical Theory of Reliability.  John Wiley and Sons, 

New York. 1965. 274 p. 

106. Rubinstein R.Y. and Kroese D.P. Simulation and the Monte Carlo Method, Second 

Edition. John Wiley & Sons. 2008. 



158 
 

107. Churchman C.W., Ackoff R.L. and Arnoff E.L. Introduction to Operations Research, 

Wiley, New York. 1959. 

108. Kiviat P. J. Digital Computer Simuiotion: Modelling Concepts, Report RM-5378-PR. 

The Rand Corporation, Santa Monica, California. 1967. 

109. Papadopoulos V., Giovanis D.G., Lagaros N.D. and Papadrakakis M. Accelerated subset 

simulation with neural networks for reliability analysis. Computer Methods in Applied 

Mechanics and Engineering. 2012.  P. 70-80. 

110. Dubourg V. Adaptive surrogate models for reliability analysis and reliability-based 

design optimization. Doctoral dissertation, Université Blaise Pascal-Clermont-Ferrand II. 

2011. 

111. Dubourg V., Sudret B. and Deheeger F. Metamodel-based importance sampling for 

structural reliability analysis. Probabilistic Engineering Mechanics. 2013, Vol. 33. P. 47-

57. 

112. Keshtegar B. and Meng Z. A hybrid relaxed first-order reliability method for efficient 

structural reliability analysis. Structural Safety. 2017, Vol. 66. P. 84-93. 

113. Sinha R.K., Shah S.A., Hume, E.L. and Tuan R.S. The effect of a 5-day space flight on 

the immature rat spine. The Spine Journal. 2002, Vol. 2(4). P. 239-243. 

doi.org/10.1016/S1529-9430(02)00197-3. 

114. Yang J.H., Kennedy Q., Sullivan J. and Fricker R.D. Pilot performance: assessing how 

scan patterns & navigational assessments vary by flight expertise. Aviation, space, and 

environmental medicine. 2013, Vol. 84(2). P. 116-124. doi.org/10.3357/ASEM.3372.2013. 

115. Knecht W.R. The “killing zone” revisited: Serial nonlinearities predict general aviation 

accident rates from pilot total flight hours. Accident Analysis & Prevention. 2013, Vol. 60. 

P. 50-56. doi.org/10.1016/j.aap.2013.08.012. 

116. English J.M. and Kernan G.L. The prediction of air travel and aircraft technology to the 

year 2000 using the Delphi method. Transportation research. 1976, Vol.10(1).  P. 1-8. 

doi.org/10.1016/0041-1647(76)90094-0. 



159 
 

117. Varoquaux G. Cross-validation failure: Small sample sizes lead to large error bars. 

Neuroimage. 2018, Vol.180. P. 68-77. doi.org/10.1016/j.neuroimage.2017.06.061.  

118. Matuschek H., Kliegl R., Vasishth S., Baayen H. and Bates D. Balancing Type I error 

and power in linear mixed models. Journal of memory and language. 2017, Vol.94. P. 305-

315. doi.org/10.1016/j.jml.2017.01.001. 

119. D’souza R.N., Huang P.Y. and Yeh F.C. 2020. Structural analysis and optimization of 

convolutional neural networks with a small sample size. Scientific reports. 2020, Vol. 10(1). 

P. 1-13. 

120. Dwivedi A.K., Mallawaarachchi I. and Alvarado L.A. Analysis of small sample size 

studies using nonparametric bootstrap test with pooled resampling method. Statistics in 

medicine. 2017, Vol. 36(14). P. 2187-2205. doi.org/10.1002/sim.7263. 

121. Liu S. and Deng W. Very deep convolutional neural network based image classification 

using small training sample size. 3rd IAPR Asian conference on pattern recognition 

(ACPR), IEEE. 2015. P. 730-734. doi.org/10.1109/ACPR.2015.7486599. 

122. Han L., Yang G., Dai H., Xu B., Yang H., Feng H., Li Z. and Yang X. Modeling maize 

above-ground biomass based on machine learning approaches using UAV remote-sensing 

data. Plant methods. 2019, Vol. 15(1). P. 1-19. 

123. Gou J., Ma H., Ou W., Zeng S., Rao Y., Yang H. A generalized mean distance-based k-

nearest neighbor classifier. Expert Systems with Applications. 2019, Vol. 115. P. 356-372. 

doi.org/10.1016/j.eswa.2018.08.021. 

