
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Department of Electronics, Robotics, Monitoring and

IoT Technologies

ADMIT TO THE DEFENSE

Head of the graduate department

_______________ Volodymyr Shutko

«_____» ____________ 20__.

DIPLOMA

(EXPLANATORY NOTE)

GRADUATE OF A BACHELOR'S DEGREE

SPECIALTY 171 «ELECTRONICS»

Subject: Remote temperature and humidity monitoring system.

Performer: Oleksandr Kazantsev.

Supervisor: sr. lecturer, Mykola Bidnyi.

Standard controller: _________ __________________

Kyiv – 2023



2

NATIONAL AVIATION UNIVERSITY

Educational and scientific institute ________________________________.

Department of Electronics, Robotics, Monitoring and IoT Technologies.

Specialty 171 «Electronics».

APPROVE

Head of the graduate department

__________ (V. Shutko)

«____» __________ 20__.

OBJECTIVE

to defense a diploma work

Oleksandr Kazantsev

1. Subject «Remote temperature and humidity monitoring system» approved by

the rector’s order dated 14.12.2017 № 594/st.

2. Deadline: from ________ to ________

3. Output data: temperature and humidity measurement data, microcontrollers.

4. Content of the explanatory note: analytical review of temperature and humidity

measurement systems. Comparison of the relevance of temperature and humidity

measurement systems. Comparison of microcontrollers. Modeling of an electronic

temperature and humidity measurement system.

5. List of mandatory illustrative material: pictures, tables, code.



3

6. Calendar plan-schedule

№ Subject Deadline Supervisor

Signature

1. Gathering the necessary information

on the topic of the thesis.

24.02.2023 –

03.03.2023

2. Select literature for the topic research. 03.03.2023 –

17.03.2023

3. Analysis of monitoring systems. 17.03.2023 –

31.03.2023

4. Analysis of microcontrollers. 31.03.2023 –

14.04.2023

5. Preparation and execution of the of

the theoretical section of the thesis

work.

14.04.2023 –

21.04.2023

6. Global Logic laboratory visit.

Arduino platform investigation.

24.04.2023 –

05.05.2023

7. Hardware investigation. Preparing the

hardware setup

08.05.2023 –

12.05.2023

8. Block diagram design 15.05.2023 –

19.05.2023

9. Developing a working prototype 22.05.2023 –

27.05.2023



4

7. Consultation on specific section(s):

Section title Consultant

(position, full name)

Date, signature

Assigner Accepter

8. Issue assignment date: «____» _________ 20 __ р.

Diploma supervisor (project): ________ ______________

The task was accepted: _____________ Oleksandr Kazantsev



5

Abstract

Explanatory note to the diploma " Remote temperature and humidity

monitoring system ": 56 p., 13 pictures, 3 tables, 15 references.

Object of study: Microcontroller-based air humidity and temperature

monitoring system.

Objective of the work: To develop an air humidity and temperature

monitoring system.

Research methods: comparative analysis, processing of literature sources,

prototype modeling.

AIR HUMIDITY, TEMPERATURE MONITORING, ELECTRONIC

SYSTEM, MICROCONTROLLER, SENSORS, TIMERS



6

Content

Introduction 7

CHAPTER 1. Monitoring systems. 9

1.1. The Benefits of Monitoring Systems for Operations

Optimization and Safety Enhancement.

9

1.2. Thermometers. 10

1.3. Hygrometers. 11

1.4. Data loggers. 13

1.5. Electronic monitoring system. 15

1.6. Challenges with analog monitoring systems. 16

CHAPTER 2. Microcontrollers. 18

2.1. Technical Features and Broad Applications. 18

2.2. Atmel 8-bit AVR microcontroller. 19

2.2.1. Technical characteristics. 20

2.2.2. Advantages of Atmel 8-bit AVR microcontroller. 21

2.2.3. Disadvantages of Atmel 8-bit AVR

microcontroller.

22

2.3. RP2040 microcontroller. 23

2.3.1. Technical characteristics. 25

2.3.2. Advantages of RP2040 microcontroller. 26

2.3.3. Disadvantages of RP2040 microcontroller. 26

2.4. STM32 microcontroller. 27

2.4.1. Technical characteristics. 29

2.4.2. Advantages of STM32 microcontroller. 30

2.4.3. Disadvantages of STM32 microcontroller. 31

2.5. Comparison of microcontrollers. 32

CHAPTER 3. System design. 35



7

3.1. Hardware. 35

3.1.1. Microcontroller board. 36

3.1.2. Sensor. 37

3.1.3. Resistor. 38

3.1.4. Wireless communication module. 38

3.1.5. Power supply. 39

3.2. Prototyping. 40

3.2.1. Block Schema. 40

3.2.2. Modeling. 42

3.2.3. Programming. 45

Conclusion 54

References 55



8

Introduction

Remote temperature and humidity monitoring system is an emerging technology

that is gaining widespread use in various industries. This system is designed to measure

and monitor temperature and humidity levels in remote locations, and transmit the data

to a central control unit. This technology has revolutionized the way businesses manage

their operations, especially those that rely on consistent temperature and humidity levels,

such as the pharmaceutical industry, food industry, and data centers. By implementing a

remote temperature and humidity monitoring system, businesses can ensure that their

products and services meet the required standards.

The demand for remote temperature and humidity monitoring systems has

increased rapidly in recent years due to various factors. The first factor is the growing

awareness among businesses of the importance of maintaining consistent temperature

and humidity levels in their operations. The second factor is the increasing need for

remote monitoring systems, which has been fueled by the COVID-19 pandemic. With

many businesses operating remotely, it has become critical to have a reliable monitoring

system in place to ensure that operations continue smoothly.

The benefits of using a remote temperature and humidity monitoring system are

numerous. One of the primary benefits is the ability to monitor and control temperature

and humidity levels in real-time, which helps prevent costly losses due to equipment

malfunction, power outages, or other issues that could compromise product quality.

Additionally, remote monitoring systems can help businesses save time and money by

reducing the need for on-site personnel to monitor temperature and humidity levels

manually.



9

CHAPTER 1. Monitoring systems.

1.1. The Benefits of Monitoring Systems for Operations Optimization and Safety

Enhancement

Temperature and humidity are two critical environmental factors that need to be

monitored and controlled in various settings such as homes, offices, industries, and

hospitals. Accurate and reliable monitoring of temperature and humidity levels is

essential for maintaining optimal living and working conditions, preventing the growth

of harmful microorganisms, and preserving sensitive materials.

Monitoring systems are crucial tools that allow users to observe and track the

performance of different components in real-time. These systems provide valuable

insights into the behavior of systems, allowing users to detect potential issues before

they escalate into significant problems. In this chapter, we will discuss the benefits of

monitoring systems and their impact on operations, efficiency, and safety.

Optimizing Operations. One key benefit of monitoring systems is that they can

help organizations optimize their operations. By constantly monitoring performance

metrics, organizations can identify inefficiencies and areas where improvements can be

made. For example, in a manufacturing plant, monitoring systems can track the

performance of machinery and detect potential issues before they result in downtime.

By addressing these issues proactively, manufacturers can minimize downtime, reduce

maintenance costs, and improve overall efficiency.

