

1

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Faculty of Aeronautics, Electronics and Telecommunications,

Department of Aviation Computer-Integrated Complexes

ACCEPT TO PROTECTION

Head of Department

 Viktor SINEGLAZOV

 ― ‖ 2023

QUALIFICATION PAPER

(EXPLANATORY NOTE)

HIGHER EDUCATION STUDY

―MASTER‖

Specialty 151 "Automation and computer-integrated technologies"

Educational and professional program "Information support and

engineering of aviation computer systems"

Subject: Cybersecure and invulnerable training

automated workstation for equipment development based

on STM series microcontrollers

Performer: student of the group ІЗ-225М Oleh Yaremchuk

 Supervisor: Associate professor, Ihor Sergeyev

Consultant of the "Environmental Protection" section Radomska M.М.

Consultant of the "Occupational safety and health" section Кazhan.K.І.

Norm control: Fylashkin М.К.

Kyiv 2023

1

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра авіаційних комп’ютерно-інтегрованих комплексів

ДОПУСТИТИ ДО ЗАХИСТУ

 Завідувач випускової кафедри

 Віктор СИНЄГЛАЗОВ

 ― ‖ 2023 p.

КВАЛІФІКАЦІЙНА РОБОТА

(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬОГО СТУПЕНЯ

―МАГІСТР‖

Спеціальність 151 «Автоматизація та компю’терно-інтегровані технології»

Освітньо-професійна програма «Інформаційне забезпечення та інженерія

авіаційних комп’ютерних система»

Тема: Кібербезпечне та невразливе навчальне

автоматизоване робоче місце для розробки обладнання на

основі мікроконтролерів серії STM

Виконавець: студент групи ІЗ-225М Яремчук Олег Русланович

Керівник: доцент, Сергеєв Ігор Юрійович

Консультант розділу «Охорона навколишнього середовища» Радомська М.М.

Консультант розділу «Охорона праці» Кажан.К.І.

Нормоконтролер: Філяшкін М.К.

Київ 2023

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра авіаційних комп’ютерно-інтегрованих комплексів

Освітній ступінь: Магістр

Спеціальність 151 "Автоматизація та комп'ютерно-інтегровані технології"

ЗАТВЕРДЖУЮ
Завідувач кафедри

 Віктор СИНЄГЛАЗОВ

― ____ ‖ __________2023 р.

ЗАВДАННЯ

на виконання дипломної роботи студента

Яремчука Олега Руслановича

1. Тема роботи: ―Кібербезпечне та невразливе навчальне

автоматизоване робоче місце для розробки обладнання на основі

мікроконтролерів серії STM‖

2. Термін виконання проекту (роботи): з 01.12.2023 р. до 27.12.2023 р.

3. Вихідні данні до проекту (роботи): Лабораторні роботи для

розробки обладнання на базі STM32, середовище розробки CubeIDE,

Atolic Studio.

4. Зміст пояснювальної записки (перелік питань, що підлягають

розробці):

1. Aктуальність кіберзахисту автоматизованого робочого місця; 2.

Аналіз існуючих рішень для вирішення проблеми; 3. Пропозиції

вирішення проблеми кібервразливості; 4. Розробка лабораторних

робіт.

5. Перелік обов’язкового графічного матеріалу:

1. Структурна схема підключення STM; 2. Схему входів і виходів

процесора; 3. схема пінів;

6. Календарний план-графік

№

п/п
Завдання Термін виконання

Відмітка
про

виконання

1 Отримання завдання 02.10.2023 – 03.10.2023

2 Формування мети та основних

завдань дослідження
03.10.2023 – 05.10.2023

3 Аналіз існуючих рішень 07.10.2023 – 15.10.2023

4 Теоретичний розгляд рішення

задачі
17.10.2023 – 01.11.2023

5
Пропозиції вирішення проблеми 01.11.2023 – 15.11.2023

6 Розробка програмного та

апаратного забезпечення 20.11.2023 – 05.12.2023

7 Оформлення пояснювальної

записки
07.12.2023 – 10.12.2023

8 Підготовка презентації та

роздаткового матеріалу
12.12.2023– 17.12.2023

6. Консультанти з окремих розділів

Розділ
Консультант

(посада, П.І.Б.)

Дата, підпис

Завдання

видав

Завдання

прийняв

Охорона праці
Доцент

Кажан К.І.

Охорона навколишнього

середовища

Доцент

Радомська М.М.

7. Дата видачі завдання: ―02‖ жовтня 2023 р.

Керівник: Сергеєв І.Ю.

Завдання прийняв до виконання: Яремчук О.Р.

NATIONAL AVIATION UNIVERSITY

Faculty of aeronavigation, electronics and telecommunications

Department of Aviation Computer Integrated Complexes

Educational level: Master

Specialty 151 "Automation and computer-integrated technologies"

APPROVED

Head of Department

 Viktor SINEGLAZOV

"____" __________2023

TASK

For the student's thesis

Yaremchuk Oleh Ruslanovych

1. Theme of the project: "Cybersecure and invulnerable training automated

workstation for equipment development based on STM series

microcontrollers"

2. The term of the project (work): from December 01, 2023 until

December 27, 2023

3. Output data to the project (work): Laboratory works for the

development of equipment based on STM32, CubeIDE development

environment, Atolic Studio.

4. Contents of the explanatory note (list of questions to be developed):

1. Relevance of cyber protection of an automated workplace; 2. Analysis of

existing solutions to solve the problem; 3. Proposals for solving the

problem of cyber vulnerability; 4. Development of laboratory works.

5. List of compulsory graphic material: 1. Structural diagram of STM

connection; 2. Scheme of inputs and outputs of the processor; 3. pin

scheme;

6. Planned schedule:

@

№

п/п

Task Execution term
Execution

mark

1

1
Task 02.10.2023 – 03.10.2023

2

2

Purpose formation and describing the

main research tasks
03.10.2023 – 05.10.2023

3

3
Analysis of existing solutions 07.10.2023 – 15.10.2023

4

4

Theoretical consideration of problem

solving
17.10.2023 – 01.11.2023

5

5
Suggestions for solving the problem 01.11.2023 – 15.11.2023

6

6
Software and hardware development 20.11.2023 – 05.12.2023

7

7
Making an explanatory note 07.12.2023 – 10.12.2023

8

8

Preparation of presentation and

handouts
12.12.2023– 17.12.2023

6. Consultants from individual sections

Section Consultant

Date, signature

Issued the task
Accepted the

task

Occupational safety and

health

Associate Professor

Kazhan K.I.

Environmental protection
Associate Professor

Radomska M.M.

7. Date of task receiving: ―2‖ October 2023

Diploma thesis supervisor: Sergeyev I.Y.

Issued task accepted: Yaremchuk O.R.

Table of contents

SECTION 1 STRUCTURE OF MODERN MICROCONTROLLERS...13

1.1. General data about the microcontroller…………………………….13

1.2. STM microcontrollers………………………………………………18

1.3. Cortex cores………………………………………………………23

1.4. Overview of current trends in cyber defense……………………..25

1.5. Analysis of requirements for a cyber-secure workplace………….26

1.6. Analysis of threats and vulnerabilities……………………………28

SECTION 2 ADVANTAGES OF STM MICROPROCESSORS………31

2.1. Pin-to-pin compatibility…………………………………………….31

2.2 Debug boards……………………………………………………….33

2.3 Low-cost boards…………………………………………………….36

2.4 High performance cores…………………………………………….38

2.5 Low power consumption……………………………………………40

2.6 Reliability…………………………………………………………...41

2.7 Security……………………………………………………………..42

2.8 Bus matrix…………………………………………………………..42

2.9 Low power mode entry……………………………………………..43

2.10 Memory allocation…………………………………………………44

2.11 Components of STM32 ……………………………………………45

2.11.1 System Architecture ……………………………………………..46

2.11.2 Microcontroller Configuration ………………………………….47

SECTION 3 DESIGNING A CYBER-PROTECTED WORKPLACE…51

3.1. Choice of system architecture and components…………………….51

3.2. Overview of the Cube MX development environment……………..53

SECTION 4 DEVELOPMENT OF LABORATORY WORKS ON

PROGRAMMING OF STM32 MICROCONTROLLERS…………….61

4.1 Laboratory work №1. Project generation and PWM work programming

in conjunction with CubeMX and Atollic TrueStudioОшибка! Закладка

не определена..............................61

4.2. Laboratory work №2. Working with a display based on HD44780..68

SECTION 5 ENVIRONMENTAL PROTECTION…………………..82

SECTION 6 OCCUPATIONAL SAFETY AND HEALTH …………91

Conclusions……………………………………………………………..98

References……………………………………………………………..100

РЕФЕРАТ

Пояснювальна записка кваліфікаційної роботи ― Кібербезпечне та

невразливе навчальне автоматизоване робоче місце для розробки обладнання на

основі мікроконтролерів серії STM ‖ 100 стор., 41 іл., 16 джерел.

КІБЕРБЕЗПЕЧНЕ ТА НЕВРАЗЛИВЕ НАВЧАЛЬНЕ АВТОМАТИЗОВАНЕ

РОБОЧЕ МІСЦЕ ДЛЯ РОЗРОБКИ ОБЛАДНАННЯ НА ОСНОВІ

МІКРОКОНТРОЛЕРІВ СЕРІЇ STM

Об’єктом дослідження є кібербезпечне та невразливе навчальне

автоматизоване робоче місце для розробки обладнання на основі

мікроконтролерів серії STM.

Предметом дослідження є методи кіберзахисту автоматизованого робочого

місця.

Метою кваліфікаційної роботи є розробка та впровадження механізмів

безпеки, таких як системи аутентифікації та авторизації, які забезпечують

надійний захист вбудованих систем, а також розробка суміжних з цим

лабораторних робіт.

Широке використання комп’ютерних систем, мереж і програмного

забезпечення призвело до збільшення кількості кіберзагроз, що створює ризик як

для корпоративних структур, так і для пересічних користувачів. Одночасно

інтеграція вбудованих систем і мікроконтролерів у різні сфери підкреслює

потребу в надійних і кіберзахищених рішеннях. Однак зростання популярності

мікроконтролерів STM32 привернуло увагу соціальних інженерів і хакерів.

Ця дипломна робота спрямована на створення кіберзахищеного робочого

місця на основі процесора STM32 для захисту вбудованих систем від потенційних

загроз. Цей підхід передбачає аналіз вимог, розробку та впровадження заходів

безпеки та тестування системи на стійкість до атак. Мета полягає в тому, щоб

зробити внесок у вдосконалення техніки безпеки для вбудованих систем і

підвищити безпеку та надійність пристроїв на основі мікроконтролерів STM32.

ABSTRACT

Explanatory note of the qualification work "Cybersecure and invulnerable

training automated workstation for equipment development based on STM series

microcontrollers " 100 pages, 41 fig., 16 sources.

CYBERSECURE AND INVULNERABLE TRAINING AUTOMATED

WORKSTATION FOR EQUIPMENT DEVELOPMENT BASED ON STM SERIES

MICROCONTROLLERS.

The object of the research is the cybersecure and invulnerable training automated

workstation for equipment development based on STM series microcontrollers.

The subject of research is methods of cyber protection of an automated workplace..

The purpose of the qualification work is development and implementation of security

mechanisms, such as authentication and authorization systems, which ensure reliable

protection of embedded systems, as well as development of related laboratory work.

The widespread use of computer systems, networks and software has led to an

increase in the number of cyber threats, which poses a risk to both corporate structures

and ordinary users. At the same time, the integration of embedded systems and

microcontrollers in various fields emphasizes the need for reliable and cyber-protected

solutions. However, the rise in popularity of STM32 microcontrollers has attracted the

attention of social engineers and hackers.

This thesis is aimed at creating a cyber-secure workplace based on the STM32

processor to protect embedded systems from potential threats. This approach involves

analyzing requirements, developing and implementing security measures, and testing

the system for resistance to attacks. The goal is to contribute to security improvements

for embedded systems and improve the security and reliability of STM32

microcontroller-based devices.

INTRODUCTION

The wide distribution of computer systems, networks, and software contributes to an

increase in cyber threats and attacks that can seriously harm both corporate structures and

average users. At the same time, the integration of embedded systems and microcontrollers

in various spheres of life encourages the development of dependable and cyber-protected

solutions based on such devices. These issues of cyber protection are becoming more and

more relevant and necessary at the current stage of development of information

technologies and cyberspace.

STM32 microcontrollers, which are widely used in a variety of fields, including

automotive, medical devices, home appliances, industrial automation, and others, are one

of the promising platforms for the development of cyber-protected systems. However, as

STM32 microcontrollers gain popularity, so does the interest of social engineers and

hackers in potential attacks against these systems.

The goal of this thesis is to develop and implement a cyber-protected workplace

based on the STM32 processor to protect embedded systems from potential threats. To

accomplish this goal, the requirements for a cyber-protected workplace will be analyzed,

appropriate security measures will be developed and implemented, and the system will be

tested for attack resistance.

This thesis seeks to contribute to the advancement of security techniques for

embedded systems, as well as to the security and dependability of devices based on

STM32 microcontrollers.

Scientific novelty

1. Development of a cyber-protected workplace based on the STM32

microcontroller: The scientific novelty is the creation of a set of security measures

and the implementation of a cyber-protected workplace based on the STM32

microcontroller, which was previously a less studied area in the context of cyber

security.

2. Analysis of threats and vulnerabilities for embedded systems: The work

includes a comprehensive analysis of threats and vulnerabilities of embedded

systems, which allows identifying potential attacks and developing protection

measures.

3. Development and implementation of security mechanisms: The thesis describes

the development and implementation of security mechanisms, such as authentication

and authorization systems, which provide reliable protection of embedded systems.