124. Zaidan M.A., Harrison R.F., Mills A.R. and Fleming P.J. Bayesian hierarchical models 

for aerospace gas turbine engine prognostics. Expert Systems with Applications. 2015, Vol. 

42(1). P. 539-553. doi.org/10.1016/j.eswa.2014.08.007 

125. Wang C., Guo J. and Shen A. Sensitivity analysis of censoring data from component 

failure analysis and reliability evaluation for the aviation internet of things. Computer 

Communications. 2020, Vol. 157. P. 28-37. doi.org/10.1016/j.comcom.2020.04.003 



160 
 

126. Chen X., Huang J. and Yi M. Cost estimation for general aviation aircrafts using 

regression models and variable importance in projection analysis. Journal of cleaner 

production. 2020, Vol. 256. P. 120648. doi.org/10.1016/j.jclepro.2020.120648. 

127. Combrisson E. and Jerbi K. Exceeding chance level by chance: The caveat of theoretical 

chance levels in brain signal classification and statistical assessment of decoding accuracy. 

Journal of neuroscience methods. 2015, Vol.250.  P. 126-136. 

doi.org/10.1016/j.jneumeth.2015.01.010. 

128. ADS-79D-HDBK, Aeronautical Design Standard: Handbook for Condition-based 

Maintenance System for US Army Aircraft (Put onto operation 07.03.2013), Huntsville, 

USA. 2013. 284 p 

129. Solomentsev O., Zaliskyi M., Shcherbyna O. and Kozhokhina O. Sequential procedure 

of changepoint analysis during operational data processing. IEEE Microwave Theory and 

Techniques in Wireless Communications (MTTW). 2020, Vol. 1. P. 168-171. 

doi.org/10.1109/MTTW51045.2020.9245068. 

130. Goncharenko A. V. Optimal UAV Maintenance Periodicity Obtained on the Multi-

optional Basis. Proceedings of IEEE 4th International Conference on Actual Problems of 

UAV Developments. 2017.  P. 65-68. doi.org/10.1109/APUAVD.2017.8308778. 

131. Ulansky V. and Terentyeva I. Availability assessment of a telecommunications system 

with permanent and intermittent faults. IEEE First Ukraine Conference on Electrical and 

Computer Engineering 2017. P. 908-911. doi.org/10.1109/UKRCON.2017.8100386.  

132. Ulansky V. and Raza A. Determination of the optimal maintenance threshold and 

periodicity of condition monitoring. 1st World Congress on Condition Monitoring, London. 

2017. P. 1343-1355. doi.org/10.3390/e21121193. 

133. Gkioulekas I. and Papageorgiou L.G. Piecewise regression analysis through information 

criteria using mathematical programming. Expert Systems with Applications. 2019, 

Vol.121. P. 362-372. 

134. Evans M.J. and Rosenthal J.S. Probability and Statistics, The Science of Uncertainty 

Second Edition. University of Toronto. 2009.  



161 
 

135. Chatterjee S., and Hadi A.S. Regression Analysis by Example, 5th Edition. Wiley Series 

in Probability and Statistics. 2013.  

136. Seber G.A. and Lee A.J. Nonlinear Regression. Wiley series in probability and statistics. 

2003. P.36-44. 

137. Toms J.D. and Lesperance M.L. Piecewise regression: a tool for identifying ecological 

thresholds. Ecology. 2003, Vol. 84(8). P. 2034-2041. 

138. Gopalakrishnan P. and Banerji A.K. Maintenance and spare parts management. PHI 

Private Limited Delhi. 2013. 400p. 

139. Slater P. Smart inventory solutions: improving the management of engineering materials 

and spare parts. Industrial Press Inc. 2010. 275p. 

140. Kontrec N.Z., Milovanović G.V., Panić S.R. and Milošević H. A reliability-based 

approach to nonrepairable spare part forecasting in aircraft maintenance system. 

Mathematical Problems in Engineering. 2015. doi.org/10.1155/2015/731437.  

141. SKYBrary. Minimum Equipment List (MEL). URL: https://skybrary.aero/articles/mini

mum-equipment-list-mel.  

142. Manzini R., Regattieri A., Pham H. and Ferrari E. Maintenance for industrial systems. 

Springer Series in Reliability Engineering. 2010. 479p. 