Enhancing Safety. Another benefit of monitoring systems is that they can

improve safety in various industries. Safety is a critical concern in many industries, such

as energy production, transportation, and healthcare. Monitoring systems can track the

behavior of various components and identify potential safety hazards. For example, in

an oil refinery, monitoring systems can detect gas leaks and notify operators to take



10

appropriate action to prevent accidents. By detecting potential safety hazards early,

monitoring systems can help prevent accidents, injuries, and fatalities.

1.2. Thermometers

Thermometers are widely used to monitor temperature in various settings such as

homes, hospitals, laboratories, and industries. In medical settings, thermometers are

essential tools for diagnosing and monitoring fever, which is a common symptom of

many diseases. In homes, thermometers are used to monitor room temperature and

ensure a comfortable living environment. In industries and laboratories, thermometers

are used to monitor process temperature and ensure that materials are processed under

optimal conditions.

Liquid thermometers consist of a glass tube filled with a liquid, usually mercury

or alcohol, that expands or contracts as it is exposed to changes in temperature. The

expansion or contraction of the liquid is then measured on a calibrated scale, which

indicates the temperature. Liquid thermometers are relatively inexpensive, easy to use,

and provide accurate temperature readings. However, they are also prone to breakage,

which can release toxic mercury or alcohol, and require regular calibration to ensure

accurate readings.

Pic. 1.2.1. Liquid thermometer



11

Digital thermometers, on the other hand, use electronic sensors to measure

temperature and display the readings on a digital screen. Digital thermometers are more

expensive than liquid thermometers, but they provide faster and more accurate readings.

They are also less prone to breakage and do not contain toxic materials, making them

safer to use. Digital thermometers can be used to measure temperature orally, rectally,

or under the arm, and some models can even measure temperature without making

contact with the skin, which is particularly useful for measuring the temperature of

infants.

Pic. 1.2.2. Digital thermometer

While thermometers are essential tools for monitoring temperature, they do have

some limitations. For example, thermometers only measure temperature at a specific

point, which may not reflect the overall temperature of a room or process. In industries

and laboratories, where process temperature is critical, it is necessary to use multiple

thermometers to monitor the temperature at various points. Additionally, thermometers

may not be able to measure temperature accurately in extreme temperatures, such as in

high-temperature furnaces or in liquid nitrogen.

1.3. Hygrometers



12

In homes, hygrometers are used to monitor indoor humidity levels to ensure a

comfortable living environment and prevent problems such as mold growth, which can

occur in areas with high humidity. In industries, hygrometers are used to monitor the

humidity levels in manufacturing processes, particularly in industries such as food and

pharmaceuticals where humidity control is critical. Humidity can affect the quality of

products and can lead to spoilage or degradation if not monitored and controlled

properly.

Electronic hygrometers use sensors to measure the humidity level in the air and

provide accurate and reliable readings. They can measure humidity levels within a wide

range and are capable of providing continuous monitoring of humidity levels, making

them suitable for use in manufacturing processes. Electronic hygrometers can also

provide additional features such as data logging and alerts when humidity levels exceed

certain thresholds.

Pic. 1.3.1. Digital hygrometer



13

Mechanical hygrometers, on the other hand, use a hair or synthetic material that

changes shape as it absorbs moisture to measure humidity levels. They are less accurate

than electronic hygrometers and require regular calibration to ensure accurate readings.

However, they are less expensive and do not require a power source, making them

suitable for use in areas where power is not readily available. Mechanical hygrometers

are also less prone to failure than electronic hygrometers, making them suitable for use

in harsh environments.

Pic. 1.3.1. Mechanical hygrometer

1.4. Data loggers

Data loggers have many applications in various industries. They are used to

monitor environmental conditions in food storage facilities, pharmaceutical storage



14

areas, and manufacturing plants. In laboratories, data loggers are used to monitor

temperature and humidity levels in experiments, while in museums, they are used to

monitor temperature and humidity levels to prevent damage to artifacts. Data loggers

are also commonly used in the transportation of perishable goods to ensure that the

temperature and humidity levels remain within acceptable ranges during transport.

Digital data loggers offer many advantages over analog data loggers. They

provide more accurate and reliable data, have a larger memory capacity, and are easier

to use. Digital data loggers are capable of providing real-time data and can be

programmed to send alerts when temperature or humidity levels exceed predetermined

thresholds. They can also be connected to a computer or a network for remote

monitoring and data analysis.

Pic. 1.4.1. Digital data logger

Analog data loggers, on the other hand, use a chart recorder to record temperature

and humidity levels over time. They are less accurate and reliable than digital data

loggers and require regular maintenance to ensure accurate readings. Analog data

loggers also have limited memory capacity and do not provide real-time data or alerts

when temperature or humidity levels exceed predetermined thresholds. However, they



15

are less expensive than digital data loggers and do not require a power source, making

them suitable for use in areas where power is not readily available.

Pic. 1.4.2. Analog data logger

1.5. Electronic monitoring system

With the advancements in technology, electronic temperature and humidity

monitoring systems have become more popular. These systems use electronic sensors to

measure temperature and humidity levels and provide accurate and reliable readings.

They are capable of storing large amounts of data and can be connected to a computer

or network for remote monitoring and analysis.

Electronic temperature and humidity monitoring systems offer many advantages

over analog monitoring systems. They provide faster and more accurate readings, have a

larger memory capacity, and can be programmed to send alerts when temperature or

humidity levels exceed predetermined thresholds. They also do not require regular

calibration like analog devices, which saves time and money. Electronic monitoring

systems are widely used in various industries such as food storage, pharmaceuticals, and

healthcare.

One of the most popular electronic monitoring systems is the Arduino-based

temperature and humidity monitoring system. Arduino is an open-source hardware and



16

software platform that can be used to develop electronic projects. The Arduino-based

temperature and humidity monitoring system consists of an Arduino board, a

temperature sensor, a humidity sensor, and an LCD display. The system is programmed

to measure temperature and humidity levels at regular intervals and display the readings

on the LCD display. It can also be programmed to send alerts when temperature or

humidity levels exceed predetermined thresholds.

1.6. Challenges with Analog Monitoring Systems

Analog monitoring systems may not be as accurate as electronic systems. This is

because analog systems are affected by factors such as environmental changes,

calibration errors, and mechanical wear and tear. These limitations can lead to

inaccuracies in temperature and humidity measurements, which can have serious

consequences in industries such as food storage and pharmaceuticals.

Electronic monitoring systems offer several advantages over analog systems.

They are more accurate, reliable, and efficient. Electronic systems use sensors that

provide precise readings, and the data can be easily stored and analyzed using software.

Electronic systems can also be programmed to send alerts when temperature or

humidity levels exceed predetermined thresholds, which can prevent costly damages

and losses.

One example of an electronic monitoring system is the Internet of Things (IoT)

temperature and humidity monitoring system. The IoT system consists of a network of

sensors that are connected to the internet, allowing for real-time monitoring and analysis.

The sensors can be placed in various locations, such as warehouses, laboratories, and

healthcare facilities, to monitor temperature and humidity levels. The system can be

programmed to send alerts to users' mobile devices when readings exceed

predetermined thresholds. This allows for quick action to be taken to prevent damages

or losses.



