
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Department of Electronics, Robotics, Monitoring and

IoT Technologies

ADMIT TO THE DEFENSE

Head of the graduate department

_______________ Volodymyr Shutko

«_____» ____________ 20__.

DIPLOMA

(EXPLANATORY NOTE)

GRADUATE OF A BACHELOR'S DEGREE

SPECIALTY 171 «ELECTRONICS»

Subject: Temperature control in the apartment from a smartphone.

Performer: Hanzin Andrii.

Supervisor: sr. lecturer, Mykola Bidnyi.

Standard controller: _________ __________________

Kyiv – 2023

NATIONAL AVIATION UNIVERSITY

Educational and scientific institute ________________________________.

Department of Electronics, Robotics, Monitoring and IoT Technologies.

Specialty 171 «Electronics».

APPROVE

Head of the graduate department

__________ (V. Shutko)

«____» __________ 20__.

OBJECTIVE

to defense a diploma work

Hanzin Andrii

1. Subject «Temperature control in the apartment from a smartphone» approved by

the order of the rector dated 14.12.2017 № 594/st.

2. Deadline: from ________ to ________

3. Output data: temperature measurement data, microcontrollers.

4. Content of the explanatory note: analytical review of temperature measurement

systems. Comparison of the relevance of temperature control systems. Comparison of

microcontrollers. Modeling of an electronic temperature control system in the apartment

from a smartphone.

5. List of mandatory illustrative material: pictures, tables, code.

6. Calendar plan-schedule

№ Subject Deadline Supervisor Signature

1. Processing of materials for the topic of

the diploma thesis. Internet resources,

textbooks.

24.02.2023 –

03.03.2023

2. Review of existing monitoring systems,

algorithms for the Internet of Things,

and automation systems.

03.03.2023 –

17.03.2023

3. Analysis of microcontrollers. Selection

of the main components.

17.03.2023 –

31.03.2023

4. Modulation and development of the

user-system interaction block diagram.

31.03.2023 –

14.04.2023

5. Creation of a user interface. 14.04.2023 –

21.04.2023

6. Writing the source code of the mobile

application program.

21.04.2023

–

20.05.2023

7. Formatting the explanatory note. 20.05.2023

–

31.5.2023

7. Consultation on specific section(s):

Section title Consultant

(position, full name)

Date, signature

Assigner Accepter

8. Issue assignment date: «____» _________ 20 __ р.

Diploma supervisor (project): ________ ______________

The task was accepted: _____________ Hanzin Andrii

Abstract

Explanatory note to the diploma " Temperature control in the apartment

from a smartphone ": 24 pic., 2 figures, 6 tables, 15 references.

Object of study: Microcontroller-based temperature control in the apartment

from a smartphone.

Objective of the work: To develop an apartment temperature control from a

smartphone system.

Research methods: comparative analysis, processing of literature sources,

prototype modeling.

TEMPERATURE COBTROL, ELECTRONIC SYSTEM,

MICROCONTROLLER, SENSORS, MOBILE APPLICATION, ARDUINO

NANO, ESP8266, DHT11, ATMEGA328P

CONTENTS

Introduction ...7
CHAPTER 1. OVERVIEW OF EXISTING MONITORING SYSTEMS........................... 8
1.1 A temperature control program for an apartment ... 8
1.2 The principle of operation and features of the program. .. 8
1.3 Advantages of Automatic Temperature Control ...9
1.4 Features of Smartphone Control ... 10
1.5 Cons of temperature control software ...10
1.6 Existing Analogues ..10
1.6.1 Nest Learning Thermostat ...11
1.6.2 Ecobee Smart Thermostat ... 12
1.6.3 Honeywell Home Wi-Fi Smart Color Thermostat ... 14
1.6.4 Tado Smart Thermostat ...15

1.7 Comparison of existing analogs with my system... 16
1.8 Conclusions to Chapter 1 .. 19

CHAPTER 2. THEORY AND REVIEW OF PROJECT IMPLEMENTATION
PLATFORMS...20
2.1 Raspberry Pi .. 20
2.2 STM32 ... 23
2.3 Arduino ..26
2.4 The result of the comparison ...29
2.5 Selection of the Arduino platform based on the ATmega328P microcontroller 29
2.6 Software (IDE) .. 31
2.7 Advantages and disadvantages of Arduino UNO...32
2.8 Temperature sensor DS18B20 .. 34
2.9 Resistor for DS18B20 ... 37
2.10 Choosing the ESP8266 WIFI Module .. 37
2.11 Power supply ... 40
2.12 Conclusions to Chapter 2 .. 41

CHAPTER 3. DEVELOPMENT OF THE PROGRAM ALGORITHM AND
PROGRAMMING..42
3.1. Block Schema ...42
3.2. Design ...44

3.3 Selecting an environment for creating a user interface .. 47
3.4. User interface design and coding ... 49
3.5 Conclusions to Chapter 3 .. 64

Conclusion .. 65

INTRODUCTION

The modern world is constantly being influenced by the latest technologies that

change our lifestyle and contribute to increased comfort. One of the most important

aspects of our daily lives is controlling the temperature in our rooms, especially in our

homes. In order to provide an optimal indoor climate and convenience for users, new

developments and technologies are emerging that allow temperature control via

smartphones.

This thesis project is dedicated to the study and development of a smartphone-based

apartment temperature control system. The goal of this project is to create a convenient

and effective tool for users that will allow them to monitor and regulate the temperature

parameters in their living quarters using a mobile device.

The thesis project will examine the main aspects and technologies related to

temperature control in residential premises, as well as research and compare existing

systems that are already used to control the temperature in homes.

In addition, the thesis project will develop a smartphone-based temperature control

system. Modern technologies, such as wireless communications and the Internet of Things,

will be used to ensure the convenience and speed of temperature control in residential

premises.

Remote monitoring systems can help businesses save time and money by reducing

the need for manual temperature control by on-site personnel.

The described system for controlling the temperature in an apartment using a

smartphone is a relevant and promising research topic. It opens up new opportunities for

CHAPTER 1. OVERVIEW OF EXISTING MONITORING SYSTEMS

1.1 A temperature control program for an apartment

A temperature control program for a hospital, private home, or apartment is capable

of providing comfortable living conditions for residents and employees, taking into

account their particular needs. In short, such an electronic system provides centralized

temperature control for all existing temperature control systems in the residence and their

individual components.

The foundation of the module is the software. It regulates the working parameters of

the equipment to heat or cool the air in the rooms, taking into account the preferences of

the homeowners. The temperature control program, optimized for an apartment or house,

is capable of controlling all devices that affect the temperature, including air conditioners

and split systems, warm floors, boilers, and other heating devices.

1.2 The principle of operation and features of the program.

A temperature control program is one or more devices that maintain a desired air

temperature. The control unit compares the air readings in the room with the specified

parameters. If there is a deviation in the readings, it sends a new command to adjust them.

If the temperature in the room drops below the specified norm, the heating element will

start heating the air to a comfortable temperature. Different temperature modes can be set

in different rooms.

The program automatically controls the room temperature according to the set upper

and lower limits. Human intervention is necessary to check the equipment's operation and

set new values.

To operate the system, a heating element must be installed to heat the air to the

desired temperature. Then it will be evenly distributed throughout the room perimeter. The

control unit is designed with a simple scheme for dividing airflows. Temperature readings

are adjusted using.

A temperature control program is a complex of devices that affect the temperature

of the apartment. It can control the air conditioner, radiators, boilers, underfloor heating

system, and other equipment.

The main functions of the apartment temperature control system may include:

• Air temperature control. the program can measure the temperature in the apartment and

automatically adjust the operation of heating and air conditioning to provide a comfortable

temperature.

• Time programming. the program can be programmed to turn on and off heating and air

conditioning at specific times to save energy and provide comfortable conditions

according to the residents' schedule.

• Remote control. the program can be connected to the internet, allowing users to control

the system's operation using a mobile application on a smartphone or tablet.