143. S.R. Singh. Spare Parts. URL:https://www.scribd.com/document/106343769/Spare-

Parts 

144. Boeing 737-300/400/500 maintenance planning data. Section 8, Component 

Maintenance Information. 

145. Thomas D.S. and Weiss B. Maintenance Costs and Advanced Maintenance Techniques: 

Survey and Analysis. International Journal of Prognostics and Health Management. 2021, 

Vol.12(1). doi.org/10.36001/ijphm.2021.v12i1.2883 

146. Krokotsch T., Knaak M. and Gühmann C. Improving Semi-Supervised Learning for 

Remaining Useful Lifetime Estimation Through Self-Supervision. International Journal of 

Prognostics and Health Management. 2022, Vol. 13. 

https://skybrary.aero/articles/minimum-equipment-list-mel
https://skybrary.aero/articles/minimum-equipment-list-mel
https://www.scribd.com/document/106343769/Spare-Parts
https://www.scribd.com/document/106343769/Spare-Parts


162 
 

147. Oikonomou A., Eleftheroglou N., Freeman F., Loutas T., and Zarouchas D. Remaining 

Useful Life Prognosis of Aircraft Brakes. International Journal of Prognostics and Health 

Management. 2022. doi.org/10.36001/ijphm.2022.v13i1.3072.  

148. Mauthe F., Hagmeyer S. and Zeiler P. Creation of Publicly Available Data Sets for 

Prognostics and Diagnostics Addressing Data Scenarios Relevant to Industrial 

Applications. International Journal of Prognostics and Health Management. 2021, 

Vol.12(2). doi.org/10.36001/ijphm.2021.v12i2.3087 

149. Okoro O.C. Reliability Analysis of Aircraft Fleet in Nigeria. Proceedings of National 

Aviation University. 2020, Vol. 83 (2). P.49–53. 

150. Rubinstein, R.Y. Simulation and the Monte Carlo Method, Second Edition. John Wiley 

& Sons. 1981.  

151. Florescu R. and Thirer N. Distribution Laws of Small Size Samples. Metrological 

Implementation. Proceedings of IEEE 24th Convention of Electrical & Electronics 

Engineers in Israel. 2006. P.  79-81. doi:10.1109/eeei.2006.321099. 

152. Dai Z, Wang Z. and Jiao Y. Bayes Monte-Carlo assessment method of protection 

systems reliability based on small failure sample data. IEEE Transactions on Power 

Delivery. 2014, Vol. 29(4).  P. 1841-1848. doi:10.1109/tpwrd.2014.2316915. 

153. Zhang H., Yuan H. and Li P. Estimation method for extremely small sample accelerated 

degradation test data. First IEEE International Conference on Reliability Systems 

Engineering (ICRSE), China. 2015.  P. 1-5. doi:10.1109/ icrse.2015.7366417. 

154. Hou Y. and Yang B. Probability-possibility transformation for small sample size data. 

IEEE Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 

Yantai, China. 2010, Vol. 4.  P. 1720-1724.  doi:10.1109/fskd.2010.5569396. 

155. Qingnian Y. and Yuzhou S. The fitting method of parameter distributions in 

geotechnical engineering under small sample.  Proceedings of IEEE 2nd International 

Conference on Artificial Intelligence, Management Science and Electronic Commerce 

(AIMSEC), Dengleng, China. P. 7366-7369. 2011. doi:10.1109/aimsec.2011.6010605. 



163 
 

156. Kuzmin V.N. and P.I. Bidyuk. A New Approach to Detection and Correction of Outliers. 

Proceedings of 14th International Scientific Conference named after Academician M. 

Kravchuk. 2012.  P. 13-15. 

157. Kuzmin V.M., Zaliskyi M.Y., Odarchenko R.S. and Petrova Y.V. New approach to 

switching points optimization for segmented regression during mathematical model 

building. 4th Workshop for Young Scientists in Computer Science & Software Engineering. 

2022.  

158. Ostroumov I.V. and Kuzmenko N.S.  Accuracy improvement of VOR/VOR navigation 

with angle extrapolation by linear regression. Telecommunications and Radio Engineering. 

2019, Vol. 78(15). P. 1399–1412. doi: 10.1615/TelecomRadEng.v78.i15.90. 