17

Another advantage of electronic monitoring systems is their ability to integrate

with other systems. For example, electronic monitoring systems can be integrated with

automated temperature and humidity control systems, allowing for real-time

adjustments to be made based on readings. This can save energy, reduce costs, and

improve efficiency.

While analog monitoring systems have been used for many years, they have

several limitations that make them less efficient and effective than electronic monitoring

systems. Electronic monitoring systems offer several advantages, including accuracy,

reliability, efficiency, and the ability to integrate with other systems. With the

increasing demand for accurate and reliable temperature and humidity monitoring,

electronic monitoring systems, such as IoT-based systems, are expected to become more

popular in the future.



18

CHAPTER 2. Microcontrollers

2.1. Technical Features and Broad Applications

Microcontrollers are tiny computers that control and observe devices and systems.

Industrial automation, consumer electronics, robotics and IoT devices, all these fall

within their wide range of applications.

Features of Microcontrollers. One key feature of microcontrollers is their

ability to operate with low power consumption, making them ideal for use in battery-

powered devices. They also have real-time processing capabilities, allowing them to

respond quickly to changes in input signals. Another feature of microcontrollers is their

small form factor, which makes them easy to integrate into different devices and

systems. Additionally, microcontrollers have a range of input and output capabilities,

such as analog-to-digital conversion, PWM output, and serial communication, that make

them versatile for use in various applications.

Applications of Microcontrollers. Remote monitoring systems for humidity and

temperature often utilize microcontrollers to control and monitor different components.

In the food industry, for example, microcontrollers are used in refrigeration systems to

maintain optimal temperature and humidity levels for storing perishable goods. In

greenhouses, microcontrollers are used to control heating, ventilation, and irrigation

systems, ensuring that plants receive the ideal temperature and humidity conditions for

growth. In medical research labs, microcontrollers are used in environmental chambers

to precisely control temperature and humidity levels for testing and storing samples.

I'll focus on comparing and contrasting the Atmel 8-bit AVR microcontroller

commonly used in Arduino and the RP2040 microcontroller used in Raspberry Pi in this

section of the discussion. I will also compare them to the STM32, to provide a

comprehensive overview of the features and capabilities of these devices.



19

2.2. Atmel 8-bit AVR microcontroller

The AVR microcontroller family has gained a substantial following among both

hobbyists and developers since its inception in the early 1990s. One of its primary

selling points is its user-friendly nature, making programming and understanding a

breeze. This feature has made it a preferred choice for beginners just starting to explore

the world of microcontrollers and electronics.

Pic. 2.2. Atmel 8-bit microcontroller

Furthermore, the AVR microcontroller's energy efficiency is impressive, making

it an excellent option for battery-powered devices, including portable electronics,

wearable gadgets, and remote sensors. Additionally, the microcontroller's low power

consumption results in less heat production, ultimately prolonging the lifespan of the

device.

Timers, interrupts, and ADCs are just a few of the many functions and abilities

available on the AVR microcontroller[1]. Because of these characteristics, it is



20

adaptable and able to carry out a variety of activities, including regulating motors and

servos and measuring temperature and light levels. For applications that need analog

input, such audio processing or environmental monitoring, the ADCs are particularly

helpful..

The Arduino platform is one of the most popular applications for the AVR

microprocessor. Arduino boards employ AVR microcontrollers as its primary

processing unit, and the Arduino IDE offers developers with an easy-to-use

programming environment. This has made the AVR microcontroller more accessible to

a broader spectrum of users, including hobbyists and artists with no training in

electronics or programming.

The AVR microcontroller, however, has several restrictions[1]. One of the most

significant drawbacks is its 8-bit design, which means it has less memory and

processing capability than 32-bit microcontrollers. The intricacy of the applications that

may be built utilizing the AVR microcontroller may be limited as a result. Furthermore,

the AVR microcontroller lacks the power of several other microcontrollers, such as the

STM32 or the RP2040.

Despite these restrictions, the AVR microcontroller is still a popular choice for

many applications. Its simplicity, low power consumption, and wide range of

capabilities make it a handy and useful device for a variety of tasks.

2.2.1. Technical characteristics

According to the datasheet[1], technical characteristics are:

 Architecture: 8-bit RISC

 Clock Speed: Up to 32 MHz

 Flash Memory: Up to 256 KB

 SRAM: Up to 16 KB



21

 Operating Voltage: 1.8V to 5.5V

 ADC Resolution: Up to 10-bit

 Digital I/O Pins: Up to 86

 Communication: USART, SPI, I2C, USB

 Development Tools: Atmel Studio, Arduino IDE

 PWM Channels: Up to 6 channels with 8-bit resolution or 2 channels with

16-bit resolution. PWM (Pulse Width Modulation) is a method of controlling analog

circuits using digital signals.

 Timers: Up to 3 16-bit timers with up to 3 output compare or input capture

channels. Timers can be used for measuring time intervals, generating periodic signals,

or controlling motor speed.

 Watchdog Timer: A built-in timer that can reset the microcontroller if the

program gets stuck in an infinite loop or experiences other errors. This helps prevent the

system from getting stuck in an undefined state.

 Sleep Modes: The AVR microcontroller can enter low-power sleep modes,

reducing power consumption when the system is idle or not performing any tasks.

 Temperature Range: The AVR microcontroller can operate in a wide

temperature range, from -40°C to 85°C, making it suitable for harsh environments.

 Bootloader Support: The AVR microcontroller can be programmed using

a bootloader, which allows for firmware updates over a communication channel such as

UART or USB. This can be useful in situations where the microcontroller is embedded

in a device and difficult to access for programming.

2.2.2. Advantages of Atmel 8-bit AVR microcontroller

1. Simple architecture and easy to program. The architecture of the

Arduino microcontroller is straightforward, making it simple to comprehend and

program. Its C++-based programming language is easy to learn even for newcomers,



22

making it a popular option for students and hobbyists. Because the Arduino software is

open-source, users may readily adapt it to meet their own requirements.

2. Low power consumption. Due to its low power requirements, the Arduino

microcontroller is a great option for battery-powered applications. When not in use, the

microcontroller may be put into sleep mode, which considerably lowers its power usage.

This makes it a fantastic option for tasks requiring a lengthy battery life.

3. Wide range of capabilities, including timers, interrupts, and ADCs[1].

The Arduino microcontroller has a wide range of functionalities, including timer,

interrupt, and ADC operations. It is suitable for a range of applications as a result, from

simple LED blinking projects to more challenging robotics and automation projects.

While analog signals like temperature and light may be monitored using an ADC, time-

sensitive actions can be performed utilizing timers and interrupts.

4. Versatile and can be used in a wide range of applications. Numerous

uses for the flexible Arduino microcontroller are possible. Its capabilities may be

increased by using shields, which are supplementary boards that can be placed on top of

the Arduino board to provide greater functionality. This makes it possible to readily

adapt the Arduino to operate with a range of applications.

5. Low-cost. Due to its low price, the Arduino microcontroller is available to

everyone, including professionals, students, and enthusiasts. Due of the platform's

inexpensive price, consumers may test it out without breaking the bank. Additionally,

because the platform is open-source, users may make their own unique boards, which

can sometimes be far less expensive than equivalents that are for sale.

2.2.3. Disadvantages of Atmel 8-bit AVR microcontroller

1. Limited memory and processing power compared to more advanced

microcontrollers. While the Arduino platform is intuitive to use and simple to write, it

may not have as much memory or processing capacity as advanced microcontrollers.