Practical value

1. Protection of embedded systems: The workplace developed in this work can be

used to protect embedded systems in a variety of industries, including automotive,

medical, and industrial automation.

2. Improving Internet of Things (IoT) security: The developed secure mechanisms

can be used to protect IoT devices, which is becoming increasingly relevant due to

the growing proliferation of connected devices.

3. Protection of important information systems: The results of the study can be

useful for organizations and enterprises that seek to increase the level of protection

of their information systems and embedded devices.

4. Creating a base for further research: Work on this topic can serve as a platform

for further research in the field of cyber protection of embedded systems and

microcontrollers.

SECTION 1

STRUCTURE OF MODERN MICROCONTROLLERS

1.1 General data about microcontrollers.

Household appliances, medical devices, elevator control systems, telephones,

walkie-talkies, and other communication devices, electronic musical instruments and

car stereos, computer peripherals (keyboards, joysticks, printers, and so on), traffic

lights, automatic gates and barriers, interactive children's toys, cars, locomotives,

and airplanes, robots, and industrial machines all use microcontrollers.

In contrast to a microprocessor, a microcontroller typically has a low bit rate (8 to

16 bits) and a rich set of instructions for manipulating individual bits. Bit

instructions can be used to operate discrete equipment (e.g., raise/lower the barrier,

switch on/off the lamp and heater, start/stop the engine, open/close the valve, and so

on).

Another significant difference between a microcontroller and a microprocessor is

that the controller chip contains all of the components needed to build a basic (and

sometimes rather complicated) control system. Yes, there is data memory (RAM),

program memory (permanent memory), a clock generator, timers, counters, parallel

and serial ports, and so on inside the microcontroller.

A typical microcontroller architecture consists of a synchronization and control

system (1), an arithmetic logic device (2), general-purpose registers (3), data

memory (4) and program memory (5), ports (6), functional devices (timers, counters,

pulse-width modulators, interfaces) and their registers (7), and other components.

14

Fig. 1.1: Port input/output

Aside from general-purpose microprocessors and microcontrollers, the market also

offers real-time signal processors, which are used in measuring devices,

15

communication, transmission, and reproduction of audio and video streams, locating

systems, space, and military equipment, among other applications.

In addition to the CPU, analog-to-digital and digital-to-analog converters are

provided on the same chip. An Analog-to-Digital Converter (ADC) converts a

continuous input signal into a digital data stream, which is then processed by the

processor section, and the processed digital data is converted into an analog signal

using a Digital-to-Analog Converter (DAC).

General purpose

microprocessors

Microcontrollers Signal

processors

Other

(neurochips,

partitioned and

hybrid

processors)

Used:

to build personal

computers,

servers, and

multiprocessor

systems.

Used:

to implement

simple automation

functions.

Used:

to implement

complex

algorithms for

streaming data in

real-time.

Used:

to implement

unique

experimental or

specific systems.

Features:

• high computing

performance,

• high bit rate,

• universal

architecture.

Features:

• built-in program

memory and data

memory,

• bit processor,

• timers, counters,

ports, interfaces.

Features:

• high computing

performance,

• commands to

implement

typical signal

processing

algorithms,

• •built-in ADCs,

DACs, or media

interfaces.

Features:

• construction of

one processor on

several chips,

• combination of

several types of

processors in one

product, specific

architecture

16

The so-called programmable logic controller (PLC) is a special microprocessor

system used to automate technical operations as well as conventional industrial

facilities and complexes (conveyors, roller conveyors, cranes, shredders, mills,

classifiers, mixers, packers, robotic and flexible production complexes, and so on).

PLCs are primarily used in industrial manufacturing, but they are also used in

building automation (control of access to the premises, control of lighting, heating,

ventilation, and air conditioning, control of elevators, escalators, and so on). PLCs

can also be used to generate a microclimate in greenhouses, poultry farms, and cattle

farms.

A PLC is typically a single-board mini-computer built on a single-chip

microcontroller and housed in a standard-sized box (brick-sized). Modular

controllers are available. The PLC inputs can be connected to buttons, joystick

contacts, switches (ie controls), sensors, and actuators (motors, lighting, heating

elements, valves, valves, actuators, and so on).

17

Fig. 1.2: Programmable Logic Cinspector

Apart from hardware unification (using standard sizes, voltage levels, and signal

types), the development of "general engineering" programming languages for PLCs

has been instrumental in the breakthrough spread of these devices. One no longer

needs to hire a top-tier coder to create a user program; this can be done by a

technician, an electrician, a chemist, and, of course, an automation professional

(sometimes even better). In addition, these programming languages blur the lines

between programmers and engineers in complex jobs, making them equally evident

to the client (an engineer) and the performer (a programmer).

PLC increases automation system flexibility by making it easy to switch to third-

party controllers and transfer programs from one system to another. There are six

such programming languages (five of which are standardized), four of which are

visual (the program is input visually rather than textually), but as a set of graphic

18

elements (blocks) connected to each other. In most cases, the same controller may be

written in many languages of the user's choosing.

1.2. STM Microcontrollers

A popular and extensively utilized platform for creating expert automation

solutions across many industries is the STM32 microcontroller.

Because of the microcontroller's performance, good architecture, low power

consumption, and low cost, STM32 is a platform that includes STMicroelectronics

ARM-based microcontrollers, a multitude of modules and peripherals, and software

solutions (IDE) for interacting with hardware. STM32 already has multiple lines for

a variety of applications.

For the STM32 series, there are two groups: performance and access. The

Performance group includes all peripherals and can run at up to 72 MHz clock

speed, while the Access group has a smaller selection and can run at up to 32 MHz.

It is important to note that both the Access and Performance groups have the same

enclosure types and microcontroller output locations. This means that you can

switch out different STM32 versions in the device without having to modify the

software structure.

19

Fig. 1.3: 2 lines of STM microcontrollers

Translation to Fig.: Both lines have up to - Both bands contain up to, 5x16-bit

TIMERS

- 5 16-bit timers, Int 8 MHz RC - Int. 8MHz RC, Int 32 kHz RC - Inside 32kg

RC,

2xWDG - 2 Watch Timers, 80% GPIO ratio - 80% GPIO, Up to 512KB FLASH -

up to

512KB FLASH, 72MHz CPU - 72MHz CPU, Up to 64KB SRAM - up to 64 KB

SRAM, DAC - DAC,

ADC (1mus) - ADC (1 μs), Temp sensor - Temperature sensor, AC timer - AC

timer, 36 MHz

CPU - 36 MHz CPU, Up to 48KB SRAM - up to 48 KB SRAM,

DAC, EMI (144 pins), I2S, SDIO for sales types starting at 256 kB Flash - DAC,

Interface

External Memory, I2S, SDIO in microcontrollers with Flash capacity of 256 KB.

ARM marks each of its processors according to the

architecture audit (ARMV6, ARMV7, etc.). Cortex-M3 has a revision of the

ARMV7 M architecture.

20

Fig. 1.4: ARM architecture

With the Cortex CPU, most commands may be completed in one cycle. This

is achieved by a three-stage conveyor, similar to what is found in the ARM7 and

ARM9.

This works great with linear code, but prior to branching, the pipeline is reset

and reloaded, allowing computer code to continue running. The ARM7 and ARM9

branches are quite popular. The first command is being executed, the second is being

decoded, and the third is being fetched from memory.

The three-stage Cortex CPU processor adds a branch forecasting function to

the conveyor, which implies that when a conditional transition command is issued,

the next command is issued; commands that are anticipated are removed.

Consequently, both conditional transition choices are accessible for execution,

resulting in no productivity drop. In terms of performance, it is cost-effective.

Additional program code considerations would be redundant because the

pipeline controls the Cortex CPU's overall performance. The Cortex CPU is a load-

store architecture RISC processor; before data processing instructions can be

21

executed, operands must be loaded into a central register file. These registers must

be used for data operations, and the results must be saved in memory. The worst-

case scenario is an indirect transition, in which the predicted transition is unknown

and the only way out is to reset the conveyor.

Consequently, all program activity is focused on the CPU register file, which

consists of sixteen 32-bit registers. R0-R12 are basic registers that can be used to

store variables. The Cortex CPU's registers R13–R15 carry out specific functions.

The R13 register stores the stack pointer. This is a grouped register that allows the

Cortex CPU to function in two modes with different stacks. This is usually used by

RTOS, which runs its "system" code in secure mode. The main stack and the

working stack in the Cortex CPU are referred to as the main stack and the working

stack. The next register, R14, is called the communication register. When entering

the procedure, it is used to save the return address.

Fig. 1.5: Cortex registers

22

The values in the bit regions of the xPSR register affect the Cortex CPU. The

family of STM32F103xx Microcontrollers consists of an ARM Cortex-M3 32-bit

RISC core, high speed embedded memories (Flash memory is up to 128 Kbytes and

Static Random Access Memory (SRAM) is up to 20 Kbytes), I/Os (Input/Output)

and peripherals which they are cooperating together by connecting to two APB

(Advanced Peripheral Bus) buses. In addition to the register file, there is another

register called the Program Status Register, which is only accessible using two

specific instructions.The values in the bit regions of the xPSR register affect the

Cortex CPU. The family of STM32F103xx Microcontrollers consists of an ARM

Cortex-M3 32-bit RISC core, high speed embedded memories (Flash memory is up

to 128 Kbytes and Static Random Access Memory (SRAM) is up to 20 Kbytes),

I/Os (Input/Output) and peripherals which they are cooperating together by

connecting to two APB (Advanced Peripheral Bus) buses. In addition to the register

file, there is another register called the Program Status Register, which is only

accessible using two specific instructions. Fig. 1.6 presents the pinout for the

STM32F103 family which is used in this project

23

Fig. 1.6: STM32F103xx pins

1.3. Cortex cores

 The ARM Cortex-M3 core, the microcontroller CPU and one of the most

important components of the microcontroller, is the last version of ARM processors

applied to embedded systems. It has well-specified features like: performance at

zero state memory access; single-cycle multiplication and hardware division; nested

interrupt controller (maskable interrupt 43 channels, interrupt processing); low-

power consumption, low-price, low-gate count, etc. The majority of STM32

microcontrollers are based on ARM Cortex-M cores, which offer high performance

and a wide range of functions.

The microcontroller is powered by the ARM Cortex-M3 core, which has a

number of advantages that will be covered in more detail below, but for now, its

most valuable attribute is its adaptability. In just two years, Cortex-M3 has become

the industry standard, as evidenced by the number of manufacturers that have joined

24

this architecture; all major microcontroller manufacturers, with the exception of

Microchip, have either developed or are developing solutions based on this

architecture: STMicroelectronics, Texas Instruments, NXP, ATMEL, Analog

Devices, Renesas, and others; ST was one of the first to market with their Cortex-

M3 microcontrollers in 2007, quickly rising to the top of the industry. Fig. 1 shows

the total number of Cortex-M3 cores sold worldwide, with the majority of ST—

nearly 80% in 2009 and roughly 70% in 2010.

Fig. 1.7: amount of microcontrollers produced

As assemblers are not often used by developers in the 32-bit segment (mostly C

and other high-level languages), the portion of the program code that deals with the

kernel will not even need to be changed; only work at the peripheral driver level will

be required. Consequently, if you write code that distinctly divides the kernel from

the perimeter, you may set the stage for a relatively quick switch from one

manufacturer to another.

The Cortex-M architecture of the STM32 series encompasses not just Cortex-M3

core microcontrollers, but also Cortex-M0 and Cortex-M4 cores. Cortex-M0 is

essentially a Cortex-M3 with a truncated set of instructions designed for lower-

performance, lower-cost solutions.

25

Cortex-M4 is a Cortex-M3 that has been enhanced with new data processing

instructions and is intended for applications requiring better performance and more

complicated signal processing (floating-point operations at the hardware level).

Cortex-M4 can be used in lower-level DSP applications. Cortex-M0 will primarily

replace 16-bit and, to a lesser extent, 8-bit microcontrollers.

Since all Cortex-M0 instructions are applicable to the Cortex-M3, the Cortex-M0

kernel code will also function fully on the Cortex-M3 kernel. Conversely, since all

Cortex-M3 instructions are still applicable to the Cortex-M4, the Cortex-M3 kernel

code will function on the Cortex-M4. For instance, following the development of a

product on the Cortex-M3, it will be possible to develop more expensive and

sophisticated goods on the Cortex-M4 with minimal fees for program code

processing. Since Cortex-M3 is presently a global standard, and since Cortex-M0

and Cortex-M4 are logical extensions of Cortex-M3, it will not be surprising if

Cortex-M3 and Cortex-M4 also become standards soon. STM32 with Cortex-M0

and Cortex-M4 processors is scheduled for release by STMicroelectronics until

2011.

1.4. Overview of current trends in cyber defense

a) Increasing the number and complexity of attacks:

Scale of Attacks: Today's Internet attacks are becoming larger in scale,

sometimes affecting large companies, government agencies, or even entire

countries. For example, DDoS attacks (distributed denial of service attacks)

can use a large number of bots to simultaneously attack a server and cause a

denial of service.

Complexity of attacks: With an arsenal of different methods such as

phishing, carefully planned attacks using software vulnerabilities, and human

influence through social engineering, attacks are becoming more complex and

difficult to detect.

26

Attacks on embedded systems: As embedded systems become an

integral part of many devices (from home appliances to medical devices),

they are becoming a focus for cybercriminals. Attacks can be aimed at

hacking embedded systems to gain control over the device or leak

confidential information.

 b) Widespread use of the Internet of Things (IoT):

Growing number of connected devices: Every year, there are more and

more gadgets that are linked to the Internet. These gadgets range from

industrial equipment to smart home appliances like refrigerators and

thermostats, and they can all serve as potential entry points for

cybercriminals.