• Touch control. some systems may have a touch display or remote display, allowing users

to see real-time information about the temperature and other parameters and control the

system's operation.

1.3 Advantages of Automatic Temperature Control

 Comfort. Automatic temperature control allows for comfortable living conditions in

the home. The temperature control and monitoring program can also provide

comfortable conditions for people with specific needs. For example, people with

certain illnesses who require constant temperature control can use this program to

ensure stable temperature in the room.

 Energy savings. An automatic temperature control program can save on energy

costs by regulating the temperature in the home, optimizing the heating system

based on the number of people in the house and the time of day.

 Increased safety. Some automatic temperature control systems can be linked to

security systems, such as smoke detectors, which can automatically turn off the

heating system in case of a fire.

 Convenience. With automatic temperature control, you can set the system to

automatic mode and forget about it.

 Remote control options. The program can be installed on a smartphone for

automatic temperature control and remote management. This allows you to adjust

the temperature in the apartment from anywhere and at any time.

1.4 Features of Smartphone Control

The temperature control program can be integrated into the "Smart Home" system

and controlled remotely. To do this, you need to install special software on your mobile

phone or tablet that allows you to monitor the temperature in different parts of the

apartment and turn equipment on/off from anywhere. The main requirement is the

presence of the Internet in the apartment and on the mobile device. The program transmits

data over the Internet to the device, even if it is not connected to the home network. In

addition, if the program cannot maintain the specified parameters or if there is a equipment

failure, a notification will be sent to the mobile phone. The "Smart Home" system also

provides a high level of safety, as the risk of overheating individual elements is minimal.

If the system experiences a heavy load, it will automatically turn off the device.

1.5 Cons of temperature control software

Temperature control software has its drawbacks, which make their operation and

installation more complicated. It requires time to learn the instructions and software.

Additionally, installing and setting up temperature control software can be quite expensive,

especially if specialized devices and equipment are used. Temperature control software

may only be limited to controlling the temperature in a room and may not provide other

important functions such as ventilation, air purification, and humidity control.

1.6 Existing Analogues

Analogies are a powerful tool to help us understand complex concepts and

processes by comparing them to more familiar things or phenomena. In this section, I will

look at various analogs and their functions to help you understand the advantages and

disadvantages of existing systems. They can help increase understanding, avoid mistakes,

and build new knowledge. I will compare the main functions and initial parameters with

my system and provide its advantages compared to others.

1.6.1 Nest Learning Thermostat

The Nest Learning Thermostat is a home thermostat that can be controlled by your

smartphone. This thermostat learns your life schedule and adjusts the room temperature

according to your habits. The Nest Learning Thermostat has a very stylish and modern

design with a round shape and smooth surface, giving it the look of true modern

technology

Pic. 1.6.1 Nest Learning Thermostat

The main function of the thermostat is to automatically adjust the temperature

depending on the presence of people in the room and the outside weather conditions. In

addition, the Nest Learning Thermostat has an Airwave feature that can reduce energy

costs by reducing the use of air conditioning during high humidity.

Another important feature of this thermostat is its remote control via smartphone.

You can control the thermostat even if you're not at home. The Nest Learning Thermostat

is also compatible with various smart device manufacturers, such as Amazon Alexa,

Google Assistant, and others.

The main benefits of the Nest Learning Thermostat include automatic temperature

control based on your schedule, Airwave function to reduce energy costs, and the ability to

control remotely with your smartphone. However, it's important to note that the Nest

Learning Thermostat may be on the pricey side compared to other thermostats, and that

may not be enough for some users.

1.6.2 Ecobee Smart Thermostat

The Ecobee Smart Thermostat is another smart thermostat that can be controlled by

a smartphone. It allows you to customize the heating and cooling schedule in your home to

save money on energy consumption. The Ecobee Smart Thermostat also has built-in

sensors that measure humidity and motion sensors, allowing the device to adjust the

temperature in your home even more efficiently.

Pic. 1.6.2.1 Ecobee Smart Thermostat

One of the main features of the Ecobee Smart Thermostat is the ability to connect to

various smart home devices through support for Wi-Fi, Bluetooth, Zigbee, etc. This allows

you to control the thermostat from anywhere with internet access. Ecobee Smart

Thermostat also has a built-in Amazon Alexa voice assistant that allows you to control the

device by voice.

Another of the main advantages of Ecobee Smart Thermostat is the ability to

customize the temperature in individual areas of the house. This is achieved with the help

of additional temperature sensors that can be placed in different rooms. Thus, the

thermostat will be able to control the temperature in each room separately, which provides

a comfortable living environment.

However, the Ecobee Smart Thermostat has a relatively high price compared to

other thermostats on the market, which may be out of reach for many users. It can also be

difficult to set up additional temperature sensors to control the temperature in separate

areas of the house, which requires some knowledge and experience.

1.6.3 Honeywell Home Wi-Fi Smart Color Thermostat

The Honeywell Home Wi-Fi Smart Color Thermostat is another fairly popular

thermostat with a smartphone app for control. It has a high-definition color display and the

ability to change the temperature shown on the display.

Pic. 1.6.3.1 Honeywell Home Wi-Fi Smart Color Thermostat

This thermostat has Wi-Fi support, which allows you to connect it to the app on

your smartphone and control it from anywhere. In addition, it supports voice control,

which allows you to turn the thermostat on and off by voice.

A special feature of Honeywell Home Wi-Fi Smart Color Thermostat is its ability to

determine the optimal humidity level in the apartment. This can be useful if you have

health problems associated with dry air.

In addition, the thermostat can automatically switch from heating to cooling when

the temperature changes. It also has the ability to be programmed to set it to run on a

schedule.

While the Honeywell Home Wi-Fi Smart Color Thermostat has many features and

capabilities, it can be a little more complicated to use than some of the other thermostats

on this list. It can also be a bit more expensive than some of the more basic models.

However, its rich features and humidity tracking capabilities make it a good choice for

those who want extra control over the conditions in their home.

1.6.4 Tado Smart Thermostat

The Tado Smart Thermostat is another very popular thermostat that can be

controlled by a smartphone. It has the ability to automatically adjust the temperature in the

room depending on the weather conditions outside, and it also has the option of working in

automatic mode, where it determines when the heating should be turned on and off.

Pic. 1.6.4 Tado Smart Thermostat

The thermostat can control both heating and air conditioning, allowing you to adjust

the temperature at any time, even when you're not at home. Thanks to the geolocation

feature, the thermostat can automatically turn on when you return home and also turn off

when you leave.

In addition, the Tado Smart Thermostat has an indoor air quality tracking function

that allows you to control humidity and other parameters. Additionally, the thermostat has

the ability to work with windows, which allows you to automatically turn off the heating

when the window is open.

One of the main advantages of the Tado Smart Thermostat is its ability to use smart

technology to maximize energy efficiency, which allows you to save on heating. In

addition, its simple interface makes it easy to control the temperature anytime and

anywhere.

However, the Tado Smart Thermostat can be a bit expensive compared to other

thermostats that have similar features. Also, additional features such as air quality tracking

and window operation may not be necessary for some users.

1.7 Comparison of existing analogs with my system

After researching several temperature control system analogs, I can conclude that

each of them has its own advantages and disadvantages compared to my system.

For example, the Nest Learning Thermostat stands out from other analogs because

of its ability to learn and memorize user habits, as well as its ability to automatically turn

off when no one is home. It also has an attractive design and is quite energy efficient.

However, it can be considered quite expensive and may not work with some heating

systems.

The Ecobee Smart Thermostat, on the other hand, offers integration with voice

assistants and has a fairly large and user-friendly display that allows the user to control the

temperature with ease. It also offers support for multi-zone control, allowing different

areas of the home to have different settings. The disadvantage may be the unpleasant

design and relatively high price.