159. Radonja P., Stankovic S., Matovic B. and Drazic D. Regional Models for Biological 

Processes Based on Linear Regression and Neural Networks. 8th IEEE Seminar on Neural 

Network Applications in Electrical Engineering. 2006. P. 189-193. doi: 

10.1109/NEUREL.2006.341209. 

160. Feng X., Zhou Y., Hua T., Zou Y. and Xiao J. Contact temperature prediction of high 

voltage switchgear based on multiple linear regression model. In IEEE 32nd Youth 

Academic Annual Conference of Chinese Association of Automation (YAC), Hefei, China. 

2017.  P. 277-280.  doi: 10.1109/YAC.2017.7967419. 

161. Weisberg S. Applied Linear Regression. John Wiley and Sons, New York. 2005. 310 p. 

162. Atkinson A.C., Riani M. Robust diagnostic regression analysis. Springer Series in 

Statistics. 2000, Vol. 2.  328 p. doi: 10.1007/978-1-4612-1160-0. 

163. D. G. Kleinbaum, M. Klein.  Logistic Regression. Springer-Verlag, New York. 2002. 

598 p. doi: 10.1007/b97379. 

164. Huet S., Bouvier A., Poursat M.A., Jolivet E. and Bouvier A.M. 2004. Statistical tools 

for nonlinear regression: a practical guide with S-PLUS and R examples. Springer, New 

York. 233 p. 

165. Kaufman R.L. Heteroskedasticity in regression: Detection and correction. SAGE 

Publications. 2013. 112 p. 



164 
 

166. Zaliskyi M., Solomentsev O., Shcherbyna O., Ostroumov I., Sushchenko O., 

Averyanova Y., Kuzmenko N., Shmatko O., Ruzhentsev N., Popov A. and Zhyla S. 2021. 

Heteroskedasticity analysis during operational data processing of radio electronic systems. 

Data Science and Security, Lecture Notes in Networks and Systems. Springer, Singapore. 

2021. P. 168-175. 10.1007/978-981-16-4486-3_18. 

167. Ostroumov I., Kuzmenko N., Sushchenko O., Zaliskyi M., Solomentsev O., Averyanova 

Y., Zhyla S., Pavlikov V., Tserne E., Volosyuk V. and Dergachov K.  A probability 

estimation of aircraft departures and arrivals delays. In International Conference on 

Computational Science and Its Applications. Lecture Notes in Computer Science, Springer, 

Cham. 2021. P. 363-377 Springer, Cham. doi.org/10.1007/978-3-030-86960-1_26. 

168. Ostroumov I., Kuzmenko N., Sushchenko O., Pavlikov V., Zhyla S., Solomentsev O., 

Zaliskyi M., Averyanova Y., Tserne E., Popov A. and Volosyuk V. Modelling and 

simulation of DME navigation global service volume. Advances in Space Research. 2021, 

Vol. 68(8). P. 3495-3507. doi.org/10.1016/j.asr.2021.06.027. 

169. Okoro O.C., Zaliskyi M., Dmytriiev S., Solomentsev O. and Sribna O. Optimization of 

Maintenance Task Interval of Aircraft Systems. International Journal of Computer Network 

& Information Security. 2022, Vol. 14(2). 

170. Wang W. A joint spare part and maintenance inspection optimisation model using the 

delay-time concept. Reliability Engineering & System Safety. 2011, Vol. 96(11). P. 1535-

1541. 

171. Figueiredo-Pinto D.G., Fan I.S. and Abrahão F.T.M. An Operational Availability 

Optimization Model Based on the Integration of Predictive and Scheduled Maintenance. In 

PHM Society European Conference. 2021, Vol. 6(1). 

172. Bozoudis M., Lappas I. and Kottas A. Use of cost-adjusted importance measures for 

aircraft system maintenance optimization. Aerospace. 2018, Vol.5(3). P. 68. 

173. Zhang J.X., Du D.B., Si X.S., Hu C.H. and Zhang H.W. Joint optimization of preventive 

maintenance and inventory management for standby systems with hybrid-deteriorating 

spare parts. Reliability Engineering & System Safety. 2014, Vol. 214. P. 107686. 



165 
 

174. Fauriat W. and Zio E. Optimization of an aperiodic sequential inspection and condition-

based maintenance policy driven by value of information. Reliability Engineering & System 

Safety. 2020, Vol. 204.  P. 107133.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



166 
 

APPENDIX 1 

 

Algorithm of software implementation for developing mathematical models for aircraft 

maintenance processes for continuing airworthiness in Nigeria. 