This makes it difficult to use for applications that are more complex requiring greater



23

processing power or memory. However, the platform does provide a number of models,

some with greater specifications than others, allowing customers to select a model that

suits the particular requirements of a project…

2. Limited support for advanced features, such as USB connectivity.

Another drawback of the Arduino platform is how little support it has for contemporary

features like USB connections. While some versions come with a USB port, others

might not, and such models might not have as sophisticated microcontrollers. As a

result, it could be challenging to use the platform for tasks that need cutting-edge

connectivity characteristics. The platform may optionally add cutting-edge features to a

project by upgrading it with a number of shields and add-ons to broaden its range of

capabilities.

2.3. RP2040 microcontroller

The Raspberry Pi RP2040 microprocessor, launched in early 2021, is a relatively

fresh addition to the microcontroller industry. It is driven by a dual-core ARM Cortex-

M0+ CPU and has USB, I2C, SPI, and UART interfaces among other things[2]. The

RP2040 microcontroller has quickly gained popularity among developers and hobbyists

because to its inexpensive cost, high performance, and ease of use.



24

Pic. 2.3. RP2040 microcontroller

One of the RP2040 microcontroller's key advantages is its dual-core architecture.

This allows it to do many tasks at the same time, which is suitable for applications that

require real-time processing or multi-tasking. The RP2040 microcontroller also features

a wide range of peripherals, including USB, which makes it well-suited for applications

that require connectivity, such as internet of things (IoT) devices or data loggers[2].

Another benefit is the high performance of the RP2040 microprocessor. It can

handle complex applications and data processing duties because to its 133 MHz clock

speed and 264 KB of RAM[2]. In addition, the RP2040 microcontroller incorporates a

dedicated hardware-based PIO (programmable I/O) system for offloading processing

tasks from the main CPU and giving additional processing capability.

The RP2040 microcontroller is incredibly simple to use since software

development tools and libraries are widely accessible. To get started programming the

RP2040 microcontroller, the Raspberry Pi Foundation provides a range of software

development tools, including the C/C++ SDK. Additionally, there is a large community



25

of developers and enthusiasts who have developed libraries and examples that can be

used to quickly prototype and develop applications.

The RP2040 microcontroller has significant shortcomings despite its benefits. Its

lack of connectivity with the Arduino ecosystem is one of its key drawbacks. The

RP2040 microprocessor is not yet supported by the Arduino IDE, in contrast to the

AVR microcontroller, which is commonly used in the Arduino platform. This might

make learning how to program the RP2040 microcontroller more difficult for novices.

The RP2040 microcontroller's power consumption is another drawback[2]. It uses

more power than the AVR microcontroller despite not being as power-hungry as some

other microcontrollers, making it less suitable for battery-powered applications. The

RP2040 microprocessor is also not as readily accessible as other microcontrollers,

which might make acquiring and integrating it into projects more challenging.

2.3.1. Technical characteristics

According to the datasheet[2], technical characteristics:

 Architecture: Dual-core ARM Cortex-M0+

 Clock Speed: Up to 133 MHz

 Flash Memory: Up to 16 MB

 SRAM: Up to 264 KB

 Operating Voltage: 1.8V to 3.3V

 ADC Resolution: Up to 12-bit

 Digital I/O Pins: Up to 30

 Communication: UART, SPI, I2C, USB

 Development Tools: Raspberry Pi Pico C/C++ SDK

 PWM Channels: Up to 6 channels with 16-bit resolution. PWM (Pulse

Width Modulation) is a method of controlling analog circuits using digital signals.



26

 Timers: Up to 2 16-bit timers with up to 4 output compare or input capture

channels. Timers can be used for measuring time intervals, generating periodic signals,

or controlling motor speed.

 Watchdog Timer: A built-in timer that can reset the microcontroller if the

program gets stuck in an infinite loop or experiences other errors. This helps prevent the

system from getting stuck in an undefined state.

 Sleep Modes: The RP2040 microcontroller can enter low-power sleep

modes, reducing power consumption when the system is idle or not performing any

tasks.

 Temperature Range: The RP2040 microcontroller can operate in a wide

temperature range, from -20°C to 85°C, making it suitable for a range of environments.

 Bootloader Support: The RP2040 microcontroller can be programmed

using a bootloader, which allows for firmware updates over a communication channel

such as UART or USB. This can be useful in situations where the microcontroller is

embedded in a device and difficult to access for programming.

2.3.2. Advantages of RP2040 microcontroller

1. Powerful dual-core processor. The Raspberry Pi platform is powered by

a potent dual-core CPU that offers tremendous computing capacity for a number of

applications. The Raspberry Pi is a great choice for difficult tasks that call for a lot of

processing power due to its fast clock speed and remarkable performance capabilities.

2. Wide range of capabilities, including ADCs, timers, and

communication interfaces. Analog-to-digital converters (ADCs), timers, and

numerous communication interfaces are just a few of the features that the Raspberry Pi

is capable of. Because of its adaptability, it may be used for a variety of tasks, including

data recording and sensing applications as well as robotics and automation.

3. Easy to program. The Raspberry Pi is simple to program, and both novice

and experienced users have access to a wide range of programming languages and



27

development tools. It is available to a wide variety of users because to its

interoperability with well-known programming languages like Python and C.

4. Suitable for a wide range of applications. From home automation and

security systems to industrial automation and Internet of Things devices, the Raspberry

Pi is appropriate for a wide range of applications. Both novice and experienced users

favor it because of its adaptability, cost, and simplicity of use.

5. Low-cost. The Raspberry Pi is a cost-effective platform that enables

amateurs and students to experiment and study electronics and computing. The

Raspberry Pi is a well-liked option for a variety of applications, from educational tools

to media centers and gaming systems, thanks to its inexpensive cost.

2.3.3. Disadvantages of RP2040 microcontroller

1. Limited support for advanced features, such as USB connectivity. One

potential drawback of the Raspberry Pi platform is its limited support for certain

advanced features, such as USB connectivity. While the Raspberry Pi does have USB

ports, these ports may not be sufficient for certain applications that require multiple

USB devices or high-speed USB connections. Additionally, the Raspberry Pi's USB

implementation may not be as reliable or robust as that of other platforms, which can

cause issues for developers who rely on USB connectivity for their projects.

2. Limited memory compared to more advanced microcontrollers. While

the Raspberry Pi is a powerful platform with many capabilities, it does have some

limitations when it comes to memory. Compared to more advanced microcontrollers,

the Raspberry Pi may have limited memory available for certain applications, which can

be a significant limitation for projects that require a large amount of data storage or

processing power. This can also be a challenge for developers who are working on

complex projects that require a high degree of memory management.

3. Limited availability of compatible development boards. Another

potential drawback of the Raspberry Pi platform is the limited availability of compatible



28

development boards. While there are many Raspberry Pi boards available, not all of

them are compatible with all of the Raspberry Pi software and hardware, which can

make it difficult for developers to find the right board for their project. Additionally,

some Raspberry Pi boards may not be as reliable or well-supported as others, which can

lead to issues with stability and performance over time.