Inadequate security in IoT: Many IoT devices come with limited

resources and computing power, which can lead to a lack of adequate security

measures. Insufficient authentication and protection against vulnerabilities

can make these devices easy targets for attacks.

Possible consequences of attacks: Cybercriminals can use

vulnerabilities in IoT devices to create botnets, leak sensitive information, or

even carry out physical attacks (such as disabling industrial equipment).

 c) Growing importance of authentication and authorization:

User and device authentication: As threats increase, it is important to

ensure that only authorized users and devices have access to systems. Two-

factor authentication and biometric methods can be used to increase security.

Access control: Ensuring the principle of least privilege and effective

access control can prevent unauthorized access and minimize risks.

Anti-spoofing: Cybercriminals can attempt to spoof credentials or gain

unauthorized access. Developing and implementing effective anti-

counterfeiting methods helps prevent these threats.

1.5. Analysis of requirements for a cyber-secure workplace

27

In a world where technology is rapidly penetrating all areas of our lives, cyber

security is becoming a key element in ensuring the security of information and

infrastructure. A cyber-secure workplace is defined by a number of requirements that form

the fundamental basis for protection against cyber threats.

One of the first and fundamental requirements is an authentication and authorization

system. The use of strong passwords and two-factor authentication are important elements

in preventing unauthorized access. The requirement for regular updates and patches is

necessary to eliminate vulnerabilities and increase resistance to attacks.

An integral part of a cyber-protected workplace is the use of anti-virus and anti-

malware measures. Malware protection is becoming extremely important, and periodic

system scanning for viruses is critical to preventing potential threats.

Another key requirement is the use of encryption for sensitive information.

Encryption helps prevent information leakage if devices are lost or stolen. Disallowing

unknown or untrusted peripherals is also a necessary requirement to prevent possible

threats.

User training and awareness is also an essential element. People need to understand

the basics of Internet security, social engineering, and other aspects of cyber defense.

Conscious users can detect and avoid potential threats in time.

The most modern element is monitoring and logging. The ability to detect unusual

or suspicious activity allows timely response to potential threats, which ensures complete

system security.

In general, a cyber-secure workplace is not just a set of technical measures, but also

a comprehensive strategy aimed at protecting information in the digital world. Only a

comprehensive approach that takes into account technical, organizational and pedagogical

aspects will ensure effective protection against modern cyber threats.

Monitoring and detection of threats: The workplace has the ability to monitor system

activity and detect possible security threats. This includes I/O analysis, network status, and

system diagnostics.

28

1. Authentication and authorization systems: Strong authentication systems such as

biometric methods, smart cards or passwords are used to ensure access to the

workplace. Users and devices must be authenticated before accessing system

functionality.

2. Data encryption: The workplace provides encryption of data in the stored and

transmitted state, which guarantees the confidentiality of information and protection

against interception or modification of data.

3. Intrusion detection and prevention systems (IDS/IPS): The workplace includes

intrusion detection and prevention systems that analyze network traffic and user

actions for unusual or suspicious activity.

4. Event logging and analysis: The workplace supports logging of all system events

and activities, which allows for detailed analysis of incidents and identification of

potential threats.

5. Updates and security patches: Workplace security updates and patches are

provided regularly to address identified vulnerabilities and ensure an up-to-date

level of protection.

6. Offline mode: The workplace can go offline if serious threats or emissions are

detected to ensure reliable system operation in conditions of limited communication

or attacks.

7. Integration with other systems: The workplace can interact with other system

components such as servers, network elements, and other embedded systems to

provide overall cyber protection.

These workplace features and capabilities are designed with modern cyber security

standards in mind and aim to provide reliable protection of embedded systems against

possible threats and attacks.

1.6. Analysis of threats and vulnerabilities

In today's digital landscape, where automation is becoming a necessity for organizations to

function effectively, it is important to be aware of the potential threats and vulnerabilities

29

of automated workplaces. Analysis of these aspects determines the success of cyber

defense strategies and the resilience of infrastructure to modern cyber threats.

One of the key threats is the increasing number and complexity of cyber attacks.

Automated systems that process and store large amounts of data become an attractive

target for attackers. Attacks can be aimed at stealing confidential information, breaking

access to systems or introducing malicious programs into the system.

The Internet of Things (IoT) poses a significant concern due to inadequate cyber

security. Networked devices in automated workplaces can be used as attack vectors or

serve as a gateway for intruders to access corporate networks.

The second aspect is internal vulnerabilities related to people and processes.

Social engineering, used to trick employees and gain access to systems, is a serious

threat. Also, insufficient awareness of personnel regarding cyber security can cause

careless use of systems and leakage of confidential information.

In order to overcome these obstacles, a comprehensive strategy for cyber

defense must be put in place. Modern authentication and authorization systems must

be installed, data must be securely encrypted, and software must be updated on a

regular basis to remove vulnerabilities. Cyber awareness and staff training must also

be prioritized.

In conclusion, automated workplaces play a key role in today's business, but

their successful operation requires systematic analysis and effective cyber defenses.

Awareness of potential threats and timely measures can ensure the safe and reliable

operation of automated workplaces in the digital age.

Ability to integrate with other devices or systems

1. Network interaction:

○ A cyber-secure workplace must be able to connect to local or remote

networks to exchange data and information with other devices or servers.

○ Support for standard network protocols and tools ensures secure

communication with other devices.

30

2. Integration with monitoring systems:

○ The workplace can be integrated with monitoring and management systems to

provide centralized control over cyber security and system health.

○ Notifications about events detected by the system can be sent to central

monitoring.

3. Integration with other embedded systems:

○ The workplace can be integrated with other embedded systems that are part of

a larger system.

○ This allows combining the functionality of different devices and ensures

interaction between them.

4. Interfaces and APIs:

○ The presence of open interfaces and APIs allows other developers and

systems to interact with the cyber-protected workplace and use its

functionality.

○ This makes the system more flexible and extensible.

5. Compatibility with standards:

○ It is important to consider the compatibility of a cyber-secure workplace with

the standards and protocols used in other systems and devices.

○ This ensures seamless integration and data exchange with other systems.

6. Interaction security:

○ It is important to ensure secure interaction with other systems and devices to

prevent possible threats or attacks that may occur during

○

7. Security requirements:

○ Measures to protect the confidentiality, integrity and availability of data and

functions.

○ User and device authentication and authorization requirements.

○ Protection against internal and external threats, including hacking attacks,

outages, and Man-in-the-Middle attacks.

31

32

SECTION 2

 ADVANTAGES OF STM

2.1 Pin-to-pin compatibility

One of the reasons for the STM32 family's global appeal is its pin-to-pin

compatibility. If the STM32 kernel's versatility allows you to change the

manufacturer with minimal cost of software code, the STM32 family's pin-to-pin

compatibility allows you to change the amount of memory (flash memory and

RAM) and peripherals (Ethernet, USB, CAN, etc.) without touching the printed

circuit board.

Fig. 2.1: Products of the STM32 family depend on flash memory and the case.

If, for example, the developer required a LQFP 64 casing as well as a minimal set

of memory and functionality, his options would be limited to the chip

STM32F100R4 (16 Kbytes of flash memory, 4 Kbytes of RAM, 24 MHz). If I then

require a faster ADC and 128 KB of flash memory, the STM32F101RB chip is used.

Because all of the I/O in these chips is similar, the board does not need to be

touched.The developer then switches to the STM32L151RB microcontroller, which

33

uses less power while retaining all of the STM32F103RE's memory and

connections. In the latter case, the developer should be aware of one minor change

(the Vbat signal becomes Vlcd), but he should not need to change anything on the

board.You can take a simpler microcontroller from the line, lowering component

costs.Pin-to-pin compatibility is the ideal lever for lowering the cost of your

selections because it makes the procedure significantly easier (less memory, fewer

peripherals, etc.). You can put many different goods into production with high

efficiency if you plan all future generations of your product on the basis of pin-to-

pin compatibility throughout development.

It should be noted that the level of pin-to-pin compatibility varies. The graphic

below displays the pin-to-pin compatibility of the various STM32 series, as well as a

concise description of their main characteristics. Because standard peripherals like

as SPI, USART, I2C, clocks, watch timers, reset methods, and so on are shared by

all lines, they are not detailed. The STM32W line (Cortex-M3 + ZigBee) is not

included in Fig. 4 because it lacks pin-to-pin compatibility with the STM32F-1,

STM32F-2, and STM32L families. This is due to the fact that it was developed in

conjunction with Ember, which donated the radio frequency component, restricting

ST's development flexibility.

Fig. 2.2: Pin-to-pin compatibility within STM32 families.

34

The STM32F-1, STM32F-2, and STM32L pin-to-pin series have full capacity.

The STM32F-1 series, for example, includes more than 90 chips divided into five

families based on application, with full pin-to-pin compatibility. The STM32F-1 and

STM32L have excellent pin-to-pin compatibility, while the newer STM32F-2 series

will necessitate more work.

If you still need to adjust the number of inputs and outputs (change the case), the

requirement for re-tracing is minimized since all signals in the STM32 family are

stored to the maximum on one or the other side of the case, independent of its size. It

also facilitates the work.

Software compatibility supplements the previously described pin-to-pin

compatibility. Software compatibility is complete across and within families,

including the STM32W family. According to STMicroelectronics, future STM32

families based on the Cortex-M0 and Cortex-M4 cores will be pin-to-pin and

software-compatible with existing ones. Finally, STM32 is a platform that you can

utilize now and in the future.

2.2 Debug boards

When you're interested in a microcontroller, you want to test it out. This

necessitates the use of debugging boards. There are an incredible number of

debuggers and their features available for the STM32 family. STM32VLDiscovery

debugging, for example, is provided by the manufacturer. It comes with a

programmer and is compatible with the STM32F100 microcontroller. This is a low-

cost and rapid way to become acquainted with the STM32 family. Third-party

manufacturers, on the other hand, such as Keil, IAR, Raisonnance, and others,

provide more advanced debugging with all of the necessary functionality. In

addition, several small enterprises have developed their own STM32 debugging

solutions. The STM32VLDiscovery plug-in is also available. The fascinating inemo

v2 module (STEVAL-MKI062V2), which combines a collection of sensors

(temperature sensor, pressure sensor, two gyroscopes, three-axis accelerometer with

35

compass) and software for rapid solution building, is another novel setting for

STM32 microcontrollers. There is also a complete configuration for working with

the STM3210B-MCKIT electric drive, which includes a three-phase motor, a ten-

amp three-phase inverter, a power supply, and its own Microcontroller part.

Sometimes difficult solutions necessitate not just debugging but also real-time

debugging. One advantage of the Cortex-M3 core is that it includes an Embedded

Trace Module (ETM) that allows you to do this function. All STM32F-1

microcontrollers with memory sizes more than 512 KB, as well as the STM32L and

STM32F-2 series, incorporate this module. A specialized coder, such as J-trace or

Ulink-pro, will be necessary as well.

Microcontroller software development necessitates the use of a programming

environment and C-tools. Because ARM-based microcontrollers are so common,

there are several commercial and free choices for development tools. If you've

previously used an ARM-core solution, the transition to ARM Cortex-M3 is simple;

simply update the software in your development tools.

We not only have a large selection of debuggers and development tools.

Libraries are critical components of the development process. There are several free

libraries available for the STM32 family, including the following:

1. All standard peripherals are supported (UART, SPI, I2C, CAN, ADC, DAC, timers,

all clock sources, FSMC, IO, DMA, RTC, and so on).

2. USB interface library (including modes like mass storage, HID, DFU, CDC, audio,

and full-speed host);

3. Ethernet interface library (MAC layer from ST and free complete TCP / IP layer

from Interniche); motor control libraries (three-phase brushless motors);

4. DSP libraries (PID, IIR, FFT, FIR); DSP libraries for sound reproduction (decoding

and encoding based on the SPEEX codec, with high sound quality); DSP libraries

for graphic solutions.

36

Each of these libraries has application documentation. Aside from free libraries,

there are several paid libraries available from companies such as Keil, IAR,

Micrium, Segger, Greenhills, Quadros, CMX, and others.

I must briefly discuss operating systems. Unfortunately, the Cortex-M3 kernel

does not support Linux. Developers that need it should concentrate on cores such as

ARM9. In terms of RTOS, however, the Cortex-M3 core exceeds the ARM7. The

kernel has two privileged modes and two specialized stacks. It also offers a great

deal of flexibility in terms of interrupt priority and an additional Systick system

timer. All of this allows you to build better real-time operating systems. Many

operating systems have already been developed for STM32 microcontrollers.

Fig. 2.3: List of real-time operating systems for STM32 microcontrollers

Specific libraries for the Simulink module in Mathworks' Matlab software are

developed to generate ready-made C-code from Simulink for STM32

microcontrollers. In other words, computer code may be produced graphically.

National Instruments is planning to port their popular Labview software to the

Cortex-M3.

37

As a result, we can assert that all of the conditions are in place for successful,

convenient, and speedy development. Individuals on a restricted budget can also

take use of extremely low-cost debugging, free programming environments, free

libraries, and RTOS operating systems. In other words, the developer's intellect and

imagination are all that is necessary to succeed with STM32!

2.3 The low-cost

STMicroelectronics separates itself from other semiconductor manufacturers by

offering exceptional value for money while adhering to the highest quality

standards. The STM32 series is a good example. This family comprises the low-cost

Value Line STM32F100 series microcontrollers, which cost less than a dollar and

come with a wide range of peripherals. When compared to the original Cortex-M0

solutions on the market, the developer gains several times the capability for a few

dozen cents extra.

