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ABSTRACT 

Explanatory notes to graduation work ‘Violations and their eliminations 

during aircraft maintenance' contained 69 pages, 14 figures, 2 graphs, and 22 

references. 

The object of research: algorithm of an autonomous inertial navigation 

system of an aircraft. 

The subject of research: processes of measuring navigation parameters. 

Purpose of the study: to develop algorithms for an inertial navigation system 

that provides acceptable measurement accuracy of primary navigation information. 

Research methods: theory of inertial navigation systems, theory of 

gyroscopic devices, theory of mechanics, simulation modelling, filtering methods. 

Keywords: AIRCRAFT, ALGORITHM, INERTIAL NAVIGATION SYSTEM, 

INERTIAL METERS, ACCELEROMETERS, FILTERING, MATHEMATICAL 

MODEL, SIMULATION MODELING 
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Introduction 

Inertial navigation systems (INS) are critical elements of modern avionics, 

providing accurate determination of aircraft movement and orientation parameters. 

These systems provide comprehensive data on heading, pitch, and roll angles, as 

well as acceleration, speed, and location coordinates of an object. The main 

advantage of INS is their complete autonomy, which allows them to function 

independently of external data sources, making them extremely reliable. 

Inertial navigation systems (INS) are used in a variety of vehicles and 

machines to provide accurate determination of motion and orientation parameters. 

Aviation: 

Commercial airplanes: INS is used for autonomous navigation, especially 

when flying over oceans or in areas with limited access to ground-based navigation 

aids. 

Military aircraft: INS provides precise navigation and orientation in combat 

environments where the use of external navigation signals may be difficult or 

impossible. 

Unmanned aerial vehicles (UAVs): INS helps to control the course and 

stabilize the flight, especially in the absence of a GPS signal. 

Marine transportation: 

Military ships and submarines: INS is used for autonomous navigation 

underwater where GPS signals are not available. 

Commercial vessels: In combination with other navigation systems, INS 

ensures safe movement on the high seas and coastal waters. 

Ground transportation: 

Military vehicles and armored vehicles: INS helps to determine location and 

route in environments where GPS use may be hampered by obstacles or opposition. 

Autonomous vehicles: INS is used in conjunction with other sensors to 

provide accurate navigation and driving control in autonomous vehicles. 

Spacecraft: 
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Satellites and spacecraft: INS is used for orientation and navigation in space 

where traditional navigation systems do not work. 

Missiles and munitions: 

Ballistic and cruise missiles: INS provides precise in-flight control and 

navigation, which is critical to achieving the target. 

INS is a key technology in many industries where navigation accuracy and 

autonomy are critical. 

Inertial navigation systems are divided into two main types: platform and 

platformless. Platform systems use a gyro-stabilized platform to keep the axes of 

accelerometers and gyroscopes in a given coordinate system. Despite being used 

successfully for many years, these systems have significant drawbacks, such as high 

cost and complexity of manufacturing. Platformless systems do not have a gyro-

stabilized platform, which makes their design simpler and cheaper. The main 

advantages of platformless IMS are reduced costs and simplified design compared 

to platform systems. However, the disadvantage of such systems is the complexity 

of the algorithms required to calculate navigation parameters, but thanks to the 

development of information and computer technologies, these difficulties can be 

overcome. 

INS built into aircraft provide autonomy and independence from external 

navigation signals, which is especially important in conditions of limited or no 

access to such signals. They allow the aircraft to determine its location, control the 

direction of movement and correct the trajectory with high accuracy, which allows 

it to perform various tasks with great efficiency. Increasing competition in the 

market forces manufacturers to introduce innovative and advanced technologies, 

including advanced INS, which affects the quality, price and timing of the required 

product. 

Inertial navigation systems are characterized by numerous advantages, 

including autonomy in determining navigation parameters and high data output 

speed. They are capable of measuring a full set of navigation parameters, such as 

acceleration, speed, coordinates and angles of the object's position (heading, roll, 
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pitch), as well as angular velocities of the object. Despite these advantages, like any 

other system, INS also has disadvantages that must be taken into account. Among 

them is the need to enter initial conditions, such as the initial position of the platform 

or object, and initial values of velocity and coordinates. It is also important to take 

into account the shape of the Earth and the parameters of the gravitational field at 

the location of the object. GNSS accumulate errors over time, so continuity of 

operation is required for their effective operation. Many of these drawbacks can be 

overcome, and the advantages of GNSS make them indispensable for many 

applications. Despite the challenges associated with accuracy and reliability, the 

advantages of these systems make them indispensable in many fields of technology 

and science. 

Sensitive components of inertial navigation systems can include high-

precision accelerometers and gyroscopes that provide a high level of measurement 

accuracy. To ensure reliable operation and minimize the impact of vibrations, 

sensitive elements can be installed in shock-absorbing devices, which ensures the 

stability and accuracy of the system under significant dynamic loads. 
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CHAPTER 1 

GENERAL CHARACTERISTICS OF PLATFORM-FREE INERTIAL 

NAVIGATION SYSTEMS 

In the field of spatial analysis and navigation, the understanding of coordinate 

systems is a crucial factor that affects the accuracy and efficiency of determining the 

position of objects. When navigating and analyzing spatial data, there is a need to 

use a variety of coordinate systems, as none of them is universal for all tasks. 

Coordinate systems are the fundamental basis for organizing spatial information, 

providing a standardized approach to expressing and interpreting the location of 

objects in a given space. 

One of the main advantages of coordinate systems is their versatility, which 

lies in their ability to adapt to a variety of scenarios and ensure the seamless 

exchange of spatial data across different applications and disciplines. Whether we 

are plotting the path of a satellite in outer space, creating a map of a complex urban 

landscape, or tracking the movement of microscopic particles, the choice of the 

coordinate system is a critical decision that affects the accuracy and reliability of the 

results obtained. 

Coordinate systems are not only practical tools but are also based on 

fundamental principles of geometry and mathematical abstraction. By defining a set 

of rules for assigning numerical values to points in space, they provide a basis for 

accurately representing spatial relationships. This mathematical framework 

facilitates the calculation of distances, angles, and areas and provides a universal 

language for spatial communication, which is critical in the modern world. 

When it comes to determining the coordinates of objects, the choice of a 

coordinate system depends on the nature of the objects being analyzed and the 

context in which they exist. Cartesian coordinate systems based on orthogonal axes 

are often used because of their simplicity and convenience in Euclidean spaces. 

However, in cases where the curvature of the Earth or other celestial bodies is 

important, more complex systems, such as spherical or celestial coordinates, are 

needed to accurately describe the spatial position of objects. These systems provide 
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the ability to accurately determine the position of objects in space, taking into 

account all the necessary factors. 

In addition, it is important to keep in mind that understanding and correctly 

applying coordinate systems is critical for successful spatial analysis and navigation. 

This not only ensures accuracy and efficiency in various industries and applications 

but also allows for the creation of more complex and reliable models of spatial 

relationships, which is essential for the further development of science and 

technology. As a result, coordinate systems are a key element in the field of spatial 

analysis and navigation, providing accuracy, versatility and efficiency in solving a 

wide variety of tasks. 

There are many coordinate systems developed to meet different needs and 

contexts in different disciplines. The geocentric inertial coordinate system OXYZ 

has the OX axis directed along the line of equinox to the vernal equinox, the OZ axis 

is directed along the axis of rotation of the Earth, and the OY axis forms a right-

angled coordinate triangle with the OX and OZ axes. In the foreign literature, this 

coordinate system is sometimes called ECI (Earth-Centered Inertial), abbreviated by 

the letter i. Sometimes an inertial coordinate system is considered to be an initial 

coordinate system whose position relative to the i system is known.  
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The ECI (Earth-Centered Inertial) coordinate system is the fundamental basis 

for wide application in both satellite dynamics and celestial navigation. This inertial 

coordinate system plays a key role in the accurate determination and prediction of 

satellite orbits. Its inertial nature eliminates the need to take into account the Earth's 

rotation, simplifying the calculations for accurate orbit determination. In addition to 

predicting orbits, IMS plays an important role in controlling the orbit of satellites. 

Satellites often require a specific orientation for various purposes, such as 

communication, imaging, or scientific observation. ECI's stable, non-rotating 

reference frame simplifies the design and implementation of control algorithms, 

ensuring that satellites maintain the desired orientation. 

Furthermore, in scenarios involving multiple satellites operating in close 

proximity or in need of coordination, the ECI serves as a common reference frame. 

Fig 1.1 Coordinate system Earth-Centered Inertial (ECI) 
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This facilitates seamless communication and coordination between satellites, 

enabling joint missions or shared tasks. The inertial stability of the ECI is especially 

important during orbital maneuvers, providing precise control over changes in speed 

and orientation without the complexities introduced by the Earth's rotation. 

In the field of celestial navigation and astronomy, ECI proves invaluable for 

positional astronomy. Astronomers use its stability to accurately determine the 

location of celestial objects in the sky using precise measurements of celestial 

coordinates, such as direct ascension and declination, which remain constant over 

time. When telescopes are used in astronomical observations, ECI provides a stable 

reference frame for telescope pointing systems, guaranteeing accuracy without the 

need for constant adjustments due to Earth's rotation. 

Beyond the Earth's orbit, ECI is used in interplanetary navigation, when 

spacecraft explore other celestial bodies. It allows for precise trajectory planning and 

adjustments during the journey, taking into account the gravitational effects of 

celestial bodies. In addition, ECI is a fundamental component in the planning and 

execution of celestial object-related space missions, ensuring the accuracy of 

mission planning and data analysis. 

In both satellite dynamics and celestial navigation, the ECI consistent inertial 

reference frame links various aspects of space research and observation. Its use 

simplifies calculations, improves accuracy and facilitates coordination between 

spacecraft or observational instruments, making it an indispensable tool for a wide 

range of space research. 

The ECEF (Earth-Centered Earth-Fixed) coordinate system is important for 

various Earth-related industries. It is used in global navigation systems, including 

GPS, which revolutionized global positioning and navigation. GPS satellites orbiting 

the Earth act as beacons, transmitting signals with important information, including 

ECEF coordinates and exact time. This allows the receivers to determine their 

location with high accuracy in real time. 
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The ECEF system is also used to analyze satellite orbits, especially low-earth 

orbit (LEO) satellites, providing a convenient frame of reference for describing the 

position and velocity of satellites relative to the rotating Earth. The integration of 

ECEF coordinates into GPS is the basis of its operation, providing a standardized 

reference system for precise navigation and positioning in various applications. 

In geodesy and mapping, ECEF coordinates allow you to accurately determine 

the position of points on the Earth's surface and simplify the calculation of distances, 

angles and other geometric parameters. They are an important component for 

accurate geographic location and analysis of geodetic data. 

Fig 1.2 Coordinate system Earth-Centered Inertial Fixed (ECIF) 
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The ECEF coordinate system plays a key role in modern navigation and 

surveying technology, providing reliability, accuracy and versatility for a variety of 

applications and requirements. 

In aviation, ECEF (Earth-Centered Earth-Fixed) coordinates are an integral 

part of aircraft navigation and tracking, providing a consistent frame of reference for 

accurate determination of aircraft position and movement. Pilots and air traffic 

controllers use these coordinates to provide accurate and reliable navigation during 

all phases of flight, including takeoff, cruise, descent, and landing. 