2.4. STM32 microcontroller

The STM32 microcontroller is a well-known and widely-used microcontroller in

the industry, being a 32-bit microcontroller based on the Arm Cortex-M processor

architecture[3]. Its versatility and powerful features make it suitable for a wide range of

applications, including industrial automation, robotics, and consumer electronics.

Pic. 2.4. STM32 microcontroller



29

The STM32 microcontroller family includes several different models with

various specifications and capabilities, catering to different application needs. These

microcontrollers are designed to be robust, reliable, and high-performing, ensuring that

they can handle even the most demanding applications with ease.

One of the key advantages of the STM32 microcontroller is its compatibility with

a range of software development tools and programming languages. This makes it easy

to integrate into existing systems and work with different software stacks, simplifying

the development process and reducing time to market.

The STM32 microcontroller also features a rich set of peripherals, including

timers, interrupt controllers, analog-to-digital converters (ADCs), and digital-to-analog

converters (DACs)[3]. These peripherals enable the microcontroller to handle complex

tasks and interact with various sensors and actuators, providing a high degree of

flexibility in application design.

Furthermore, the STM32 microcontroller has a low power consumption mode,

making it a suitable choice for battery-powered applications. Its low power

consumption mode allows it to conserve energy and extend battery life, making it ideal

for applications in the Internet of Things (IoT) space.

Despite its advantages, there are some limitations to the STM32 microcontroller.

One of the main limitations is its relatively high cost compared to some other

microcontrollers. This may make it less attractive for hobbyist and low-cost projects.

Another limitation of the STM32 microcontroller is its complexity. Its advanced

features and powerful capabilities require a higher level of expertise and experience to

work with effectively, making it more challenging for beginners to get started with

programming and development.

2.4.1. Technical characteristics



30

According to the datasheet[3], technical characteristics:

 Architecture: ARM Cortex-M0/M3/M4/M7

 Clock Speed: Up to 480 MHz

 Flash Memory: Up to 2 MB

 SRAM: Up to 640 KB

 Operating Voltage: 1.7V to 3.6V

 ADC Resolution: Up to 16-bit

 Digital I/O Pins: Up to 168

 Communication: USART, SPI, I2C, USB, Ethernet

 Development Tools: STM32CubeIDE, Keil uVision

 PWM Channels: Up to 18 channels with up to 16-bit resolution. PWM

(Pulse Width Modulation) is a method of controlling analog circuits using digital

signals.

 Timers: Up to 17 16-bit timers with up to 4 output compare or input

capture channels. Timers can be used for measuring time intervals, generating periodic

signals, or controlling motor speed.

 Watchdog Timer: A built-in timer that can reset the microcontroller if the

program gets stuck in an infinite loop or experiences other errors. This helps prevent the

system from getting stuck in an undefined state.

 Sleep Modes: The STM32 microcontroller can enter low-power sleep

modes, reducing power consumption when the system is idle or not performing any

tasks.

 Temperature Range: The STM32 microcontroller can operate in a wide

temperature range, from -40°C to 125°C, making it suitable for harsh environments.

 Bootloader Support: The STM32 microcontroller can be programmed

using a bootloader, which allows for firmware updates over a communication channel

such as UART or USB. This can be useful in situations where the microcontroller is

embedded in a device and difficult to access for programming.



31

2.4.2. Advantages of STM32 microcontroller

1. Powerful 32-bit processor. The STM32 has a powerful 32-bit processor

that allows it to handle complex tasks quickly and efficiently. This makes it an excellent

choice for applications that require high-speed processing, such as real-time control and

signal processing.

2. Wide range of capabilities, including high-speed communication

interfaces, advanced timers, and analog peripherals. These features make it a

versatile option for a variety of applications, from robotics and automation to medical

devices and industrial control systems.

3. Wide range of compatible development tools and programming

languages. The STM32 has a wide range of compatible development tools and

programming languages, which makes it easier for developers to get started and

customize their applications. Additionally, the STM32 has a large library of open-

source code and a well-established ecosystem, which can speed up development and

reduce time-to-market.

4. High level of integration and compatibility with existing systems[3].

This makes it a popular choice for upgrading legacy systems or building new systems

that need to work with existing hardware and software. Additionally, the STM32 has a

variety of communication protocols, such as Ethernet and CAN, which make it easy to

integrate with other devices and systems.

5. Large community of developers and resources available. This

community provides a wealth of knowledge, support, and resources that can help

developers solve problems and create better applications. From forums and tutorials to

online courses and documentation, there are plenty of resources available to help

developers get the most out of the STM32 platform.

2.4.3. Disadvantages of STM32 microcontroller

1. Higher cost compared to 8-bit microcontrollers. One of the biggest

drawbacks of STM32 microcontrollers is that they are generally more expensive than 8-



32

bit microcontrollers, which can make them less accessible for hobbyists and low-budget

projects.

2. Higher power consumption compared to 8-bit microcontrollers.

STM32 microcontrollers typically have higher power consumption compared to 8-bit

microcontrollers, which can be a concern for battery-powered applications. However,

this is often offset by their higher processing power and more advanced features.

3. Steep learning curve for beginners. Due to their advanced capabilities

and more complex architecture, STM32 microcontrollers can have a steep learning

curve for beginners. They require a deeper understanding of programming and

electronics compared to simpler microcontrollers like the Arduino, which can make

them a more challenging option for beginners. However, there are a wealth of resources

available online to help developers learn and get started with the STM32 platform.

2.4.3. Comparison of microcontrollers

Microcontrollers are crucial components in a wide range of devices and systems,

from consumer electronics to industrial automation. When choosing a microcontroller,

it's essential to consider factors such as processing power, memory, power consumption,

and development tools. According to the table 1, I will consider each microcontroller:

Table 1.

Microcontroller technical characteristics[1,2,3]

Microcontroller Atmel 8-bit AVR RP2040 STM32

Architecture 8-bit/32-bit Dual-core ARM

Cortex-M0+

ARM Cortex-

M0/M3/M4/M7

Clock Speed Up to 32 MHz Up to 133 MHz Up to 480 MHz

Flash Memory Up to 256 KB Up to 16 MB Up to 2 MB

SRAM Up to 16 KB Up to 264 KB Up to 640 KB

Operating Voltage 1.8V to 5.5V 1.8V to 3.3V 1.7V to 3.6V

ADC Resolution Up to 10-bit Up to 12-bit Up to 16-bit



33

Digital I/O Pins Up to 86 Up to 30 Up to 168

Communication USART, SPI, I2C,

USB

UART, SPI, I2C,

USB

USART, SPI, I2C,

USB, Ethernet

Development Tools Atmel Studio,

Arduino IDE

Raspberry Pi Pico

C/C++ SDK

STM32CubeIDE,

Keil uVision

PWM Channels 6x8bit or 2x16bit 6x16bit 17x16bit

Timers Up to 3x16-bit

timers with up to 3x

output/input

channels

Up to 2x16-bit

timers with up to 4x

output/input

channels

Up to 14x16-bit

timers with up to 4x

output/input

channels

Watchdog Timer Yes Yes Yes

Sleep Modes Yes Yes Yes

Temperature Range -40°C to 85°C -20°C to 85°C -40°C to 85°C

Bootloader Support Yes Yes Yes

The Atmel AVR microcontroller is an 8-bit device that is simple to program and

consumes less power, making it well-suited for low-power and battery-powered

applications. Although it has a smaller memory and processing power compared to the

STM32, the Atmel AVR is a versatile device with a wide range of capabilities that

make it a popular choice for hobbyists and beginners.