 

ALGORITHM OF SOFTWARE IMPLEMENTATION FOR DEVELOPING 

MATHEMATICAL MODELS FOR OPTIMIZING AIRCRAFT MAINTENANCE 

PROCESSES FOR CONTINUING AIRWORTHINESS.  

 

Mathcad-script  

Mathcad-скрипт 

 

A := [] 

V := histogram (n, t) 

j:= 0..(n-1) 

 

plot (Vj,1 ,  Vj,0) 

plot (i, Bi)  

 

N := iterations  

k  := 0..N-1 

C := rexp (N, λ)  

Dk := ∑ 𝐶𝑗
𝑘
𝑗=0  

Ek := md(1) 

 

Fi,k := 0 

Fn-1,k :=   |Dk  if  Ek ≤ B0 otherwise 0| 

i := 1..m 
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Fn,k :=   |Dk  if  Bi-1 < Ek  ≤ Bi otherwise 0| 

i := 0..m 

An :=  |s evaluate 0 for k, for k ϵ 0..N-1, if Fn-1,k ≠ 0| as evaluate Fn-1,k, s evaluate s+1| a| 

 

p := 1..length(An) – 1 

Bn0 := An0 

Bnp := Anp – Anp-1 

ceil(√𝑙𝑒𝑛𝑔ℎ𝑡ℎ(𝐴𝑛) ) – 1 

V:= histogram (ceil(√𝑙𝑒𝑛𝑔ℎ𝑡ℎ(𝐴𝑛) ) – 1, Bn 

j:= 0.. (ceil(√𝑙𝑒𝑛𝑔ℎ𝑡ℎ(𝐴𝑛) ) – 1 

plot (Vj,1 ,  Vj,0) 

 

 

x = [x0,  x1,  x2,  x3,  x4, …, xn] 

x:= sort(x) 

mean(x) = [] 

stdev(x) = [] 

median(x) = [] 

stdev(x)

mean(x) 
= [𝑐𝑣] 

A := histogram (6, x)  

i:= 0..n–1 

j:= 0..m 

plot (Aj,1 ,  Aj,0) 

 

√𝑛
3

 . 1.5 = t 

k := 0..t 
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ymink := 
𝑥𝑘

𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)
 

ymaxk := 
𝑥𝑘+46

𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)
 

ymin := ln(ymin) 

ymax := ln(ymax) 

 

up1 := 
stdev(x)

mean(x) 
 . ∑ 𝑢𝑝𝑘

𝑡
𝑘=1  

up2 :=  | ∑ 𝑢𝑝𝑘 | .
stdev(x)

mean(x) 
 𝑡

𝑘=1  

𝑦1

𝑢𝑝1
= [] 

𝑦2

𝑢𝑝2
= [] 

𝑎1 ∶= 𝑒
𝑦1

𝑢𝑝1  

𝑎2 ∶= 𝑒
𝑦2

𝑢𝑝2  

 

𝑥𝑛 ≔ 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑥) . 𝑎1
|𝑢𝑝.𝑐𝑣|  

𝐵𝐹𝑖 =
𝑎1. 𝑒−𝑢𝑝𝑖 +  𝑎2. 𝑒𝑢𝑝𝑖

𝑒−𝑢𝑝𝑖 +  𝑒𝑢𝑝𝑖
 

𝐵𝐹2𝑖 = 𝐵𝐹𝑖(𝑢𝑝𝑖) 

 

𝑄𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥). (𝐵𝐹𝑖)𝑢𝑝𝑖 .  𝑐𝑣  

𝑄2𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥). (𝐵𝐹2𝑖)𝑢𝑝𝑖 .  𝑐𝑣  

𝑄1𝑖 = 𝑚𝑒𝑎𝑛(𝑥).  𝑢𝑝𝑖  . 𝑠𝑡𝑑𝑒𝑣 (𝑥) 

 

plot (𝑥𝑖 , 𝑄𝑖 , 𝑄2𝑖 , 𝑄1𝑖 ,  𝑢𝑝𝑖) 
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C := [] 

X := 1...n 

plot (Ci , Y(X),     i, X) 

 

𝐶𝑟 ≔ [] 

𝐶𝑚 ≔ [] 

𝜆   ≔ [] 