Aviation navigation systems use ECEF coordinates to create a standardized 

reference system that allows accurate tracking of an aircraft's position relative to the 

center of the Earth. This information is critical for route planning, air traffic control 

and coordination of air operations. Real-time ECEF coordinates provide a consistent 

basis for monitoring aircraft movements, contributing to the overall safety and 

efficiency of air transportation. 

In addition, ECEF coordinates are used in inertial navigation systems (INS) 

installed on board aircraft. These systems integrate data from accelerometers and 

gyroscopes to continuously track changes in aircraft speed and orientation. 

Combining inertial measurements with ECEF coordinates allows for accurate and 

reliable navigation, especially in conditions where GPS signals may be unavailable 

or limited. 

The use of ECEF coordinates in aviation navigation provides a standardized 

and internationally recognized reference system that increases interoperability and 

ensures efficient data exchange between various components of the aviation 

infrastructure, including air traffic control, ground navigation aids and onboard 

avionics systems. 

The use of ECEF coordinates is an essential element for accurate spatial 

analysis, allowing GIS users to measure distances, angles and volumes with a high 

degree of accuracy. These coordinates also support the integration of three-

dimensional visualization methods, which allows the creation of realistic and 

detailed images of the Earth's surface and its features. Whether for urban planning, 



17 
 

environmental monitoring, disaster management or any other GIS application, ECEF 

coordinates ensure the interoperability and accuracy of geospatial data. GIS 

professionals can overlay diverse data sets, perform spatial analysis, and derive 

meaningful conclusions, knowing that the data is tied to a globally recognized 

coordinate system. 

The integration of ECEF coordinates into GIS applications extends the 

capabilities of these systems by providing a standardized and accurate basis for 

analyzing and presenting geospatial data, especially in scenarios where a 3D 

perspective is critical to informed decision-making. In addition, ECEF coordinates 

help create accurate maps and geospatial products based on satellite observations. 

Precise positioning of objects on the Earth's surface enables detailed mapping, land 

use classification and monitoring of changes over time, which is important for 

applications such as environmental impact assessment, urban planning and resource 

management. 

ECEF coordinates are a necessary element for Earth observation satellite 

systems used for environmental monitoring, disaster management, agriculture and 

scientific research. These systems provide a consistent frame of reference for 

pinpointing the location of observed objects with high precision, which is critical in 

modern analysis and planning. 

The Earth-centered, Earth-fixed (ECEF) coordinate system is non-inertial, 

meaning it rotates along with the Earth. It accounts for the Earth's rotation and is 

ideal for applications where the movement of objects on or near the Earth's surface 

is a primary concern. The three axes of this coordinate system are typically defined 

as follows: the angle of rotation of the coordinate system corresponds to the value 

ωt, where ω is the Earth's angular velocity, and t is time. The axis 𝑂𝜂Г is located in 

the plane of the Greenwich meridian. 

The accompanying coordinate system, or accompanying trihedron, has its 

origin at a point on the Earth's surface, whose position is defined by latitude ϕ and 

longitude 𝜆. If the latitude is defined as the angle between the equatorial plane and 

the geocentric radius (vertical), it is called geocentric and denoted by ϕ′. The axes of 
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the accompanying geographic trihedron Oηζ (or 𝑂1O1 ENH) are directed as follows: 

the axis 𝑂1𝜉O1ξ is tangent to the parallel to the east, the axis 𝑂1𝜂O1η is directed 

north, and the axis 𝑂1𝜁O1ζ is directed vertically. This trihedron is sometimes 

denoted by the letter 𝑔g. Relative to it, a coordinate system free in azimuth is rotated 

by an angle 𝜒χ in the horizontal plane. 

If the angle 𝜒χ is taken as the orthodromic course angle, then 𝑂1𝜉0𝜂0𝜁0O1ξ0

η0ζ0 is the orthodromic coordinate system. The object-associated coordinate system 

will be denoted as 𝑂1𝑥𝑠𝑦𝑠𝑧𝑠O1xsyszs, where 𝑂1𝑦𝑠O1ys is the object's longitudinal 

axis, 𝑂1𝑥𝑠O1xs is the object's transverse axis (to the right side), and 𝑂1𝑧𝑠O1zs is 

the object's normal axis (upward). This coordinate system is sometimes denoted by 

the letter 𝑏b (from the word "body"). 

ECEF coordinates are often transformed into other coordinate systems, such 

as geodetic or local tangent plane coordinates, to meet specific application 

requirements. The transformation from ECEF to geodetic coordinates allows for the 

precise determination of the location of objects on the Earth's surface, considering 

altitude, latitude, and longitude. On the other hand, the local tangent coordinate 

system is useful for analyzing the movement of objects relative to the Earth's surface 

at a local level. 

Using ECEF coordinates facilitates accurate spatial analysis, enabling GIS 

users to measure distances, angles, and volumes with high precision. It also supports 

the integration of three-dimensional visualization techniques, allowing the creation 

of realistic and detailed representations of the Earth's surface and its features. 

Whether for urban planning, environmental monitoring, disaster management, or 

any other GIS application, ECEF coordinates ensure interoperability and accuracy 

of geospatial data. GIS professionals can overlay diverse data sets, perform spatial 

analysis, and derive meaningful insights, knowing that the data is tied to a globally 

recognized coordinate system. 

Integrating ECEF coordinates into GIS applications enhances these systems' 

capabilities, providing a standardized and accurate foundation for analyzing and 

presenting geospatial data, especially in scenarios where a three-dimensional 
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perspective is crucial for informed decision-making. Additionally, ECEF 

coordinates help create precise maps and geospatial products based on satellite 

observations. Accurate positioning of objects on the Earth's surface enables detailed 

mapping, land-use classification, and monitoring of changes over time, which is 

critical for applications such as environmental impact assessment, urban planning, 

and resource management. 

ECEF coordinates are essential for satellite Earth observation systems used 

for environmental monitoring, disaster management, agriculture, and scientific 

research. These systems provide a consistent reference frame for accurately 

determining the location of observed objects with high precision, which is crucial in 

modern analysis and planning. Integrating data from various sources and sensors in 

a standardized coordinate system allows seamless analysis and ensures meaningful 

conclusions. 

ECEF coordinates also support the coordination of multiple satellites in 

constellations or networks. Such coordination ensures comprehensive coverage and 

data collection over large geographic areas, enhancing the efficiency of satellite 

monitoring and observation systems. This coordinate system is invaluable for 

applications related to objects or observations closely tied to the Earth's surface. Its 

non-inertial nature, accounting for the Earth's rotation, makes it suitable for 

navigation, mapping, and various Earth-related analyses. 

The accompanying trihedron rotates in inertial space with an angular velocity 

whose projections can be expressed by the corresponding ratios. Projections of the 

angular velocity of rotation of a trihedron (SC, basis) with respect to inertial space 

can be written in the following form 

𝜔 =
−𝑣𝑁

𝑅2 + ℎ
;                                         ℎ = ℎ0 + 𝑣𝑡 

𝜔

=
−𝑣𝐸

𝑅2 + ℎ
+ 𝑢𝑐𝑜𝑠𝜑;                                                                                                       (1.1) 

𝜔 =
−𝑣𝐸

𝑅2 + ℎ
∗ 𝑡𝑔𝜑 + 𝑢𝑠𝑖𝑛𝜑;            𝜔 = 𝜔𝑡𝑔𝜑 
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In addition to the previously introduced notations, 𝑣𝑁=𝑣cos⁡𝜒vN=vcosχ 

represents the northern component of the object's relative velocity vector, 

𝑣𝐸=𝑣sin⁡𝜒vE=vsinχ denotes the eastern component, ℎh is the object's altitude, 

ℎ0h0 is its initial altitude, 𝑣𝜁vζ is the vertical component of the velocity, and 𝑡t is 

time. Sometimes the angular velocity vector is expressed as the sum 

𝜔=𝑢+𝑤0ω=u+w0, where 𝑢u is the angular velocity vector of the Earth's rotation, 

and 𝑤0w0 is the angular velocity vector due to the object's movement relative to the 

Earth (relative angular velocity). These vectors can be represented as projections 

onto the axes of the accompanying basis as follows: 

𝑢⃗ = [0, 𝑢, 𝑢]
𝑇;         𝑤⃗⃗ 

0 = [𝜔
0, 𝜔

0𝜔
0]𝑇                                                                 (1.2) 

This notation provides a clear framework for analyzing the dynamics of 

objects in motion relative to the Earth's surface, accounting for both the Earth's 

rotation and the object's movement. By decomposing the velocity and angular 

velocity vectors into their respective components, it becomes possible to precisely 

describe and predict the behaviour of objects within the Earth-centered, Earth-fixed 

(ECEF) coordinate system. 

The absolute linear velocity is equal to the sum of the relative linear velocities 

of the object and the linear velocity relative to the Earth's rotation. The projection of 

the absolute linear velocity can be represented as follows: 

𝑉𝑁 = 𝑉𝑐𝑜𝑠  , 𝑉𝐸 = 𝑉𝑠𝑖𝑛  ,  𝑉𝑁 =  𝑣𝑁, 𝑉𝐸 =  𝑣𝑒 + (𝑅1 + ℎ)𝑢𝑐𝑜𝑠𝜑                 (1.3) 

Hence, the form of the projection of the absolute angular velocity of the 

geographically accompanying trihedron can be written as follows: 

𝜔0 = −𝑢𝑐𝑜𝑠 𝑠𝑖𝑛 −
𝑣

(𝑅+ℎ)
   

𝜔0 = 𝑢𝑐𝑜𝑠;                                                                                                              (1.4) 

𝜔0 = 𝑢𝑐𝑜𝑠;   

There are other ways to describe the motion of the orthodromic accompanying 

trihedron, particularly taking into account the ellipticity of the Earth. The direction 

cosine matrix between the axes of the Greenwich coordinate system 𝑂𝜉𝐺𝜂𝐺𝜁𝐺OξG

ηGζG and the semi-free (orthodromic) azimuth coordinate system 𝑂𝜉0𝜂0𝜁𝐺Oξ0η0
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ζG (Fig. 1.4) is shown in Table 1.1. The table shows the direction cosines between 

the axes of the Greenwich and orthodromic trihedrons. 

These formulas and matrices allow for precise determination and analysis of 

the movement of objects relative to the Earth, taking into account its rotation and 

shape. 

