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ABSTRACT

Explanatory note for the qualification work " Language command system in on-board
control systems™ 75 pages, 8 figures, 12 tables, 44 sources.

Keywords: VOICE COMMAND SYSTEM, ONBOARD CONTROL SYSTEMS,
SPEECH RECOGNITION, AVIATION COMMUNICATIONS, INTELLIGENT
SYSTEMS.

Object of study: the voice command system in onboard control systems.

Subject of study: the structure and algorithms of the voice command system.

Purpose of the qualification work: to develop a voice command system for onboard
control systems and to implement the latest principles for building such systems using
modern speech recognition methods.

Method of research: comparative analysis, processing of literary sources, digital
modeling, and testing.

Theoretical research: development of the structure and algorithms of the voice
command system for onboard control systems. The use of modern speech recognition
methods is proposed to ensure high accuracy and speed of command execution. An approach
to integrating voice commands into the overall aircraft control system is implemented.

Research results: the voice command system significantly improves the efficiency
and convenience of managing onboard systems, reducing the pilot's workload. The proposed
system ensures reliable command recognition even in challenging aviation environments.

The speech recognition system proposed in the work uses modern machine learning
algorithms to adapt to the individual voice characteristics of the pilot, achieving high
accuracy and reliability in control.

Recommendations: the results of the qualification work are recommended for use in
the development of new and modernization of existing onboard control systems of aircraft,

as well as in the training of pilots and specialists in aviation systems automation.



PEDEPAT

[TosicHroBanbHa 3amucka A0 KBamidikamiidHoi podotn "MoBHAa KoMaHAHA
cucTeMa B OOpPTOBHMX CUCTeMaX KepyBaHHS" 75 CTOPIHOK, 8 pUCYHKIB, 12 TabnuIh, 44
JoKepena.

Kirouosi ciosa: MOBHA KOMAH/ITHA CUCTEMA, BOPTOBI CUCTEMU
KEPYBAHHS, PO3IMIBHABAHHSA MOBH, ABIAIIMHUM 3B’S30K,
IHTEJIEKTYAJIbHI CUCTEMMU.

OO0'eKT MOCHIJKEHHS: MOBHAa KOMaHJHA CHUCTEMa B OOpPTOBUX CHCTEMax
KEepyBaHHS.

[IpeameT nOCHAIIKEHHS: CTPYKTYpa Ta aArOPUTMU MOBHOT KOMAH/IHO1 CHCTEMH.

Merta kBamidikaiiitHoi pobOTH: PO3pOOUTH MOBHY KOMAaHIHY CHCTEMY JIJIs
OOpPTOBUX CHUCTEM KEPYyBaHHS Ta BIPOBAIUTH HOBITHI NMPUHIIUIHN MOOYTOBU TaKUX
CHUCTEM 13 BUKOPUCTAHHSAM CYYaCHUX METO/IIB PO3MI3HABAHHS MOBJICHHSI.

MeTtonu AOCHIIKEHHS: MOPIBHAJIBHUN aHali3, ONPALIOBAHHS JITEPATYPHHUX
JpKepelt, UppoBe MOJICTIOBAHHS Ta TECTyBaHHS.

TeopeTnuHe IOCHIPKEHHS: pPO3poOKa CTPYKTypU Ta airOpUTMIB MOBHOI
KOMaHAHOI CHUCTEMHU Jii OOpTOBUX CHCTEM KEpyBaHHS. 3alpOlnOHOBAaHO
BUKOPUCTAHHA CYYaCHUX METOIB PO3MI3HABaHHS MOBJEHHS i 3a0e3MeyeHHs
BHCOKOi TOYHOCTI Ta INBHUJKOCTI BUKOHAaHHS KoMmaHj. PeamizoBaHo miaXix [0
1HTerpallii roJIOCOBUX KOMaH/I B 3aTaJIbHy CUCTEMY KEPYBaHHSI JIITAKOM.

Pe3ynpTaT [OOCHIIKEHHS: MOBHAa KOMaHJIHa CHCTEMa 3HAyHO MOKpallye
e(eKTUBHICTh Ta 3PYYHICTb YOPABIIHHSI OOPTOBUMH CHUCTEMaMH, 3MEHIIYIOYH
HAaBaHTa)XCHHSd Ha MUIOTa. 3alpoloHOBaHa cHcTeMa 3abe3nedye HaJilHe
pO3Mi3HaBaHHA KOMAaHJ HaBITh Yy CKJIAQAHMX aBlalidHUX ymoBax. Cucrema
pO3Mi3HaBaHHS MOBJICHHS, 3alpONOHOBaHa B POOOTI, BUKOPUCTOBYE CYy4YacHI
QITOPUTMH MAITMHHOTO HABYaHHS IS aanTailii J0 1HAWBIAYadbHUX TOJIOCOBHUX
XapaKTEPUCTHK TI0TA, TOCATAI0OYN BUCOKOI TOYHOCTI Ta HAMIMHOCTI B KEPYBaHHI.

Pekomenpanii: pe3yiapTaTé KBali(ikaliifHOI poOOTH PEKOMEHIYIOThCA IS
BUKOPUCTAaHHA MPHU pO3poOIll HOBUX Ta MOJEPHI3alli iICHYI0OUMX OOpPTOBHX CHUCTEM
KepyBaHHS JITaKiB, a TAKOXK Yy HaBYaHHI MUJIOTIB Ta CIHEIIATICTIB 3 aBTOMAaTH3aIlil

aBlaliilHAUX CUCTEM.
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Introduction

1. Definition of the topic's relevance

The integration of language command systems within on-board control systems
stands at the forefront of aviation innovation, representing a pivotal leap forward in aircraft
technology. In an era characterized by ever-increasing automation and complexity in
aviation operations, the implementation of advanced language interfaces holds immense
promise for revolutionizing the way aircraft are controlled and managed. This introduction
sets the stage for a comprehensive exploration of the multifaceted landscape surrounding
language command systems, delving into their historical evolution, technological
underpinnings, practical applications, and potential implications for the future of aviation.

The journey towards integrating language command systems into aircraft control
spans decades, marked by significant milestones and breakthroughs in speech recognition,
natural language processing, and human-machine interaction. Understanding the historical
context provides crucial insights into the evolution of these systems, tracing their
development from rudimentary prototypes to sophisticated, real-world applications in
modern aviation.

At the heart of language command systems lie a myriad of cutting-edge technologies,
including advanced speech recognition algorithms, machine learning models, and natural
language understanding frameworks. This work delves into the intricate technical aspects
behind the functioning of these systems, unraveling the complexities of speech processing,
pattern recognition, and semantic analysis that enable seamless interaction between pilots
and aircraft systems.

Beyond theoretical frameworks and technological prowess, the true value of language
command systems lies in their practical applications within the aviation domain. From
cockpit voice commands and flight management to aircraft diagnostics and maintenance
procedures, these systems have the potential to revolutionize every aspect of aircraft
operations. This work explores the diverse array of applications for language interfaces in
aviation, showcasing their versatility, efficiency, and real-world impact.

As we stand on the precipice of a new era in aviation, characterized by unprecedented

technological innovation and paradigm shifts in human-machine interaction, the
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implications of language command systems extend far beyond the confines of the
present. This work delves into the broader implications and future prospects of these
systems, pondering their potential to reshape the aviation landscape, enhance safety
and efficiency, and redefine the boundaries of human-machine collaboration.