The STM32F100, like other STM32 microcontrollers, has an inbuilt DMA

controller, which frees up the core from data processing and transmission. Its

absence in the current implementation of Cortex-M0 is a significant constraint in the

overall performance of a microcontroller.

It should be noted that the STM32 family has high-quality analog peripherals. The

STM32F100, for example, has a 12-bit 16-channel ADC with a measurement

duration of 1.2 seconds. Other series and families have faster ADCs (1 s or even 0.5

s). This ADC has several advantages, including the ability to conFig. batch

measurements (channel measurement order), the ability to vary measurement

duration on each channel, the ability to work in analog guard mode (two

programmable threshold voltages), and a built-in temperature sensor (approximate),

external trigger. with addition to the aforementioned, with STM32 microcontrollers

with multiple ADCs, collaboration with multiple ADCs can increase conversion

speed several times. For example, in the STM32F-1 line you can reach a speed of

0.5 μs, and in the case of the STM32F-2 line - up to 160 ns (!).

38

The STM32F100 also features a large number of general-purpose inputs and

outputs (GPIO). The STM32 family distinguishes itself from its competitors in the

market by having a high proportion of GPIO in relation to the total number of legs

of the case: for example, in the STM32F100 series, the LQFP48 case has 37 GPIO,

the LQFP64 case has 51 GPIO, and the LQFP100 case has 80 GPIO. These GPIOs

are quite versatile; they can not only be conFig.d in many common modes (two-

stroke circuit, open collector, pull-up, pull-down, etc.), but they can also be

reassigned inputs or outputs for peripherals (remapping). To avoid electromagnetic

interference, GPIO speed is regulated: in the case of the STM32F100, it can be 2

MHz, 10 MHz, and, in principle, up to 50 MHz, but the limiting factor will be the

core's clock frequency, which is 24 MHz. GPIO speeds in the STM32F-2 series can

approach 100 MHz. This creates new opportunities for data management and

transmission. You may construct your own interfaces programmatically. The

STM32 series also has an outstanding built-in CAN 2.0 controller licensed directly

from the standard's creator, Bosch.

Some STM32 lines have useful FSMC and SDIO peripherals (for example, the

STM32F101 and STM32F103 series). SRAM, NOR Flash, and NAND Flash are

examples of external memory interfaces. SDIO is a standard interface for working

with memory cards such as SD, mini SD, micro SD, and MMC. The only type of

memory that the STM32 series does not support is DRAM, however most

developers do not require it. Keep in mind that the STM32 series has a hardware

CRC (Cyclic Redundancy Check - cyclic redundancy code). This functionality

allows you to verify the data exchange quality without loading the kernel. All

STM32 microcontrollers, with the exception of the STM32W, have a significant

number of multifunction 16-bit timers (the STM32F-2 has 32-bit timers) and one or

more 12-bit DACs. The STM32F-2 series features an unusual feature: an interface

for connecting DCMI cameras that can function at rates of up to 54 MB/sec,

allowing cameras with matrix sizes of up to about 1 megapixel to be supported. The

camera's compressed JPEG data can also be accepted via this interface. This opens

39

up new possibilities for security systems that don't require complex video

processing, but rather more simple tasks like snapping a photo during a theft or

employing a camera to relay data via built-in Ethernet. The FSMC and SDIO

interfaces will help in the dynamic storing of a dense flow of camera data in external

memory. An MPU memory protection module is included in all STM32L, STM32F-

2, and STM32F-1 devices with more than 512 KB of memory, which increases

system security even further. Memory can be partitioned into segments and given

varied access rights (read, write, execute - like in Unix). This allows you to restrict

program code access to certain memory zones and set up fully functional privileged

and unprivileged modes. The MPU issues an interrupt if the software attempts to

access protected memory regions. STM32 series microcontrollers with more than

512 KB of flash memory have a useful feature: the memory is divided into two

banks. This allows you to put two different microcontroller firmwares in each bank

and select one or the other firmware at the start of the microcontroller, dramatically

altering the device's functionality. It also enables you to dynamically download a

new version of the firmware to another bank via one of the communication ports

without halting the principal running program in one bank, and then quickly

transition the microcontroller to a new version of the software.

The STM32 series stands out from the crowd by functioning effectively in the

temperature range of -40 to 85 ° C. The performance of the core and peripherals is

completely preserved. A number of STM32 series devices have been verified for

extended temperature ranges spanning from -40 to 105°C.

2.4 High-performance cores

One of the Cortex-M3 core's advantages is its high performance, which stems

from ARM's significant experience in CPU development. The Cortex-M3 core, for

example, has its own data bus, instruction bus, and peripheral management bus

(Harvard architecture). This eliminates the delays that can occur with the von

Neumann design, which delivers all data to the kernel over a single channel. The

40

kernel's mathematical abilities are also impressive: hardware multiplication of 32

bits by 32 bits is built into the Cortex-M3 core and can be accomplished in one clock

cycle if the output is in 32-bit format.Depending on the intricacy of the division,

hardware division takes 2...12 cycles. The whole interrupt scheme has been greatly

improved: an integrated NVIC interrupt controller that allows you to establish up to

256 priority between interrupts and adjust them dynamically. The time lost due to

competing interrupts is greatly reduced (12 cycles versus 24... 42 in the case of

ARM7). Cortex-M3 has a set of Thumb-2 instructions (a combination of 16-bit and

32-bit instructions with no transitions) as well as optimized RAM use (bit banding).

All of these enables a potential performance of 1.25 DMIPS / MHz with only a tiny

amount of program code in memory.

The initial STM32F-1 line provided several opportunities for developers, but

performance was limited (72 MHz), and it was quickly exceeded by the Stellaris (80

MHz) and LPC17 families (100 MHz). ST has replied by creating the STM32F-2

family, which operates at 120 MHz and achieves 150 DMIPS. The results of

performance measurements based on the CoreMark standard are shown in Table 2.

Fig. 2.4: Comparison of the performance of 32-bit microcontrollers based on

CoreMark

The value of the field "CoreMark" indicates the absolute performance of the

microcontroller (larger values correlate to higher performance). The "CoreMark /

41

MHz" field provides the normalized CoreMark findings in relation to the frequency

of the microcontroller. In other words, we may evaluate how well the

microcontroller operates at high frequencies. The STM32F-2 family provides more

computational power. The remarkable performance of the STM32F-2 series is

achieved by the use of a unique flash memory accelerator and a new 90 nm

manufacturing process.It should be emphasized that the high performance of the

microcontroller should always be evaluated in connection with the quality of the

peripherals, because the constraints of the peripherals frequently have to compensate

for the shortcomings of the kernel. The STM32 peripherals are of the highest

quality. It should also be mentioned that the STM32F-2 family of microcontrollers

has variants with 176 outputs.

2.5 Low energy consumption

The ARM Cortex architecture has been a global success, thanks mostly to its low

energy consumption. Because this is especially important in the case of phones and

portable objects, the ARM processor is at the heart of any phone or smartphone.

However, as energy prices continue to rise, the difficulties of energy efficiency and

conservation are becoming increasingly important for all goods. STMicroelectronics

designed the STM32L family specifically for stand-alone power systems, combining

strong ARM Cortex-M3 core performance with low power consumption. The

Cortex-M3 core has a sleep mechanism that has been supplemented with STM32F

family modes. Similarly, new power modes, dynamic core voltage change mode,

and redesigned energy-efficient peripherals have increased the adaptability of the

STM32L power management.

The power consumption of STM32 microcontrollers is shown in the table below.

The STM32L microcontroller family is constructed utilizing a specific technological

process that reduces transistor leakage, resulting in optimal performance. In the

table, the phrase TBD stands for "to be specified later," which signifies that the

42

manufacturer has not yet measured certain characteristics. This is because the

STM32F-2 microcontroller family was just recently introduced to the market.

Fig. 2.5: Power consumption of STM32 microcontrollers in different modes

(typical value at room temperature)

The greatest advantage of the STM32L series is shown in STOP and Standby

modes, when power consumption drops to 1.6 A and 300 nA, respectively. STOP

mode disables all clock sources, but RAM contents are retained, and the transition to

active mode takes only a few microseconds. In Standby mode, everything is turned

off except the real-time clock. It already takes tens of microseconds to wake up from

this state. It should also be noted that the STM32L series includes a Low Power Run

mode, in which the core is solely driven by a low-frequency internal clock (32 kHz),

and consumption drops to 10 A.

The STM32L microcontroller's typical consumption in active and sleep modes

will likely be higher than that of rivals' best low-consumption 8-bit or 16-bit

microcontrollers. When compared to 8- or 16-bit devices, the STM32L's great

performance allows you to complete all tasks in shorter time and return to sleep,

resulting in lower average consumption. As a result, the challenge of low

consumption is more complicated than it appears to developers.

2.6 Reliability

Many modern technologies must meet additional safety standards in addition

to providing excellent performance and utility. STM32 incorporates a number of

hardware characteristics that aid in the smooth operation of the system. Among these

43

are a supply voltage drop detector, a security synchronization mechanism, and two

distinct watchdog clocks.

It should be updated on a regular basis. If the update happens sooner or later,

the watchdog timer will be triggered, resulting in an interrupt. The second watchdog

timer is self-contained and has its own external oscillator. The synchronization

system provides the main external oscillator fault detection functions before

switching to the built-in 8 MHz RC oscillator.

2.7 Security

One requirement for modern electronics is that software code be safeguarded

from unauthorized access. The evaluation port may be used to provide read

protection for STM32 flash memory.

When read protection is enabled, flash memory is write-protected against

vector table interruptions. The STM32 microcontrollers additionally have a real-time

clock and a small SRAM battery-powered area. The content of this section prohibits

module intrusion.

2.8 Bus matrix

The system bus and data bus are linked to an external microcontroller via a set

of high-speed buses arranged in the shape of a matrix. This permits the creation of a

large number of parallel communication channels for data transmission via the bus

between Cortex buses and external control devices like DMA and SRAM. If two bus

control devices (for example, a Cortex CPU and a DMA channel) try to access the

same peripherals at the same time, the built-in arbiter resolves the conflict and

allows access to the device with the higher priority. The STM32 is built in such a

way that the DMA and the Cortex CPU work in tandem, as we will see when we

look at the DMA module.

44

2.9 Entering Low Power Mode

While maintaining great performance, the STM32 includes low-power modes

in addition to the regular active mode. If you use these modes carefully (SLEEP,

STOP, STANDBY), the application can run for an extended amount of time without

needing to replace the battery. The STM32 microcontroller is a low-power

microcontroller with strong CPU performance. During the Cortex review, we

observed that the Cortex processor may enter low-power modes that deactivate the

CPU and Pertex peripherals. When the Cortex processor enters low power mode, it

may send an SLEEPDEEP signal to the rest of the microcontroller to tell the rest of

the microcontroller of the change. When the WFI and WFE directives are executed,

the Cortex CPU enters low power mode. STM32 is included in which mode is

determined by the power mode control register values. To put the Cortex core to

sleep, use the Wait For Interrupt (WFI) or Wait For Event (WFE) commands. When

you give the WFI command, the Cortex kernel returns to active mode and handles

the interrupt. When the interrupt handling procedure is completed, there are two

possible results. To begin, the Cortex kernel runs code in normal mode. Second, the

Cortex kernel will go back to sleep if the SLEEPON EXIT flag in the System

Control Register is set. This feature allows you to write programs that are totally

interrupt-driven, which means that the kernel will wake up, execute some code, and

then sleep again.

The WFE instruction asks the Cortex kernel to continue program execution

from where it was stopped. There is no transition to the exception handling

procedure. The kernel gets woken up by a basic peripheral interrupt that was not

saved in the NVIC register. This enables peripherals to wake up the kernel and

continue performing code without using the interrupt handling approach. Although

the WFI and WFE commands are not available in C, the Thumb-2 command

compiler has internal macros that may be used to run regular C commands:

__WFI

__WFE

45

In addition to the low power modes SLEEPNOW and SLEEPONEXIT, the

Cortex kernel can output a SLEEPDEEP signal to another part microcontroller.

2.10 Memory Allocation

Despite the STM32's many internal busses, the programmer presents a linear 4

GB address space. Because the STM32 is a Cortex-based microcontroller, the

memory card conforms to the standard Cortex memory allotment. As a result, the

program memory starts at address 0x00000000. The built-in SRAM starts at

0x20000000 and is all in the bit segmentation area. The memory for peripheral users

begins at address 0x40000000 and is also located in the bit segmentation area.

Cortex registers are located starting at 0xE0000000.

Fig. 2.6: Memory allocation

FLASH memory is separated into three sections. The first is the user's Flash

memory, which starts with 0x00000000. System memory, often known as a large

information block, is the second type of memory. During the microcontroller

manufacturing process, the bootloader is programmed in these four To Flash

memory. The third section, known as the small information block, starts at

0x1FFFF800 and consists of a set of optional bytes that allow you to modify the

46

STM32 system. The bootloader will use USART1 to load code into FLASH user

information memory. Set the external pins BOOT0 and BOOT1 to low and high,

respectively, to enter bootloader mode. In this state of conclusion, the system

memory block is shown at 0x00000000. After the reset, STM32 will begin executing

the boot code rather than the user program from Custom Flash. The PC downloading

application is available on the ST website. This program communicates with the

bootloader and wipes and reflashes Custom Flash Memory.

2.11 Components of STM32F103 MCU

This section describes the microcontroller core, memory, I/Os, and peripherals

shown in Block Diagram 3. Below are basic descriptions for the STM32F103

microcontroller components.