The Honeywell Home Wi-Fi Smart Color Thermostat can be considered one of the

most affordable options among its peers. It has quite extensive customization options and

can be connected to remote control from a smartphone. Its design can attract users with its

ability to change the background colors of the display. However, it can be somewhat

difficult to use and has limited multi-zone control capabilities.

Finally, the Tado Smart Thermostat can be considered one of the most "smart" of

the bunch, as it uses intelligent algorithms to learn user habits and optimize the heating

system's performance. However, unlike my system, Tado requires a subscription to their

service to use some of the features, which can be an additional burden on the user's budget.

In general, my system has several advantages over its counterparts. First of all, it is

a low price, which makes it more accessible to a wide range of users. In addition, it has a

simple and intuitive interface, which makes it very easy to use. My system also has the

ability to manually control the temperature, which allows users to quickly change the

temperature without having to use additional features.

In addition, my system has the ability to connect to any temperature sensors and

heating control devices via WiFi, which allows for maximum usability. Also, the system

automatically adjusts the temperature within the user-defined parameters, which reduces

energy consumption and reduces heating bills.

So, my system provides a simple and convenient way to control the temperature in

an apartment, which allows users to save time and money. It is an effective and affordable

solution to control the temperature in apartment.

In order to compare the above options, a table will be created. In it, we will list the

main parameters of the systems. To do this, let's build Table 1.

Table 1 - Comparison of systems

Price Complexity

of use

Energy

efficiency

Ease of

implementation

Reliability

My system 1 1 1 1 1 5

Nest

Learning

0 1 1 1` 1 4

Thermostat

Ecobee

Smart

Thermostat

0 0 1 0 1 2

Honeywell

Home Wi-Fi

Smart Color

Thermostat

0 1 1 0 1 3

Tado Smart

Thermostat

0 0 1 0 1 2

Let's calculate the generalized quality factor, which is calculated using the following

formula:

� = Ei
En

A generalized criterion for the quality of the first system:

� = 5
5
= 1

A generalized criterion for the quality of the second system:

� = 4
5
= 0.8

A generalized criterion for the quality of the third system:

� = 2
5
= 0.4

Generalized quality criterion of the fourth system:

� = 3
5
= 0.6

Generalized quality criterion of the fifth system:

� = 2
5
= 0.4

As you can see, the quality criterion for the first system is higher than for other

analog systems. Based on these calculations, we can conclude that my circuit has all the

necessary qualities for the task we have set. Let's use these parameters to build an

electrical schematic diagram of the system under development.

1.8 Conclusions to Chapter 1

In Chapter 1, an overview of the state of the problem was made on the basis of literature

on the topic of the thesis. In this thesis, temperature control system was designed. climate

control system. The problems and disadvantages of various systems that can control the

temperature in an apartment were discussed.

CHAPTER 2. THEORY AND REVIEW OF PROJECT IMPLEMENTATION
PLATFORMS

2.1 Raspberry Pi

Raspberry Pi is a single-board computer that has garnered widespread acclaim for

its impact on programming and electronic device development. It is a compact board,

resembling the size of a credit card, that boasts an ARM processor, RAM, and an array of

ports for seamless peripheral connectivity.

Pic. 2.1.1 Raspberry Pi

Originally introduced by the Raspberry Pi Foundation in the United Kingdom,

Raspberry Pi has gained immense popularity since its inception in 2012. It supports

various operating systems, such as Raspbian (a Linux-based system) and Windows 10 IoT

Core, catering to a diverse range of user preferences and project requirements.

One notable aspect of Raspberry Pi is its expandability and compatibility with a

plethora of peripheral devices. With USB, HDMI, Ethernet, and audio ports, users can

effortlessly integrate a multitude of accessories into their setups, whether they're building a

media center, gaming console, or smart home system. This microcontroller is actively used

in Internet of Things (IoT), robotics, web server and hosting, process automation and

much more.

Because of its ease of use and accessibility, the Raspberry Pi has attracted

significant attention in education and in the DIY community. He is the perfect platform for

nurturing curiosity, empowering learners of all ages to explore technology, electronics,

and programming, and fostering the development of valuable skills.

That said, compared to Arduino and STM32, the Raspberry Pi has higher power

consumption, making it less suitable for battery-powered applications. The Raspberry Pi

does not have the same accuracy and low latency as the STM32, which can be important

in mission-critical systems.

The Raspberry Pi is a powerful and flexible development platform that can be used

for a variety of projects. Its compact form, affordability, and boundless possibilities make

it an invaluable asset for beginners, enthusiasts, and educators seeking to unlock their

potential in these dynamic fields. The advantages are high performance, versatility, and a

large community of developers. Disadvantages include higher power consumption, lower

accuracy, and lower latency compared to other platforms such as the STM32.

Table 2 - Comparison of the main models of Raspberry Pi microcontrollers

Microcontroller

Model

Raspberry

Pi Pico

Compute

Module 4

Raspberry

Pi Zero

Raspberry

Pi 3 Model

A+

Raspberry

Pi 2 Model

B

Processor RP2040 Broadcom

BCM2711

BCM2835 BCM2837 BCM2836

Number of Cores 2 4 1 4 4

Processor

Frequency

133 MHz 1.5 GHz 1 GHz 1.4 GHz 900 MHz

Number of GPIO

Pins

26 244 40 40 40

Ethernet No Yes No Yes Yes

Wi-Fi No Yes No Yes No

Bluetooth No Yes No Yes No

USB No 2x USB

2.0

1x micro-

USB

1x USB 2.0 4x USB 2.0

HDMI No Yes No No 1x HDMI

The Raspberry Pi Pico is a new microcontroller that stands out for its compact size,

low cost, and use of the RP2040 processor. It has 26 GPIO pins and supports many

interfaces such as UART, I2C and SPI. However, the Raspberry Pi Pico lacks built-in

Ethernet, Wi-Fi, and Bluetooth, which limits its wireless connectivity.

Compute Module 4 is designed for use in industrial applications and has a

significant number of GPIO pins - 244. It is based on Broadcom's BCM2711 processor

and supports Ethernet, Wi-Fi and Bluetooth. The Compute Module 4 also has two USB

ports, providing additional connectivity for external devices. However, because of its

focus on industrial use, it can be more difficult to use for casual enthusiast projects and

requires additional hardware to connect and program it.

The Raspberry Pi Zero is the least powerful and affordable model, which is suitable

for projects with limited resources. It has 40 GPIO pins and a BCM2835 processor.

However, the Raspberry Pi Zero does not have Ethernet, Wi-Fi, or Bluetooth capabilities,

which may limit its use for wireless projects or networking applications.

The Raspberry Pi 3 Model A+ and Raspberry Pi 3 Model B+ are both based on the

BCM2837 processor and offer improved performance over previous models. They both

have 40 GPIO pins and support Ethernet, Wi-Fi, and Bluetooth for more networking and

wireless connectivity. The Raspberry Pi 3 Model B+ also has additional USB ports,

making it easier to connect external devices. However, the Raspberry Pi 3 Model A+ and

Raspberry Pi 3 Model B+ may have a higher cost than other models.

The Raspberry Pi 2 Model B is also based on the BCM2836 processor and has 40

GPIO pins. It offers good performance and some connectivity such as Ethernet and four

USB ports. However, unlike newer models, the Raspberry Pi 2 Model B lacks built-in Wi-

Fi and Bluetooth, which can be a drawback in certain projects where wireless connectivity

is required.

2.2 STM32

STM32 is a family of microcontrollers manufactured by STMicroelectronics. These

microcontrollers boast a diverse set of features and capabilities to satisfy a wide range of

applications. They are powerful and flexible development platforms with high

performance, low latency and high accuracy, making them the ideal choice for mission-

critical systems.

Pic. 2.2 STM32

STM32 uses the ARM Cortex-M core, which provides fast and efficient task

execution. They have many inputs/outputs, built-in modules for working with various

peripheral devices, as well as different memory and speed options.

One of the main advantages of STM32 is its performance and low latency. It can process

data faster than Raspberry Pi and Arduino, making it ideal for use in critical systems

where quick response to external events is critical.