Through a comprehensive examination of these dimensions, this dissertation
endeavors to provide a holistic understanding of language command systems in on-
board control, shedding light on their historical evolution, technological intricacies,
practical applications, and transformative potential. By navigating this intricate
tapestry of concepts and insights, we embark on a journey towards unlocking the full
potential of language interfaces in shaping the future of aviation.

2. Aim and objectives of the research

The aim of this research is to conduct a comprehensive investigation into the
integration of language command systems within on-board control systems in the
aviation industry. This encompasses a multifaceted exploration of the technological,
operational, and human factors aspects associated with the development and
implementation of language interfaces in aircraft control.

To achieve this aim, the following objectives have been outlined:

To review the historical evolution of language command systems in on-board
control, tracing the development trajectory from early conceptualizations to
contemporary applications.

To analyze the technological foundations underlying language command
systems, including speech recognition algorithms, natural language processing
techniques, and human-machine interaction paradigms.

To assess the practical applications of language command systems in aviation
operations, encompassing cockpit voice commands, flight management
functionalities, aircraft diagnostics, and maintenance procedures.

To evaluate the effectiveness and efficiency of language command systems in

enhancing safety, productivity, and user experience within the aviation environment.
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To explore the implications of language command systems for future developments
In aviation technology, human factors considerations, and regulatory frameworks.

To provide recommendations for the design, implementation, and integration of
language command systems into existing and future on-board control architectures,
addressing technical challenges, operational requirements, and user needs.

By delineating these objectives, this research endeavors to offer a structured and
comprehensive analysis of language command systems in on-board control, aiming to
contribute valuable insights to the field of aviation technology and human factors
engineering. Through rigorous investigation and critical inquiry, we aspire to illuminate the
path towards harnessing the transformative potential of language interfaces for the

advancement of aviation safety, efficiency, and innovation.

3. Object and subject of the research

The object of this research is the integration of language command systems within
on-board control systems, specifically within the context of the aviation industry. This
encompasses the technological infrastructure, operational procedures, and human-machine
interaction dynamics involved in the implementation and utilization of language interfaces
in aircraft control environments.

The subject of the research encompasses a comprehensive examination of language
command systems, spanning their historical evolution, technological underpinnings,
practical applications, and implications for the future of aviation. This includes but is not
limited to:

Speech recognition algorithms and technologies utilized in language command
systems.

Natural language processing techniques employed to interpret and respond to human
commands.

Human factors considerations related to the design, usability, and acceptance of

language interfaces in cockpit environments.
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Operational integration of language command systems within existing aircraft
control architectures, including flight management systems, avionics interfaces, and
maintenance procedures.

Safety, efficiency, and user experience implications associated with the
adoption of language interfaces in aviation operations.

Regulatory frameworks, standards, and guidelines governing the design,
certification, and implementation of language command systems in aircraft.

By delving into the intricacies of these elements, this research seeks to provide
a comprehensive understanding of language command systems within on-board
control, shedding light on their potential benefits, challenges, and implications for the
aviation industry. Through empirical analysis and critical inquiry, we aim to
contribute valuable insights to the advancement of aviation technology and human
factors engineering, paving the way for the safe, efficient, and user-friendly

integration of language interfaces in aircraft control environments.

4. Research methods

This research employs a multifaceted approach encompassing qualitative and
quantitative research methods to achieve its objectives effectively. The chosen
methods are tailored to provide a comprehensive analysis of language command
systems within on-board control systems, ensuring robustness and validity in the
research findings.

Qualitative research methods, including literature review, case studies, and
expert interviews, will be utilized to gain in-depth insights into the historical
evolution, technological foundations, and practical applications of language
command systems. A thorough examination of academic literature, industry reports,
and relevant documentation will facilitate a comprehensive understanding of the
subject matter, while case studies and expert interviews will offer valuable
perspectives from practitioners and domain experts.

Quantitative research methods, such as surveys and empirical data analysis,

will be employed to assess the effectiveness, efficiency, and user experience
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implications of language command systems in aviation operations. Surveys will be
conducted to gather feedback from pilots, aviation professionals, and other
stakeholders regarding their experiences and perceptions of language interfaces in on-board
control. Empirical data analysis will involve the collection and analysis of relevant
operational data to evaluate the impact of language command systems on safety,
productivity, and operational efficiency.

Furthermore, a comparative analysis approach will be adopted to assess the
advantages and disadvantages of different approaches to implementing language interfaces
in aircraft control. This will involve the systematic comparison of various systems,
technologies, and operational practices to identify best practices, challenges, and areas for
improvement.

Overall, the combination of qualitative and quantitative research methods will provide
a comprehensive and rigorous examination of language command systems within on-board
control systems, yielding valuable insights into their design, implementation, and impact on
aviation operations. Through a methodologically sound approach, this research aims to
contribute to the advancement of knowledge in the field of aviation technology and human

factors engineering.
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Chapter 1
Literature Review

1.1. Historical Evolution of Language Command Systems in On-board
Control

The inception of language command systems in on-board control dates back to
the early stages of aviation history, marked by rudimentary attempts to integrate
verbal instructions into aircraft operations. Over the decades, the evolution of these
systems has been shaped by significant technological advancements, pioneering
research, and practical applications in various domains. From the initial experiments
with voice recognition in aircraft cockpits to the sophisticated language interfaces
integrated into modern flight management systems, the journey of language command
systems reflects a continuous quest for innovation and optimization in human-
machine interaction.

The historical trajectory of language command systems encompasses key
milestones, including the development of early voice recognition prototypes, the
emergence of natural language processing techniques, and the integration of speech-
based interfaces into critical aviation systems. Pioneering research efforts in the mid-
20th century laid the foundation for subsequent advancements, paving the way for the
adoption of voice-controlled navigation, communication, and control functionalities
in commercial and military aircraft.

Throughout this evolutionary process, language command systems have
undergone iterative refinement, driven by advancements in computing power, signal
processing algorithms, and artificial intelligence. From rule-based systems relying on
predefined commands to machine learning models capable of understanding and
interpreting natural language inputs, the sophistication of language interfaces has
grown exponentially, enabling more intuitive and user-friendly interactions between
pilots and aircraft systems.

Furthermore, the historical evolution of language command systems has been
shaped by a myriad of external factors, including regulatory frameworks, industry

standards, and technological trends. The gradual shift towards digitalization,
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automation, and connectivity in aviation has accelerated the adoption of language interfaces,
driving innovation and transformation across the industry.

In summary, the historical evolution of language command systems in on-board
control represents a fascinating journey of technological innovation, scientific discovery,
and practical implementation. By tracing this evolutionary path, we gain valuable insights
into the origins, development, and future prospects of language interfaces in aviation, laying
the groundwork for a comprehensive understanding of their role in modern aircraft

operations.

1.2. Modern Approaches to Implementing Language Systems in Control

In the contemporary landscape of aviation technology, the implementation of
language systems in on-board control has evolved to encompass a diverse array of
approaches, methodologies, and technological paradigms. This section provides a
comprehensive overview of the modern approaches and strategies employed in the design,
development, and deployment of language command systems, shedding light on the latest
trends, innovations, and best practices in the field.

At the forefront of modern approaches is the integration of advanced speech
recognition algorithms, leveraging deep learning techniques, neural networks, and
probabilistic models to achieve unprecedented levels of accuracy and robustness in
recognizing spoken commands. These state-of-the-art algorithms enable real-time
processing of natural language inputs, allowing for seamless interaction between pilots and
aircraft systems without the need for cumbersome manual inputs or complex command
structures.