 
Table 1.1  

Direction cosines between the axes of Greenwich and orthodromic trihedra 

 

Сℊ𝑒 Г Г Г 

0 с11 =

−𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜆𝑠𝑖𝑛𝜀 −

−𝑠𝑖𝑛𝜆𝑐𝑜𝑠𝜀  

с12 =

−𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜆𝑠𝑖𝑛𝜀 + 𝑠𝑖𝑛𝜆𝑐𝑜𝑠𝜀  

с13 = 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜀 

0 с21 =

−𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜆𝑐𝑜𝑠𝜀 +

+𝑠𝑖𝑛𝜆𝑐𝑜𝑠𝜀  

с22 =

−𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜆𝑐𝑜𝑠𝜀 − 𝑐𝑜𝑠𝜆𝑠𝑖𝑛𝜀  

с23 = 𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜀 

0 с31 = 𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜆  с32 = 𝑠𝑖𝑛𝜆𝑐𝑜𝑠𝜑  𝑏33 = 𝑠𝑖𝑛𝜑 

The matrix is denoted as Сℊ𝑒, where the second letter of the index denotes the 

initial trihedron, and the first letter of the index - the final trihedron 

 

 

 

 

 
Fig. 1.2 Greenwich and orthodromic trihedra 
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The trihedron 𝑂𝜉0ε0η0ζ0 moves with a relative angular velocity ω0, which is 

related to the path speed 𝑣v by the relation 𝑣 = 𝜔⃗⃗ 0 ∗ 𝑅⃗ , where 𝑅⃗  is the radius of 

curvature of the Earth ellipsoid in the plane of the trajectory. The projections of the 

vector 𝜔⃗⃗ 0 on the axes of the trihedron 0ε0η0ζ  can be expressed as follows: 

𝜔0
0 = −

𝑉η0

𝑅η0
−

𝑣0

𝑎
𝑒2𝑏13𝑏23,     𝜔η0

0 = −
𝑉0

𝑅0
−

𝑣η0

𝑎
𝑒2𝑏13𝑏23,                            (1.5) 

Here, 𝑅η0and 𝑅0 are the radii of curvature of the normal sections of the ellipsoid in 

the planes Oη0ζ and Oξ0ζ, respectively, 2e is the square of the eccentricity of the 

terrestrial ellipsoid. The values inverse of the radii of curvature are calculated 

according to the ratios: 

1

𝑅0
=

1 −
1
2
𝑒2𝑏33

2 +
1
2
𝑒2𝑏13

2 −
ℎ
𝑎

𝑎
     

1

𝑅η0
=

1 −
1
2
𝑒2𝑏33

2 +
1
2
𝑒2𝑏23

2 −
ℎ
𝑎

𝑎
                                       (1.6) 

Where h is the height, and a is the major semi-height of the terrestrial ellipsoid. 

According to the law of universal gravitation, all bodies are attracted to each 

other with a force that is directly proportional to the product of the mass of these 

bodies and inversely proportional to the second power of the distance between them. 

𝐹 = 𝐺
𝑀𝑚

𝑟2
,                                                             (1.7) 

where F is the force of gravity, and M and T are the masses of two mutually 

attractive objects. (gravitational mass); r-distance between them; The G-coefficient 

of proportionality, which is called the gravitational constant and is the main physical 

constant of the new physical constants. on the other hand, gravity The mass m acting 

on a material point is determined by the formula: 

𝐹 = 𝑚𝑔 ,                                                               (1.8) 

where -g   is the gravitational acceleration or the acceleration of gravity. The 

gravitational force F r and the gravitational acceleration have the same direction. 

Comparing formulas (1.7) and (1.8), we find: 
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𝑔` = 𝐺
𝑀

𝑟2 

This expression represents the simplest model of the gravitational field. The 

real world is more complicated. can be represented by the components of the vector 

g in the meridional plane. The radial component is directed towards the center of the 

Earth 

𝑔𝑟
` = −

𝐾

𝑟2 [1 +
3𝜇

2
(
𝑎

𝑟
)
2

(1 − 3𝑠𝑖𝑛2𝜑`)]                                     (1.9) 

Here, the general minus sign indicates that the component is directed against 

the direction of the radius from the center of the Earth, μ =1.09*10-10 ⋅ is the 

coefficient characterizing the distribution of the Earth's masses and is the semi-major 

axis of the ellipsoid, r is the geocentric radius, ϕ' - geocentric latitude. Transversal 

component, directed in the horizon plane to the equator plane (opposite to the 

reference latitude) 

𝑔𝜑
` = −

𝐾

𝑟2 [
3𝜇

2
(
𝑎

𝑟
)
2

𝑠𝑖𝑛2𝜑`]                                             (1.10) 

The force of gravity is equal to the force of gravity and the centrifugal force 

(the force of inertia of centripetal acceleration due to the rotation of the Earth). Earth 

𝑊⃗⃗⃗ 
цс = 𝑢⃗ ∗ (𝑢⃗ ∗ 𝑅⃗ ). The acceleration of gravity is generally expressed as 

𝑔 = 𝑔 1 − 𝑢⃗ ∗ (𝑢⃗ ∗ 𝑅⃗ )                                                   (1.11) 

The value of centripetal acceleration 𝑊⃗⃗⃗ 
цс = 𝑢2𝑅𝑐𝑜𝑠𝜑 

As the height changes, the acceleration also changes 𝑔(ℎ) =
𝑔𝜑

`

(1+ℎ/𝑅)
 

The increase in the acceleration of gravity can be calculated using the formula 

 ∆𝑔 = −
2𝑔

𝑅
∆ℎ 

The foundation of inertial navigation systems (INS) lies in the method of dead 

reckoning. The essence of this method is that the signals from velocity or 

acceleration sensors, whose sensitivity axes are maintained in a given coordinate 

system, are integrated. The integrals of the velocities correspond to the increments 
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of the path, while the integrals of the accelerations correspond to the increments of 

the velocity.  

By continuously integrating these measurements, the INS can calculate the 

position, velocity, and orientation of the object relative to an initial point. This 

process allows for precise navigation even in the absence of external signals, making 

INS crucial for various applications, including aviation, maritime, and space 

exploration. 

By adding the increments to the initial values of the path or velocity, the 

current values of the traveled path and velocity are obtained. In systems where the 

primary sensors are accelerometers, the accelerometer signal is integrated once to 

obtain the velocity, and this integral (velocity) is integrated a second time to obtain 

the traveled path. Knowing the directions of the path projections on the coordinate 

system axes, the coordinates of the moving object are determined. 

An INS device that implements the method of dead reckoning can be 

illustrated with a generalized diagram, as shown in Fig. 1.3. This schematic 

represents the integration process of acceleration data to compute velocity and then 

position, allowing for precise tracking of the object's movement within the specified 

coordinate system. 

1 - GSP (Gyrostabilized Platform): Maintains the sensitivity axes of the 

accelerometers in a given coordinate system. 2 - A (Accelerometer Unit): Block of 

accelerometers (three-axis accelerometer). 3, 6, 8 - Summators: Devices that sum 

the input signals. 4, 7 - Integrators: Devices that perform the integration of input 

signals. 5 - Gravity Acceleration Vector Calculator: Computes the vector of 

Fig. 1.3 Generalized scheme of the platform ANN 
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gravitational acceleration. 9 - Feedback Loops: Connections that provide feedback 

control. 

The following designations are introduced: 

𝑎 , 𝑔 ′ r r :Vectors of fictitious and gravitational accelerations, respectively. 

𝑊⃗⃗⃗  𝑉⃗ : Vectors of absolute acceleration and absolute velocity, respectively. 

∆𝑉⃗  ∆𝑟 : Increments of absolute velocity and the radius vector of the object's 

position. 

𝑟 : Radius vector of the object's position—initial values of the vectors. 

ψ,ϑ,γ: Angles of object orientation (possibly yaw, pitch, and roll). 

If the system has feedback loops (9) for velocity or coordinates, it is called a 

closed-loop system. If there are no feedback loops, the system is referred to as an 

open-loop system. 

This setup forms the basis of the inertial navigation system (INS) depicted in 

the generalized schematic (Fig. 1.3), where each component works together to 

calculate the current position and velocity of a moving object through integration of 

acceleration data. 

In a Strapdown Inertial Navigation System (SINS), instead of a gyrostabilized 

platform, a block of gyroscopes and accelerometers is used along with a computer. 

The gyroscopes and accelerometers (block of inertial sensitive elements) are rigidly  

 

mounted on the object's frame. In Fig. 1.4, the setup includes the following 

components: 

Fig 1.4 General scheme of Strapdown Inertial Navigation System (SINS) 
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1 - Block of Sensitive Elements: This block provides information about the 

fictitious acceleration vector 𝑎𝑥𝑦𝑧⃗⃗⃗⃗⃗⃗⃗⃗   in the projections on the axes of the object-related 

coordinate system 𝑥𝑦𝑧, as well as the angular velocity vector 𝜃̈xyz  in the projections 

on the same coordinate system axes. 

2 - Computer: This unit converts the projections of acceleration from the 

object-related coordinate system to the navigation coordinate system (for example, 

a geographic tracking system). To achieve this, the computer calculates the direction 

cosines between the axes of the respective coordinate systems based on angular 

velocity data (or other relevant information). Using these direction cosines, it also 

determines the orientation angles of the object: yaw ψ, roll ϑ, and pitch γ. 

By processing the data from the inertial sensors, the computer can transform 

the measurements from the object-bound coordinate system to a more usable 

navigation frame of reference. This transformation is essential for determining the 

object's current position, velocity, and orientation accurately. The direction cosines 

and orientation angles help in aligning the inertial measurements with the global 

coordinate system, thus enabling precise navigation and control. 

Table 2.2  

Types of gyroscopic sensors used 

Types of gyroscopes Angular rate of 

departure  

Initial parameters 

Float DUS Up to 0.01°/ℎ𝑜𝑢𝑟 Angular velocity 

Laser gyroscopes Up to 0.001°/ℎ𝑜𝑢𝑟 Angle. speed, angle 

Fiber-optic gyroscopes Up to 0.01°/ℎ𝑜𝑢𝑟 Angular velocity 

Dynamically adjustable gyroscopes Up to 10°/ℎ𝑜𝑢𝑟 Angular velocity 

Micromechanical gyroscopes Up to 10°/ℎ𝑜𝑢𝑟 Angular velocity 

Solid-state wave gyroscopes Up to 0.01°/ℎ𝑜𝑢𝑟 Angle. speed, angle 

Spherical gyroscopes with electrostatic 

rotor suspension 

Up to 10-5°/ℎ𝑜𝑢𝑟 Guide cosines 

Spherical gyroscopes with magnetic 

rotor suspension 

Up to 10-4 °/ℎ𝑜𝑢𝑟 Guide cosines 
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Spherical gyroscopes with air 

rotor suspension 

Up to 0.01°/ℎ𝑜𝑢𝑟 Guide cosines 

 

 

Advantages of INS 

Comprehensive Measurement of Navigation Parameters: 

INS systems provide measurements of a wide range of navigation parameters, such 

as acceleration, speed, coordinates, object orientation angles (course, roll, pitch), 

angular velocity of the object, and other auxiliary parameters. 

Complete Autonomy: 

INS systems can operate independently of visibility of landmarks, beacons, and 

lights, as well as the position and movement of the object, enabling their use in any 

conditions. 

High Speed of Calculation and Data Output: 

INS systems are capable of rapid data processing and output with a frequency 

exceeding 100 Hz, ensuring high operational efficiency in navigation solutions. 

Immunity to Relative Accelerations: 

INS systems are not affected by relative accelerations, meaning there are no 

oscillations of the gyro-stabilized platform or its analytical counterpart in BINS 

during the action of relative accelerations. This minimizes errors in the output 

navigation data. The error oscillation frequency, which arises from various 

perturbing factors, generally corresponds to the frequency of Schuler pendulum 

oscillations. 

 

Disadvantages of INS 

Need for Initial Conditions: 

To use the dead reckoning method, initial conditions such as the initial position of 

the platform (or object for BINS), initial speed values, and coordinates must be 

inputted. The shape of the Earth and the gravitational field parameters at the object's 

location must also be considered. 
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Requirement for Continuous Operation: 

INS systems require continuous operation. If interrupted, initial conditions must be 

re-entered, which can complicate usage. 