However, STM32 can be more complex to use than Arduino, as it requires deeper

knowledge of programming and electronics. It can also be more expensive to use than

Arduino, as it requires additional equipment for programming and debugging.

Overall, STM32 is a powerful and flexible development platform with high

performance, low latency, and high accuracy. It can be used to create critical systems

where quick response to external events is critical. However, it can be more complex to

use and more expensive to use than Arduino. The STM32 family of microcontrollers

includes many different models, each with its own technical specifications.

The STM32 family of microcontrollers includes many different models, each with

different specifications. Here are the general characteristics of the STM32:

Table 3 - Comparison of the main models of STM32 microcontrollers

Model STM32F0 STM32F1 STM32F4 STM32F7 STM32L4

Core Cortex-M0 Cortex-M3 Cortex-M4F Cortex-M7 Cortex-M4F

Processor

Speed

Up to 48

MHz

Up to 72

MHz

Up to 180

MHz

Up to 216

MHz

Up to 120

MHz

Flash

Memory

Up to 256

KB

Up to 1 MB Up to 2 MB Up to 2 MB Up to 2 MB

RAM Up to 32 KB Up to 96 KB Up to 192

KB

Up to 512

KB

Up to 640

KB

GPIO Pins 16-128 20-144 32-176 100-216 32-144

Analog

Inputs

Yes Yes Yes Yes Yes

Communicati

on

I2C, SPI,

UART

I2C, SPI,

UART

I2C, SPI,

UART

I2C, SPI,

UART

I2C, SPI,

UART

Ethernet No No Up to 1x

Ethernet

Up to 1x

Ethernet

No

USB Up to 2x

USB 2.0

Up to 2x

USB 2.0

Up to 3x

USB 2.0

Up to 2x

USB 2.0, 1x

USB HS

Up to 2x

USB 2.0

CAN No Up to 2 Up to 2 Up to 2 Up to 2

I2C Up to 1 Up to 2 Up to 3 Up to 4 Up to 3

The STM32F0 are low-cost microcontrollers based on the Cortex-M0 core. They

offer low cost and sufficient performance for simple applications. However, the Flash and

RAM capacity is limited and the functionality of the I/O ports (GPIOs) and

communication buses is limited compared to other models.

STM32F1 are mid-level models based on the Cortex-M3 core. They offer more

Flash and RAM, as well as a wider range of GPIO and communication bus functionality.

However, their performance is limited to 72 MHz, which may not be enough for some

applications with high performance requirements.

STM32F4 are high performance microcontrollers based on the Cortex-M4F core.

They offer high processor frequency, large Flash and RAM capacities, and rich GPIO and

communication bus functionality. The STM32F4 also supports an Ethernet interface for

network connectivity. However, their cost may be higher and power consumption may be

higher compared to some other models.

The STM32F7 are high performance microcontrollers based on the Cortex-M7 core.

They offer even higher processor frequencies, more Flash and RAM, and an expanded set

of GPIO and communication bus functionality. The STM32F7 also supports an Ethernet

interface and has multiple USB ports. However, their cost can be higher and power

consumption can be higher, making them less suitable for resource-constrained

applications.

STM32L4s are low-power microcontrollers based on the Cortex-M4F core. They

offer good performance while consuming less power. They have large Flash and RAM

capacities and a variety of GPIO and communication bus functionality. The STM32L4

also supports analog inputs and has a fair number of USB ports. However, their processor

frequency is limited to 120 MHz, which may not be sufficient for some high-performance

applications.

2.3 Arduino

Atmel AVR and ARM microcontrollers provide the basis for hardware and software

projects developed on an open platform known as Arduino. Different tasks can be

accomplished using the various models and variants of Arduino.

Easy programming and usage are key benefits of using an Arduino. Novice users

can create simple projects within minutes using Arduino’s simple and intuitive

programming language. Furthermore, a substantial community of both users and

developers share experiences while providing assistance to other users.

Using Arduino is also very cost-effective and inexpensive. It can be purchased at a

very low cost without needing extra hardware for programming and debugging. An ideal

choice for projects with limited funds.

Nevertheless, the Arduino lacks the advanced capabilities and versatility of the

Raspberry Pi or STM32. Data processing at the same speed is not possible for it and it is

equipped with lesser built-in modules to operate various peripherals.

As a whole, the Arduino is a superb selection for amateur developers and for

undertakings with restricted finances. It's not hard to utilize and it's reasonably priced.

Simple projects not requiring fast data processing can also be created using it.

Table 4 - Comparison of the main models of Arduino microcontrollers

Microcontroller Arduino

Uno

Arduino

Mega

Arduino

Leonardo

Arduino

Due

Arduino

Nano

Clock Speed 16 MHz 16 MHz 16 MHz 84 MHz 16 MHz

Flash Memory 32 KB 256 KB 32 KB 512 KB 32 KB

SRAM 2 KB 8 KB 2.5 KB 96 KB 2 KB

EEPROM 1 KB 4 KB 1 KB N/A 1 KB

Digital I/O Pins 14 54 20 54 14

Analog Input

Pins

6 16 12 12 8

UART 1 4 1 4 1

SPI 1 1 1 1 1

I2C 1 1 1 2 1

USB Yes Yes Yes Native Yes

Arduino Uno is one of the most popular Arduino models. It is equipped with the

ATmega328P microcontroller, which runs at 16 MHz. Arduino Uno has enough flash

memory (32 KB) that you can load and run small programs. It also has 14 digital

inputs/outputs, 6 analog inputs and supports basic interfaces such as UART, SPI and I2C.

The Arduino Uno is easy to use, affordable and well suited for novice users. However, its

limited resources may be a problem for more complex projects that require more memory

or more I/O.

The Arduino Mega is equipped with the ATmega2560 microcontroller and has

significantly more resources than the Arduino Uno. With its 256 KB flash memory, 54

digital I/O and 16 analog inputs, the Arduino Mega provides more space for developing

complex projects. It also supports basic communication interfaces such as UART, SPI and

I2C. However, the Arduino Mega is larger and more expensive than the Arduino Uno,

which can be a disadvantage for some projects.

The Arduino Leonardo uses the ATmega32u4 microcontroller, which has built-in

USB support. This makes it easy to use for developing projects that require a direct

connection to a computer. The Arduino Leonardo also has 20 digital I/O and 12 analog

inputs, which gives enough flexibility for most projects. However, the Arduino Leonardo

has less flash memory and SRAM compared to the Arduino Mega, which can limit the

possibilities for complex programs.

The Arduino Due has a 32-bit SAM3X8E microcontroller based on the ARM

Cortex-M3 core, making it more powerful and faster than previous models. With a clock

speed of 84 MHz, 512 KB of flash memory, and 96 KB of SRAM, the Arduino Due

provides great resources for developing complex projects. It also supports a wider range of

communication interfaces, including UART, SPI, I2C, USB, and Ethernet. Arduino Due is

ideal for projects that require high performance, such as robotics or signal processing.

However, keep in mind that Arduino Due has a higher cost compared to simpler Arduino

models, and its use may require more advanced programming knowledge.

Arduino Nano is a compact and budget-friendly Arduino model. It uses the

ATmega328P microcontroller, similar to the Arduino Uno, and has a basic set of features.

The Arduino Nano has 32KB of flash memory, 2KB of SRAM, and a limited number of

digital and analog I/Os. However, because of its compact size, the Arduino Nano is ideal

for space-saving projects. It is also more affordable in terms of price, making it popular

with novice developers and students.

2.4 The result of the comparison

The choice between these platforms depends on the specific project and its

requirements. If the project requires running an operating system, networking, and higher

processing power, then the Raspberry Pi may be the best choice. If the project requires

high performance, lots of peripherals, and low power consumption, the STM32 may be a

better choice. If the project requires a simple and affordable platform with which to get

started quickly, the Arduino may be a better choice. However, Arduino has a simple

programming language, extensive community support, availability, and a wide variety of

peripherals, making it a great choice for beginners and for developing simple electronic

devices.