Parallel to advancements in speech recognition, natural language processing (NLP)
technologies have emerged as a cornerstone of modern language systems, facilitating the
understanding, interpretation, and contextual analysis of human language inputs. Through
the application of machine learning algorithms, semantic parsing techniques, and
ontological frameworks, NLP enables language interfaces to decipher the intent behind
spoken commands, infer user preferences, and adaptively respond to changing contexts and

environments.
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Moreover, modern approaches to implementing language systems in on-board
control extend beyond technical considerations to encompass human factors
engineering, user experience design, and ergonomic considerations. Human-centered
design principles, usability testing methodologies, and cognitive psychology insights
are integrated into the development process to ensure that language interfaces are
intuitive, user-friendly, and conducive to safe and efficient operation in high-stakes
aviation environments.

Furthermore, the advent of cloud computing, edge computing, and distributed
processing architectures has revolutionized the scalability, flexibility, and
accessibility of language systems in aviation. Cloud-based solutions offer seamless
integration with existing avionics systems, enabling real-time data exchange, remote
updates, and adaptive learning capabilities that enhance the performance and
adaptability of language interfaces in diverse operational scenarios.

In summary, modern approaches to implementing language systems in on-
board control represent a convergence of cutting-edge technologies, interdisciplinary
insights, and user-centric design principles. By harnessing the power of advanced
speech recognition, natural language processing, and human factors engineering,
these approaches pave the way for a new era of intuitive, interactive, and intelligent

aviation systems that redefine the boundaries of human-machine interaction in flight.
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Chapter 2
Technologies and Methods of Language Systems in On-board Control

2.1. Analysis of Speech Recognition Methods

The analysis of speech recognition methods within the realm of on-board control
systems represents a fundamental exploration into the diverse array of algorithms,
techniques, and methodologies employed to decipher and interpret spoken commands. This
section delves into the intricacies of speech recognition, shedding light on the underlying
principles, challenges, and advancements that shape the landscape of this critical technology
in aviation.

Speech recognition methods encompass a spectrum of approaches, ranging from
traditional rule-based systems to modern deep learning architectures. Rule-based systems
rely on predefined phonetic patterns, language models, and grammatical rules to match
spoken utterances to predetermined commands, offering simplicity and transparency in
algorithm design but often exhibiting limited flexibility and scalability in complex linguistic
contexts.

In contrast, modern speech recognition methods leverage the power of machine
learning, neural networks, and statistical modeling to achieve superior accuracy, robustness,
and adaptability in real-world environments. Deep learning architectures, such as
convolutional neural networks (CNNSs), recurrent neural networks (RNNSs), and transformer
models, have revolutionized the field of speech recognition by enabling end-to-end training
on large-scale datasets, thereby capturing complex patterns and nuances in human speech
with unparalleled precision.

Furthermore, the integration of acoustic modeling, language modeling, and
pronunciation modeling techniques plays a pivotal role in enhancing the performance of
speech recognition systems. Acoustic modeling involves the representation of speech
signals in the form of feature vectors, spectrograms, or mel-frequency cepstral coefficients
(MFCCs), enabling the extraction of relevant acoustic features for subsequent analysis and
classification.

Language modeling, on the other hand, focuses on capturing the statistical properties,

syntactic structures, and semantic relationships inherent in natural language, thereby
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enabling the prediction of plausible word sequences and grammatical constructs from
observed speech inputs. Techniques such as n-gram models, recurrent neural networks
(RNNs), and transformer-based language models are commonly employed to
facilitate language modeling in speech recognition systems.

Moreover, pronunciation modeling techniques aim to address variations in
pronunciation, accent, and dialect among speakers, ensuring robustness and
adaptability in speech recognition across diverse linguistic contexts. Phonetic
dictionaries, pronunciation lexicons, and acoustic-phonetic alignment algorithms are
utilized to map spoken utterances to canonical representations, facilitating accurate
recognition and interpretation of spoken commands.

In summary, the analysis of speech recognition methods in on-board control
systems encompasses a multifaceted exploration of algorithmic principles,
computational techniques, and practical considerations that underpin the development
and deployment of language interfaces in aviation. By examining the strengths,
limitations, and emerging trends in speech recognition, this section provides valuable
insights into the technological foundations of language systems and their role in
shaping the future of aircraft control and navigation.

2.2. Overview of Existing Language Models for On-board Control

An overview of existing language models for on-board control systems offers
a comprehensive examination of the diverse range of linguistic frameworks,
computational architectures, and semantic representations utilized to facilitate natural
language understanding and interaction within aircraft environments. This section
embarks on a detailed exploration of the theoretical foundations, practical
implementations, and emerging trends in language modeling, shedding light on the
rich tapestry of approaches that underpin the design and development of language
interfaces in aviation.

Language models serve as the backbone of language systems, providing the
framework for understanding and interpreting human speech inputs in the context of
aircraft control and navigation. Traditional language models, such as finite-state

grammars, context-free grammars, and phrase-structure grammars, offer structured
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representations of linguistic knowledge, enabling rule-based parsing and interpretation of
spoken commands.

In contrast, modern language models harness the power of statistical learning,
machine learning, and deep neural networks to capture the intricate patterns, semantic
relationships, and contextual nuances inherent in natural language. Probabilistic models,
such as hidden Markov models (HMMs), conditional random fields (CRFs), and Gaussian
mixture models (GMMs), are commonly employed to model the statistical properties of
language and facilitate probabilistic inference in language understanding tasks.

Furthermore, the emergence of deep learning architectures has revolutionized the
field of language modeling, enabling the development of neural network-based models
capable of capturing complex linguistic structures and semantic representations. Recurrent
neural networks (RNNSs), long short-term memory networks (LSTMSs), and transformer
architectures have demonstrated remarkable success in language modeling tasks, offering
superior performance in capturing long-range dependencies, hierarchical structures, and
contextual embeddings in natural language.

Moreover, pre-trained language models, such as BERT (Bidirectional Encoder
Representations from Transformers), GPT (Generative Pre-trained Transformer), and
BERT-based variants, have emerged as powerful tools for language understanding and
generation in diverse domains, including aviation. These models leverage large-scale
corpora of text data to learn contextualized representations of words, phrases, and sentences,
enabling robust and contextually aware interpretation of spoken commands within aircraft
environments.

In summary, the overview of existing language models for on-board control systems
provides a glimpse into the rich diversity of computational frameworks, algorithmic
techniques, and theoretical paradigms that underpin the development and deployment of
language interfaces in aviation. By exploring the strengths, limitations, and emerging trends
in language modeling, this section lays the groundwork for a deeper understanding of the
technological landscape and practical considerations surrounding language systems in

aircraft control and navigation.
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2.3. Technologies of Natural Language Processing and Their Application
in Aviation Systems

The exploration of natural language processing (NLP) technologies and their
application in aviation systems represents a pivotal aspect of language systems in on-
board control. This section delves into the intricate methodologies, computational
techniques, and practical implementations that underpin the processing,
understanding, and generation of natural language inputs within aircraft
environments, offering insights into the transformative potential of NLP in aviation.

Natural language processing encompasses a diverse array of techniques and
methodologies aimed at enabling computers to understand, interpret, and generate
human language in a manner that is contextually relevant and semantically
meaningful. At the core of NLP lie fundamental tasks such as tokenization, part-of-
speech tagging, syntactic parsing, semantic analysis, and discourse processing, each
of which plays a crucial role in extracting meaning and intent from natural language
inputs.