47

Fig. 2.7: System components

2.11.1 System Architecture

Buses, general purpose DMA (Direct Memory Access), internal SRAM, and

internal flash memory are all components of system architecture, with some serving

as masters and others serving as slaves. The bus architecture for the STM32 series of

microcontrollers is seen in Fig. 4. BusMatrix controls access between the Core

system bus and the DMA bus.

48

Fig. 2.8: System architecture

The architecture has four master pieces and three slave parts, which are listed

below.

Masters:

Cortex-M3 ICode bus (I-bus): In order to do prefeching, it connects the

Cortex M3 core to the Flash memory instruction.

It connects the Cortex-M3 core to the Flash memory Data interface via the D-

bus (DCode bus).

The S-bus (System bus) connects the Cortex-M3 core peripheral bus to a

BoxMatrix to regulate the DMA and Core arbitration.

GP-DMA bus (General Purpose DMA): It connects the CPU (Central

Processing Unit) and DMA to the Flash memory, SRAM, and peripherals via

BoxMatrix to allow them to communicate.

Slaves:

SRAM stored internally

Internal Flash Storage

Bridge from AHB (Advanced High Performance Bus) to APB (Advanced

Peripheral Bus): This bridge separates the AHP bus into two halves, APB1 and

APB2. APB1 is for peripherals with a frequency of 36 MHz, and APB2 is for

peripherals with a frequency of 72 MHz..

49

Fig. 2.9: Block diagram of PCB based on STM32

2.11.2 Microcontroller Configuration

The microcontroller setup determines the frequency clock for the CPU and

peripherals of the microcontroller. Configuration determines the kind of oscillator

used by the microcontroller and the precise frequency for each component. It also

specifies the microcontroller's pins for peripherals like as inputs/outputs, operating

modes, and so on. It simply conFig.s the peripherals that are required and selected

for the project.

The application should setup the CPU, NVIC, GPIO, ADC, TIM1, and USB

in order to execute the microcontroller in this job.

To setup the microcontroller, each pin, port, or peripheral that will be used

during the project must be defined. For example, if it is chosen to use a USB

peripheral in a project, all USB definitions must be examined. To apply for the

project, it must be defined which pins of the microcontroller correspond to the USB,

50

the USB clock must be defined, and the USB peripheral must be active. All of these

points must be provided in the microcontroller's setup section.

The configuration section of the microcontroller program is always run in

advance by the program before anything else. Microcontroller configuration is

executed after each microcontroller reset; this implies that the microcontroller

configuration is rebooted whenever the microcontroller is reset. The MCU setup is

further explained in the next section.

Configuration of RCC

The first step in the configuration prepares the system clock for the

microcontroller, which is important because the system clock turns on the

microcontroller processor and is also required to activate the peripherals (each

peripheral requires clock to function). It is possible to operate the system clock by

configuring the RCC. This section determines which oscillator may be used with the

microcontroller.

Because this microcontroller is made up of several types of source clocks (as

explained in part 2.2.6Clock system (SYSCLK), the source clock for the

microcontroller (CPU and all peripherals) should be defined in the RCC

configuration. It is critical to pay attention to the

Before configuring clock sources for microcontroller components, create a

microcontroller clock structure. In the microcontroller STM32 documentation, the

clock structure is referred to as Clock Tree. Fig. 6 depicts the microcontroller's clock

tree. It should be noted that any clock for any peripheral must be conFig.d in

accordance with this map.

Because it is feasible to attain 72 MHz (the maximum system clock

frequency) if HSE is used as a PLL clock input, the High Speed External oscillator

is defined as the source clock for the microcontroller (in this work). Another reason

is that it can produce highly accurate results.

MCU clock frequency. As a result, the HSE is favored as the source clock

frequency for the CPU and each peripheral in the microcontroller.

51

Fig. 2.10: Clock Tree for the microcontroller STM32F103xx

Following this configuration, the CPU and peripheral clock frequencies may

be conFig.d.

The CPU may then begin to operate, and the peripherals are ready for usage.

Fig. 6 depicts the usage of the HSE oscillator as a PLL clock input and the

output of the PLL stands for SYSCLK (System Clock Source). Because each

peripheral uses a different frequency clock, the SYSCLK frequency to be adjusted

for each portion of the microcontroller.

52

The frequency clock for all of these parts PLLCLK (PLL Clock), SYSCLK,

PCLK2 (Internal APB2 clock), PCLK1 (Internal APB1 clock), and ADCCLK (ADC

Clock) should be set in this configuration since they prepare clock frequency for all

peripherals.

 Please keep in mind that RCC Configuration is the most significant

microcontroller configuration (it has the highest importance).

Configuration of GPIOs

In order to apply for the microcontroller during the work, the GPIO

configuration chooses and enables the microcontroller ports or any pins of the

microcontroller. This configuration specifies the inputs and outputs, as well as the

condition of each port or pin.

Fig. 7 depicts the Pins Configuration of the STM32F103 microcontroller. This

pins configuration is necessary for configuring the microcontroller ports or pins for

programming the microcontroller and should be taken into account. Fig. 7 shows the

number of pins and their specifications, which is very important for customizing the

microcontroller pins.

Fig. 2.11: Pins Configuration of the STM32F103

53

SECTION 3

DESIGNING A CYBER-PROTECTED WORKPLACE

3.1. Choice of system architecture and components.

Choosing an STM32 microcontroller for the development of a cyber-secure

workplace can be justified for several important reasons:

1. Low cost:

○ One of the main advantages of the STM32 microcontroller is its affordable cost.

This is especially important in mass production, where the cost of components

can have a significant impact on project costs.

○ For example, as you pointed out, some STM32 microcontroller models can be

had for as little as $2, making them competitive and cost-effective for projects on

a tight budget.

2. High performance:

○ STM32 microcontrollers are known for their high performance and wide

functional range. They have powerful computing resources, which allows you to

implement complex functions without delays and interruptions in the system.

3. A wide selection of models:

○ STM32 offers a variety of models and series, which allows you to choose a

suitable microcontroller for specific tasks. You can choose a model with different

characteristics, the number of built-in resources and support for different

communication interfaces.

4. Ecosystem and support:

○ STM32 is popular and has a large developer community, providing access to

many resources such as documentation, online forums, and libraries.

○ STMicroelectronics, the manufacturer of STM32 microcontrollers, also provides

professional technical support and development tools that facilitate fast and

convenient project development.

5. Protection and security:

54

○ The STM32 offers built-in security features such as hardware encryption, buffer

overflow protection, access control, and other means to ensure data integrity and

privacy.

○ STMicroelectronics is also actively working to support cyber defense, making the

STM32 an excellent choice for developing cyber-protected devices and systems.

The ideal option would be a budget board based on the STM32F103C8T6

microcontroller.

Fig. 3.1: STM32F103C8T6

In order to upload the firmware and play with debugging, you will also need a

programmer. For starters, and for further use, a Chinese clone of the ST-LINK V2

programmer is ideal.

55

Fig. 3.2: ST-Link V2

3.2. Overview of the Cube MX development environment

After completely installing the necessary software, we can begin creating the

project.

To do this, let's launch Cube MX.

In the window that appears, click on the ―ACCESS TO MCU SELECTOR‖

button.

Fig. 3.3: Creating a new project

56

Our target board has an STM32F103C8T6 microcontroller installed.

Enter its name in the search bar and double-click to select the only option

found.

The same table shows the main contents of our MK (64 kilobytes of flash, 20

kilobytes of RAM).

Fig. 3.4: Main contents of MK

A schematically depicted controller body with legs spread in different

directions appeared in front of us.

At this stage, it is necessary to select a method for connecting the debugger.

To do this, on the Pinout & Configuration tab in the left menu, select the SYS

item and in it, in the drop-down list called ―Debug‖, set the value to Serial Wire.

57

Fig. 3.5: Connecting a debuger

The easiest way to check the connection of the board is to blink the LED. To

do this, you must first find out which leg it is connected to.

The electrical circuit diagram will help us with this:

Fig. 3.6: STM electrical circuit diagram

or a more colorful and easy to understand board pinout

58

Fig. 3.7: STM 32 electrical circuit diagram

The LED you are looking for is located on the PC13 leg.

Accordingly, it is necessary to conFig. this pin to operate in output mode.

For this:

1. Finding the output on the mnemonic diagram

2. Right-click on it and select ―GPIO_Output‖ from the drop-down menu

3. Go to the GPIO menu,

4. Select PC13 from the list

5. We fill out the PC13-TAMPER-RTC Configuration table in accordance with the

screenshot, we are especially interested in the GPIO mode and User Label

parameters

59

Fig. 3.8: Output mode configuration

Go to the Project Manager tab, under the Project tab.

Be sure to fill in the following parameters:

1. Project name (it is better to use only Latin letters)

2. The directory in which the project will be created (it is also better to use only the

Latin alphabet)

3. IDE in which you plan to work on the project (we plan to use TrueSTUDIO)

60

Fig. 3.9: Generating a code

We go down below, under the Code Generator tab. Here, be sure to check the

Generate peripheral initialization as pair option. This way we get a more structured

project, in which each type of peripheral has its own pair of C and H files.

There's one last step left. Advanced Settings subtab.

1. Selecting the HAL library type for all peripheral modules

2. We assemble the project with the current settings

61

Fig. 3.10: Next step of generating a code

Fig. 3.11: The code is generated

62

Fig. 3.12: Opening a code

Let's find there the main.c file and the int main(void) function:

Fig. 3.13: Generated code

63

SECTION 4

 DEVELOPMENT OF LABORATORY WORKS ON STM32

MICROCONTROLLER PROGRAMMING

Laboratory work №1.

Project generation and PWM work programming in conjunction with

CubeMX and Atollic TrueStudio

Purpose of work: Learn to work with PWM using CubeMX and Atollic

TrueStudio - conFig. the microcontroller located on the STM Discovery board, and

execute typical operations of work with the built-in PWM module - regulation of the

light of LEDs.

1.1. Brief theoretical information

Pulse width modulation (PWM) is a method of controlling the average voltage

across a load by changing the duty cycle of pulses controlled by a switch. Basically,

microcontrollers allow you to generate digital PWM of various frequencies. Since

outputting a PWM signal is not the primary function of the pins that are connected to

the LEDs, it is necessary to conFig. them accordingly. To do this, you need to set the

pins to perform alternative functions. The generation of PWM in them is associated

with the use of additional timer modes [12].

Before connecting the device, PWM parameters such as frequency and duty

cycle are known. To calculate them in STM32 controllers, it is necessary to

determine the value of the prescaler and the automatically loaded value in the ARR

(Auto-Reload Register) register. The calculation of the value that should be written

to the prescaler is performed as follows:

where PSC is the value of the prescaler,

TIMxCLK is the input frequency of the timer, TIMxCNT is the frequency of

the counter.

64

To obtain the required output frequency, you should write the values in the

ARR register, which is obtained from the following relationship:

where ARR_VAL is the value to write to the ARR register, TIMxCNT is the

counter frequency,

TIMx_ out_ freq – desired output PWM frequency.

The last step is to set the required duty cycle, which will provide the desired

output voltage value. This setting is made using the capture/compare register

(CCRx), based on the following relationship:

where D is the filling factor,

CCRx _VAL – value in the CCRx register (x – register number for a specific

line), ARR_VAL – value to write to the ARR register.

A feature of these microcontrollers is that any value that can be described

using the allotted number of bits can be written to the prescaler and other registers.

Issuing a PWM signal to the output is not the main mode of operation of the port

pins, but refers to additional (alternative) modes. Therefore, you first need to set the

desired mode in the port settings

As an example of a timer for PWM, we will take timer 4. This timer is a 16-bit. Up

to 4 separate channels are available. Also in the technical documentation for the

controller it is indicated that the timer can act as a PWM generator

65

To perform laboratory work, you need to look at what timers are used to

generate PWM available in your controller, which pins can the PWM be output to

and select that timer which can be output to one of the board’s LEDs (they are

different on different boards).

Work order:

1. Launch Cube MX,

2. Create a project in Cube MX

3. Firstly, disconnect all the pins of the LED ports, as well as the pin of the

button

Fig. 4.1: pins I/O

We turn on the timer by selecting internal clocking in the drop-down list, and

turn it on. Turn on all channels – all 4, selecting PWM there

66

Fig. 4.2: Clocking configuration

As we can see, the legs of the ports responsible for the LEDs on the board

turned on themselves specific alternate mode

Fig. 4.3: Legs responsible for LEDs

In the timer settings in Configuration, set the Counter Period parameter to

65535

67

Fig. 4.4: Clocking config

Just in case, enable interrupts and set all 4 ports to high speed.

 Generating a project

68

Fig. 4.5: Generating a project

Below is a program that implements the following effect: LEDs

They light up one by one, and they light up smoothly and go out smoothly too.

/* Initialize all conFig.d peripherals */ MX_GPIO_Init();

MX_TIM4_Init();

/* USER CODE BEGIN 2 */

HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);

HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_2);

HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_3);

HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_4);

69

/* USER CODE END 2 */

Also type this to the function MAIN

/* USER CODE BEGIN 1 */

uint32_t i,d;

/* USER CODE END 1 */

И в бесконечный цикл пишем

/* USER CODE BEGIN 3 */

for(i=0;i<=524288;i++)

{

if(i<65536) TIM4->CCR1=i;

else if ((i>65535)&&(i<131072)) TIM4->CCR1=131071-i; else

if((i>131071)&&(i<196608)) TIM4->CCR2=i-131072; else if

((i>196607)&&(i<262164)) TIM4->CCR2=262164-i; else

if((i>262163)&&(i<327680)) TIM4->CCR3=i-262164; else if

((i>327679)&&(i<393216)) TIM4->CCR3=393216-i; else

if((i>393216)&&(i<458752)) TIM4->CCR4=i-393216;

else TIM4->CCR4=524288-i;

for(d=0;d<300;d++)

{

}

}

}

/* USER CODE END 3 */

Test questions and assignments:

1. PWM operating principle, scope of application. 32-bit Cortex kernel of various

versions (in the microcontroller installed on the board uses a Cortex-M4 core).