𝑇𝑚 ≔ 1000, 1500. . 50000 

𝐸𝑓(𝑇𝑚) ∶=  
𝐶𝑟 𝐸𝑛 (𝑇𝑚 ) + 𝐶𝑚 

𝑇𝑚 
 

𝐸𝑓𝑖
(𝑇𝑚) ∶=  

𝐶𝑟 (
𝜆. 𝑇𝑚  

2
+

𝑒−2𝜆.𝑇𝑚 

4
−

1
4

)

𝑇𝑚 
+ 𝐶𝑚  

plot (𝐸𝑓(𝑇𝑚), 𝐸𝑓𝑖
(𝑇𝑚)        𝑇𝑚       

 

 

λ := [] 

A := 1..n 

P := 0.90..0.95 

N := 1…X 

M := t 

𝑃𝑘,𝑖 ∶=  ∑
(𝜆𝑖 . 𝑡)𝑥𝑒−𝜆𝑖 .𝑡

𝑥!

𝑘

𝑥=0

 

plot (Pz (t, λ0, z), Pz (t, λ1, z), Pz (t, λ2, z) ,…, Pz (t, λn, z),      z) 

 

 

 

 



170 
 

APPENDIX 2 

 

List of publications, information on the approval and implementation of the results of the 

dissertation 

 

LIST OF PUBLICATIONS BASED ON DISSERTATION TOPIC  

 

Publications included in the international scientometric database (Scopus) 

 

1. Okoro O.C., Zaliskyi M., Dmytriiev S., Solomentsev O., Sribna O. Optimization of 

Maintenance Task Interval of Aircraft Systems. International Journal of Computer 

Network & Information Security. 2022. Volume 14. No 2. P. 77–89.  

Author's contribution: development of stochastic mathematical models for determining 

optimal aircraft maintenance task interval using diagnostic variables and reliability 

parameters. 

2. Okoro O.C., Zaliskyi M., Serhii D., Abule I. An approach to reliability analysis of 

aircraft systems for a small dataset. Scientific Journal of Silesian University of 

Technology. Series Transport. 2023. Volume 118. P. 207–217.  

Author's contribution: development of a model for reliability analysis of aircraft 

components, subsystems, systems, and structures given a small dataset which is typical 

of small-scale aircraft operations. 

3. Zaliskyi M., Okoro O.C., Dmytriiev S., Fayoyiwa O.S. Software Support for Simulation 

and Prediction of Failures and Faults During Aircraft Operations. Lecture Notes in 

Networks and Systems. 2023. Volume 736. P. 247–259.  

Author's contribution: development of software framework for predicting failures and 

malfunctions of aircraft components, subsystems, systems, and structures.  

4. Zaliskyi M., Yashanov I., Okoro O.C., Shcherbyna O. Analysis of Learning Efficiency 

of Expert System for Decision-Making Support in Aviation. Advanced Computer 
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Information Technologies (ACIT): Proceedings of IEEE 12th International Conference, 

Ruzomberok (Slovakia). 26-28 September 2022. P. 172–175.  

Author's contribution: efficiency analysis of different expert system for decision-making 

support in aircraft operations. 

5. Okoro O.C., Chukwu C.N., Zaliskyi M., Holubnychyi O. A Method for Planning Spare 

Parts Inventory During Aircraft Operation Advanced Computer Information 

Technologies (ACIT): Proceedings of IEEE 12th International Conference, Ruzomberok 

(Slovakia). 26-28 September 2022. P. 168–171. 

Author's contribution: development of methodology for aircraft spare parts planning 

using statistical data of times to failure of aircraft components. 

6. Okoro O.C., Zaliskyi M., Dmytriiev S., Qudus S. Data-Driven Approach to Optimal 

Aircraft Maintenance. The International Council of the Aeronautical Sciences: 

Proceedings of 33rd Congress, Stockholm (Sweden). 4 – 9 September 2022. P. 7114–

7124.  

Author's contribution: development and synthesis of statistical data processing 

algorithms and models to improve the efficiency of aircraft maintenance. 

Publications in scientific and specialized Ukrainian Journals 

7. Okoro O.C. Reliability Analysis of Aircraft Fleet in Nigeria. Proceedings of National 

Aviation University. 2020, Volume 83 (2). P.49–53. 

Author's contribution: analysis of reliability indicators of aircraft and helicopters in 

Nigeria. 