Tokenization involves segmenting text data into individual tokens or words,
enabling subsequent analysis and processing at the lexical level. Part-of-speech
tagging assigns grammatical categories (e.g., noun, verb, adjective) to each token,
facilitating syntactic and semantic analysis by capturing the grammatical structure of
sentences and phrases.

Syntactic parsing aims to analyze the grammatical structure of sentences and
phrases, identifying relationships and dependencies between words and phrases to
derive syntactic trees or parse structures that represent the underlying syntactic
hierarchy of the text.

Semantic analysis focuses on extracting meaning and intent from natural
language inputs, encompassing tasks such as named entity recognition, semantic role
labeling, sentiment analysis, and semantic parsing. These tasks aim to capture the
semantic content of text data, enabling computers to understand the intended meaning

and context of user utterances within specific domains or applications.
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Discourse processing involves analyzing the structure and coherence of larger units
of text, such as paragraphs, documents, or conversations, to infer the underlying discourse
relations, rhetorical structures, and pragmatic implications of the text.

In the context of aviation systems, NLP technologies find diverse applications across
various domains, including cockpit voice commands, flight management systems, air traffic
control communications, aircraft diagnostics, and maintenance procedures. These
applications leverage NLP techniques to facilitate intuitive, efficient, and contextually
aware interactions between pilots, air traffic controllers, and automated systems, thereby
enhancing safety, productivity, and user experience in aviation operations.

Through the integration of advanced NLP technologies, aviation systems can interpret
complex natural language inputs, adaptively respond to changing contexts and
environments, and facilitate seamless communication and collaboration between human
operators and automated systems. By harnessing the power of NLP, the aviation industry
stands poised to unlock new frontiers in human-machine interaction, automation, and

decision support, ushering in a new era of intelligent and user-centric aviation systems.
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Chapter 3
Analysis of existing control systems with language interfaces

3.1. Overview of Existing Automated Control Systems with Language
Interfaces in Aviation and Other Industries

The integration of language interfaces into automated control systems
represents a watershed moment in human-computer interaction, transcending
traditional input methods and revolutionizing the way users interact with technology.
This section offers an expansive exploration of the dynamic landscape of existing
automated control systems endowed with language interfaces, examining their
multifaceted functionalities, broad-ranging applications, and profound ramifications
across aviation and diverse industrial sectors.

Automated control systems enhanced with language interfaces harness cutting-
edge natural language processing (NLP) technologies to facilitate seamless, intuitive,
and hands-free communication between human operators and sophisticated
automated platforms. In the aviation domain, these systems herald a new era of
cockpit control, empowering pilots to execute commands, retrieve critical
information, and navigate complex operational scenarios using natural language
speech commands.

Pioneering advancements in voice recognition and semantic understanding
have paved the way for the integration of language interfaces into flight management
systems, navigation aids, and cockpit avionics, enabling pilots to interact with aircraft
systems effortlessly and efficiently. By bridging the gap between human intent and
machine execution, these systems mitigate cognitive workload, enhance situational
awareness, and optimize operational performance during flight operations.

Beyond aviation, automated control systems with language interfaces have
permeated various industries, including automotive, manufacturing, healthcare, and
consumer electronics, catalyzing a paradigm shift in user interaction paradigms. In
automotive applications, voice-controlled infotainment systems, virtual assistants,

and driver assistance features empower motorists to access navigation, entertainment,
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and communication functionalities without compromising safety or diverting attention from
the road.

Similarly, in manufacturing environments, voice-activated control systems streamline
production workflows, expedite equipment setup and configuration, and foster greater
operational agility and responsiveness. Moreover, in healthcare settings, voice-enabled
medical devices, electronic health records systems, and virtual medical assistants empower
clinicians to access patient information, record medical observations, and perform
administrative tasks hands-free, optimizing clinical workflows and enhancing patient care
delivery.

The ubiquitous proliferation of automated control systems with language interfaces
underscores the inexorable march toward intuitive, user-centric human-machine interaction
paradigms across diverse domains. By leveraging the synergistic fusion of natural language
understanding, voice recognition, and cognitive computing technologies, these systems
epitomize the convergence of human ingenuity and technological innovation, heralding a
transformative era of automation, digitalization, and experiential augmentation.

In summation, the panoramic overview of existing automated control systems with
language interfaces illuminates their unparalleled versatility, pervasive applicability, and
transformative potential in reshaping the contours of human-computer interaction across
aviation and an array of industries. As these technologies continue to mature and proliferate,
they are poised to catalyze a seismic shift in the fabric of human-machine collaboration,
driving unprecedented advancements in productivity, efficiency, and user experience on a
global scale.

3.2. Comparison of Functional Capabilities and Characteristics of EXxisting
Systems

The comparison of functional capabilities and characteristics of existing language
command systems constitutes a pivotal aspect in evaluating their efficacy, usability, and
adaptability across various operational domains. This subsection undertakes an exhaustive
comparative analysis, delving into the intricate nuances of the functional attributes,
performance metrics, and design paradigms of language command systems deployed across

aviation and an array of industrial sectors, elucidating pivotal distinctions, convergences,
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and emergent trends that delineate the evolutionary trajectory of human-machine
interaction paradigms.

In the realm of aviation, language command systems serve as linchpins of
cockpit automation, facilitating seamless communication, task execution, and
information retrieval for flight crews amidst the dynamic exigencies of flight
operations. These systems embody a sophisticated ensemble of functionalities,
encompassing voice-activated controls, natural language understanding, and context-
aware processing capabilities, enabling pilots to issue commands, query system
status, and navigate operational procedures with precision and efficiency.
Furthermore, aviation-centric language command systems are engineered to conform
to stringent safety, reliability, and regulatory standards, integrating fault-tolerant
architectures, redundant fail-safes, and human factors considerations to ensure
resilient performance in high-stakes aviation environments and mitigate the risk of
catastrophic failures or human errors.

Conversely, in the automotive domain, language command systems herald a
paradigm shift in vehicular interaction paradigms, empowering drivers with
unprecedented levels of connectivity, convenience, and safety on the road. These
systems boast an expansive repertoire of features, ranging from voice-controlled
infotainment systems and navigation aids to driver assistance functionalities and
vehicle diagnostics, augmenting driver situational awareness, entertainment options,
and hands-free operational capabilities while minimizing distractions and cognitive
load. Moreover, automotive language command systems leverage advanced machine
learning algorithms, cloud-based processing architectures, and personalized user
profiles to deliver tailored user experiences, anticipate driver intents, and optimize
system performance across diverse driving scenarios and environmental conditions.

Within the manufacturing sector, language command systems emerge as
pivotal enablers of smart factory initiatives, orchestrating production workflows,
monitoring equipment status, and enhancing operational agility amidst the
complexities of modern manufacturing environments. These systems embody a rich

tapestry of functionalities, encompassing voice-activated equipment controls,
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predictive maintenance algorithms, and real-time production analytics, empowering
operators to streamline operational processes, optimize resource allocation, and
mitigate downtime risks. Furthermore, manufacturing-specific language command systems
exhibit robust interoperability with industrial control systems, enterprise resource planning
(ERP) platforms, and supply chain management (SCM) solutions, facilitating seamless data
exchange and integration within the broader manufacturing ecosystem.