Error Accumulation Over Time: 

Measurement errors in INS systems tend to accumulate over time, necessitating 

periodic corrections to ensure the accuracy of navigation data. 

 

Integrating all these aspects allows INS systems to provide reliable and accurate 

navigation in many challenging conditions, making them an indispensable tool for 

aviation, maritime, and space applications. 
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CHAPTER 2 

INERTIAL NAVIGATION SYSTEM SENSORS FOR AIRCRAFT 

Inertial Navigation Systems (INS) rely on inertial sensors as critical 

measuring devices. These sensors include accelerometers and gyroscopes, each 

playing a distinct yet complementary role in tracking the movement and orientation 

of a moving object, such as an aircraft, spacecraft, or ground vehicle. 

 Gyroscopes are devices designed to measure and maintain the angular 

velocity or rotational speed of an object around a specific axis. They are essential 

components in various applications, from inertial navigation systems and aerospace 

technologies to consumer electronics and robotics. The operating principle of 

gyroscopes is based on gyroscopic stability—a fundamental concept in physics. 

According to this principle, a rotating object strongly resists changes in its 

orientation. In a gyroscope, the central component is a rapidly spinning rotor. 

 The key characteristic of gyroscopic stability is that a spinning rotor tends to 

keep its axis of rotation fixed in space. When an external force or torque attempts to 

change the rotor's orientation, the gyroscope exhibits a unique response known as 

precession. Precession is the phenomenon where the axis of a spinning object 

changes direction in response to an applied force. Importantly, this change in 

orientation occurs perpendicular to both the applied force and the initial axis of 

rotation. In practice, if one tries to tilt or reorient a gyroscope, the spinning rotor 

resists this change, demonstrating precession. The resulting motion causes the 

gyroscope to "tilt" in a direction perpendicular to the applied force, creating a stable 

and predictable response. This gyroscopic stability is utilized in various fields, from 

navigation systems in aircraft and spacecraft to stabilizing devices in consumer 

electronics and industrial equipment. The principle of gyroscopic stability underpins 

the reliable operation of gyroscopes, allowing them to maintain a consistent 

orientation in the presence of external forces. This stability characteristic makes 

gyroscopes invaluable for applications where precise and stable rotational 

information is necessary for the proper functioning of devices and systems. 
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Types of Gyroscopes: 

Mechanical Gyroscopes: Traditional devices that use a spinning mass to 

measure angular velocity. They leverage the principles of gyroscopic stability, with 

the spinning mass providing resistance to changes in orientation. Widely used in 

navigation systems and aviation, mechanical gyroscopes are crucial for maintaining 

stability and determining orientation. 

Ring Laser Gyroscopes: Operate based on the interference of laser beams 

circulating in a closed loop. Changes in angular velocity are detected by measuring 

variations in the interference pattern of the laser beams. Highly accurate and popular 

for their reliability in providing precise angular velocity information, ring laser 

gyroscopes are extensively used in aerospace and inertial navigation systems. 

Fiber-Optic Gyroscopes: Use the interference of light beams passing through 

coiled optical fibers to measure angular velocity. Rotational changes cause 

variations in the interference pattern, allowing for precise measurements. Fiber-optic 

gyroscopes are known for their accuracy and are widely applied in navigation and 

other precision-based applications. 

By integrating these advanced gyroscopes and accelerometers, Inertial Navigation 

Systems (INS) offer autonomous, high-speed data processing and accurate tracking 

of navigation parameters, ensuring reliable navigation even in challenging 

environments. 

Fiber-optic gyroscopes find applications in navigation systems, robotics, and 

the aerospace industry, where their precision, reliability, and compactness make 

them well-suited for various challenging conditions. These diverse types of 

gyroscopes cater to different needs across various industries, each with unique 

advantages in terms of accuracy, size, and application. The choice of gyroscope type 

depends on the specific requirements of the application, ranging from traditional 

mechanical gyroscopes in aviation to modern ring laser gyroscopes and fiber-optic 

gyroscopes in advanced aerospace and navigation technologies. 
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Classification of Gyroscopes by Number of Axes 

Gyroscopes are designed to measure angular velocity, and the number of axes 

around which they can perform these measurements determines their classification. 

Gyroscopes can be classified based on the number of axes they measure: 

Single-Axis Gyroscopes: Measure rotation around a single axis. Used in specific 

applications where movement is mainly restricted to one plane. 

Dual-Axis Gyroscopes: Capable of measuring rotation around two axes. Applied in 

scenarios where rotational movement occurs in two perpendicular axes, providing 

additional information about orientation changes. 

Three-Axis Gyroscopes: Measure rotation around three axes, often referred to as 

three-axis gyroscopes. Widely used in various industries, including aerospace, 

automotive, robotics, and consumer electronics. Provide comprehensive information 

about orientation changes in three-dimensional space. 

Classification by the number of axes highlights the ability of gyroscopes to 

capture rotational movement from different perspectives. The use of three-axis 

gyroscopes is becoming increasingly common due to their ability to provide a 

complete picture of an object's movement in three-dimensional space. This 

versatility makes three-axis gyroscopes suitable for a wide range of applications, 

from inertial navigation systems and aerospace technologies to consumer electronics 

and robotics, where precise measurement of orientation changes is crucial. 

Gyroscopes play a crucial role in inertial navigation systems (INS), providing 

essential information about orientation changes. They work in conjunction with 

accelerometers to accurately determine an object's position over time, ensuring 

precise navigation. 

Gyroscopes are extensively used in the aerospace and aviation industries. They are 

employed in aircraft and spacecraft for stability control, navigation, and position 

determination. Gyroscopic data help maintain proper orientation and stability during 

flight. 
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Gyroscopes in Consumer Electronics and Robotics 

Gyroscopes are integral components of consumer electronic devices such as 

smartphones and gaming controllers. They enable various functions, including 

automatic screen rotation, gesture recognition, and motion sensing, enhancing user 

experience and interaction with the device. 

In robotics, gyroscopes contribute significantly to stability and control. They 

assist in tasks such as balancing robots to prevent tipping over and ensuring precise 

movement. Gyroscopic data is crucial for maintaining the required orientation 

during the robot's operation. 

Gyroscopes play a vital role in stabilization systems used in cameras, drones, 

and other equipment. They are employed to compensate for unwanted rotations or 

vibrations, ensuring that captured images or videos remain stable and blur-free. 

These diverse applications demonstrate the versatility and importance of 

gyroscopes in various industries. From improving navigation accuracy in aerospace 

to enhancing user experience in consumer electronics and ensuring stability in 

robotics and stabilization systems, gyroscopes contribute to the functionality and 

performance of a wide range of technological devices and systems. 

MEMS Gyroscopes 

Microelectromechanical systems (MEMS) gyroscopes are compact, 

miniaturized versions of traditional gyroscopes. They utilize microfabrication 

technology to integrate mechanical and electrical components on a single chip. 

MEMS gyroscopes typically consist of a microscopic vibrating structure, often a tiny 

resonating beam or rotating mass, which responds to angular motion. Changes in 

angular velocity cause mechanical movement, and this movement is converted into 

an electrical signal for measurement. 

Key advantages of MEMS gyroscopes include their small size, low cost, and 

low power consumption. These characteristics make them particularly suitable for 

integration into portable consumer electronic devices. 
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MEMS gyroscopes have found widespread application across various 

industries, primarily due to the trend towards technology miniaturization. They are 

commonly used in: 

Phones and Tablets: MEMS gyroscopes enable features such as screen rotation, 

gaming, and image stabilization in portable devices. 

Wearable Devices: MEMS gyroscopes are integrated into fitness trackers and 

smartwatches to monitor movement and provide orientation information. 

Cameras and Camcorders: MEMS gyroscopes help stabilize images and videos 

by reducing the impact of hand movements. 

Automotive Systems: These gyroscopes are used in systems such as electronic 

stability control (ESC) to enhance vehicle safety. 

The miniature design of MEMS gyroscopes allows easy integration into small 

electronic devices without compromising performance. This has played a crucial 

role in the development of compact and multifunctional consumer electronics. 

MEMS gyroscopes have been instrumental in revolutionizing consumer 

electronics, enabling innovative features and improving the overall user experience 

in various portable devices. They have made significant contributions to the 

advancement of technology, particularly in enhancing the functionality and user 

interactivity of modern electronic gadgets. 

Accelerometers: Measurement and Applications 

Accelerometers are devices designed to measure proper acceleration, the rate 

of change of velocity, or simply acceleration, along one or multiple axes. These 

sensors are fundamental components in various applications, including inertial 
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navigation systems, consumer electronics, automotive safety systems, and industrial 

equipment.  

Working Principle 

The device housing, as shown in (Figure 2.1), is mounted on a moving object 

and contains an inertial mass m, whose movement is restricted by a spring. When 

the object accelerates with an acceleration W, the inertial mass moves along the 

sensing axis x due to inertia until the inertial force is balanced by the spring's elastic 

force. In addition to the inertial force due to acceleration W, the gravitational force 

with the gravitational acceleration g′ also acts on the inertial mass. To reduce the 

transient response time, dampers are used. 

The output signal (usually electrical) is proportional to the displacement of 

the inertial mass relative to the accelerometer housing along the X axis. 

Equation of Motion 

To derive the equation of motion for the inertial mass within the housing, 

which is attached to the xy coordinate system (connected to the object), we use the 

method of kinetostatics. According to d'Alembert's principle, the sum of active 

forces, inertial forces, and reaction forces equals zero. This can be expressed as: 

𝐹 𝑎 + 𝐹 𝑅 + 𝐹 𝑢 = 0 

Since the inert mass has only one degree of freedom relative to the x axis, let's make 

the equation of equality of force projections on this axis: 

𝐹𝑎𝑥 = 𝑚𝑔𝑥
` − gravitational forces  

𝐹𝑅𝑥 = −𝑐𝑥 − 𝑓𝑥 − ̇ reaction of the connection (spring and damper) 

𝐹𝑢𝑥 = −𝑚(𝑊𝑥 + 𝑥̈) −forces of inertia 

Fig. 2.1 Axial accelerometer 
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In these expressions, m is the mass, c is the linear stiffness of the spring, f is the 

linear damping coefficient, and the relative acceleration of the inert mass (relative 

to the body) Then we get: 

−𝑚(𝑊𝑥 + 𝑥̈) − 𝑐𝑥 − 𝑓𝑥̇ + 𝑚𝑔𝑥
` = 0,                              

𝑚𝑥̈ + 𝑓𝑥̇ + 𝑐𝑥 = −𝑚(𝑊𝑥 − 𝑔𝑥
` ) = −𝑚𝑎𝑥                                               (2.1) 

Here 𝑎𝑥 = 𝑊𝑥 − 𝑔𝑥
`  - is called imaginary acceleration 

In the general case, 𝑎 = 𝑊⃗⃗⃗ − 𝑔 ′. Since this feature must be taken into account during 

the design of the ANN algorithm, the equation is also called the basic equation of 

inertial navigation. Let's give examples of what accelerometer signals can be 

obtained as a result of its different placement. The accelerometer equation can be 

written from (2.1) in the form 

x = −
m

c
ax 

In Fig. 2.2a. the accelerometer moves with acceleration W so that its axis of 

sensitivity is horizontal. In this case 

𝑊𝑥 = 𝑊 𝑔′𝑥 = 0 𝑥 = −
𝑚

𝑐
𝑊 𝑎𝑥 = 𝑊 − 0 

Fig. 2.2 Accelerometer behavior 
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In fig. 2.2b the accelerometer stands on the table so that its axis of sensitivity is 

vertical. There is no movement acceleration. In this case 

𝑊𝑥 = 0 𝑔′𝑥 = −𝑔′𝑥 = −
𝑚

𝑐
𝑔′𝑎𝑥 = 0 − 𝑔′ 

and in fig. 2.2v accelerometer falls freely so that its axis of sensitivity is vertical. In 

this case 

𝑥 = 0 𝑎𝑥 = −𝑔′ + 𝑔′𝑊𝑥 = −𝑔′ 𝑔′
𝑥

= −𝑔′ 

These examples show that in order to determine the magnitude of the object's motion 

acceleration, it is necessary to take into account or exclude the projection of 

gravitational acceleration from the output signal of the accelerometer. 