8. Окоро О. Ч., Дмитрієв С. О., Заліський М. Ю., Осіпчук А. О. Моделі для аналізу 

надійності авіаційних компонентів, систем та конструкцій повітряних суден. 

Системи управління, навігації та зв’язку. Збірник наукових праць. 2022. Том 4 (№ 

70). С. 16–21. 

Author's contribution: development of a statistically simulated reliability model that can 

be applied during the design and development of components, systems, and structures 

of helicopters. 
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9. Окоро О.Ч., Дмитрієв С. О., Заліський М. Ю., Осіпчук А. О. Статистичні імітаційні 

моделі оптимізації технічного обслуговування повітряних суден. Системи 

управління, навігації та зв’язку. Збірник наукових праць. 2022. Том 3 (№ 69). С. 

8–12. 

Author's contribution: development of a statistical simulation model of failures of 

aircraft systems and structures using the Monte Carlo method. 

Publications in collections of conference materials 

10. Okoro O.C. Optimization of Aircraft Maintenance Processes Using Regression 

Analysis. Current Security Problems in Transport, Energy, and Infrastructure: 

Proceedings of Conference, Kherson. 2021. P. 244. 

Author's contribution: development of a linear regression model for failure prediction 

of aircraft systems and components using aircraft operations data from Nigeria. 

11. Okoro O.C., Zaliskyi M., Dmytriiev S. Statistical simulation regression models for 

efficient aircraft operations. Aviation in the XXI-st century - Safety in aviation and space 

technology: Proceedings of The Tenth World Congress, Kyiv. 28 – 30 September 2022. 

P. 1–5. 

Author's contribution: development of segmented regression models for precise 

prediction of the occurrence of failures of aircraft components, systems and structures 

using daily operation aircraft data. 

12. Zaliskyi M., Okoro O.C., Dmytriiev S. Statistical Simulation of Failures of the Systems 

and Structures of S-76 C++ Helicopters in Nigeria. Cyber Hygiene & Conflict 

Management in Global Information Networks: Proceedings of 2nd International 

Conference, Kyiv-Lviv. 30 November 2020. P. 1–10. 

Author's contribution: development of a statistical model for failure simulation of 

aircraft components. 

13. Okoro O.C., Zaliskyi M., Dmytriiev S. Statistical Simulation Models for the 

Optimization of Aircraft Maintenance Processes. Problems of Transportation 
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Organization and Air Transport Management: Proceedings of International Scientific-

Practical Conference, Kyiv, NAU, 20 October 2021. P-3.   

Author's contribution: development of methodology for determining the optimal time 

interval for the maintenance of aircraft. 

14. Okoro O.C., Zaliskyi M., Dmytriiev S. Models for Optimizing Aircraft Maintenance 

Processes. Condition-based Maintenance in Aerospace: Proceedings of 1st International 

Conference, Delft (Netherlands). 24 – 25 May 2022. P. 1–10. 

Author's contribution: Numerical examples for estimating optimal time interval for 

preventive and predictive aircraft maintenance tasks using exponential probability 

density function.  

15. Okoro O.C., Zaliskyi M. Models and Algorithms for Optimizing Aircraft Maintenance 

Processes. Air Transport Research Society: Proceedings of 25th World Conference, 

Antwerp (Belgium). 24 – 27 August 2022. P. 1 – 5. 

Author's contribution: Numerical examples for estimating optimal time interval for 

preventive and predictive aircraft maintenance tasks using Erlang probability density 

function.  

16. Okoro O.C., Zaliskyi M. Optimizing Aircraft Maintenance Processes – An Operations 

Data-Driven Methodology. Ontario Aircraft Maintenance Conference; The Future of 

Aircraft Maintenance – Performance, Professionalism and Pride: Proceedings of 

Conference, Toronto, (Canada). 2-3 November 2022. P.1-18. 

Author's contribution: development of simple and concise methodology for practical 

application of data-driven predictive aircraft maintenance. 

17. Okoro O.C., Zaliskyi M., Dmytriiev S. An Approach to Optimizing Aircraft 

Maintenance. In: Karakoc, T.H., Atipan, S., Dalkiran, A., Ercan, A.H., Kongsamutr, N., 

Sripawadkul, V. (eds). Research Developments in Sustainable Aviation. ISSA SARES 

2021 (Proceedings of International Symposium on Sustainable Aviation, Bangkok, 
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