In healthcare settings, language command systems serve as catalysts for clinical
innovation, streamlining administrative tasks, augmenting medical documentation, and
enhancing patient care delivery processes. These systems offer a diverse array of
functionalities, including voice-enabled medical dictation, EHR navigation, clinical
decision support, and virtual medical assistant services, empowering healthcare
professionals to optimize workflow efficiency, reduce documentation burdens, and focus on
delivering high-quality patient care. Moreover, healthcare-specific language command
systems adhere to stringent data privacy, security, and regulatory compliance standards,
leveraging encryption protocols, access controls, and audit trail mechanisms to safeguard
patient confidentiality and ensure HIPAA compliance.

In summation, the comparison of functional capabilities and characteristics of existing
language command systems underscores their multifaceted utility, transformative potential,
and cross-industry applicability in shaping the contours of human-machine interaction
paradigms. By harnessing the synergistic convergence of advanced speech recognition,
natural language processing, and machine learning technologies, these systems epitomize
the vanguard of human-centric design, paving the way for a future where human-machine
collaboration transcends boundaries and empowers individuals to realize their full potential
across diverse operational domains.

3.3. Analysis of the Advantages and Disadvantages of Different Approaches to
Implementing a Language Interface in Control Systems

The analysis of various approaches to implementing a language interface in control
systems is instrumental in understanding the nuanced trade-offs, technical considerations,
and usability implications inherent in the design and deployment of language command

systems across diverse operational domains. This section embarks on a comprehensive
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exploration of the multifaceted landscape of language interface implementation
methodologies, elucidating the inherent advantages and disadvantages of different
approaches, ranging from rule-based systems and statistical models to deep learning
architectures and hybrid approaches, in fostering intuitive, efficient, and reliable
human-machine interaction paradigms.

Rule-based systems represent one of the foundational approaches to
implementing language interfaces in control systems, relying on predefined
grammatical rules, semantic parsers, and domain-specific vocabularies to interpret
user input and execute corresponding actions. The advantages of rule-based systems
lie in their transparency, interpretability, and ease of customization, enabling
designers to fine-tune system behavior, handle edge cases, and accommodate domain-
specific constraints with relative ease. However, rule-based systems are inherently
limited by their rigidity, brittleness, and susceptibility to semantic ambiguity,
necessitating extensive rule sets, manual intervention, and domain expertise to
maintain and update over time.

Statistical models offer an alternative paradigm for language interface
implementation, leveraging probabilistic models, machine learning algorithms, and
large-scale corpora to infer user intent, disambiguate linguistic input, and generate
contextually relevant responses. The advantages of statistical models lie in their
adaptability, scalability, and robustness to linguistic variations, enabling systems to
learn from data, generalize across diverse contexts, and evolve over time without
explicit rule specification. However, statistical models are susceptible to data sparsity,
overfitting, and generalization errors, particularly in low-resource domains or in the
presence of noisy, unstructured input data, necessitating careful feature engineering,
data preprocessing, and model validation strategies to mitigate performance
degradation.

Deep learning architectures represent the forefront of language interface
implementation, harnessing the power of neural networks, recurrent models, and
attention mechanisms to learn hierarchical representations of language semantics,

syntactic structures, and context dependencies directly from raw input data. The
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advantages of deep learning architectures lie in their ability to automatically extract high-
level features, capture long-range dependencies, and adapt to complex, dynamic input
patterns, enabling systems to achieve state-of-the-art performance in tasks such as speech
recognition, natural language understanding, and dialog generation. However, deep learning
architectures require large-scale annotated datasets, substantial computational resources,
and domain-specific expertise for training, fine-tuning, and optimization, posing challenges
in terms of data acquisition, model interpretability, and deployment scalability.

Hybrid approaches amalgamate the strengths of rule-based systems, statistical
models, and deep learning architectures to capitalize on their complementary advantages
and mitigate their respective limitations in language interface implementation. By
leveraging rule-based heuristics for initial parsing and semantic annotation, statistical
models for probabilistic inference and context modeling, and deep learning architectures for
feature learning and pattern recognition, hybrid approaches offer a balanced compromise
between interpretability, scalability, and performance in real-world applications. However,
hybrid approaches entail additional complexity in system design, integration overhead, and
model fusion challenges, necessitating careful architectural design, algorithmic selection,
and performance optimization strategies to achieve optimal balance between flexibility,
robustness, and computational efficiency.

In summation, the analysis of the advantages and disadvantages of different
approaches to implementing a language interface in control systems underscores the
nuanced interplay between design trade-offs, technological capabilities, and user experience
considerations in shaping the efficacy, usability, and adoption of language command
systems across diverse operational domains. By embracing a principled approach to system
design, leveraging insights from linguistics, cognitive science, and machine learning, and
fostering interdisciplinary collaboration, language command systems can realize their full
potential as enablers of seamless, intuitive, and empowering human-machine interaction

paradigms in the digital age.
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Chapter 4
GVSITE SRS Evaluation

As we do not have the appropriate equipment and resources to conduct an
experimental study, "Evaluation of Speech Recognition Systems for Aircraft Cockpit
Voice Control" (Smith et al., 2018) article will be used as a frame in chapters 4-5.

A collaborative flight test evaluation was conducted by NASA Langley
Research Center and an industry partner team as part of NASA's Aviation Safety and
Security Synthetic Vision System project. The evaluation took place over a 3-week
period at the Reno/Tahoe International Airport (NV) and an additional 3-week period
at the Wallops Flight Facility (VA). Known as the Gulfstream-V Synthetic Vision
Systems Integrated Technology Evaluation (GVSITE), this test aimed to assess
integrated Synthetic Vision System (SVS) concepts crucial for the development and
deployment of actual SV systems.

The SV systems evaluated during GVSITE included computer-generated
terrain displayed on the Primary Flight Display (PFD), monochrome textured terrain
presented on a Head-Up Display (HUD), and plan or perspective views of computer-
generated terrain and obstacles on the Navigation Display (ND). Additionally, the
integrated SV system incorporated data-link capabilities, sensors, and algorithms to
provide and verify necessary information for display. It also featured symbology and
algorithms designed to enhance pilot situational awareness during surface operations
and to mitigate or alert to potential runway incursions.

This paper focuses specifically on assessing the in-flight performance of a
Speech Recognition System (SRS) utilized as the pilot-vehicle interface for the
integrated SV system display concepts.

4.1. Flight Test Aircraft

The flight test utilized a Gulfstream G-V aircraft, as shown in Figure 1. The
Evaluation Pilot (EP) occupied the left seat, while a Gulfstream Safety Pilot occupied
the right seat. The left seat setup included two research displays for assessing the PFD
and ND concepts, an overhead HUD projection unit for evaluating head-up concepts,

and an SRS system serving as the pilot-vehicle interface to the SV displays.
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Fig. 1. G-V aircraft exterior and interior views.

4.2. Evaluation Pilots

Ten expert pilots (EPs) from airlines, a major transport aircraft manufacturer, the
Federal Aviation Administration, and the Joint Aviation Authority participated in research
flights, accumulating approximately 67 hours of flight testing. A total of 145 flight test runs
were conducted to evaluate the NASA Synthetic Vision System (SVS) concepts near
Wallops Island, VA (with 8 pilots) and Reno/Tahoe International Airport (with 7 pilots).
Five of the ten pilots participated in tests at both locations.