The RP2040 microcontroller is a recent addition to the market that has gained

popularity due to its low cost and impressive performance. It features a dual-core

processor and a range of peripherals, making it suitable for hobbyists and low-cost

applications. However, it has some limitations in terms of memory and advanced

features such as USB connectivity.

The STM32 microcontroller is a 32-bit device based on the Arm Cortex-M

processor architecture, offering powerful processing capabilities and a rich set of

features that make it suitable for a wide range of applications, including industrial



34

automation and robotics. It is a more expensive and complex device than the Atmel

AVR and RP2040, but its advanced capabilities and wide range of compatible

development tools and programming languages make it a popular choice for

professionals.

Moreover, the STM32 microcontroller family includes a range of models, each

with different specifications and capabilities. The STM32F7, for example, is a high-

performance device with a floating-point unit, advanced graphics capabilities, and a

range of connectivity options, making it ideal for demanding applications such as

medical devices and aerospace systems.

Choice. Selecting the right microcontroller is a critical decision that can have a

significant impact on the performance and functionality of a device or system. The

Atmel AVR, RP2040, and STM32 microcontrollers are all popular choices with their

own strengths and limitations. The Atmel AVR is a low-power and simple-to-program

device that is suitable for beginners and low-power applications, while the RP2040

offers impressive performance at a low cost, making it an excellent choice for hobbyists

and low-cost applications. The STM32 is a powerful and versatile device that is well-

suited for professional applications, but it has a steeper learning curve and is more

expensive than the other two options.

One additional consideration when choosing a microcontroller is the availability

of support and resources. All three microcontrollers have a large user base and a range

of development tools and resources available online. However, the STM32 has a

particularly extensive ecosystem with a broad range of resources, including official

documentation, forums, and development tools. This extensive ecosystem can be

particularly helpful for developers who are new to the platform or working on complex

projects. Ultimately, the choice of microcontroller depends on the specific requirements

and goals of a project, and developers should carefully consider their options and

choose the microcontroller that best suits their needs.



35

CHAPTER 3. System design

3.1. Hardware

The hardware section of the remote temperature and humidity monitoring system

is a critical aspect of the project. In this section, we will outline the various components

used to build the system, including the microcontroller board, sensors, power supply,

and other necessary hardware.

The microcontroller board is an essential part of the system, providing the

computational power necessary to perform temperature and humidity measurements and

to transmit data wirelessly to a remote location. The chosen microcontroller board

should be compatible with a range of sensors and modules, be easy to use, and have an

affordable price point.

Sensors play a crucial role in the remote temperature and humidity monitoring

system. The sensors used in the system should be capable of accurately measuring

temperature and humidity levels and have a wide measurement range to account for a

range of different environments. Additionally, sensors should be compatible with the

chosen microcontroller board.

To power the system, we can use a variety of sources, including batteries or DC

adapters. The selected power supply should be compatible with the microcontroller

board and provide a stable voltage output to prevent damage to the system components.

The final hardware design of the remote temperature and humidity monitoring

system will also require additional components such as breadboards, jumper wires, and

USB cables for prototyping and programming. These components will be assembled

together to form the final hardware design of the remote temperature and humidity

monitoring system.



36

3.1.1. Microcontroller board

After researching different microcontroller platforms, I determined that Arduino

Uno was the most suitable option for my project due to its versatility, ease of use, and

affordability[4].

 Microcontroller: ATmega328P

 Operating Voltage: 5V

 Input Voltage (recommended): 7-12V

 Input Voltage (limits): 6-20V

 Digital I/O Pins: 14 (of which 6 provide PWM output)

 PWM Digital I/O Pins: 6

 Analog Input Pins: 6

 DC Current per I/O Pin: 20 mA

 DC Current for 3.3V Pin: 50 mA

 Flash Memory: 32 KB (ATmega328P) of which 0.5 KB used by bootloader

 SRAM: 2 KB (ATmega328P)

 EEPROM: 1 KB (ATmega328P)

 Clock Speed: 16 MHz

Arduino Uno operates on a 5V power supply and can accept input voltages

between 6 and 20V. The board has 14 digital I/O pins and 6 analog input pins, which

will allow me to interface with the humidity and temperature sensor as well as other

components such as LEDs, LCD displays, and wireless modules. Each I/O pin can

provide up to 20 mA of current, while the 3.3V pin can provide up to 50 mA[4].

The board also features a 16 MHz quartz crystal oscillator and a USB connection

for programming and power. It has 32 KB of flash memory for storing code (of which

0.5 KB is used by the bootloader), 2 KB of SRAM for storing variables, and 1 KB of

EEPROM for storing data that needs to be retained even when the power is turned

off[4].



37

3.1.2. Sensor

As a crucial component of the system, sensors capture environmental data and are

responsible for measuring temperature and humidity accurately. By choosing the right

sensors, I can design a robust and reliable monitoring system that can collect and

transmit data wirelessly for analysis and interpretation.

Table 2.

Sensor’s characteristics[5,6,7,8]

Sensor DHT11 DHT22 DS18B20 BME280

Temperature

Range

0-50°C -40-125°C -55-125°C -40-85°C

Humidity

Range

20-80% RH 0-100% RH N/A 0-100% RH

Accuracy ±2°C ±0.5°C ±0.5°C ±1°C

Interface Digital Digital Digital I2C/SPI

Power

Consumption

1-5 mA 1-2.5 mA 1-1.5 mA 2.7 µA

(standby)

Price Low Medium Low High

I will use DHT22 sensor, since it offers the widest range of temperature

measurement (-40-125°C) and a high accuracy of ±0.5°C compared to the other

sensors[6].

It also offers a wide range of humidity measurement (0-100% RH) and has a low

power consumption of 1-2.5 mA, which is a good choice for remote monitoring

applications where battery life is crucial.



38

3.1.3. Resistor

I have chosen to use a 10kΩ resistor for the DHT22 sensor's data line. The reason

for this choice is that the DHT22 sensor requires a pull-up resistor to maintain a

constant voltage level at the data line.

The pull-up resistor helps to ensure that the signal transmitted by the sensor

remains stable and reliable, even in noisy environments. Additionally, by using a 10K

ohm resistor, we can limit the amount of current flowing through the sensor's data line,

protecting it from damage due to excess current flow.

Furthermore, the 10kΩ ohm resistor is a common value that is readily available

and widely used in various electronic circuits, making it an easy, convenient and

extendable choice for the system.

I can ensure reliable data transmission and protect the sensor from damage,

contributing to the overall performance and reliability of the remote temperature and

humidity monitoring system.

3.1.4. Wireless communication module

For my project that requires wireless connectivity, a Wi-Fi module is a good

choice. There are many different Wi-Fi modules available for the Arduino platform,

ranging from simple and affordable to more complex and feature-rich. I will consider

the most used.

Table 3.