Implementation PWM in hardware - without a controller.

2. Implementation of PWM using a microcontroller in STM32. Capture and

comparison module + timer

3. Capture/compare register (CCRx), Counter Register (TIMx_CNT)

— counter, Prescaler Register (TIMx_PSC) — prescaler, Auto-Reload

Register

(TIMx_ARR) - reset register

70

4. Explain how to conFig. PWM using CubeMX. How to set the PWM

frequency, how change the duty cycle in the program.

Task: Generate initialization code in CubeMX, transfer it to Atollic TrueStudio and

using the HAL library, write code that performs the following algorithm: when

pressing button PA0, the LED lights up smoothly within N seconds, where N is the

number option (number according to the list in the magazine). Compile the project

(build the project), when If errors appear, eliminate them, load the code into the

debug board and make sure it is correct program operation. When completing the

task, you need to take into account that the example given uses a different controller

model than on your debug board and accordingly to you you will need to select a

different timer module, and you have different legs connected than in example, a

different operating frequency.

Laboratory work 2

Working with a display based on HD44780

Purpose of work: Learn to work with a display based on HD44780

2.1. Brief theoretical information

What is an integral part of a large number of electronic devices? Certainly,

means of indication and graphical output of data. Always more convenient

and enjoyable for the user

when the result of the ―smart box‖ can be seen visually. Therefore today we

let's connect a display to the STM32 to display text and numbers - quite a

popular display

WH1602 from Winstar, the technique is basically the same for all HD44780-

based displays [12].

First, the display must be connected to the controller. Download the datasheet

and search WH1602 pinout:

71

Fig. 4.6: Pins datasheet

Pins Vss, Vdd and K need to be connected to ground and to power. Pin

number 3 is used for contrast adjustment - if we apply +5V there, we will see

absolutely nothing, but if If we short-circuit the output to ground, we will admire

two rows of black squares. Naturally, this does not suit us, so we need to hang a

potentiometer there (variable resistor resistance) to adjust the contrast. Best symbol

visibility is provided by a voltage of 0.5-0.7V at this display pin.

The RS pin is already a pin that we ourselves will control using a

microcontroller.

A low voltage level (0) on this pin means that a command will now follow, a

high level (1) – this means that there will now be data to be written to the display

memory.

72

Pin R/W - it’s clear here, or we read the data (display busy flag, for example),

in in this case, this pin is 1, or we write the command/data to the display, then here

there are 0 of us.

DB7 – DB0 – data bus.

Pin E is the so-called Enable signal. It is needed to work with the display - to

record data or give a command - we need to issue a positive impulse to this pin. That

is, the procedure will look like this:

1. On pins RS, R/W, DB7 - DB0 - the necessary signals corresponding to our

command.

2. Apply one to pin E.

3. Wait (according to the datasheet – at least 150 ns)

4. Apply a low level (0) to pin E.

The A/Vee pin must be supplied with 4.2 V to power the display backlight.

This is how communication with the WH1602 display occurs.

73

Fig. 4.7: Communication with a display

All commands and signals that should be on the corresponding pins are

described here

WH1602 for each specific command. For example, we want to clear the

display, we look at table, and here is the required command - Clear Display. We

supply to pins RS, R/W, DB7, DB6, DB5, DB4, DB3, DB2, DB1 are zeros, and pin

DB0 is one. Done! What's next? That's right, one per pin E, then wait a while and

lower E to zero again. All, display cleared Only

Before executing the next command, you must pause as indicated in the

datasheet for each team. It would be more efficient to poll the busy flag as soon as it

is reset to 0 - you can work further. There is also a special command to read this

flag, so with this all clear). Let's look at an example using a 4-bit data bus (as you

74

remember there is two options for communicating with the display, namely using an

8-bit bus, or a 4-bit bit), but by and large there are no special features. If in 8-bit

mode we transmit the entire command using pins DB7-DB0, then in 4-bit the

command is divided into two parts and it is transmitted accordingly in parts (in this

mode we use only 4 outputs display – DB7-DB4). So everything is simple and clear.

Quite often when working with displays the problem arises primarily with

initialization, so download the documentation for display being used and looking for

something similar to the set of commands that are needed initialize the display. For

example, I use the WH1602 display. Here's the one we're interested in part of the

datasheet for it where a 4-bit data bus is used:

Fig. 4.8: Initializing a display

75

To work with the display, a ready-made library using HAL was selected -

HD44780 library for Stm32 using hal library [14]. In the downloaded folder lcd_lib

library there are 2 files lcd.c And lcd.h. The readme.md file describes definitions

that specify the display type

Using 16xN and 20xN screens

Set macros for different screen sizes in lcd.h. By default, 16xN is enabled.

// #define LCD20xN // For 20xN LCDs

#define LCD16xN // For 16xN LCDs

As an example, here is an example of how to use the library for 4-bit output:

4bit example

Lcd_PortType ports[] = {

D4_GPIO_Port, D5_GPIO_Port, D6_GPIO_Port, D7_GPIO_Port

};

Lcd_PinType pins[] = {D4_Pin, D5_Pin, D6_Pin, D7_Pin};

Lcd_HandleTypeDef lcd;

lcd = Lcd_create(ports, pins, RS_GPIO_Port, RS_Pin, EN_GPIO_Port,

EN_Pin,

LCD_4_BIT_MODE);

Lcd_string(&lcd, "4ilo - 4bit");

Lcd_cursor(&lcd, 1,6);

Lcd_int(&lcd, -500);

2.2. Work order:

1. In CubeMX, create a new project and conFig. all the pins used for the

indicator to the output, also assign a name (User label) to pins D0..D7,EN,RS. (RW-

we feed it to the ground, because there is no

We will read from the display, only write to it). D4..D7 will be used for 4-bit

gears, the remaining D0..D3 - just in case - can be removed.

2. Generate a project, open it in Atollic TrueStudio.

76

Fig. 4.9: Creating a project in CubeMX

Defines of the pins we named for connecting the display will appear in the

main.h file:

#define D4_Pin GPIO_PIN_0

#define D4_GPIO_Port GPIOB

#define D5_Pin GPIO_PIN_1

#define D5_GPIO_Port GPIOB

#define D6_Pin GPIO_PIN_2

#define D6_GPIO_Port GPIOB

#define RS_Pin GPIO_PIN_6

#define RS_GPIO_Port GPIOC

#define EN_Pin GPIO_PIN_7

#define EN_GPIO_Port GPIOC

#define D7_Pin GPIO_PIN_3

#define D7_GPIO_Port GPIOB

#define D0_Pin GPIO_PIN_4

#define D0_GPIO_Port GPIOB

#define D1_Pin GPIO_PIN_5

#define D1_GPIO_Port GPIOB

77

#define D2_Pin GPIO_PIN_6

#define D2_GPIO_Port GPIOB

#define D3_Pin GPIO_PIN_7

3. In the main program main.c you need to connect the library:

#include "lcd.h"

Copy the lcd.c file to the src folder, lcd.h to the inc folder. Build the project

for 4-bit output and

Display your last name on the top line of the indicator.

In the included file lcd.c all variables and functions of the library are declared,

lcd structure:

#include "lcd.h"

const uint8_t ROW_16[] = {0x00, 0x40, 0x10, 0x50};

const uint8_t ROW_20[] = {0x00, 0x40, 0x14, 0x54};

/************************************** Static declarations

**************************************/

static void lcd_write_data(Lcd_HandleTypeDef * lcd, uint8_t data);

static void lcd_write_command(Lcd_HandleTypeDef * lcd, uint8_t

command);

static void lcd_write(Lcd_HandleTypeDef * lcd, uint8_t data, uint8_t len);

/************************************** Function definitions

**************************************/

/**

* Create new Lcd_HandleTypeDef and initialize the Lcd

*/

Lcd_HandleTypeDef Lcd_create(

Lcd_PortType port[], Lcd_PinType pin[],

Lcd_PortType rs_port, Lcd_PinType rs_pin,

Lcd_PortType en_port, Lcd_PinType en_pin, Lcd_ModeTypeDef mode)

{

78

Lcd_HandleTypeDef lcd;

lcd.mode = mode;

lcd.en_pin = en_pin;

lcd.en_port = en_port;

lcd.rs_pin = rs_pin;

lcd.rs_port = rs_port;

lcd.data_pin = pin;

lcd.data_port = port;

Lcd_init(&lcd);

return lcd;

}

/**

* Initialize 16x2-lcd without cursor

*/

void Lcd_init(Lcd_HandleTypeDef * lcd)

{

if(lcd->mode == LCD_4_BIT_MODE)

{

lcd_write_command(lcd, 0x33);

lcd_write_command(lcd, 0x32);

lcd_write_command(lcd, FUNCTION_SET | OPT_N); // 4-bit mode

}

else

lcd_write_command(lcd, FUNCTION_SET | OPT_DL | OPT_N);

lcd_write_command(lcd, CLEAR_DISPLAY); // Clear screen

lcd_write_command(lcd, DISPLAY_ON_OFF_CONTROL | OPT_D);// Lcd-

on, cursor-off, no-blink

79

lcd_write_command(lcd, ENTRY_MODE_SET | OPT_INC); // Increment

cursor

}

/**

* Write a number on the current position

*/

void Lcd_int(Lcd_HandleTypeDef * lcd, int number)

{

char buffer[11];

sprintf(buffer, "%d", number);

Lcd_string(lcd, buffer);

}

/**

* Write a string on the current position

*/

void Lcd_string(Lcd_HandleTypeDef * lcd, char * string)

{

for(uint8_t i = 0; i < strlen(string); i++)

{

lcd_write_data(lcd, string[i]);

}

}

/**

* Set the cursor position

*/

void Lcd_cursor(Lcd_HandleTypeDef * lcd, uint8_t row, uint8_t col)

{

#ifdef LCD20xN

lcd_write_command(lcd, SET_DDRAM_ADDR + ROW_20[row] + col);

80

#endif

#ifdef LCD16xN

lcd_write_command(lcd, SET_DDRAM_ADDR + ROW_16[row] + col);

#endif

}

/**

* Clear the screen

*/

void Lcd_clear(Lcd_HandleTypeDef * lcd) {

lcd_write_command(lcd, CLEAR_DISPLAY);

}

/************************************** Static function definition

**************************************/

/**

* Write a byte to the command register

*/

void lcd_write_command(Lcd_HandleTypeDef * lcd, uint8_t command)

{

HAL_GPIO_WritePin(lcd->rs_port, lcd->rs_pin, LCD_COMMAND_REG);

// Write to

command register

if(lcd->mode == LCD_4_BIT_MODE)

{

lcd_write(lcd, (command >> 4), LCD_NIB);

lcd_write(lcd, command & 0x0F, LCD_NIB);

}

else

{

lcd_write(lcd, command, LCD_BYTE);

81

}

}

/**

* Write a byte to the data register

*/

void lcd_write_data(Lcd_HandleTypeDef * lcd, uint8_t data)

{

HAL_GPIO_WritePin(lcd->rs_port, lcd->rs_pin, LCD_DATA_REG); //

Write

to data register

if(lcd->mode == LCD_4_BIT_MODE)

{

lcd_write(lcd, data >> 4, LCD_NIB);

lcd_write(lcd, data & 0x0F, LCD_NIB);

}

else

{

lcd_write(lcd, data, LCD_BYTE);

}

}

/**

* Set len bits on the bus and toggle the enable line

*/

void lcd_write(Lcd_HandleTypeDef * lcd, uint8_t data, uint8_t len)

{

for(uint8_t i = 0; i < len; i++)

{

58

82

HAL_GPIO_WritePin(lcd->data_port[i], lcd->data_pin[i], (data >> i) &

0x01);

}

HAL_GPIO_WritePin(lcd->en_port, lcd->en_pin, 1);

HAL_Delay(3);

HAL_GPIO_WritePin(lcd->en_port, lcd->en_pin, 0); // Data receive on

falling edge

}

2.3. Control questions

1. Information display tools for microcontroller systems - LED, LCD, seven-

segment, alphanumeric, graphic displays - differences, advantages and

disadvantages, justify in which cases to use one or another option

2. Connection methods (8-bit, 4-bit, via I2C port expander), pinout WH1602

pins – the purpose of each pin.

3. Principles of working with displays based on HD44780 - what commands,

in what order, how served. In what form and how is the data presented? Why is

DDRAM needed in a display?

4. Standard sequence of operations for issuing at a specific cursor position

strings of characters.

5. Use of ready-made libraries. Using the example of the lcd library. What are

these files lcd.h, lcd.c

- what is in the files, where you need to put them to connect and how to

connect with using the #include directive. What are and where are definitions,

function declarations, Function prototypes? How can you assign the desired names

to the port pins according to library - how to do it manually and how to use

CubeMX. What is it intended for? main.h file?

83

Fig. 4.10: Ready for use project

References:

1. Cortex-M3 Technical reference manual - ARM Ltd

2. ARMv7-M architectural reference manual - ARM Ltd

3. ARM Architectural reference manual Thumb2 supplement - ARM Ltd

4. STM32F103xx User Manual - ST Microelectronics

5. STM32F10xxx FLASH Programming manual - ST Microelectronics

84

SECTION 5

ENVIRONMENTAL PROTECTION

 Introduction

The Life Cycle Assessment (LCA) method is an important instrument to

evaluate the total environmental effect of a product or service from its conception to

its final usage and disposal. This method enables businesses and customers to make

informed decisions that consider the environment at all stages of the product's life

cycle.