4.3. Speech Recognition System Design for GVSITE

A Speech Recognition System (SRS) was integrated into the Gulfstream-V aircraft to
enhance the pilot-vehicle interface with the Synthetic Vision System (SVS) displays without
requiring hardware modifications. It served as a testing ground for future developments in
commercial and business aircraft flight deck technologies. The system utilized a commercial
speech recognition engine to interpret pilot's speech inputs, an interface application to
exchange information with a computer via Ethernet, and a text-to-speech module to generate
audible messages or play pre-recorded WAV files. The speech recognition technology
employed was a readily adaptable, speaker-independent system with customizable

grammar.
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The bi-directional Speech Recognition System (SRS) allowed the Evaluation
Pilots (EPs) to verbally command changes to the Synthetic Vision System (SVS)
displays and receive aural warnings and alerts triggered by the SVS research systems.
To enable this functionality, the EPs used noise-attenuating David Clark headsets
plugged into a Telex ProCom/2 intercom box. This intercom box split the pilot's
speech input to drive both the nominal G-V intercom input jacks and a specialized
SRS function. The SRS function was implemented using a Microsoft Windows-based
application running on a single computer. The intercom box's audio output was
connected to the computer's audio-in port, allowing the computer to receive speech
input. A "push-to-listen™ function was incorporated into the system: when the EP
depressed the yoke-mounted radio transmit rocker switch, a serial input closed on the
SRS computer, initiating the "listening” process. Releasing the "push-to-listen™
trigger signaled the SRS application to complete the speech recognition process. This
implementation mimicked existing radio communications, making it intuitive and
easy for the EPs to use as they interacted with the on-board speech-respondent
"assistant."”

Instead of implementing a natural language interface, the speech recognition
system (SRS) utilized a hierarchical grammar structure to enhance recognition
accuracy. The hierarchy consisted of three-word commands for controlling the
Synthetic Vision System (SVS) displays (PFD, HUD, and ND) as shown in Figure 2,
with the first word representing the display device, the second word indicating the
function or element to be controlled, and the third word specifying the value or
modifier. For instance, the command "NAV RANGE 5" adjusted the navigational
display range to 5 nautical miles. Additionally, two "exceptions” were programmed:
"cancel" to undo the previous command and "repeat" to reissue the last command.

Some words in the SRS grammar had alternative pronunciations, allowing
users to choose between saying the word or spelling out each letter. For example,
"HUD" could be pronounced as a word or spelled out as "H-U-D," and "NAV" could
be said as a word or spelled out as "N-D." Similarly, "field-of-view" could be
articulated as "FO-V."
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Display Element Value

All
Cones
FLIR
Ghost L On, Declutter
Raster

) Runway
HUD —~ -
Terrain

Tunnel

On, Declutter, Air., Surface

FLIR

Ghost On, Declutter

NOTAM
Tunnel

PFD — On, Declutter, Air, Surface

FOV Unity, 30, 60, 90
0.5, 1, 1.5, 2, 2.5, 5, 10,
ange 20, 40, 80, 160, Up, Down
Declutter, 1D, Type
Exit Up, Down
NAV Ajrport, Exits, Perspec-
S ormat tive, Plan, Surface, Map
Ownship Center, Normal

Message Up. Down, On, Declutter

VSD On, Declutter

Fig. 2. Hierarchical Grammar for GVSITE. The 3 tier grammar structure: 1) Display device, 2)
Display element and 3) State.

The SRS provided positive visual feedback during its operation. While the EP
depressed the push-to-listen button and vocalized a command, the SRS interpreted it.
Throughout the button's depression, a box featuring plus signs was displayed at the bottom
of the PFD and HUD (Fig. 3). Should the SRS hold a minimum 40% confidence level in its

interpretation, it transmitted the command to the displays. The interpreted command was
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then briefly showcased to the pilot for confirmation (Fig. 3). Conversely, if the SRS
held less than a 40% confidence level, a box containing minus signs was briefly
presented at the bottom of the PFD (Fig. 4). The 40% confidence threshold was
established based on preliminary testing conducted prior to the evaluation flights.

- Leas ¢ 1 \ Logan al
e o T S 30.15IN NAV RANGE 5.0 30.15IN

FOV 30 . FOV 30

Fig. 3. The SRS box awaiting spoken command (left) and displaying the recognized

command(right).

Fig. 4. The PFD display when the SRS was not confident in its interpretation.
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The complete grammar setup for GVSITE is provided in Appendix A. Additionally,
synonyms were permitted, such as using "NAV" interchangeably with "ND." Before the
evaluation flights, it was noted that the phonetic similarity between "off" and "on" led to
poor recognition rates when both were included in the grammar. Therefore, "declutter" was
substituted for "off." In the context of aviation displays, "declutter” essentially means the
same as "off" — to remove symbols from a display. Although "off" would have been

preferred by the EPs as the natural opposite of "on," "declutter" was acceptable and became
easy to remember and use after training.

4.4, Results

Throughout the entire flight test period, pilots issued a total of 505 verifiable SRS
commands, achieving an overall success rate of 84%. This means there were 425 correctly
recognized commands and 80 incorrectly recognized ones. Despite this, the SRS software's
reported accuracy rate is 96%.

The distribution of commands pertaining to each display is presented in
Table 1. The data indicates that commands for the PFD and ND were issued almost
identically, at a rate four times greater than those for the HUD. It is important to note that
the HUD had hardware controls for symbology and raster declutter, which were mounted
on the EP's yoke. While the SRS commands for the HUD could adjust symbology groups,

the hardware controls toggled the entire stroke or raster HUD components.
Table 1. SRS Commands per Display

Display Commands Spoken Percentage

PFD 222 44%
ND 227 45%
HUD o6 11%
All 505 100%

Each EP averaged 34 SRS commands per test flight, with a maximum of 64 and a minimum

of 12. Figure 5 illustrates the total commands spoken during the flight test for each EP.
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There were two types of incorrect recognitions by the SRS:

1) Instances where the SRS was not confident in matching to any command, resulting
In rejection due to recognition falling below the threshold level of 40%. This occurred
regardless of whether the utterance was correctly interpreted.

2) Cases where the SRS incorrectly interpreted a command, with recognition
exceeding the threshold level of 40%, but the recognized utterance did not match the
spoken command. For example, "PFD FOV 60" was interpreted as "NAV RANGE
60"

As depicted in Figure 6, the error rates varied considerably among EPs. Two
EPs had error rates of 42% and 37%, while the others were closer to 10% error rates.
Among the commands where the SRS exceeded the 40% threshold, the accuracy rate

was 96%. This means that only 20 of the 80 incorrect recognitions were
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Fig. 5. Number of SRS commands spoken by each EP.




misinterpretations. The remaining 60 incorrect recognitions were confidence-related,
indicating that the recognizer performance did not surpass the 40% threshold level, leading

to no recognition action being taken (refer to Table 2).

Table 2. Incorrect SRS Commands.

Incorrect Command Percentage

Below 40% confidence 60 5%
Misinterpretation 20 25%
Total 80 100%

The errors were linked to the specific display to which the utterance was directed.
These details are illustrated in Figures 6 to 8. Specifically, the PFD command comprised 67
out of the total 80 (84%) incorrect recognitions. Despite both the ND and PFD being
addressed an equal number of times, the PFD accounted for a disproportionately high share

of the errors.
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Fig. 6. Percentage of Incorrect Recognitions per Display.
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4.5. Summarising

Across all GVSITE data flights, the SRS achieved an overall success rate of 84%,
correctly interpreting 84% of the 505 total SRS commands. Eighty commands were either
recognized with insufficient confidence or incorrectly interpreted. Specifically, for 60 out
of these 80 incorrect commands, the SRS had less than 40% confidence in its interpretation.
The remaining 20 incorrect commands were misinterpretations, such as interpreting “NAV
RANGE 5” as “NAV RANGE 20.”