2.5 Selection of the Arduino platform based on the ATmega328P

microcontroller

The Arduino UNO platform, based on the ATmega328P microcontroller, was

chosen for the project implementation.

Arduino UNO is one of the most popular Arduino platforms for developing

electronic devices. Thanks to its wide support and active developer community, you can

find many ready-made libraries and programs for Arduino UNO that help to expand its

capabilities. It has an easy-to-use design and an affordable price, making it the perfect

choice for a project like my system to control the temperature in apartment.

Pic. 2.5.1 Arduino UNO

Arduino can interact with physical devices through various types of sensors and

input/output devices such as buttons, temperature sensors, gyroscopes, accelerometers,

displays, motors, and more. Devices can be connected to the Arduino board using different

interfaces such as digital and analog inputs/outputs, communication buses (such as I2C,

SPI, UART), external interrupts, and more.

It is easy to use, has a user-friendly IDE, and is cost-effective. In addition, Arduino

has a large community of users that provides extensive documentation, examples, and

libraries. A wide range of boards and models are available with different characteristics

and functionalities, allowing you to choose the most suitable board for your project.

Additionally, Arduino is based on open-source code, which allows users to modify and

improve the code, create their own libraries, and applications.

Technical characteristics of Arduino UNO:

- Microcontroller: ATmega328P

- Processor Frequency: 16 MHz

- Power supply voltage: 5V

- Input voltage (recommended): 7-12 В

- Digital inputs/outputs: 14 (of which 6 can be used as PWM outputs)

- Analog inputs: 6

- USB Streaming Interface: Type B

- FLASH memory: 32 KB

- RAM (SRAM): 2 KB

- EEPROM: 1 KB

In addition, Arduino Uno has many additional features, such as a built-in voltage

regulator, the ability to program through the USB port, and extensive connectivity of

additional modules and sensors. All this makes it a popular choice for a wide range of

projects, from simple electronic games to smart homes and robotics.

2.6 Software (IDE)

The software used to program the Arduino is represented by the Arduino IDE. The

IDE is a Java program that runs on many different platforms, including such well-known

systems as PC, Mac, and Linux. It was developed for beginners who are not familiar with

all the intricacies of programming. It includes an editor, compiler, and loader. The IDE

provides code libraries for using peripherals, serial ports and various types of screens.

Programs for Arduino are called "sketches".

Most Arduino boards are connected to a computer using a 27 USB cable. This

connection allows you to download sketches to your Arduino board.

Pic. 2.6.1 Arduino UNO PINOUT

2.7 Advantages and disadvantages of Arduino UNO

Advantages:

 Ease of use: The Arduino Uno stands out for its simplicity and user-friendly features.

Its interface and programming language are designed to be easily understood, even

by individuals with no prior experience in microcontroller programming.

Furthermore, a vibrant community of developers constantly creates libraries and

development tools to facilitate its usage.

 Price: The Arduino Uno offers a cost-effective solution, making it accessible to a

wide range of users. With its competitive pricing, it ranks among the most

economical microcontrollers available, enabling individuals on a tight budget to

venture into microcontroller projects without substantial financial investments.

 Expandability: The Arduino Uno boasts a vast selection of extensions and modules,

rendering it suitable for a diverse range of projects. Its abundant variety of inputs

and outputs allows for seamless integration with various sensors and devices,

expanding its potential applications.

 Programmability: The Arduino Uno supports the widely used C and C++

programming languages, endowing it with remarkable flexibility and power.

Additionally, it embraces an array of libraries and development tools, streamlining

the process of creating programs with minimal complexity.

 Reliability: The Arduino Uno demonstrates exceptional reliability and stability

during operation. It incorporates built-in protection mechanisms against undesirable

events such as short circuits, ensuring safe usage across numerous scenarios

Disadvantages:

 Limited Resources: The Arduino Uno has limited resources, such as RAM and

EEPROM. This can be a problem for more complex projects that require more

memory.

 Low performance: Arduino Uno has low performance compared to more powerful

microcontrollers. This can limit the capabilities of projects that require higher

performance.

 Limited support: Although Arduino is a popular platform, it has some support

limitations. Specifically, its documentation does not always contain all the

information you need, and sometimes it can take you a long time to find the answer

to your question. Also, Arduino is focused on beginners and intermediate users, so

if you have a project that requires a higher level of professionalism, you may need

to use a different platform.

 Difficulty building large projects: Using Arduino for large and complex projects can

require a lot of extra effort to assemble and control components. In order to use

Arduino for large projects, you must be prepared for the fact that you may need to

write your own code as well as purchase additional hardware.

 Low speed: The Arduino is not a fast platform. Processing speed is limited by

processor frequency and other characteristics of the platform. This means that if you

need to process large amounts of data or work with fast-changing conditions, you

may need to use a more powerful platform.

 Limited memory: The Arduino UNO has only 32 KB flash memory and 2 KB RAM.

This can limit your programming and project design capabilities. If you need more

memory for your project, you may need to use a different platform with higher

specifications.

2.8 Temperature sensor DS18B20

One of the central components of the system is the temperature sensor. To

determine the most suitable option to start with, you need to compare the characteristics of

the possible options and understand the advantages and disadvantages of each.

Table 5 - Comparison of the main models of Temperature Sensor

Temperature

Sensor

Interface

Type

Measurement

Accuracy

Measurable

Temperature

Range

Output

Signal

Price

DS18B20 1-Wire ±0.5°C -55°C to +125°C Digital $2-5

DHT22 1-Wire ±0.5°C (temp.) -40°C to +80°C Digital $5-

10

LM35 Analog ±0.5°C -55°C to +150°C Analog $1-2

MAX31850 1-Wire ±2°C -55°C to +125°C Digital $5-

10

PT100 Analog Varies -200°C to

+850°C

Analog $5-

15

After comparing the characteristics of the DS18B20 counterparts, the following

conclusions can be made. The DS18B20 has a temperature accuracy of ±0.5°C, the same

as the DHT22 (AM2302). However, the DS18B20 has the widest temperature

measurement range, from -55°C to +125°C, making it suitable for a variety of applications.

The DS18B20, DHT22 (AM2302), and MAX31850 support a 1-Wire interface that is easy

to use. The LM35 and PT100 use an analog interface. The DS18B20, DHT22 (AM2302),

and MAX31850 provide a digital output signal, while the LM35 and PT100 provide an

analog signal. The DS18B20 is priced around $2 to $5, making it the most affordable

option compared to other counterparts that have higher prices starting at $5 and up to $15.

Based on these factors, the DS18B20 can be considered an excellent choice among

temperature sensor counterparts. It offers high measurement accuracy, a wide temperature

range, a user-friendly 1-Wire interface, and affordability. Because of its advantages, the

DS18B20 was chosen to implement my system

The DS18B20 temperature sensor is an inexpensive and versatile digital

temperature sensor that can be used in a variety of projects, including my thesis. It is based

on the OneWire protocol, which allows multiple devices to be connected to the same pin

on the microcontroller, making it easy to work with the sensors in systems where

temperature monitoring at different points is required.

Pic. 2.8 Temperature sensor DS18B20

The DS18B20 sensor has high temperature measurement accuracy, as well as a wide

measurement range from -55°C to +125°C, making it convenient for use in various

projects, such as temperature control in rooms or temperature monitoring in industrial

systems.

The sensor also has a simple connection interface and does not require external

calibration. It also has built-in reverse polarity and short circuit protection, ensuring the

sensor's safety and protection against damage during connection.

Additionally, the DS18B20 sensor can operate in either controller pin or external

power supply mode, allowing it to be used in various conditions.

In conclusion, the DS18B20 temperature sensor is a reliable and versatile tool for

measuring temperature in various projects, including diploma work. It has high

measurement accuracy, a simple connection interface, and does not require external

calibration, making it convenient to work with.