A product's life cycle is viewed as a complicated system that includes

resource creation, transportation, usage, and recovery. We can evaluate the overall

environmental impact by collecting and evaluating data at each stage. This strategy

broadens the focus beyond traditional production to all stages.

The first stage of life cycle assessment looks at the resources, energy, and

materials used to make a product. This comprises component manufacturing,

transportation, and assembly. The research then shifts to the use phase, evaluating

energy consumption and emissions during product operation. Finally, the aspects of

recovery and disposal are considered, including waste treatment and material

recycling.

One of the most significant advantages of life cycle analysis is the capacity to

uncover green alternatives and strategies to optimize processes to decrease negative

environmental effects. Companies that use this method can enhance their

manufacturing processes, create environmentally friendly products, and

communicate with consumers who are growing more conscious of and demanding

sustainable development.

Engaging customers and raising their awareness are also key aspects of life

cycle evaluation. People who understand the environmental impact of items can

make more educated selections and select more sustainable options.

85

With increased emphasis being paid to environmental challenges, life cycle

assessment is becoming a crucial tool for societal progress and the preservation of

natural resources for future generations. Life cycle assessment is a step toward

developing efficient and ecologically friendly production and consumption systems

that contribute to the harmonic reconciliation of people's and nature's interests.

1. STM32 Materials

When selecting a product, the life cycle and environmental impact are

frequently ignored even in cases where the functionality is similar. This project aims

to evaluate the STM32's life cycle, emphasizing waste, energy, and materials.

A credit card-sized microprocessor called the STM32 addresses the demand

for computer literacy. It may function as a desktop computer or boost the

performance of smart gadgets.

The STM32 is made up of several complicated components, including raw

materials and manufacturing methods. A complicated manufacturing method is used

to create the PCB, comprised of fiberglass and copper. The fiberglass is made from

sand, which has an impact on biodiversity. The extraction of silicon from sand and

the intricate manufacture of semiconductors is required for the processor, which is

essential to every electronic device.

Silver, palladium, or solid gold are examples of precious metals that are used

in the device's electrical ports. The life cycle necessitates the use of fossil fuels for

transportation in order to complete the processes of raw material acquisition,

manufacture, distribution, consumption, and recycling.

Depending on how users modify the STM32, there are several phases of use.

Updating the software is part of maintenance; hardware is typically left alone.

Electronic equipment recycling and disposal produce a large amount of

garbage. Larger devices are more suited for recovering precious metals; however,

the STM32's modest size restricts its use.

As a result, the whole life cycle of the STM32, from production to recycling,

requires a complicated combination of resources, energy, and trash. The purpose of

86

this analysis is to promote environmentally friendly products and increase customer

awareness. To reduce energy use and leave a cleaner environmental imprint,

solutions should give priority to the life cycle of the product and its effects on the

environment.

1.1 The Environmental Impact Throughout the Life Cycle of STM32

With powers much beyond its small size, the STM32 is a credit card-sized

computer that stands as a tribute to technological brilliance in the era of digital

innovation. Its small form may be appealing, but its complicated life cycle

necessitates a thorough assessment of its environmental effect. Every phase of the

production process, including raw material extraction, shipping, usage, disposal, and

recycling at the end of the device's life, contributes significantly to the

minicomputer's total environmental impact.

Purchasing raw materials: Determining expenses

The extraction of raw materials is the first step in making an STM32. Mining

operations for silicon and copper produce important components, but they also leave

waste rock and tailings in their wake. Tailings ponds, which need to be carefully

designed to avoid environmental problems, are where these leftovers eventually find

resting places. In the meanwhile, natural gas and oil are needed for the

manufacturing of plastic, a crucial part of the STM32. The extraction process

produces drilling waste that is high in chemicals, salt, heavy metals, and radioactive

elements. This waste needs to be disposed of carefully, frequently with the use of

injection wells.

1.2 Manufacturing: an ensemble of elements

Plastic is made by a chemical cycle occurring when raw components are

mixed together during the manufacturing process. Crude oil or natural gas

components are transformed into hydrocarbon monomers by high-pressure

processing, which is subsequently utilized to create polymers. Nevertheless,

hazardous substances like trichloroethane, acetone, methylene chloride, styrene,

sulfur oxides, nitrous oxides, methanol, ethylene oxide, and volatile organic

87

compounds are released into the atmosphere during this chemical choreography. The

manufacturing process of silicon wafers, an essential part of printed circuit boards,

involves the use of potentially harmful materials like arsenic. The environmental

expenses associated with wafer fabrication are substantial.

1.3 Production and assembly: The electric shock

So much power is used during the assembling process, and there are

environmental consequences. The excessive dependence on fossil fuels for the

production of electricity results in a rise in the atmospheric emissions of greenhouse

gases, nitrogen oxides, and carbon monoxide.

1.4 Transportation: Getting about on roads and in the carbon skies

Due to the STM32's widespread appeal, extensive plane and train travel is

necessary. A variety of substances, such as carbon dioxide, water vapor,

hydrocarbons, carbon monoxide, nitrogen oxides, sulfur oxides, and soot, are

released by airplanes powered by hydrocarbons. In a similar vein, rail travel

increases greenhouse gas emissions. There are growing requests for better efficiency

and a switch to renewable energy sources as the environmental effects of

transportation become more apparent.

Utilizing the product: the issue with energy

Once in the hands of customers, the STM32 requires a minimum of 0.52 watts

of electricity to function like a mini-computer. Its extensive reliance on power,

however, connects its use to the more significant environmental problem of energy

production. Greenhouse gases, nitrogen oxides, and carbon monoxide are released

by fossil fuel-fueled power plants, underscoring the necessity of moving to

renewable energy sources.

1.5 End-of-Life: From retirement to revival

The adventure of the STM32 doesn't stop when its functionality becomes

outdated. Retirement creates the possibility of recycling or disposal, which is

problematic for the environment. Due to its toxic and iron-rich nature, copper—a

crucial component of STM32 wires—presents waste disposal issues. In contrast to

88

recycling new copper, recycling copper has the potential to provide a glimpse of

sustainability with far reduced greenhouse gas emissions.

There are three types of plastic that are often found in the environment: epoxy,

polyvinyl chloride (PVC), and pi-polymethylpentene (PPP). They all provide

different recycling issues, which highlights the necessity of appropriate disposal

procedures. Hydrometallurgical processing is one of the sophisticated recycling

processes needed for e-waste that contains silicon and other hazardous materials.

In Conclusion:

The STM32's life cycle study paints a complicated picture of its

environmental effect. Every step has a weight of its own, from the mines to the

assembly line, from transportation to disposal. But there is still hope in this

narrative. The path toward a more sustainable future is being steered by initiatives

that support recycling technology, increase consumer awareness, and support

renewable energy. Because of its small size, the STM32 challenges us to consider

not just what it can do computationally but also the environmental impact that every

bit and circuit has.

2. STM32’s Environmental Impact Compared to AVR’s

Microprocessor development is not an exception to the rule that

environmental effects are an inevitable byproduct of modern technological

advancement. This essay will examine the effects of the STM32 and AVR

microprocessors on the environment. Despite the fact that electronics uses both of

these gadgets extensively, their effects on the environment might be very different.

The device's energy efficiency is one of the most important factors affecting

the environment. For example, Atmel microcontrollers employ AVR

microprocessors, which are renowned for having very low power consumption. For

embedded systems, where every watt might matter, they are made.

On the other hand, since the STM32 is a multifunctional, full-fledged

computer, it can need more power. The utilization of STM32 in various applications

89

may result in increased power usage, which may have an impact on the environment

due to greenhouse gas emissions during the electricity generation process.

The gadgets' capacity for scaling and recycling is another crucial feature.

Usually found in low-resource, basic electronics, AVR microprocessors are smaller

and simpler to recycle. Their straightforward designs also facilitate the separation of

elements for recycling.

On the other hand, because of its intricate design and numerous parts,

recycling the STM32 may be more challenging. It may be challenging to separate

and reuse recovered material because of its size and multi-layered structure, which

might lead to waste and have an adverse effect on natural resources.

Other significant elements that affect how environmentally friendly

microprocessors are include availability and cost. Because of its extensive use in

embedded systems and simplicity, AVR devices may be more reasonably priced.

However, the STM32 has a lot of characteristics that, in certain cases, make

its price justified. However, the huge appeal of STM32s can also result in more

waste and output, which has an impact on the environment.

The particular application and project context determine how AVR and

STM32 microprocessors affect the environment. AVRs could be a preferable option

if simple recycling and low power consumption are top concerns.

In order to strike a balance between technological advancement and

environmental preservation, it is ultimately critical to take environmental factors into

account while developing and utilizing electronics.

3. How to Minimize the Environmental Impact of STM32

The STM32 has transformed the computer landscape and become a powerful

and adaptable tool in an era of fast technological growth. But even as we make use

of its powers, we must consider the environmental effects of its life cycle. So how

can we mix technical innovation with environmental responsibility while reducing

the environmental effect of the STM32?

90

3.1. Sustainable raw material supply: Starting at the source is the first step

towards sustainability. The detrimental effects of mining elements like copper and

silicon can be lessened by forming partnerships with suppliers who use ecologically

friendly mining techniques. Manufacturers of STM32s should prioritize their

suppliers that follow ethical mining standards, reduce waste creation, and make sure

that byproducts are disposed of responsibly by promoting openness in the supply

chain.

3.2. Eco-friendly production techniques: A study of the manufacturing

procedures is necessary to shape the future of STM32. Toxic chemicals and

emissions related to the manufacture of silicon wafers and plastics can be greatly

decreased by implementing green chemistry concepts and investing in cleaner

production techniques. Enhancing manufacturing facilities' integration of sustainable

technology, such as renewable energy, helps better synchronize production

processes with environmental management.

3.3. Energy efficiency and the utilization of renewable energy sources: The

main factor affecting the environment is the amount of energy used in the

manufacture and consumption of goods. Energy-efficient procedures must to be

given top priority by manufacturers in their manufacturing sites. Additionally, the

carbon footprint connected to the STM32's life cycle may be greatly decreased by

switching to sustainable energy sources like solar or wind power. A computer

industry that is more environmentally conscientious can be facilitated by a

commitment to sustainable energy techniques.

3.4. Conscientious shipping methods: Given the STM32's worldwide

dissemination, careful planning must go into transportation. Manufacturers have to

investigate low-carbon transportation choices and offer priority to shipping

companies that follow eco-friendly policies. The carbon footprint connected with

shipping may be further decreased by looking at local manufacturing options and

using technology to improve shipping routes.5. User education and energy

conservation: Encouraging users to understand how their gadgets affect the

91

environment makes them feel more accountable. Manufacturers ought to educate

consumers on energy-saving techniques and encourage the use of renewable energy

sources. More sustainable usage of computers may be achieved by encouraging

users to switch off the STM32 when not in use and by supporting energy-efficient

code.

3.5. Disassembly and recycling-friendly design: The STM32's own design

plays a significant role in reducing its environmental effect. The management of the

equipment at the end of its life cycle can be enhanced by putting design concepts

into practice that make disassembly and recycling easier. Using recyclable materials,

cutting down on complicated parts, and properly labeling things for disposal are

some examples of how to do this. It is recommended that manufacturers collaborate

with e-waste recycling initiatives to guarantee the appropriate disposal and retrieval

of precious materials.

3.6. Increase product longevity and upgradeability: You can drastically cut

down on e-waste by encouraging consumers to get more usage out of their STM32

devices by giving them software updates and upgrade choices. Durability should be

considered in product design so that consumers may replace worn-out parts without

having to discard the complete gadget. This supports the growth of a circular

economy in addition to being consistent with sustainable consumption habits.

3.7. Recycling efforts and take-back programs: To handle electronics ethically

at the end of their life cycle, it is imperative to establish strong recycling initiatives

and take-back programs. In order to give consumers reasonably priced options for

recycling their old STM32 devices, manufacturers have to collaborate with e-waste

recycling centers. Education initiatives may help people understand the value of

recycling e-waste and the significance of correct disposal.

In conclusion, minimizing the environmental effect of STM32 calls for an all-

encompassing strategy that includes end-of-life recycling, user education, energy

efficiency, sustainable sourcing, and manufacturing techniques. The STM32

community can lead the way in a paradigm change toward a more ecologically

92

conscious and sustainable computing era by implementing these suggestions. Not

only is technology evolving, but it is evolving with a conscience, working to make a

good impact on the earth we live on.

It is clear from looking at the STM32's life cycle and the trash and emissions it

produces that there have been environmental difficulties along the way for this

amazing computing gadget. Every stage of the process, including raw material

extraction, manufacture, transportation, usage, and disposal or recycling, has an

impact on the environment. There is a method to accomplish sustainable growth and

reduce environmental effects, despite all the challenges and worries.

The technology industry needs to adopt good practices because to the waste

produced during the mining of copper and silicon, air pollutants during industrial

operations, and the carbon footprint connected with transportation. An important and

indisputable environmental component arises from the manufacture and usage of

items that rely on fossil fuels for energy. These difficulties do, yet, also provide

chances for creativity and constructive development.

Sustainable sourcing, eco-friendly production techniques, responsible energy

usage, and promoting environmentally conscious user behavior are all important

components of any effort to reduce waste and emissions. Because of its prolonged

product life, flexibility to be upgraded, and capacity for recycling, the STM32's

design has the potential to be a catalyst for change.

When the STM32 loses service, the adventure is not over. A circular economy

is being ushered in by programs like take-back programs and collaboration with

recycling facilities, which emphasize the responsible disposal or recycling of e-

waste. Recycling resources like plastic, silicon, and copper offers a chance to lessen

environmental effects and transition to a more sustainable strategy.