Types and Constructions of Accelerometers 

There are numerous types of accelerometer designs, each suited for different 

applications and accuracy requirements. In the context of Inertial Navigation 

Systems (INS), pendulum accelerometers of the compensatory type are primarily 

used due to their high precision in measuring accelerations by minimizing the 

influence of gravitational forces on the sensor's readings. This is crucial in 

applications where distinguishing between gravitational acceleration and other 

accelerations is vital. 

Pendulum Compensatory Accelerometers 

Pendulum compensatory accelerometers are designed to provide increased 

measurement accuracy by compensating for gravitational forces. This is particularly 

important for applications where the difference between gravitational acceleration 

and other accelerations is critical. These accelerometers are commonly used in 

inertial navigation systems, where precise measurement of accelerations is essential 

for determining the position and orientation of an object. The pendulum mechanism 

helps improve the accuracy of these measurements. 

The pendulum mechanism in these accelerometers also helps reduce cross-

axis sensitivity. Cross-axis sensitivity is an undesired response of an accelerometer 

to accelerations along axes different from the intended measurement axis. Pendulum 

compensatory accelerometers are used in scenarios where high accuracy and 
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reliability are paramount. These include navigation systems for aircraft, spacecraft, 

and other vehicles, as well as scientific instruments and industrial applications 

requiring precise acceleration measurements. 

It is important to note that specific designs and functionalities can vary among 

different manufacturers and models. The use of a pendulum mechanism in 

accelerometers is an engineering solution to enhance the performance of these 

sensors in applications where gravitational effects need careful consideration and 

compensation. 

Other Types of Accelerometers 

In addition to pendulum compensatory accelerometers, several other types of 

accelerometers are used in various applications: 

Piezoelectric Accelerometers 

Piezoelectric accelerometers use piezoelectric materials, which generate an 

electrical charge in response to mechanical stress. These accelerometers are known 

for their high-frequency response and durability, making them suitable for vibration 

and shock measurements in industrial and automotive applications. 

Piezoresistive Accelerometers 

Piezoresistive accelerometers use piezoresistive materials, which change their 

electrical resistance under mechanical stress. These accelerometers are often used in 

crash testing and airbag deployment systems due to their ability to measure static 

and low-frequency accelerations. 

Capacitive Accelerometers 

Capacitive accelerometers measure changes in capacitance caused by the 

displacement of a proof mass under acceleration. These accelerometers are widely 

used in consumer electronics, automotive applications, and industrial systems due to 

their accuracy, stability, and low power consumption. 

MEMS Accelerometers 

Microelectromechanical systems (MEMS) accelerometers are compact and 

integrate mechanical and electrical components on a single chip using 

microfabrication technology. MEMS accelerometers are characterized by their small 
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size, low cost, and low power consumption, making them ideal for portable 

electronic devices such as smartphones, tablets, and wearable technology. 

Strain Gauge Accelerometers 

Strain gauge accelerometers use strain gauges to measure deformation in 

response to acceleration. These accelerometers are typically used in structural health 

monitoring and aerospace applications, where precise and reliable measurements are 

critical. 

Accelerometers are vital in numerous fields, offering precise data on 

acceleration, velocity changes, and orientation. Their design varies widely to meet 

the needs of different applications, from high-precision navigation systems to 

consumer electronics and industrial equipment. Each type of accelerometer, whether 

it’s pendulum compensatory, piezoelectric, piezoresistive, capacitive, MEMS, or 

strain gauge, provides unique benefits tailored to specific use cases. 

Angular velocity sensors, also known as gyroscopes, are devices designed to 

measure the rotational speed or angular velocity of an object around a specific axis. 

These sensors play a crucial role in various applications by providing information 

about the speed and direction of rotational movement. In the early 19th century, the 

French scientist G.G. de Coriolis discovered that a point moving on a rotating rigid 

body experiences an acceleration, now known as Coriolis acceleration. This 

acceleration is proportional to the velocity of the point and the rotational speed of 

the body:  

аС = 2𝛺 ∗ 𝑣 

There are several types of angular velocity sensors, including mechanical 

gyroscopes, MEMS gyroscopes, fiber-optic gyroscopes, and ring laser gyroscopes. 

Mechanical gyroscopes are traditional gyroscopes with a rotating mass that 

exhibits gyroscopic stability, resisting changes in orientation. When the orientation 

of the rotating mass changes, precession occurs, providing information about 

changes in angular velocity. They are used in various navigation systems, including 

aviation and marine systems, where precise measurement of angular velocity is 

crucial. 
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Microelectromechanical systems (MEMS) gyroscopes are miniature sensors 

that use microscopic structures, often vibrating or oscillating, to detect changes in 

angular velocity. MEMS angular velocity sensors typically consist of a vibrating 

control mass. As shown in Fig. 2.3, the bracket and control mass are excited at their 

resonant frequencies to induce oscillations in the vertical plane. 

 

 

𝑣 = 𝐴𝜔𝑛sin (𝜔𝑛𝑡) 

where A is the amplitude of oscillations, and 𝜔𝑛 is the natural frequency of 

oscillations. 

If the measurement axis of the angular velocity sensor is aligned along the 

longitudinal axis of the non-deflected bracket, then rotation about this axis will result 

in Coriolis acceleration in the horizontal plane. Similar to the accelerometer, the 

Coriolis acceleration of the control mass will cause lateral deflection of the bracket. 

This lateral deflection of the bracket can be registered in several ways: by means of 

capacitive coupling, by means of a piezoelectric charge, or by means of a change in 

the piezoresistance of the bracket. Whatever the conversion method, a voltage is 

created that is proportional to the lateral Coriolis acceleration. With the measuring 

axis perpendicular to the direction of oscillation, the ideal output voltage of the 

angular velocity sensor is proportional to the Coriolis acceleration, and is given by 

the expression 

𝑉 = 𝑘𝑐|𝑎𝐶| = 2𝑘𝑐|𝛺 ∗ 𝑣| 

 

Fig. 2.3 Presentation of the speed angle sensor 
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Since Ω is the angular frequency of rotation around the axis of measurement of the 

gyroscope and v are orthogonal to each other, then 

|𝛺 ∗ 𝑣| = 𝛺|𝑣| 

𝑉гіро = 2𝑘𝐶𝛺|𝐴𝜔𝑛sin (𝜔𝑛𝑇)| = 2𝑘𝐶𝐴𝜔𝑛𝛺 = 𝐾𝑐𝛺 

Where 𝐾𝑐 is a calibration constant, and Ω represents the magnitude and direction 

(sign) of the angular velocity around the measurement axis. The output signal of the 

angular velocity sensor can be modeled as 

𝛾гіро = 𝑘гіро𝛺 + 𝛽гіро + 𝜂′гіро 

where 𝛾гіро corresponds to the measured frequency of rotation in volts, 𝑘гіро is the 

amplification factor that converts the angular velocity in rad/s into volts, Ω is the 

angular velocity in rad/s, 𝛽гіро systematic error, 𝜂′гіроGaussian noise with zero mean. 

An approximate value for the amplification factor 𝑘гіро. must be given in the list of 

technical characteristics of the sensor. To ensure accurate measurements, the value 

of this gain must be determined in the process of experimental calibration. 

Systematic error 𝛽гіро. is highly temperature dependent and must be calibrated 

before each flight. For low-cost MEMS gyroscopes, the systematic error drift can be 

significant, and periodic systematic error zeroing should be monitored during flight. 

This is done assuming straight and level flight (Ω = 0) and resetting the gyro bias so 

that the gyro averages to zero over a period of 100 or so samples. 

For simulation purposes there is an interest in simulating the calibrated gyro 

signals inside the autopilot. Angular velocity sensor signals are converted from 

analog voltages coming from the sensor to a numerical representation of angular 

velocities (in rad/s) inside the autopilot. It is assumed that the gyroscopes are 

calibrated so that 1 rad/s of angular velocity experienced by the sensor results in a 

numerical measurement within the autopilot of 1 rad/s (ie, the physical velocity to 

numerical representation within the autopilot is unity) and that systematic errors 

were estimated and subtracted from the measurements. It is customary to measure 

angular velocities around each of the body axes using three gyroscopes by aligning 

the axes of the gyroscope measurement along each of the 𝑖𝑏 𝑗𝑏  𝑘𝑏axes of the 
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airccraft. These measurements of body angular velocity sensors p, q, and r can be 

modeled as 

𝛾гіро. , 𝑥 = 𝑝 + 𝜂гіро. , 𝑥 

𝛾гіро. , 𝑦 = 𝑝 + 𝜂гіро. , 𝑦 

𝛾гіро. , 𝑧 = 𝑝 + 𝜂гіро. , 𝑧 

where 𝛾гіро. , 𝑥 𝛾гіро., and  𝛾гіро. , 𝑧 are measurements of angular velocity in 

rad./s. The variables 𝜂гіро. , 𝑥, 𝜂гіро. , 𝑦 and  𝜂гіро. , 𝑧 are Gaussian processes with zero 

mean value and variances 𝜎гіро.,𝑥
2 , 𝜎гіро.,𝑦 

2 𝜎гіро.,𝑧
2  respectively. MEMS gyroscopes are 

analog devices that the autopilot samples from. Perhaps the sample rate is set by 𝑇𝑠. 

MEMS angle sensors are widely used in consumer electronics and portable 

devices. Small size, low cost, and low power consumption make MEMS gyroscopes 

suitable for use in smartphones, game controllers, and other electronic devices. 

Fiber-optic gyroscopes use the interference of light rays in coiled optical fibers to 

measure changes in angular velocity. The Sagnac effect, where a rotating 

interferometer changes the phase of light waves, is used in VOG to detect rotational 

motion. Commonly used in navigation systems for aircraft, ships, and other vehicles, 

as well as industrial applications requiring high precision. Ring laser gyroscopes 

detect changes in angular velocity by measuring the interference of laser beams 

circulating in the ring cavity. The rotation of the device affects the phase difference 

of the rays, providing information about the rotational movement. RLGs have high 

accuracy and sensitivity, which makes them suitable for use in navigation systems 

of aircraft, spacecraft and precision measuring instruments. Angular velocity sensors 

are integral components of the INS that help determine the orientation of the object 

and changes in its position. By accurately measuring the rate of rotation around 

various axes, ANNs can calculate the speed and displacement of an object, making 

them important for navigation in environments where external landmarks may be 

limited or unavailable. Gyroscopes are used in aircraft and spacecraft for stability 

control, navigation and position determination. Angular velocity sensors are used in 

aircraft and spacecraft to analyze flight dynamics. They provide real-time spin rate 
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data to assist control systems and ensure stable flight conditions. In robotics, angular 

velocity sensors are used for motion control, helping robots maintain stability and 

precision in movement. They facilitate tasks such as robotic arm control and 

navigation.  