2.9 Resistor for DS18B20

To connect the data line of the DS18B20 sensor, I selected a 4.7 kΩ resistor. Proper

functionality requires a pull-up resistor on the data line. The maximum length of the

single-wire bus is determined by the value of the pull-up resistor. Longer bus lengths are

achievable by decreasing resistor values.

A 4.7 kΩ pull-up resistor value is commonly used with the DS18B20. The balance

between bus length and power consumption is favorable. A bus length of up to 100 meters

can have reliable communication with minimal power consumption ensured.

Selecting a higher resistor value will reduce power consumption but limit the

maximum bus length. Selecting a lower resistor value will increase the bus length, but

consumes more power and may result in signal integrity issues.

For this reason, a 4.7 kΩ resistor was selected for the DS18B20 as it provides a

good balance between bus length and power consumption, making it suitable for most

applications.

2.10 Choosing the ESP8266 WIFI Module

There are many different wifi modules on the market. To begin with, I decided to

compare the possible options to determine the most suitable one for my system. A

comparison of the characteristics is presented in table 6.

Table 6 - Comparison of the main Wi-Fi modules

Wi-Fi
Module

Chipset Data
Transfer
Speed

Number
of I/O
Pins

Bluetooth
Support

Programming
Complexity

Price

ESP8266 ESP8266 72 Mbps 17 No Low $3-5
ESP32 ESP32 150 Mbps 36 Yes Medium $5-

10
CC3000 TI 50 Mbps 8 No High $20-

30
RN-XV
WiFly

Roving 1-2 Mbps 14 No Low $20-
30

CC3200 TI 80 Mbps 27 Yes Medium $20-
30

As you can see from the table, each module has its own unique features and is

suitable for different types of projects. The ESP8266 and ESP32 are two of the most

popular modules, offering high data rates and a large number of I/Os. The CC3000 and

CC3200 have a more complex architecture and higher performance, but require more

complex programming. The RN-XV WiFly is a low performance module but is easy to use.

From this comparison I have chosen for my system the ESP8266.

The ESP8266 is a small and inexpensive Wi-Fi module which is widely used in

various IoT applications. It was created by the Chinese company Espressif Systems and

became popular because of its high performance and affordability.

Pic. 2.10.1 ESP8266 WIFI Module

The ESP8266 module offers extensive functionality beyond just Wi-Fi,

encompassing GPIO pin operation, PWM, ADC, UART, I2C, and SPI. This versatility

enables its utilization in diverse projects like smart homes, industrial process automation,

and device monitoring and control.

Pic. 2.10.2

An outstanding benefit of the ESP8266 module is its affordability. It stands as one

of the most economical Wi-Fi modules available, making it a cost-effective option for a

range of student projects.

Additionally, the ESP8266 boasts a thriving developer community that offers

complimentary documentation, code samples, and libraries, facilitating the development

and design of various IoT applications.

The ESP8266 module does come with certain limitations. For instance, it possesses

a limited number of GPIO pins and modest power capabilities. Moreover, its performance

may not meet the demands of more intricate projects.

Nonetheless, when considering the bigger picture, the ESP8266 module remains an

exceptional choice for students aiming to create straightforward IoT applications,

encompassing tasks such as smart home implementation, device control, and monitoring

of diverse parameters.

The main characteristics of the ESP8266 module are:

80 MHz operating frequency;

Tensilica L106 32-bit embedded processor;

32 Kbytes of RAM and 1 MB of flash memory;

Support for Wi-Fi 802.11 b/g/n;

Support for TCP/IP protocols;

Various interfaces including UART, I2C, SPI.

2.11 Power supply

In order to ensure the proper operation of the components in the setup, I decided to

utilize a 5V DC power supply. The reason behind this choice is that the Arduino Uno can

be powered either through the USB port or the DC jack, with a voltage range of 7-12V.

Additionally, the ESP8266 and DS18B20 can draw power directly from the 5V pin on the

Arduino.

Opting for a 5V DC power supply guarantees that all the elements within the

configuration receive the necessary voltage to function optimally. It is crucial to ascertain

that the power supply possesses adequate current capacity to support the smooth operation

of all the components.

2.12 Conclusions to Chapter 2

In Chapter 2:

1. Compared Microcontrollers.

2. The Arduino platform based on the ATmega328P microcontroller was chosen;

3. The humidity and temperature sensor DS18B20 is selected;

4. Microcontroller ESP8266 for wireless data transmission;

5. Power supply;

The device will be placed on the Arduino UNO board consisting of a DS18B20

temperature and humidity sensor and an ESP8266 microcontroller on which the Internet of

Things system and wireless access to the to the device via WiFi.

CHAPTER 3. DEVELOPMENT OF THE PROGRAM ALGORITHM AND
PROGRAMMING

3.1. Block Schema

The block schema (Fig. 3.1.1) shows the block schema of the temperature control

system, which includes an Arduino platform based on the ATmega328P microcontroller, a

DS18B20 temperature sensor, a resistor, an ESP8266 microcontroller for wireless data

transmission and a USB output on the on the Arduino board itself, to which the power

supply will be connected. Creating a block schema is crucial before implementing a

project, as it helps visualize the system's architecture and understand each stage involved.

This visualization promotes modularization and efficient programming, streamlining the

development process. The block schema provides insights into component

interconnections and dependencies, allowing a comprehensive understanding of the

system's functionality. Such understanding is valuable for optimizing module performance

and ensuring seamless integration into the overall system.

Additionally, the block schema helps identify potential bottlenecks or areas

requiring further refinement during project development. By visually analyzing the

system's structure, limitations or design flaws can be pinpointed early on, enabling

proactive addressing and enhancing overall performance.

To summarize, the block schema acts as a fundamental blueprint for the temperature

control system, visually representing its components and interconnections. It plays a vital

role in comprehending the system's architecture, facilitating modularization, programming,

and optimization.

Start Program

Microcontroller
Initialization

Temperature
Sensor

Initialization

Resistor
Сonnection

Read
Temperature

Data

Data Processing

Sending Data via
the WIFI Module

to the Program

End of Cycle

Data Request

Figure 3.1.1. Block Schema

Scheme of the program operation:

1. Launch the application on your smartphone.

2. Data request.

3. The Arduino UNO reads the data from the temperature sensor DS18B20.

4. Arduino UNO sends the temperature data to the ESP8266 Wi-Fi module.

5. The ESP8266 Wi-Fi module sends temperature data to the mobile app.

6. The mobile app displays the current temperature and allows you to set the temperature

or set a range of values for automatic temperature control.

7. If the current temperature exceeds the set limits, the mobile app sends a command to the

Arduino UNO to turn the temperature control device on or off.

3.2. Design

I decided to use Tinkercad to modify my circuit. It has a simple interface and

extensive functionality that allows you to create complex 3D models in a short time. This

platform is a free online tool, which makes it accessible to anyone, regardless of budget. In

the field of 3D modeling, Tinkercad is an easy and intuitive tool for designing circuits.

Pic 3.2.1

In summary, Tinkercad is an affordable and functional tool for creating a 3D model,

so it is a good option for my project.

First, I need to connect the breadboard. To ensure that all components of the circuit

are powered from one source, I connected the positive (+) power rail of the breadboard to

the 5V pin using a red jumper wire, and the negative (-) rail using a black jumper wire to

the GND pin of the Arduino Uno board.

Thus, I have connected the power and ground of the breadboard to the Arduino Uno (Fig.

123).

Pic 3.2.2

Next, I will connect the DS18B20 temperature sensor. This sensor has the following pins:

1. VCC, which I connected to the positive (+) rail of the breadboard using a red jumper

wire.

2. GND, which I connected to the negative (-) rail of the breadboard with a black jumper

wire.

3. DQ (Data input/output), which was connected to the digital output of the Arduino Uno

using a green jumper wire.

Thus, the Arduino Uno will now be able to read the data from the DS18B20 sensor and get

the current temperature value (Fig. 123).