Wi-Fi modules characteristics[9,10]

Feature ESP8266 ESP32

Microcontroller Tensilica L106 32-bit Xtensa dual-core 32-bit LX6



39

RISC

Clock Speed 80 MHz Up to 240 MHz

Wi-Fi 802.11 b/g/n 802.11 b/g/n and Bluetooth

4.2

GPIO Pins Up to 17 Up to 36

Analog Inputs 1 Up to 18

ADC Resolution 10-bit 12-bit

SPI 2 4

I2C 1 2

UART 1 3

Memory 64 KB instruction RAM,

96 KB data RAM

520 KB SRAM, 4 MB flash

Active Power

Consumption

Around 80 mA Range from around 70 mA to

240 mA

I have selected the ESP8266 wireless communication module for my system

design, because it offers a cost-effective and simple solution that is compatible with the

Arduino platform. Additionally, the ESP8266 has a relatively small form factor, which

is important for the space limitations of my project. The module also offers lower power

consumption, which is desirable for my project's requirements. Finally, my project does

not require the higher processing power or memory of the ESP32, so the ESP8266 is a

practical and effective choice for my needs.

3.1.5. Power supply

I selected a 5V DC power supply, because the Arduino Uno can be powered

through the USB port or the DC jack with a voltage range of 7-12V, and the ESP8266

and DHT22 can be powered directly from the 5V pin on the Arduino.



40

By using a 5V DC power supply, I can ensure that all components in the setup

receive the required voltage for their operation. It's also important to ensure that the

power supply can provide sufficient current for all the components to operate properly.

3.2. Prototyping

3.2.1. Block Schema

To better visualize and plan my project, I have decided to create a block schema

using a tool Tinkercad.

In my block schema (Pic. 3.2.1.), I will start with the initialization of the

microcontroller, followed by the connection of the DHT22 sensor to the breadboard.

From there, I will proceed to read and process the data, which will then be saved and

displayed on a screen. To ensure that the data is displayed accurately, I will include a

recursive loop that continuously updates the display as new data is collected.

By creating a block schema, I can more easily visualize the flow of my project

and identify any potential issues or areas that may require further attention. It will also

serve as a helpful reference throughout the project, enabling me to keep track of my

progress and ensure that all necessary components are properly connected and

functioning.



41



42

Pic. 3.2.1. Block-schema

3.2.2. Modeling

The next step after creating a block-schema is to start the modeling process.

Modeling is the process of creating a virtual representation of a physical system or

process.

For modeling, I chose Tinkercad as my modelling tool because it is a free and

easy-to-use online platform for designing and simulating circuits. It has a wide range of

components and tools that make it suitable for both beginners and advanced users.

Additionally, Tinkercad has a 3D design feature that allows me to create and visualize

my circuits in a more realistic way.

First of all, I will set up a basic breadboard connection (Pic. 3.2.2.)[16].

I will connect the power and ground rails of the breadboard to the 5V and GND

pins of the Arduino Uno. To do this, I will connect the 5V pin of the Arduino Uno to the

positive (+) rail of the breadboard using a red jumper wire, and I will connect the GND

pin of the Arduino Uno to the negative (-) rail of the breadboard using black jumper

wire. This will allow me to power all of my components from the same power source.



43

Pic 3.2.2. Connect the power and ground to Arduino Uno.

After connecting the power and ground rails of the breadboard to the Arduino

Uno, I will connect the DHT22 sensor to the breadboard (Pic. 3.2.3.) [16].

The DHT22 sensor has three pins: VCC, GND, and Data. I will connect the VCC

pin to the positive (+) using a red jumper wire, and I will connect the GND pin to the

negative (-) rail using black jumper wire. Finally, I will connect the Data pin of the

DHT22 sensor to a digital pin on the Arduino Uno using a green jumper wire. This will

allow the Arduino Uno to read the temperature and humidity data from the DHT22

sensor.



44

Pic 3.2.3. Connect DHT22 sensor to Arduino Uno.

Also, I will connect the ESP8266 Wi-Fi module (Pic. 3.2.4.).

The ESP8266 module has six pins[9,15]: VCC, GND, CH_PD, RX, TX, and

GPIO0.I will connect the VCC pin to the positive (+) rail red jumper wire, the GND pin

to the negative (-) rail using black jumper wire.

The RX pin is connected to D3 pin on the Arduino Uno using orange jumper wire,

and the TX pin to D4 using yellow jumper wire. Finally, I will connect the GPIO0 pin

of the ESP8266 module to the negative (-) rail using black jumper wire.



45

Pic 3.2.4. Connect ESP8266 Wi-Fi module.

Having completed the block-schema and the modeling in Tinkercad, I have a

clear understanding of how the different components of my project will be connected

and work together. And I can now proceed with writing the code, using the information

and connections established in the block-schema. This will allow me to effectively and

efficiently translate the design of my system into a functional and practical

implementation.

3.2.3. Programming

I will write the code for the remote temperature and humidity monitoring system

using C++. I have chosen to use C++ because it is a powerful and widely used



46

programming language that is well-suited for embedded systems and real-time

applications. Additionally, C++ supports object-oriented programming (OOP) and the

model-view-controller (MVC) design pattern, which will allow me to write clean and

modular code[11,12,13].

Object-oriented programming (OOP)[12] is a programming paradigm that

revolves around the concept of "objects", which are instances of classes that encapsulate

data and methods. In OOP, everything is an object, and the data and methods of an

object are tightly bound together. OOP is a powerful tool for designing complex

systems, as it allows developers to organize their code into reusable, modular

components.

One of the key features of OOP is inheritance, which allows classes to inherit

properties and methods from other classes. This makes it easy to create new classes that

are based on existing ones, and helps to avoid duplicating code. Another important

feature of OOP is polymorphism, which allows objects of different classes to be treated

as if they were of the same class. This makes it possible to write more generic code that

can work with different types of objects.

The Model-View-Controller (MVC) pattern[14] is a popular architectural design

pattern used in software engineering that separates an application into three

interconnected components: the model, the view, and the controller. The model

represents the data and the logic of the application, the view presents the data to the user,

and the controller receives user input and updates the model and the view accordingly.

This separation of concerns allows for better organization, maintainability, and

testability of the codebase. In addition, it facilitates the development of user interfaces

that can be easily customized or swapped out without affecting the underlying data or

business logic.

The Model component in the MVC pattern is responsible for managing the data

and logic of the application[14]. This includes retrieving and storing data, processing

data, and performing calculations. The Model component should be decoupled from the



47

View and the Controller components, meaning that it should not be aware of how the

data is being presented to the user or how the user interacts with the application. This

ensures that the Model component can be reused or modified without affecting the other

components of the application. Overall, the MVC pattern promotes separation of

concerns, modularity, and maintainability in software development.

I will start from creating model.h amd model.cpp files.

In the context of MVC, the model represents the data and logic of the application.

The model.h file contain the class definitions and declarations for the data structures and

functions that handle the data. The model would interact with the controller to receive

input and update the view to reflect the changes in the data.

model.h

#ifndef MODEL_H

#define MODEL_H

#include <DHT.h>

class Model {

public:

Model();

float getTemperature();

float getHumidity();

void updateData();

private:



48

DHT dht;

float temperature;

float humidity;

};

#endif

model.cpp

#include "Model.h"

#define DHTPIN 3 // Digital pin connected to the DHT sensor

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

Model::Model(): dht(DHTPIN, DHTTYPE) {

dht.begin();

}

void Model::updateData() {

temperature = dht.readTemperature();

humidity = dht.readHumidity();

}



49

float Model::getTemperature() {

return temperature;

}

float Model::getHumidity() {

return humidity;

}

Next are controller.h and controller.cpp files.

controller.h is a header file that contains the declaration of the Controller class. It

includes the headers for the Model, View, ESP8266WiFi, and WiFiClient libraries. It

also defines the constants for the network credentials and server details. The Controller

class has two private members: an instance of the Model class and an instance of the

View class, and a private member function connectToWiFi() and sendDataToServer().