Conclusions

In summary, this chapter revealed that the life cycle of the STM32 is a story

of technical innovation entwined with environmental responsibility. The call to

action is obvious as we negotiate a complicated web of emissions and waste: an

93

industry-wide dedication to energy efficiency and sustainable practices, as well as a

shared duty for a future where innovation coexists peacefully with the environment.

The STM32, a representation of accessibility and creativity, has the power to

advance technology and establish a benchmark for environmental responsibility in

the computer sector.

94

SECTION 6

OCCUPATIONAL SAFETY AND HEALTH

 In the ever-evolving landscape of technology, engineers play a pivotal role

in crafting innovative solutions that drive progress and efficiency. The advent of

automation, particularly in equipment development utilizing advanced platforms

such as the STM32 microcontroller, has significantly transformed the engineering

landscape. As engineers delve into the intricacies of automated workplaces, the

spotlight on occupational safety and health measures becomes increasingly crucial.

The integration of STM32 microcontrollers in equipment development symbolizes

the seamless convergence of software and hardware, promising heightened

precision, speed, and functionality. While these advancements bring about a myriad

of benefits, they also introduce new challenges, especially concerning the well-

being of the engineers tasked with harnessing the potential of such cutting-edge

technologies. The working environment for engineers engaged in the development

of equipment based on STM32 microcontrollers presents a unique set of challenges

and potential hazards. Recognizing and mitigating these harmful factors is

paramount to ensure the health and safety of the workforce.

In the dynamic realm of technology, engineers at the forefront of innovation face an

array of challenges and hazards while developing equipment based on STM32

microcontrollers. This essay delves into the multifaceted factors that can

compromise the well-being of engineers in this automated workplace, outlining

standards and legislative requirements crucial for safeguarding their health.

6.1. Harmful and hazardous working factors

One significant risk stems from electrical hazards, wherein engineers may

encounter the potential for shocks or burns. Compliance with international

standards, such as IEC 60950, is imperative, coupled with comprehensive training in

electrical safety practices. Ergonomic challenges, manifested through

95

musculoskeletal disorders and eye strain, necessitate adherence to standards like ISO

9241, emphasizing the need for ergonomic workstations and regular breaks.

Chemical exposure during manufacturing or testing poses health risks,

demanding compliance with regulations like the Globally Harmonized System

(GHS) and the provision of appropriate personal protective equipment (PPE). Noise

pollution, an inherent part of equipment development, requires adherence to

occupational noise exposure standards and the provision of hearing protection.

The potential for working in confined spaces mandates compliance with

standards like OSHA's 29 CFR 1910.146, ensuring proper training and safety

protocols. Radiation exposure, especially in certain equipment development

processes, requires adherence to standards set by the International Commission on

Radiological Protection (ICRP) and adequate protective measures.

Stress and mental health issues, stemming from the fast-paced nature of

development, necessitate the implementation of occupational stress management

programs and adherence to mental health support standards. Machine and equipment

hazards call for compliance with safety standards like ISO 12100, coupled with

thorough training and safety measures.

Biological hazards, depending on the equipment's nature, require adherence to

biological safety standards and the provision of protective measures. Fire and

explosion risks demand compliance with fire safety standards like NFPA 70 and the

implementation of adequate prevention and emergency response measures.

In conclusion, mitigating these harmful factors requires a holistic approach.

Employers must adhere to relevant standards and legislation, providing

comprehensive training, protective measures, and a supportive work environment.

Continuous monitoring and improvement of safety protocols are essential to foster a

culture of well-being in the workplace, ensuring that engineers can contribute to

technological progress in a safe and sustainable manner.

Electrical Hazards:

Description:

96

Engineers working with equipment based on STM32 microcontrollers face

potential electrical hazards, including the risk of shocks and burns. This risk arises

from direct contact with electrical components or circuits during the development,

testing, and maintenance phases.

Possible Harm:

Exposure to electrical hazards can result in injuries ranging from mild shocks

to severe burns, and in extreme cases, it can lead to fatalities. The harm depends on

factors such as the magnitude and duration of the electric shock, as well as the

pathway it takes through the body.

Comparison with Normative Recommendations:

Normative recommendations, such as those outlined in IEC 60950, establish

safety requirements for information technology equipment. Compliance involves

ensuring that the equipment meets insulation and clearance distances, grounding

requirements, and protective measures to minimize electrical hazards. Regular

assessments of the electrical systems against these standards are essential to

maintain a safe working environment.

Protective Measures:

 Training: Ensure that engineers undergo comprehensive training in electrical

safety, emphasizing proper handling of equipment and the use of personal protective

equipment (PPE).

 Isolation and Lockout/Tagout Procedures: Implement strict isolation

procedures when working on live circuits, including the use of lockout/tagout

systems to prevent accidental energization.

 PPE: Provide appropriate PPE, such as insulated gloves, safety glasses, and

flame-resistant clothing, to mitigate the risk of electrical injuries.

 Regular Equipment Inspections: Conduct routine inspections of electrical

equipment to identify and address potential hazards promptly.

 6.2. Analysis of working conditions and development of protective measures

6.2.1 Electrical Hazards:

97

Engineers working with equipment based on STM32 microcontrollers face

potential electrical hazards, including the risk of shocks and burns. This risk arises

from direct contact with electrical components or circuits during the development,

testing, and maintenance phases.

Exposure to electrical hazards can result in injuries ranging from mild shocks

to severe burns, and in extreme cases, it can lead to fatalities. The harm depends on

factors such as the magnitude and duration of the electric shock, as well as the

pathway it takes through the body.

Normative recommendations, such as those outlined in IEC 60950, establish

safety requirements for information technology equipment. Compliance involves

ensuring that the equipment meets insulation and clearance distances, grounding

requirements, and protective measures to minimize electrical hazards. Regular

assessments of the electrical systems against these standards are essential to

maintain a safe working environment.

Protective Measures:

 Training: Ensure that engineers undergo comprehensive training in electrical

safety, emphasizing proper handling of equipment and the use of personal protective

equipment (PPE).

 Isolation and Lockout/Tagout Procedures: Implement strict isolation

procedures when working on live circuits, including the use of lockout/tagout

systems to prevent accidental energization.

 PPE: Provide appropriate PPE, such as insulated gloves, safety glasses, and

flame-resistant clothing, to mitigate the risk of electrical injuries.

 Regular Equipment Inspections: Conduct routine inspections of electrical

equipment to identify and address potential hazards promptly.

6.2.2 Chemical Exposure:

Engineers in STM32 microcontroller-based equipment development may

encounter hazardous chemicals during manufacturing, testing, or maintenance

98

activities. Chemical exposure can occur through direct skin contact, inhalation of

fumes, or accidental ingestion.

Chemical exposure can lead to various health issues, ranging from skin

irritation and respiratory problems to more severe conditions, depending on the

toxicity and concentration of the chemicals. Long-term exposure may result in

chronic health problems.

Compliance with the Globally Harmonized System (GHS) and other relevant

regulations is crucial. This includes proper labeling of chemicals, providing Material

Safety Data Sheets (MSDS), and ensuring that exposure levels are within

permissible limits set by regulatory bodies.

Here are some protective measures that can prevent the worker from such

exposures:

 Ventilation Systems: Install effective ventilation systems in work areas to

control and reduce airborne concentrations of hazardous chemicals.

 Personal Protective Equipment (PPE): Provide appropriate PPE, such as

gloves, safety goggles, respirators, and coveralls, based on the nature of the

chemicals being used.

 Training and Awareness: Conduct regular training sessions to educate

engineers about the potential hazards associated with specific chemicals, proper

handling procedures, and emergency response protocols.

 Substitution of Hazardous Substances: Explore opportunities to replace

hazardous chemicals with less toxic alternatives to minimize overall risk.

 Regular Monitoring: Implement regular monitoring of air quality to ensure

that chemical concentrations are within permissible exposure limits, and take

corrective actions if necessary.

By addressing electrical hazards and chemical exposure through

comprehensive protective measures, employers can create a safer working

environment for engineers, reducing the risk of injuries and long-term health issues.

Ongoing monitoring and adherence to established standards are essential

99

components of a proactive safety approach.

6.3. Fire Safety Rules at the workspace

Fire safety is a critical consideration in the workplace, demanding strict

adherence to established rules and practices. A comprehensive approach to fire

safety is crucial for protecting employees, property, and maintaining business

continuity.

One fundamental aspect is the development and communication of a clear

emergency evacuation plan. This plan should outline evacuation routes, assembly

points, and the specific procedures to be followed during a fire emergency. Ensuring

that all exits are clearly marked, unobstructed, and easily accessible is essential. The

installation and regular maintenance of fire alarm systems and smoke detectors

contribute to early fire detection. Similarly, providing strategically placed fire

extinguishers and conducting employee training on their effective use enhances the

overall fire response capability. Enforcing strict no-smoking policies within the

workspace, particularly in areas with flammable materials, is a basic yet critical rule.

Electrical safety measures, including regular inspections of electrical systems and

equipment, help prevent electrical fires. Additionally, adhering to safety guidelines

for the use of electrical appliances is paramount. Proper storage of flammable

materials in designated areas with adequate ventilation, away from potential ignition

sources, is imperative. This practice aligns with safety data sheets (SDS) guidelines

for storage and handling. Employee training is a cornerstone of fire safety, covering

evacuation procedures, proper use of firefighting equipment, and awareness of

potential fire hazards. A well-equipped first aid kit and designated first aid

responders contribute to a more comprehensive emergency response. Implementing

a hot work permit system for activities involving open flames or welding helps

ensure these tasks are conducted safely and under supervision. Regular fire drills

serve to familiarize employees with evacuation procedures, identify weaknesses in

the emergency response plan, and reinforce a culture of preparedness. Maintaining

clear workspaces by eliminating clutter and properly storing combustible materials

100

minimizes fire risks. Installing clear and visible fire safety signage, including exit

signs, fire extinguisher locations, and emergency contact information, aids in

effective communication during emergencies.Regular inspections of fire safety

equipment, systems, and infrastructure, coupled with prompt resolution of identified

issues, are vital for sustained fire safety. This proactive approach contributes to a

culture of safety within the workplace, promoting a collective commitment to

minimizing fire hazards and ensuring a secure working environment.

101

Conclusions

In conclusion, the diploma work has made noteworthy contributions to both

scientific knowledge and practical applications in the domain of cyber security,

specifically focusing on embedded systems utilizing the STM32 microcontroller.

The key achievements can be summarized as follows:

The primary scientific innovation lies in the successful development of a

cyber-protected workplace based on the STM32 microcontroller. This represents a

significant advancement, addressing a previously understudied area in the realm of

cyber security.

The comprehensive analysis of threats and vulnerabilities for embedded

systems is another substantial contribution, offering a foundational understanding of

potential attacks and guiding the development of effective protection measures.

The implementation of security mechanisms, including robust authentication

and authorization systems, enhances the overall security posture of embedded

systems, providing reliable protection against cyber threats.

In terms of practical value, the developed cyber-protected workplace finds

application across diverse industries, such as automotive, medical, and industrial

automation. This tool serves to safeguard embedded systems within these sectors.

Furthermore, the secure mechanisms devised in this study have broader

implications for improving the security of Internet of Things (IoT) devices. In light

of the increasing prevalence of connected devices, the developed mechanisms offer

a relevant and effective solution to enhance IoT security.

The findings of this research hold practical significance for organizations and

enterprises seeking to fortify the protection of their information systems and

embedded devices. The implemented security measures contribute to safeguarding

critical assets and data.

Moreover, the work lays the groundwork for future research endeavors in the

field of cyber protection for embedded systems and microcontrollers. It provides a

102

valuable platform for researchers to delve deeper into the complexities of securing

these systems.

In summary, the diploma work not only advances our understanding of cyber

security in embedded systems but also provides tangible tools and insights with

wide-ranging applications. The research contributes to ongoing efforts to secure

information systems, protect embedded devices, and establishes a foundation for

continued exploration in this vital and evolving field.

103

References

[1] Programming 32-bit Microcontrollers in C (Lucio Di Jacio)

[2] PROGRAMMING LANGUAGE (BRIAN W.KERNIGHAN & DENNIS

M.RITCHIE)

[3] USB Complete (JAN AXELSON)

[4] Getting Started with LabVIEW (National Instrument_web site or

LabVIEW

help)digital.ni.com/manuals.nsf/websearch/07F9CD824F66237A86257046006F7C5

D

[5] LabVIEW For Everyone (JEFFREY TRAVIS & JIM KRING)

[6] Introduction to LabVIEWTM Six-Hour Course (National Instrument_web

site) zone.ni.com/devzone/cda/tut/p/id/5241

[7] USB Instrument Control Tutorial (National Instrument_web site)

zone.ni.com/devzone/cda/tut/p/id/4478

[8] LabVIEW Graphical Programming Course (Connexions)

cnx.org/content/col10241/latest/

[9] Firmware_lib_users_manual

[10] REF_Manual_STM32F103

[11] Cortex_Technical_Reference_Manual

[12] IAR Embedded Workbench IDE User Guide

users.ece.gatech.edu/~mmckeown3/ECE3884/pdf/IAR%20Embedded%20Wo

rkbench%20IDE%20User%20Guide%20for%20ARM.pdf

[13] Datablad_STM32F103

[14] STM32F10xxx USB development kit

www.st.com/stonline/products/literature/um/13465.htm

[15] Analogue-to-Digital Converters

ww1.microchip.com/downloads/en/devicedoc/adc.pdf

[16] USB Documents on website

www.beyondlogic.org/usbnutshell/usb1.htm (USB in a Nutshell)

104

www.usb.org/developers/usb20/ (Universal Serial Bus)