Pic. 3.2.3

Finally, I'll connect the ESP8266 Wi-Fi module, which will allow me to transfer data to

the smartphone application.

To do this, I need to connect the following pins of the ESP8266 module:

1. VCC, which I connected to the positive (+) rail of the breadboard using a red jumper

wire.

2. GND was connected to the negative (-) rail of the breadboard using a black jumper wire.

3. GPIO0 was connected to the negative (-) rail with a black jumper wire.

4. RX, which I connected to the D3 pin on the Arduino Uno with a yellow jumper wire.

5. TX connected to pin D4 of the Arduino Uno board using a purple jumper wire.

So, the Wi-Fi module was connected to my circuit and now it will be able to perform its

function (Fig. 123).

Pic. 3.2.4

3.3 Selecting an environment for creating a user interface

To choose the development of a mobile application, you need to analyze the market.

It is possible to develop a mobile application based on two operating systems - Android or

IOS. According to statistics, approximately 30% of people use Apple devices, and the

remaining 70% use Android-based products. Given the statistics, the development of a

mobile application will be focused on the Android platform.

For this work, we have chosen the specialized environment Android Studio.

Android Studio is an integrated development environment (IDE) for developing

mobile applications on the Android operating system. The tool was developed by Google

and is based on the popular open source development tool IntelliJ IDEA. Android Studio

is the official development environment for the Android platform and is the most widely

used development environment for creating applications for the Android platform.

The environment is available for download on Windows, MacOS, and Linux operating

systems. The program is a replacement for the older version of Eclipse Android

Development Tools (E-ADT).

Pic. 3.3.1

Android Studio was introduced on May 16, 2013 at the Google I/O conference. The

first stable build was released in December 2014, starting with version 1.0.

Android Studio has undergone significant changes and updates in recent years,

including many new versions with new features and performance improvements. The new

features include built-in tools for developing various types of applications, including

Android apps, Android Wear apps, and Android TV apps, as well as support for Kotlin,

the programming language that became the official Android development language in

2019.

In addition to Kotlin, Android Studio supports Java, C++, and JavaScript. Android

Studio's interface is intuitive and easy to use, allowing you to focus on developing your

application rather than learning a complex IDE.

One of the advantages of Android Studio is that it is free to use and also has a large

community of developers that provides support to other developers. In addition, Android

Studio has many tools to help developers develop applications, such as an auto-completion

system, built-in code templates, and tools for automated testing and performance data

collection.

The disadvantages of Android Studio are that it can require significant computer

resources, which can affect development performance. In addition, Android Studio can

have a large number of settings, which can be difficult for beginners in mobile application

development.

A specific feature of Android Studio is the lack of an option to disable the auto-save

function.

To sum up, Android Studio is a powerful tool for developing mobile applications on

the Android platform. It provides developers with many tools to create high-quality

applications and has a large community of developers to provide support. Although it may

have some drawbacks, its advantages far outweigh its disadvantages.

3.4. User interface design and coding

The next step is to develop the user interface. It is important that the interface is

simple and intuitive. This is necessary to ensure that a user of any level of knowledge and

experience in using gadgets can quickly navigate, because comfort is an important

component of any product.

Start

Entering a
Password

Autocontrol

Error �Incorrect
password�

Arduino
Connection
Established

Setting the
Desired

Temperature

No?

Initialization of
Buttons

Are the data entered
correctly?

Yes

Pic 3.4.1.

The interface will consist of three blocks. The first block is used to connect the

application to the system. The menu of this block will consist of the "Enter password"

field and the "Connect" button.

Pic 3.4.2.

In the password field, the user will have to enter the password correctly, and then

press the confirmation button to connect to the system from the Arduino via the ESP8266

Wi-Fi module and start transmitting data to the program. After that, the user will be able to

set the desired temperature.

Pic 3.4.3.

If the password is entered incorrectly, the program will send the message "Incorrect

password" and the user will not be able to access the application functions until the correct

password is entered.

Pic 3.4.4.

The second one displays the set temperature and two buttons that allow you to
increase or decrease the set temperature by 1 degree in either direction with one click.

Pic 3.4.5.

The Temperature display field is responsible for displaying the set temperature in

the apartment.

The Increase temperature button is responsible for increasing (+1 degree) the set

temperature.

The Decrease temperature button is responsible for decreasing (-1 degree) the set

temperature.

Thus, the user will be able to control the temperature in the apartment manually and

set the desired value to meet their needs.

Pic 3.4.6.

The third block will implement the function of auto-control of the temperature

within the specified limits. The menu of this block will consist of several items and a

button. The user will have to set the desired temperature limits within which the program

will maintain the maximum and minimum values in degrees Celsius. That is, for example,

if you set the maximum temperature to 25 degrees Celsius and the minimum to 20 degrees,

then if the temperature drops to 19 degrees, the system will consider this value and

increase it to 20 degrees. The program will work in the same way if the temperature

exceeds the maximum set limit of 25 degrees and cooling starts.

Pic 3.4.7.

Lower limit - in this field, enter the minimum value of the permissible temperature

in the apartment.

Upper limit - enter the maximum value of the permissible temperature in the

apartment in this field.

Pic 3.4.8.

The ENABLE AUTOCONTROL button is responsible for enabling the auto-control

function in the program.

Pic 3.4.9.

So, if the user wants to keep the temperature within a certain range rather than at a

single value, for example, 22 degrees, the auto-control function will be able to satisfy their

needs.

Next, I need to implement the code for connecting an Arduino via the ESP8266 Wi-

Fi module to my temperature control program.

 connectWiFi(): This method establishes a connection to a Wi-Fi network using the

provided SSID (network name) and password. It creates an instance of WiFiClient

and connects to the specified host (IP address) and port.

 disconnectWiFi(): This method disconnects from the Wi-Fi network by sending the

"AT+CWQAP" command to the ESP8266 module.

 sendSerialData(String data, long delay): This method sends data to Arduino UNO

through the serial port connected to the ESP8266 module. It takes a data string and a

delay (in milliseconds) between sending data.

 readSerialData(): This method reads data from Arduino UNO through the serial port

connected to the ESP8266 module. It checks for available data in the input stream

and reads it if available, then returns the read data as a string.

 setUpperLimit(int value): This method sets the upper temperature limit on Arduino

UNO. It sends the "U" command with the specified value to Arduino to set the

upper limit.

 setLowerLimit(int value): This method sets the lower temperature limit on Arduino

UNO. It sends the "L" command with the specified value to Arduino to set the lower

limit.

 setManualControl(boolean value): This method controls the manual temperature

control mode on Arduino UNO. If the value is true, it sends the "M1" command to

enable manual control, otherwise sends the "M0" command to disable manual

control.

 increaseTemperature(): This method increases the temperature manually on Arduino

UNO. It sends the "I" command to increase the temperature.

 decreaseTemperature(): This method decreases the temperature manually on

Arduino UNO. It sends the "D" command to decrease the temperature.

These methods allow the Android application to control Arduino UNO through the

ESP8266 Wi-Fi module. They send commands and data to Arduino UNO and read data

from it over Wi-Fi.