The public member function is run(), which is responsible for running the main loop of

the program.

controller.cpp is the implementation file for the Controller class. It includes the

header file for the Controller class and defines the constructor for the Controller class. It

also defines the private member functions connectToWiFi() and sendDataToServer(),

which are responsible for connecting to WiFi and sending data to the server,

respectively. The run() member function is responsible for running the main loop of the

program. It calls the updateData() method of the Model object to update the temperature

and humidity data. It then gets the temperature and humidity data from the Model object

and displays it on the serial monitor using the View object. Finally, it sends the



50

temperature and humidity data to the server using the sendDataToServer() method and

waits for 5 seconds before repeating the loop.

controller.h

#ifndef CONTROLLER_H

#define CONTROLLER_H

#include "Model.h"

#include "View.h"

#include <ESP8266WiFi.h>

#include <WiFiClient.h>

// Replace with your network credentials

const char* ssid = "your_SSID";

const char* password = "your_PASSWORD";

// Server details

const char* serverName = "your_SERVER_NAME";

const int serverPort = 80;

class Controller {

public:



51

Controller();

void run();

private:

Model model;

View view;

WiFiClient client;

void connectToWiFi();

void sendDataToServer(float temperature, float humidity);

};

#endif

controller.cpp

#include "Controller.h"

Controller::Controller() {}

void Controller::connectToWiFi() {

// Connect to WiFi network

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(1000);



52

Serial.println("Connecting to WiFi...");

}

Serial.println("Connected to WiFi");

}

void Controller::sendDataToServer(float temperature, float humidity) {

if (client.connect(serverName, serverPort)) {

// Format data as HTTP GET request

String httpRequest = "GET /addData?temp=";

httpRequest += String(temperature);

httpRequest += "&humidity=";

httpRequest += String(humidity);

httpRequest += " HTTP/1.1\r\n";

httpRequest += "Host: ";

httpRequest += serverName;

httpRequest += "\r\n";

httpRequest += "Connection: close\r\n\r\n";

// Send HTTP GET request to server

client.print(httpRequest);



53

Serial.println("Data sent to server");

} else {

Serial.println("Failed to connect to server");

}

}

void Controller::run() {

connectToWiFi();

while(true) {

model.updateData();

float temperature = model.getTemperature();

float humidity = model.getHumidity();

view.displayData(temperature, humidity);

sendDataToServer(temperature, humidity);

delay(5000);

}

}

Next is entrypoint of the system, main.cpp.

The main.cpp file simply includes the header files for the Controller and Model

classes, and instantiates a Controller object. In the setup() function, the Serial object is

initialized, and the run() method of the Controller object is called. The loop() function is

left empty, as there is no need to do anything else in the main program loop.



54

main.cpp

#include "Controller.h"

#include "Model.h"

// Instantiate the Controller object

Controller controller;

void setup() {

Serial.begin(115200);

// Call the run method of the Controller object

controller.run();

}

void loop() {

// Nothing to do in the main loop

}



55

Conclusion

The development of a remote temperature and humidity monitoring system is a

significant contribution to ensuring the stable operation of various equipment in

industries such as agriculture, food processing, and storage facilities. The system

provides continuous and real-time data on temperature and humidity, which can be

accessed remotely, allowing for timely intervention and problem-solving in case of any

deviation from the desired values.

The system is designed to be reliable, accurate, and easy to use, and it consists of

several components, including a sensor, a microcontroller, a Wi-Fi module. The sensor

measures temperature and humidity, and the microcontroller processes the data and

sends it to the cloud platform through the Wi-Fi module.

Project uses the newest technical stack, Arduino UNO, DHT22 with ESP8266.

Programming of this module is possible in the Arduino IDE program, in which a user-

friendly interface and speed are an advantage of this program.

The implementation of the remote temperature and humidity monitoring system

can significantly reduce the risk of equipment damage, product loss, and operational

downtime, leading to increased efficiency, cost savings, and improved product quality.

Furthermore, the system can provide valuable insights into the performance of the

equipment and the environment, enabling data-driven decision-making and continuous

improvement.

In conclusion, the remote temperature and humidity monitoring system is a vital

tool for various industries, providing real-time monitoring, alerts, and insights into the

performance of equipment and environment. The system is easy to use, reliable, and

accurate, and it can significantly reduce the risk of equipment damage, product loss, and

operational downtime, leading to increased efficiency, cost savings, and improved

product quality.



56

References

1. ATmega328P microcontroller datasheet. Digital version:

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-

Microcontrollers-ATmega328P_Datasheet.pdf

2. RP2040 microcontroller datasheet. Digital version:

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

3. STM32 microcontroller datasheet. Digital version:

https://www.st.com/resource/en/datasheet/stm32f205re.pdf

4. Arduino UNO datasheet. Digital version:

https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf

5. DHT11 Humidity & Temperature Sensor datasheet. Digital version:

https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-

Version-1143054.pdf

6. DHT22 Humidity & Temperature Sensor datasheet. Digital version:

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf

7. DS18B20 Humidity & Temperature Sensor datasheet. Digital version:

https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf

8. BME280 Humidity & Temperature Sensor datasheet. Digital version:

https://www.mouser.com/datasheet/2/783/BST-BME280-DS002-1509607.pdf

9. ESP8266 Wi-Fi module datasheet. Digital version:

https://www.espressif.com/sites/default/files/documentation/esp8266-

technical_reference_en.pdf

10.ESP32 Wi-Fi module datasheet. Digital version:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

11. Eric Freeman, Bert Bates, Kathy, Elisabeth Robson. Head First Design Patterns.

Publisher: O'Reilly Media; 1st edition (October 1, 2004).

12. Matt Weisfeld. Object-Oriented Thought Process. Publisher: Addison-Wesley

Professional; 4th edition (March 13, 2013).

https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf
https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://www.st.com/resource/en/datasheet/stm32f205re.pdf
https://docs.arduino.cc/resources/datasheets/A000066-datasheet.pdf
https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
https://www.mouser.com/datasheet/2/758/DHT11-Technical-Data-Sheet-Translated-Version-1143054.pdf
https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf
https://www.mouser.com/datasheet/2/783/BST-BME280-DS002-1509607.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp8266-technical_reference_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf


57

13. Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.

Publisher: Pearson; 1st edition (August 1, 2008).

14. Adam Freeman. Pro ASP.NET Core MVC. Publisher: Apress; 6th ed. edition

(September 16, 2016).

15. Bala Divya. ESP8266: Step by Step Book for ESP8266 IOT, Arduino Nodemcu

Dev Kit. Kindle Edition.

16. Massimo Banzi, Michael Shiloh. Getting Started With Arduino: The Open

Source Electronics Prototyping Platform. Publisher: Make Community, LLC; 4th

edition (March 22, 2022).