Angular velocity sensors play an important role in understanding the 

dynamics of a moving vehicle. In cars, they contribute to stability control, especially 

in systems such as electronic stability control (ESC). Angular velocity sensors are 

used in precision machinery and manufacturing equipment to monitor and control 

rotational motion. They provide precise and controlled movement in various 

industrial processes. Virtual Reality (VR) and Augmented Reality (AR). Angular 

velocity sensors are used in virtual and augmented reality devices to track the 

movements of the user's head and provide a more immersive experience. In the 

marine industry, angular velocity sensors are used in the navigation systems of ships 

and submarines, helping to maintain course and orientation. Angular velocity 

sensors provide important rotational speed data and are used in a wide range of 

applications where accurate measurement of angular motion is essential. Their use 

extends to various fields, contributing to progress in navigation, control and traffic 

monitoring. Inertial measurement units (IMUs) often integrate both accelerometers 

and angular velocity sensors. By combining data from these sensors, IMUs can 

provide comprehensive information about the movement of an object in three-

dimensional space. MEMS gyroscopes are characterized by their compact size, 

which makes them suitable for integration into small electronic devices such as 

smartphones, wearables and other portable gadgets. Their small form factor allows 

universal placement in limited space. The manufacturing processes involved in the 

manufacture of MEMS gyroscopes allow for cost-effective mass production. This 

availability has led to their widespread use in consumer electronics and other areas 

where cost considerations are critical. MEMS gyroscopes typically consume a small 

amount of power. This feature is beneficial for battery-powered devices as it helps 

extend battery life. This makes MEMS gyroscopes suitable for applications in 

mobile devices, IoT devices, and other battery-powered systems. The miniature 
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design of MEMS gyroscopes allows for light weight, making them ideal for 

applications where weight is a critical factor. In the aerospace, automotive, and 

robotics industries, the lightness of MEMS gyroscopes improves overall system 

efficiency. MEMS gyroscopes are highly sensitive to changes in angular velocity. 

This sensitivity enables accurate measurements of rotational motion, enabling 

accurate motion tracking in a variety of applications including navigation and 

motion sensors. MEMS gyroscopes are often integrated with accelerometers in 

inertial measurement units (IMUs). Such a combination allows more complete 

measurement of the object's movement in three-dimensional space. By 

simultaneously measuring acceleration and angular velocity, IBS provide a more 

complete understanding of the dynamics of movement. MEMS gyroscopes are solid-

state devices, meaning they have no moving parts, such as spinning disks, like 

traditional gyroscopes. Such a solid structure increases their durability, reliability 

and resistance to mechanical wear. MEMS gyroscopes find applications in a wide 

range of industries, including consumer electronics, automotive, aerospace and 

healthcare. Their versatility is due to a combination of small size, low cost and ability 

to provide accurate angular velocity measurements. The advantages of MEMS 

gyroscopes make them a popular choice for motion sensors where accurate angular 

velocity measurements are required and factors such as size, cost, and power 

consumption are critical. Angular velocity sensors are vital tools in research and 

development to study the dynamics of rotational motion in various fields, including 

physics, biomechanics, and engineering. Angular velocity sensors are fundamental 

components in motion reading systems, navigation devices and control systems, 

contributing to the development of technology in various industries. 

A pressure sensor, also known as a pressure sensor or pressure transmitter, is 

a device that measures the force acting on a surface per unit area and converts it into 

an electrical signal. These sensors are widely used in various fields where pressure 

monitoring or control is important. Pressure sensors can work on different principles. 

The strain gauge pressure sensor measures the deformation of the flexible diaphragm 

under pressure. The membrane is usually made of a material that undergoes 
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mechanical deformation under pressure, changing its electrical resistance. When the 

pressure changes, the diaphragm is deformed, causing a change in the resistance of 

the tensor resistor. This change in resistance is converted into an electrical signal 

proportional to the applied pressure. Piezoelectric pressure sensors use the 

piezoelectric effect, where certain materials generate an electrical charge in response 

to a mechanical load or pressure change. When pressure is applied to the 

piezoelectric material, it generates an electrical charge. This charge is then measured 

and converted into an electrical signal, providing a direct correlation with the applied 

pressure. Capacitive pressure sensors measure changes in capacitance between two 

plates in response to a change in pressure. When the pressure changes, the distance 

between the plates changes, which leads to a change in capacity. This change is 

detected and converted into an electrical signal that reflects the applied pressure. 

Resonant frequency pressure sensors monitor the change in the resonant frequency 

of the vibrating element under pressure. The deformation caused by the pressure 

changes the resonant frequency of the vibrating element (for example, a diaphragm 

or a tuning fork). This change is detected and converted into an electrical signal that 

is proportional. applied pressure. These principles enable pressure sensors to convert 

mechanical pressure fluctuations into measurable electrical signals, enabling 

accurate and reliable pressure measurements in a wide range of applications. The 

selection of a specific type of pressure sensor depends on factors such as the required 

pressure range, sensitivity, and environmental conditions for the intended 

application. Pressure sensors find a variety of applications in various industries due 

to their ability to measure and monitor pressure changes. Tire pressure monitoring 

systems (TPMS). Pressure sensors are used to monitor and ensure optimal tire 

pressure, which increases the safety and fuel efficiency of the vehicle. Engine 

Operation: Pressure sensors measure manifold pressure, helping to optimize fuel 

injection to improve engine performance.Fuel System Pressure. Control the pressure 

in the fuel system for efficient fuel combustion and emissions control. Pressure 

sensors play a critical role in monitoring and controlling pressure in industrial 

processes, ensuring quality and production efficiency. Used in hydraulic and 
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pneumatic systems to maintain the exact pressure level for equipment operation. 

Pressure sensors are an integral part of such devices as sphygmomanometers, 

electronic tonometers and blood pressure monitors. Breathing systems: Used in 

ventilators and breathing apparatus to monitor airway pressure and provide 

controlled breathing. Pressure sensors regulate fluid delivery in medical infusion 

pumps. Pressure sensors are used in aircraft to measure altitude, which is critical to 

navigation and flight control systems. Used to measure flight speed, assisting in 

flight monitoring and control. These sensors help weather forecasting models by 

providing data on changes in atmospheric pressure. Fluctuations in barometric 

pressure are indicators of weather conditions. Pressure sensors are used to measure 

altitude and are integrated into meteorological applications to obtain real-time 

atmospheric pressure data. Wearables: Used in smart watches and fitness trackers to 

monitor changes in atmospheric pressure and altitude. It is used in water level 

measurement systems to monitor pressure fluctuations in rivers, lakes and reservoirs. 

Oceanography: Pressure sensors are used in oceanographic instruments to measure 

depth and pressure in the underwater environment. Pressure sensors are used in oil 

and gas wells to monitor reservoir pressure and optimize production processes. 

These diverse applications highlight the importance of pressure sensors for safety, 

efficiency and accuracy in a wide range of industries and process systems. HVAC 

Pressure Monitoring: Pressure sensors help regulate airflow and maintain optimal 

pressure levels in heating, ventilation, and air conditioning (HVAC) systems. 

Accuracy and precision are critical factors when evaluating the performance 

of pressure sensors. Accuracy means the closeness of a measured value to its true or 

reference value. Accuracy is usually expressed as a percentage of the sensor's full 

range. The accuracy and precision of pressure sensors depend on the type of sensor 

and the field of application. High-precision sensors are critical in areas such as 

medical devices and scientific research. Different types of pressure sensors can 

exhibit different accuracy and reliability. For example, technologies such as strain 

gauges, piezoelectric and capacitive sensors have different characteristics that affect 

their performance. In medical applications, accuracy is critical for accurate 
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monitoring of physiological parameters. Blood pressure monitors, infusion pumps, 

and ventilators require highly accurate pressure sensors to provide reliable and stable 

readings that are vital to patient care and treatment. Scientific experiments and 

research often require highly accurate measurements. Pressure sensors used in 

laboratories, environmental monitoring, and research instruments must provide 

accurate and repeatable data to ensure validity and reliability of scientific findings. 

In applications where accuracy is critical, even small inaccuracies can have 

significant consequences. For example, in medical facilities, incorrect pressure 

readings can affect diagnosis and treatment decisions, highlighting the need for high-

precision sensors. High-precision sensors require careful calibration and regular 

maintenance to ensure their performance meets strict standards. Calibration against 

a known reference pressure is necessary to check and adjust the accuracy of the 

sensor. High-precision sensors often incorporate advanced manufacturing processes 

and materials, which can contribute to increased cost. However, the increased 

accuracy and reliability they offer justify their use in mission-critical applications 

where accuracy is paramount. In scientific research and development, the quality of 

the data directly affects the results. High-precision pressure sensors contribute to the 

accuracy of experiments, supporting accurate and reproducible results. 

In conclusion, understanding the specific application requirements is critical 

when selecting pressure sensors. Consideration of accuracy and precision is 

particularly important in areas such as medical devices and scientific research, where 

accurate and reliable pressure measurements are integral to achieving accurate 

results and ensuring human well-being. Some pressure sensors are designed to 

operate in harsh environmental conditions, including extreme temperatures, 

humidity, and exposure to chemicals. This is of great importance in various fields, 

including industry, medicine and research. Some pressure sensors are designed to 

work effectively in extreme temperatures, whether very high or low. This allows 

their use in industrial conditions, where temperature fluctuations can be significant. 

For some pressure sensors, high ambient humidity is not an obstacle. This is 

important in environments where pressure needs to be measured in an area with high 
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humidity, such as industrial plants or medical devices. Some sensors have chemical 

protection, which makes them resistant to interaction with aggressive chemicals. 

This can be important in industrial processes where various chemicals are present or 

in environments where there is a risk of contact with aggressive substances. In 

industries where extreme environmental conditions are the norm, such pressure 

sensors provide reliable and stable measurement. For example, in the field of 

petrochemicals, automobile manufacturing and food production. In medical devices 

where it is important to accurately measure pressure (for example, in cardiology or 

anesthesiology), pressure sensors must be resistant to treatment and sterilization 

conditions. Considering these environmental properties, pressure sensors can 

successfully function in a variety of conditions, which makes them universal and 

important elements in various fields of engineering and technology. 

While examining various sensors such as pressure sensors, coordinate 

systems, gyroscopes and accelerometers, the importance of these devices in modern 

technology and their various applications in various industries are revealed. 

Gyroscopes and accelerometers are key components for measuring rotational and 

linear motions, respectively. They are used in modern stabilization systems, aircraft 

navigation, aerospace applications, smartphones, virtual reality and robotics. 