The code of the file temperature_control.ino:

#include <OneWire.h>

#include <DallasTemperature.h>

#include <ESP8266WiFi.h>

// Wi-Fi settings

const char* ssid = "your_SSID";

const char* password = "your_PASSWORD";

const char* host = "192.168.1.100";

const int port = 8888;

WiFiClient client;

// Temperature sensor settings

#define ONE_WIRE_BUS 2

OneWire oneWire(ONE_WIRE_BUS);

DallasTemperature sensors(&oneWire);

float currentTemp = 0.0;

// Setpoint temperature settings

float upperLimit = 25.0;

float lowerLimit = 20.0;

bool autoControl = false;

bool manualControl = false;

void setup() {

// Start serial communication

Serial.begin(9600);

// Connect to Wi-Fi

WiFi.begin(ssid, password);

Serial.print("Connecting to Wi-Fi");

while (WiFi.status() != WL_CONNECTED) {

Serial.print(".");

delay(1000);

}

Serial.println();

Serial.println("Connected to Wi-Fi");

// Start temperature sensor

sensors.begin();

}

void loop() {

// Read temperature

sensors.requestTemperatures();

currentTemp = sensors.getTempCByIndex(0);

Serial.print("Temperature: ");

Serial.println(currentTemp);

// Check if temperature is within limits

if (autoControl && !manualControl) {

if (currentTemp < lowerLimit) {

// Turn on heater

Serial.println("Heater ON");

} else if (currentTemp > upperLimit) {

// Turn off heater

Serial.println("Heater OFF");

}

}

// Check for incoming data

if (client.available()) {

char c = client.read();

if (c == 'u') {

// Receive upper limit

upperLimit = receiveFloat();

Serial.print("Upper limit set to ");

Serial.println(upperLimit);

} else if (c == 'l') {

// Receive lower limit

lowerLimit = receiveFloat();

Serial.print("Lower limit set to ");

Serial.println(lowerLimit);

} else if (c == 'a') {

// Enable/disable auto control

autoControl = !autoControl;

manualControl = false;

Serial.print("Auto control: ");

Serial.println(autoControl);

} else if (c == '+') {

// Increase temperature

manualControl = true;

currentTemp += 0.5;

Serial.print("Temperature set to ");

Serial.println(currentTemp);

} else if (c == '-') {

// Decrease temperature

manualControl = true;

currentTemp -= 0.5;

Serial.print("Temperature set to ");

Serial.println(currentTemp);

} else if (c == 's') {

// Save settings to EEPROM

saveSettings();

} else if (c == 'd') {

// Disconnect Wi-Fi

public void disconnectWiFi() {

sendSerialData("AT+CWQAP\r\n", 1000);

}

// Send data to Arduino UNO

private void sendSerialData(String data, long delay) {

try {

outputStream.write(data.getBytes());

Thread.sleep(delay);

} catch (IOException | InterruptedException e) {

e.printStackTrace();

}

}

// Read data from Arduino UNO

public String readSerialData() {

String data = null;

try {

int byteCount = inputStream.available();

if (byteCount > 0) {

byte[] rawBytes = new byte[byteCount];

inputStream.read(rawBytes);

data = new String(rawBytes, StandardCharsets.UTF_8);

}

} catch (IOException e) {

e.printStackTrace();

}

return data;

}

// Set upper temperature limit

public void setUpperLimit(int value) {

sendSerialData("U" + value + "\n", 1000);

}

// Set lower temperature limit

public void setLowerLimit(int value) {

sendSerialData("L" + value + "\n", 1000);

}

// Set manual temperature control

public void setManualControl(boolean value) {

String data = value ? "M1\n" : "M0\n";

sendSerialData(data, 1000);

}

// Increase temperature manually

public void increaseTemperature() {

sendSerialData("I\n", 1000);

}

// Decrease temperature manually

public void decreaseTemperature() {

sendSerialData("D\n", 1000);

}

3.5 Conclusions to Chapter 3
In Chapter 3:

1. The device construction scheme was developed;

2. Interaction with the DS18B20 sensor is established;

3. The device is connected to the output devices;

4. Implemented the IoT temperature control algorithm;

CONCLUSION

In this thesis project, we developed a smartphone-based apartment temperature

control system that allows users to conveniently monitor and adjust the temperature

parameters in their living quarters using a mobile device.

As part of the project, a comparative analysis of existing home temperature control

systems on the market was conducted. This allowed us to identify their advantages and

disadvantages and take these aspects into account when developing our own system.

We also compared microcontrollers and chose the Arduino UNO, which meets the

project requirements and has the necessary functionality to implement the temperature

control system. A DS18B20 sensor was used to read the temperature reading, and an

ESP8266 was used for wireless communication between the smartphone and the system.

Thus, the project successfully achieved its goals. A prototype temperature control

system was developed that provides convenience and efficiency for users. The components

used - Arduino UNO, DS18B20, and ESP8266 - allowed us to achieve the project goal and

ensure the functionality of the system.

This thesis project contributes to the field of modern technology and the Internet of

Things by expanding the possibilities of controlling the temperature in homes using

smartphones. The introduction of such systems will bring many benefits to improve the

quality of life, ensure energy efficiency, and provide convenience in everyday routines.

This means that users will be able to enjoy a comfortable indoor climate, minimize energy

consumption and reduce their environmental impact.

REFERENCES

1.Arduino to AVR C: Getting Started" by Elliot Williams

2.The AVR Microcontroller and Embedded Systems: Using Assembly and C" by

Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi

3.Atmel AVR Microcontroller Primer: Programming and Interfacing" by Steven Barrett

4.Programming Arduino: Getting Started with Sketches" by Simon Monk

5.Arduino WiFi Projects" by Agus Kurniawan

6.Internet of Things with Arduino Blueprints" by Pradeeka Seneviratne

7.Building Arduino Projects for the Internet of Things: Experiments with Real-World

Applications" by Adeel Javed

8.Programming the ESP8266 with Arduino IDE" by Marco Schwartz

9.The Rise of the Smart Homes: Integrating Technology into Everyday Life

https://www.nogentech.org/smart-homes-integrating-technology-into-everyday-life/

10.ATmega328P Datasheet:

https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-

PA-328-P-DS-DS40002061A.pdf

11.Arduino Arduino UNO microcontroller:

https://docs.arduino.cc/hardware/uno-rev3

12.ATmega328P Complete Manual:

https://www.nogentech.org/smart-homes-integrating-technology-into-everyday-life/
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://docs.arduino.cc/hardware/uno-rev3

https://www.arduino.cc/en/Guide

13.Arduino Playground:

https://playground.arduino.cc/Main/ArduinoBoardUno/

14.STM32 Datasheet:

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-

mcus.html#resource

15.Documentation, manuals and example projects for working with the ESP8266 module:

https://www.espressif.com/en/products/socs/esp8266

16.The Arduino forum section is dedicated to questions and projects related to the use of

the ESP8266 module with the Arduino platform:

https://forum.arduino.cc/c/esp8266/

https://www.arduino.cc/en/Guide
https://playground.arduino.cc/Main/ArduinoBoardUno/
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html%23resource
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html%23resource
https://www.espressif.com/en/products/socs/esp8266
https://forum.arduino.cc/c/esp8266/

	INTRODUCTION
	CHAPTER 1. OVERVIEW OF EXISTING MONITORING SYSTEMS
	1.1 A temperature control program for an apartment
	1.2 The principle of operation and features of the
	1.3 Advantages of Automatic Temperature Control
	1.4 Features of Smartphone Control
	1.5 Cons of temperature control software
	1.6 Existing Analogues
	1.6.1 Nest Learning Thermostat
	1.6.2 Ecobee Smart Thermostat
	1.6.3 Honeywell Home Wi-Fi Smart Color Thermostat
	1.6.4 Tado Smart Thermostat

	1.7 Comparison of existing analogs with my system
	1.8 Conclusions to Chapter 1

	CHAPTER 2. THEORY AND REVIEW OF PROJECT IMPLEMENT
	2.1 Raspberry Pi
	2.2 STM32
	2.3 Arduino
	2.4 The result of the comparison
	2.5 Selection of the Arduino platform based on the
	2.6 Software (IDE)
	2.7 Advantages and disadvantages of Arduino UNO
	2.8 Temperature sensor DS18B20
	2.9 Resistor for DS18B20
	2.10 Choosing the ESP8266 WIFI Module
	2.11 Power supply
	2.12 Conclusions to Chapter 2

	CHAPTER 3. DEVELOPMENT OF THE PROGRAM ALGORITHM AN
	3.1. Block Schema
	3.2. Design
	3.3 Selecting an environment for creating a user i
	3.4. User interface design and coding
	3.5 Conclusions to Chapter 3

	CONCLUSION
	REFERENCES