When the success rate was broken down by display type, the ND commands had a
95% success rate, the HUD commands had a 96% success rate, and the PFD commands had
a lower success rate of 68%. The SRS recognition engine’s practical success rate is known
to be 96%, aligning with the success rates for the ND and HUD commands.

The incorrect recognitions for the PFD commands, detailed in Figure 8, revealed that
the majority of errors were due to the “PFD FOV” commands. Most of the time, the SRS
lacked confidence in interpreting these commands. If “PFD FOV”” commands were excluded
from the analysis, the overall success rate of the SRS would match the published accuracy
rate of 96%.

The poor performance for PFD commands was primarily due to the noise-attenuating
microphones and headsets used in the G-V aircraft. These microphones canceled out
ambient cockpit noise when no voice input was detected, but caused a response lag, making
the initial part of the pilot’s speech sound truncated. Consequently, commands like “HUD”
and “NAV” became nearly phonetically equivalent to their truncated versions “UD” and
“AV,” whereas “PFD” did not have a similar phonetic equivalent, making “FD” harder to
recognize. This issue was more pronounced when pilots spoke quickly, complicating
recognition. This hypothesis should be experimentally verified, and if confirmed, several
changes could improve the system: a) tailoring the grammars to include truncated phonetic
equivalents, b) modifying commands to compensate for this effect, or c) training pilots to
utter a sound before pressing the push-to-listen button.

Additionally, another significant factor affecting SRS performance was the audio
input volume and quality from the EPs. While audio input was checked during ground tests

before each flight, there was no real-time monitoring of SRS volume or quality. This
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oversight should have been addressed. The audio volume is crucial for SRS
performance, but it was an uncontrolled variable during the tests since EPs often
adjusted their intercom volumes and microphone positions, affecting SRS
performance. Occasionally, the audio input was too weak or overly saturated. To
resolve this, real-time audio volume monitoring should be implemented, ideally with
a series of lights indicating the audio input volume and its status (e.g., “high-medium-
low”).

4.6. EP Recommendations

After analyzing the results of the SRS work and the pilots' feedback, | can make
the following suggestions:

1. Introduce shortcuts for common commands. For instance, allow "RANGE
5" to replace "NAV RANGE 5" and "VIEW 30" for "PFD FOV 30." Although the
hierarchical structure methodology was clear, "range"” only applied to the Navigation
Display and "view" to the PFD. Thus, including "NAV" and "PFD" was unnecessary
for most EPs.

2. Adjust the cadence of certain commands to create a uniform cadence across
all commands, if feasible. For example, change "PFD FOV" to a cadence similar to
"NAV RANGE." This could involve changing the command "PFD" to a single word
(possibly "Primary"), although a one-syllable word would be preferable.

3. Replace "FOV" with a single word (perhaps "View"). Using "Field-of-View"
or even "F-O-V" was verbally cumbersome compared to a single word like "View."

4. Ensure consistency in using "UP/DOWN" and "INCREASE/DECREASE."
The increase/up and decrease/down commands were not always intuitively obvious
and were not consistently programmed to be synonymous.

5. Nearly all EPs desired a higher accuracy rate for the SRS, aiming for a 99+%

recognition performance.
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Chapter 5
Laboratory SRS Experiment

Following the GVSITE flight test, a laboratory study was conducted to establish
baseline performance of the speaker-independent speech recognition technology.
Participants were asked to speak words and phrases commonly used in standard aviation
dialogue. The study was divided into three segments: single word utterances, short
command phrases, and longer ATC clearance phrases. This study collected recognition data,
assessed the basic accuracy of the recognition, and recorded a confidence factor in the
recognition output by the SRS. Notably, the laboratory study employed a different SRS
recognizer than the one used in the GVSITE flight test.

5.1. Participants

A total of 25 native US English-speaking individuals (18 males and 7 females)
participated in the laboratory study. No additional information was collected about the
participants. Each participant spent approximately 10 minutes completing the study.

5.2. Equipment

A laptop with standard microphone and earphone connections was used for the study.
The headset employed was an Andrea ANC-700, featuring an active noise-canceling
microphone optimized for speech recognition.

- Specifications of the Andrea ANC-700 Microphone:

- Noise Cancellation: 6 dB/octave

- Frequency Range: 100-10,000 Hz

- Impedance at 1 kHz (SoundBlaster Interface): 300 ohm

- Electrical Signal-to-Noise Ratio: 60 dB

- Sensitivity at 1 kHz (0 dB = 1 V/Pa) SoundBlaster Interface: -36 dB

- Current Consumption (SoundBlaster Interface): 0.500 mA

5.3. Method

Participants were instructed to read words displayed on a screen, divided into three
segments of the study: single word phonetics, short commands, and ATC clearances. The

utterances were assessed for accurate recognition and a confidence factor.
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Each participant spoke a total of 71 utterances (Table 3), consisting of 26 single
word utterances (e.g., the aviation phonetic alphabet from Alpha to Zulu) and 45
phrase utterances. The phrase utterances included 39 short phrases and 6 long phrases.
The short command phrases were typical flight deck and display management
commands used in the previous GVSITE flight test, such as “NAV RANGE 20.” The

longer phrase utterances were taxi clearances, with the longest one comprising 14
words (19 syllables).
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Table 3. All of the 71 utterances each participant spoke.

[ L I O L N -

=1 &

oo

10
11
12
13
14

15

16

17

18

19

20
21
22
23
24
25
26

Alpha
Bravo
Charlie
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solf

Hotel
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NAV range 1
NAV range 2
NAV range 5
NAV range 10
NAV range 20
NAV range 50
NAV range 100

NAV range 200
NAV zoom out
NAV zoom in
NAV range back

P F D Field of view unity

P F D Field of view 30
P F D Field of view 60

P F D Field of view 90

PFDF OV unity

FFDFOV30

FFDFOVGD

PFDFOWV

P F D declutter

F F D traflic on

P F D traffic off

HUD declutter

HUD traffic on

HUD traffic off
Checklist Before Takeoff

o3
a4
59
a6
a7
D8
a9

60
61
62
63
64
65
66

67

68

69

T

71

Checklist Takeoff
Checklist Climb
Checklist Cruoise
Checklist Descent
Checklist Landing
Checklist After Landing
Belore Takeoff Check-
list

Takeoff Checklist
Climb Checklist

Cruise Checlklist
Descent Checklist
Landing Checklist
After Landing Checklist

NASA 557 Taxi To
Runway 23 via D F T
L

United 231 Taxi At
Coneourse DviaEB A

MNASA 557 Hold Short
Of Runway 14 Rt at D
United 231 Taxi To
Runway 14 Lt via T O
BW

NASA 557 Hold At
sate K

United 231
Conconrse J

Hold At
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In all three segments of the study, the independent variable was the utterance.
The dependent variables were accuracy (correct or incorrect) and the confidence
factor (ranging from O to 100). In the first segment, utterance numbers 1 through 26
were used, corresponding to the aviation phonetic alphabet from Alphato Zulu. In the
second segment, the utterances were approximately 3-5 words long, with utterance
numbers 27 through 65 being used. Additionally, in this segment, two different
command sets were compared and evaluated for accuracy. One command set began
with “PFD Field-of-View view angle” and was compared to the set beginning with
“PFD FOV view angle.” Another comparison was made between commands starting
with “Checklist checklist name” versus “checklist name Checklist.” The third
segment used utterance numbers 65 through 71, which were modeled after typical
ATC ground control clearances.