Gyroscopes and accelerometers are key components for measuring rotational and 

linear motions, respectively. They are used in modern stabilization systems, aircraft 

navigation, aerospace applications, smartphones, virtual reality and robotics. 

Considering the wide range of use of these devices, it can be noted that they not only 

contribute to the solution of specific technical tasks, but are also necessary for 

progress in many areas of life. These devices help to implement new technologies, 

improving the efficiency, accuracy and stability of various systems. Thanks to their 

application, modern technologies become more accessible and safer, opening up 

new opportunities for the development of science and industry. 
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CHAPTER 3 

ALGORITHM OF FUNCTIONING OF INS FOR AIRCRAFTS 

One of the most used orientation parameters used in BINS is the direction 

cosine. The nine cosines of the angles between the six axes of the unique coordinates 

determine their mutual orientation. 

С = ‖

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝜃

−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃 + 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓
‖ 

The method of determining direction cosines through the angles of successive 

turns leads to the need to calculate the products of two or three functions of sines 

and cosines of the angular orientation parameters, which is a rather complicated and 

cumbersome process. It is quite a complicated and cumbersome process. Therefore, 

direction cosines are more often used as independent orientation parameters, since 

they can be calculated analytically if their initial values and angular velocities , 

𝜔 х, 𝜔 𝑦,𝜔 𝑧 with which the OXYZ system rotates relative to axes of the OXYZ 

system. rotates relative to the axes of the OXgYgZg system [3.5]. If the matrix (3.1) 

is known on, then the yaw, pitch, and roll angles are determined through its elements. 

𝜓 = 𝑎𝑟𝑐𝑡𝑔
−𝑐31

𝑐11
 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛𝑐21  

𝛾 = 𝑎𝑟𝑐𝑠𝑖𝑛
−𝑐23

𝑐22
 

where сij are the elements of the matrix C. Let's consider the methods of 

calculating the matrix of direction cosines. It is known from theoretical mechanics 

that the differentiation of the vector r determines the coordinates of a point in some 

coordinate system - OXYZ (coordinates, y, z), which gives a linear velocity 

𝑣 =
𝑑𝑟

𝑑𝑡
𝑟̇ 

With 𝑣𝑥, 𝑣𝑦, 𝑣𝑧projections on the OXYZ axis. 
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If this coordinate system rotates with an angular velocity relative to the 

angular velocity of a stationary coordinate system, that is, the absolute linear velocity 

of a point is determined as follows 

𝑣 =
𝑑𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
+ 𝜔 ∗ 𝑟 

In the right-hand side of the equality, the first term is marked with the sign ~, 

which represents the speed of a point in the OXYZ coordinate system, and the 

second takes into account the rotation factors of this system with respect to the fixed 

coordinate system О in the form 

𝑣𝑥 = 𝑥 + 𝜔𝑦𝑧 − 𝜔𝑧𝑦

𝑣𝑥 = 𝑦 + 𝜔𝑧𝑧 − 𝜔𝑥𝑦
𝑣𝑥 = 𝑧 + 𝜔𝑥𝑧 − 𝜔𝑦𝑦

} 

In the matrix form, the operation of differentiating the vector r by time in the 

coordinate system О is determined by the expression 

𝑣 =
𝑑𝑟

𝑑𝑡
= ‖







‖ 

where  -coordinates of the point in the О coordinate system 

The differentiation of vector r in the rotating coordinate system OXYZ is 

represented as follows 

[𝜔] = ‖

0 𝜔 −𝑧 −𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

𝜔𝑦 𝜔𝑥 0
‖ 

per column matrix 

𝑟 = ‖
𝑥
𝑦
𝑧
‖ 

Therefore, the equation can be rewritten in matrix form 

𝑣 = ‖

𝑣𝑥

𝑣𝑦

𝑣𝑧

‖ = ‖
𝑥̇
𝑦̇
𝑧̇

‖ + ‖

0 𝜔 −𝑧 −𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

𝜔𝑦 𝜔𝑥 0
‖ ∗ ‖

𝑥
𝑦
𝑧
‖ 

The coordinates of a point in the moving and stationary coordinate systems are 

related by a matrix dependence 
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‖
𝑥
𝑦
𝑧
‖ = ‖

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

‖ ‖







‖, 

 

which characterizes the transformation of coordinates, i.e. the transition from 

the coordinates of a point in a fixed coordinate system to the coordinates О  of 

the same moving coordinate system OXYZ. Matrix A with element 

 𝑎𝑖𝑗(𝑖, 𝑗 = 1,2,3) characterizes exactly this transition. 

In the reverse transition of coordinates from points in the OXYZ system to 

coordinates in the О system, the matrix C=AT transposed with respect to A is 

used.  

The corresponding transformation of coordinates is expressed by the form 

dependence. 

𝑟 = 𝐶𝑟′ 

To establish a relationship between the direction cosines and the angular 

velocities 𝜔𝑥, 𝜔𝑦,  𝜔𝑧 with which the moving coordinate system rotates relative to 

the stationary coordinate system, we differentiate with respect to the time of the 

expression 

𝑟̇ = 𝐶𝑟̇′ + 𝐶̇𝑟′ 

Let's multiply both parts by the equality above by the matrix A and taking into 

account that 

𝐴𝐶 = 𝐸 

where E is the unit matrix, rewrite the equation in the form 

𝐴̇ = 𝑟̇′ + 𝐴𝐶̇𝑟′ 

In the equation, the left part of 𝐴𝑟̇ represents the absolutely linear velocity of 

the point v in the moving coordinate system, following from this equation the 

equivalents and then it follows that 

𝐴𝐶̇ = [𝜔] 

Or 

𝐶̇ = −[𝜔]𝐴 
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The equations are well known in the theory of inertial navigation as Poisson's 

matrix differential equation, which relates the derivative of the matrix to the matrix 

itself and the angular velocity vector 𝜔 with which the OXYZ system rotates relative 

to the non-moving О . 

Thus, if we have information about the projection of the absolute angular 

velocity vector on the axis of the moving coordinate system OXYZ in the form of 

𝜔𝑥, 𝜔𝑦,  𝜔𝑧, then the direction cosines can be calculated in relation to the non-

moving coordinate system О  by integrating the matrix Poisson's equation 

‖

𝑐11̇ 𝑐12̇ 𝑐13̇
𝑐21̇ 𝑐22̇ 𝑐23̇

𝑐31̇ 𝑐32̇ 𝑐33̇̇
‖ = ‖

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

‖‖

0 𝜔 −𝑧 −𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

𝜔𝑦 𝜔𝑥 0
‖ 

A matrix equation is equivalent to nine first-order differential equations 

The scalar form of Poisson's equations shows that the population is divided 

into three separately integrated systems of three equations each. 

𝑐̇11 = 𝑐12𝜔𝑧 − 𝑐13𝜔𝑦, 𝑐̇12 = 𝑐13𝜔𝑥 − 𝑐11𝜔𝑧, 𝑐̇13 = 𝑐11𝜔𝑦 − 𝑐12𝜔𝑥  

𝑐̇21 = 𝑐12𝜔𝑧 − 𝑐13𝜔𝑦, 𝑐̇12 = 𝑐23𝜔𝑥 − 𝑐21𝜔𝑧, 𝑐̇23 = 𝑐21𝜔𝑦 − 𝑐22𝜔𝑥   

𝑐̇31 = 𝑐32𝜔𝑧 − 𝑐33𝜔𝑦,  𝑐̇32 = 𝑐13𝜔𝑥 − 𝑐11𝜔𝑧, 𝑐̇13 = 𝑐31𝜔𝑦 − 𝑐32𝜔𝑥  

The scalar form of Poisson's equations shows that the totality is divided into 

three separate integrated parts with three parts of the equation each part. The first 

triad has 𝑐11 𝑐12𝑐13, the second - 𝑐21 𝑐22 𝑐23, the third - 𝑐31 𝑐32 𝑐33. 

It should be noted that the vector 𝜔 = ‖𝜔𝑥 𝜔𝑦 𝜔𝑧‖ and the corresponding 

skew-symmetric matrix [𝜔] in mathematics are called dual objects that are 

connected by Levi-Civita means. 

[𝜔𝑖𝑘] = −𝜀𝑖𝑘𝑙𝜔𝑙 

If we put a skew-symmetric matrix in accordance with the angular velocity 

vector, the given projection into the coordinate system О .  
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A key parameter for the dynamic observation system described in the previous 

section is the observer gain L. The Kalman filter and the extended Kalman filter, 

which will be described in the remainder of this section, are standard methods for 

choosing the gain L. If the process and measurements are linear, and the process 

noise and measurement noise are white Gaussian noise with zero mean and known 

covariance matrices, then the Kalman filter gives the optimal gain, while the 

optimality criterion will be defined later in this chapter. There are several forms of 

the Kalman filter, but for the MBLA, a continuous-pass Kalman filter with discrete 

dimensions is used. We will assume that the (linear) dynamics of the system is 

described by equations. 

𝑥 = 𝐴𝑥 + 𝐵𝑈 + ̇  

𝑦[𝑛] = 𝐶𝑥[𝑛] + 𝜂[𝑛] 

where y[n] = y(tn) is the nth sample of y, x[n] = x(tn) is the nth sample of x, 

and [n] is the measurement noise at the time tn, o is a random Gaussian noise with 

zero mean and covariance matrix Q, and z[n] is a random variable with zero mean 

and covariance matrix R. Random noise o is called process noise and represents 

modeling error and system disturbance. The random variable z is called 

measurement noise and represents sensor noise. The covariance R can be easily 

estimated from the sensor calibration results, but the covariance Q is generally 

unknown and therefore becomes a system parameter that can be tuned to improve 

the performance of the observer. Note that the sampling rate does not need to be 

fixed, the discrete-continuous Kalman filter has the form. 

𝑥̂ = 𝐴𝑥̂ +̇ 𝐵𝑢 

𝑥̂+ = 𝑥̂− + 𝐿(𝑦(𝑡𝑛) − 𝐶𝑥̂−) 

Let's define the estimation error as 𝑥̃ = 𝑥 − 𝑥̂. The covariance of the 

measurement error at time t is given by the expression 

𝑃(𝑡) = 𝐸{𝑥̃(𝑡)𝑥̃(𝑡)𝑇} 

Note that P(t) is a symmetric and positive semidefinite matrix, so its 

eigenvalues are real and nonnegative. In addition, small eigenvalues of P(t) imply a 
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small variance, which implies a low mean estimation error. Therefore, it is necessary 

to choose such L(t) to minimize the eigenvalues of P(t). Let's remember that 

𝑡𝑟(𝑃) = ∑𝜆𝑖

𝑛

𝑖=1

 

where tr(P) is the trace of P, and li are the eigenvalues of P. Thus, the 

minimization of tr(P) leads to the minimization of the covariance of the estimation 

errors. The Kalman filter is obtained by finding such L that would minimize tr(P) 

In the space between the dimensions Differentiating 𝑥̃, we get 

𝑥̃̇ = 𝑥̇ − 𝑥̂ = 𝐴𝑥 + 𝐵𝑢 +  − 𝐴𝑥̂ − 𝐵𝑢 = 𝐴𝑥̃ +  

Solving the differential equation with the initial conditions 𝑥̃0, we get 

𝑥̃(𝑡) = 𝑒𝐴𝑡𝑥̃0 + ∫𝑒𝐴(𝑡−𝜏)

𝑟

0

(𝜏)𝑑𝜏 

One can calculate the evolution of the error covariance P as 

𝑃̇ =
𝑑

𝑑𝑡
{𝑥̃𝑥̃𝑇} = 𝐸{𝑥̇𝑥̃𝑇 + 𝑥̃𝑥̇̃𝑇} = 𝐸{𝐴𝑥̃𝑥̃𝑇 + 𝑥̃𝑇 + 𝑥̃𝑥̃𝐴𝑇 + 𝑥̃𝑇} = 𝐴𝑃 + 𝑃𝐴𝑇 +

𝐸{𝑥̃𝑇} + 𝐸{𝑥̃𝑇}  

It is also possible to calculate 𝐸{𝑥̃𝑇}  as 

𝐸{𝑥̃𝑇} = 𝐸𝑒𝐴(𝑡)𝑥̃0
𝑇(𝑇)} + ∫𝑒𝐴(𝑡−𝜏)

𝑡

0

(𝜏)𝑇(𝜏)𝑑𝜏

= ∫𝑒𝐴(𝑡−𝜏)𝑄𝛿(𝑡 − 𝜏)𝑑𝜏 =
1

2
𝑄

𝑡

0

 

where 1/2 is due to using half the area inside the delta function. And since Q 

is symmetric, then P evolves in the space between dimensions as 

𝑃 ̇ = 𝐴𝑃 + 𝑃𝐴𝑇 + 𝑄 

During the measurement we have 

𝑥̃+ = 𝑥 − 𝑥̂+ = 𝑥 − 𝑥̃−𝐿(𝐶𝑥 + 𝜂 − 𝐶х̂−) = х̂− − 𝐿𝐶𝑥̃ − 𝐿𝑛 
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Since 𝜂 𝑎𝑛𝑑 х̂−- are independent, then 

𝐸{𝑥̃−𝜂𝑇𝜂𝐿} = 𝐸{𝐿𝜂𝑥̃} = 0 

The following relations between matrices will be needed in the further 

derivation 

𝜕

𝜕𝐴
𝑡𝑟(𝐵𝐴𝐷) = 𝐵𝑇𝐷𝑇 

𝜕

𝜕𝐴
𝑡𝑟(𝐴𝐵𝐴) = 2𝐴𝐵 𝐼𝑓 𝐵 = 𝐵𝑇 

Our goal is to choose such L that would minimize tr(P+). A necessary 

condition for this has the form 

𝜕

𝜕𝐴
𝑡𝑟(𝑃+) = −𝑃− − 𝐶𝑇 − 𝑃− − 𝐶𝑇 + 2𝐿𝐶𝑃−𝐶𝑇 + 2𝐿𝑅 = 0 

2𝐿(𝑅 + 𝐶𝑃−𝐶𝑇) = 2𝑃−𝐶𝑇 

𝐿 = 𝑃−𝐶𝑇(𝑅 + 𝐶𝑃−)−1 

Substitute this into the equation and we have 

𝑃+ = 𝑃− + 𝑃−𝐶𝑇(𝑅 + 𝐶𝑃−𝐶𝑇)−1𝐶𝑃− − 𝑃−𝐶𝑇(𝑅 + 𝐶𝑃−𝐶𝑇)−1𝐶𝑃− +

𝑃−𝐶𝑇(𝑅 + 𝐶𝑃−𝐶𝑇)−1(𝐶𝑃−𝐶𝑇 + 𝑅)(𝑅 + 𝐶𝑃−𝐶𝑇)−1𝐶𝑃− = 𝑃− − 𝑃−(𝑅 +

𝐶𝑃−𝐶𝑇) = (𝐼 − 𝑃−𝐶𝑇(𝑅 + 𝐶𝑃−𝐶𝑇)−1𝐶)𝑃− = (𝐼 − 𝐿𝐶)𝑃−  

Now we can briefly describe the Kalman filter as follows. In the space 

between the dimensions, the equations are propagated. 

х̇̂ = А𝑥̂ + 𝐵𝑢 

𝑃̇ = 𝐴𝑃 + 𝑃𝐴𝑇 + 𝑄 
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where 𝑥̂ is the state estimate, and P is the symmetric covariance matrix of the 

estimation errors. When a measurement is received from the ith sensor, the state 

estimate and error covariance are updated according to Eqs 

𝐿𝑖 = 𝑃−𝐶𝑇
𝑖(𝑅𝑖 + 𝐶𝑖𝑃

−𝐶𝑇 )−1 

𝑃+ = (𝐼 − 𝐿𝑖𝐶𝑖)𝑃
− 

𝑥̂+ = 𝑥̂− + 𝐿𝑖(𝑦𝑖(𝑡𝑛) − 𝐶𝑖𝑥̂
−) 

where Li is called the Kalman amplification factor of the i-th sensor. Assume 

that the system propagation model and the measurement model are linear. However, 

for many applications, which will be described later in this section, the system 

propagation model and the measurement model are nonlinear. In other words, the 

model presented in (8.19) takes the for 

𝑥̇ = 𝑓(𝑥, 𝑢) + 𝑜 

𝑦[𝑛] = ℎ(𝑥[𝑛], 𝑦[𝑛]) + 3[𝑛] 

Quaternions are mathematical entities that extend the concept of complex 

numbers. In the context of spatial rotation, quaternions offer an efficient and concise 

representation of rotation in three-dimensional space. Unlike other representations 

such as Euler angles, quaternions avoid problems such as gimbal locking and 

provide an easy way to interpolate between different rotations. In the context of 

spatial rotations, quaternions have advantages over other representations such as 

Euler angles because they avoid problems such as gimbal locking and provide a 

compact way to interpolate between different orientations. 
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The general form of the quaternion is: 

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 

where a, b, c, d are real numbers and i,j,k are units of quaternions. In the 

context of quaternion rotations, unitary quaternions are often used for simplicity and 

efficiency. The unit quaternion representing the rotation has the form: 

𝑞 = cos (
𝜃

2
) + sin (

𝜃

2
)(𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) 

the angle of rotation 𝜃, and x,y,z are the components of the axis of rotation. 

Unit quaternions: Unit quaternions are often used to ensure numerical stability 

and avoid problems associated with quaternion multiplication. Unit quaternions 

have magnitude 1 and are suitable for representing rotation. Multiplication of 

quaternions is defined as the multiplication of individual components by units of 

quaternions i,j,k. The product of two quaternions 

𝑝0 + 𝑝1𝑖 + 𝑝2𝑗 + 𝑝3𝑘 і 𝑞 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 

is given by: 

𝑝𝑞 = (𝑝0𝑞0 − 𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3) + (𝑝0𝑞1 + 𝑝1𝑞0 + 𝑝2𝑞3 − 𝑝3𝑞2)𝑖 + (𝑝0𝑞2 −

𝑝1𝑞3 + 𝑝2𝑞0 + 𝑝3𝑞1)𝑗 + (𝑝0𝑞3 − 𝑝1𝑞2 + 𝑝2𝑞1 + 𝑝3𝑞0)𝑘  

The rotation of the vector (x,y,z) by the quaternion q can be expressed as: 

𝑣′ = 𝑞𝑣𝑞−1 

where v is the quaternion representation of a vector, and 𝑞−1  is the inverse of q 

Quaternions provide a natural way to interpolate between two rotations. 

Spherical linear interpolation (slerp) smoothly transitions from one rotation to 

another, avoiding the singularities associated with other rotation representations. 

Given two unit quaternions 𝑞0 𝑎𝑛𝑑  representing the initial and final orientations, as 

well as the parameter t in the range [0.1], the SLERP formula is expressed as: 

( 𝑞0, 𝑞1, 𝑡) =
sin ((1 − 𝑡)𝜃)

sin (𝜃)
 𝑞0 +

sin (𝑡𝜃)

sin (𝜃)
 𝑞1 

where 𝜃 is the angle between two quaternions. 
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The angle 𝜃 between two quaternions 𝑞0 𝑎𝑛𝑑 𝑞1  can be determined using the 

dot product: 

cos(𝜃) = 𝑞0 ∗  𝑞1  

SLERP provides a smooth and seamless transition from initial to final 

rotation, providing visually appealing results. Unlike some other interpolation 

methods, SLERP avoids gimbal lock, a situation where certain rotations become 

ambiguous. 

The interpolation procedure  𝑞0 ∗ 𝑞1  uses SLERP. Calculate the dot product 

to find cos(θ). Determine the angle 𝜃  using the inverse cosine function. Apply the 

SLERP formula for different values of t to obtain the intermediate quaternions 

representing the interpolated rotations. SLERP is commonly used in animation, 

computer graphics, and robotics to smoothly transition between different 

orientations. It is especially valuable in scenarios where smooth and visually 

pleasing rotations are required. The concept of quaternion interpolation extends not 

only to two quaternions. Squad (Spherical Quadrangle) interpolation is an extension 

of SLERP that allows interpolation along a more complex trajectory using a 

sequence of quaternions. Quaternions have several advantages. They provide a 

compact representation of 3D rotations using only four parameters (real and 

imaginary components), compared to other representations such as Euler angles, 

which may require three angles. Such compactness simplifies the storage, 

calculation and transfer of rotation information. Locking of the cardan joint is a 

phenomenon when the axes of rotation are aligned, which leads to the loss of one 

degree of freedom and, as a result, to ambiguous rotations. Quaternions inherently 

avoid gimbal locking, making them preferred for applications where continuous and 

unlimited rotation is essential. Quaternions facilitate efficient interpolation between 

two rotations, especially with methods such as spherical linear interpolation 

(SLERP). Interpolation is critical in animation, modeling, and robotics to achieve 

smooth and visually pleasing transitions between orientations. Unit quaternions 

(quaternions with magnitude 1) are often used to represent rotation. Their 

normalization ensures numerical stability during calculations, reducing the 
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probability of numerical errors and providing reliable results. Unlike Euler's angles, 

quaternions do not suffer from the problem of repeated calculations when rotating 

objects multiple times. Each rotation of the quaternion is independent of previous 

rotations, which simplifies the application of successive rotations. Quaternions are 

widely used in various fields, including computer graphics, robotics, aerospace, and 

modeling. Their versatility makes them suitable for a wide range of applications 

where efficient and accurate rotation representation is critical. In computer graphics, 

quaternions simplify tasks such as camera orientation, object manipulation, and 

animation. They easily interact with graphics engines, providing an efficient way to 

handle rotations in three-dimensional space. Quaternions, especially with techniques 

such as SLERP, facilitate smooth animation transitions between different 

orientations. This is very important in applications where visually appealing and 

smooth rotations are required. Thus, quaternions offer a robust and versatile solution 

for rotation representations, solving common problems associated with other 

rotation representations. Their compactness, avoidance of gimbal blocking, and 

interpolation efficiency make quaternions well suited for a wide range of 

applications. 
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The proposed algorithm of BINS functioning was implemented in the 

MATLAB computing system. The movement of the UAV modeled using this 

program is presented in Fig. 3.1 - 3.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Course of the given trajectory and estimated course (radians) 

Fig. 3.2 Movement along a given trajectory with minor obstacles without 

correction (meters) 
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Fig. 3.3 Navigation parameters 

Fig. 3.4 Trajectory in the presence of obstacles with correction (meters) 
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