5.4. Procedure

Each participant was equipped with a headset, and the microphone was adjusted
to a distance proportional to their normal speaking volume. A volume level meter
within the software ensured consistent microphone positioning and input levels.
Additionally, the microphone height was set below the “Puff line” to minimize wind
noise during the pronunciation of words containing the letter “P.”

Participants were instructed to speak the designated word or phrase while the
speech recognition software captured the audio and processed it using its recognition
algorithms. The recognized utterance was then displayed to the participant, who
indicated whether it was correctly recognized. This process continued until all
utterances in each segment of the study were completed.

5.5. Results

The overall recognition rate for all 71 utterances by all 25 participants (1775
utterances) was 95.5% correct. Per participant, the median was 96%, the maximum
was 100%, the minimum was 77% and the standard deviation was 5.52.
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5.5.1. Single Word Utterance

The overall recognition rate for all aviation phonetic utterances across all 25
participants (totaling 650 utterances) was 94.8% accurate, as outlined in Table 4. Participant
performance varied, with recognition rates ranging from 100% to 80% for phonetics such
as ‘A’ and ‘P.’

Table 5 breaks down the recognizer’s confidence level (refer to Appendix E) for each
aviation phonetic alphabet utterance (single words) across all 25 participants (650
utterances). The data indicates that the mean standard deviation for confidence was
approximately 8.0, with the utterance “Tango” exhibiting the greatest variability (standard
deviation).

Additionally, Table 6 provides the percentage of correct recognitions by participant
for single-word utterances. Eight participants achieved a perfect recognition score, while
one participant had a recognition performance of only 77%.

Table 4. Mean Percentage of Correct Recognition, All Participants (N=25).

Utterance Mean %
Foxtrot, India, Juliet, Quebec, Sierra, Uniform, Vietor, X-Ray, Yankee 10
Charlie, Delta, Echo, Hotel, Kilo, Lima, Mike, Oscar, Romeo, Whiskey 96
November, Tango 092
Bravo, Zulu 88
(zolf 84
Alpha, Papa 80

5.5.2. Short Phrase Utterance

Within the second segment, two different command sets were evaluated to determine
which set to use. The confidence level for these phrases is tabulated in Table 7, as well as
the mean correct recognition rate. The “PFD Field of View number” versus “PFD FOV
number” set both were recognized 100% of the time. Similarly, the “Checklist checklist
name” versus “checklist name Checklist” command set was only different by 1%. Since the
accuracy data revealed no clear advantage, the more natural speech data sets will be used;
“PFD Field of View number”, and “checklist name Checklist”. Finally, the percentage

correct by participant for the short phrase word utterances is given in Table 8. Fourteen
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participants obtained perfect recognition score. One participant only had 85%
recognition performance, whereas they had 92% performance in the single word
utterance test. The participant with the worst performance in the single word
utterances, scored 95% in the short phrase utterances.

5.5.3. ATC Long Phrase Utterance

Segment 3 was included as an initial exploration into potential future studies
focusing on SRS applications in cockpit interactions with ATC communications.

Table 9 provides the confidence levels associated with the long phrase
utterances, while Table 10 displays the percentage of correct recognitions by
participant for these lengthy phrases.

Analysis of the percentage of correct recognitions by participant reveals that 8
participants achieved perfect recognition scores. However, 4 participants exhibited a
recognition performance of only 67%, resulting in a mean recognition rate of 86%
across all participants. The majority of ATC phrase utterances were accurately
recognized, with only one word being incorrectly interpreted. Specifically, the word
‘Alpha’ in the utterance “United 231 Taxi to Concourse Delta via Echo Bravo Alpha”
was misinterpreted five times, reflecting a consistent error rate observed with ‘Alpha’
from the initial phonetic segment. Additionally, it was observed that short syllable
words (such as 'at', 'and’, 'to") were frequently omitted.

Table 11 presents a summary of correct recognitions across all segments.
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Table 5. Segment 1: Confidence of Phonetic, All Participants (N=25).

Confidence Hecognized

Utterance | Mean Median Max Min SD | Mean Correct
Alpha 64.76 67 79 36 12.0 80
Bravo 68.56 71 80 45 8.4 B8
Charlie 66..32 67 87 42 8.9 06
Delta 80.04 82 89 48 8.4 06
Echo 75.12 77 85 a7 6.6 06
Foxtrot 66.96 69 80 48 8.0 100

solf 65.76 69 80 A7 9.3 84
Hotel 72.76 75 88 34 123 06
India 80.60 80 88 67 5.0 100
Juliet 73.20 74 85 oh 6.4 100
Kilo 66.68 69 82 44 8.9 06
Lima 75.08 75 89 55 9.4 06
Mike T7.56 T8 88 49 8.4 06
November 73.20 T 86 M4 12.5 92
Oscar 70.20 72 80 45 7.5 06
Papa 66.44 69 77 50 7.2 80
Quebec 62.40 62 76 46 7.3 100
Romeo 73.32 5] 87 45 0.8 06
Sierra 61.12 60 72 47 6.7 100
Tango 70.64 75 85 0 16.9 92
Uniform 68.72 68 83 a1 7.2 100
Victor T1.04 70 85 49 8.3 100
Whiskey 79.44 79 88 71 3.5 06
X-Ray 72.56 73 87 54 8.4 100
Yankee 69.44 73 85 52 10.3 100
Zulu 60.36 63 72 31 9.2 88
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Table 6. Segment 1: Phonetics Percent Correct per Participant Sorted by Incorrect

Recognitions.

Participant Correct Incorrect % Correct Dev from avg Misrecognized
1 19 7 76.9 -18.0 BCHNOTY
2 22 4 84.6 -10.3 EK T Z
3 23 3 B85 -6.5 AP Z
4 24 2 92.3 -2.6 B, O
5 24 2 92.3 -2.6 A G
6 24 2 92.3 -2.6 G, M
7 24 2 92.3 -2.6 P, R

24 2 92.3 -2.6 AL

9 24 2 92.3 -2.6 AP
10 25 1 96.2 1.2 A
11 25 1 96.2 1.2 D
12 25 1 96.2 1.2 G
13 25 1 96.2 1.2 P
14 25 1 96.2 1.2 P
15 25 1 96.2 1.2 B
16 25 1 96.2 1.2 G
17 25 1 96.2 1.2 Z
18 26 0 100.0 2.1
19 26 0 100.0 5.1
20 26 0 100.0 5.1
21 26 0 100.0 5.1
22 26 0 100.0 5.1
23 26 0 100.0 2.1
24 26 0 100.0 5.1
25 26 0 100.0 5.1

Mean 04.92

Median 96.15
sD 5.52
Max 100.00
Min 76.92
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Table 7. Segment 2: Confidence of Command, All Participants (N=25).

Confidence Recognized
Utterance Mean DMedian Max Min SD | Mean Correct
NAV range 1 T2.56 75 81 44 T.4838 96
NAV range 2 T9.56 B0 =6 67 4.4355 100
NAV range 5 T2.68 75 82 37 9.5904 96
NAV range 10 TT.36 T8 =83 Tl 3.8824 100
NAV range 20 T1.76 71 T8 29 4684 100
NAV range 50 T2.76 73 B84 66 4.6123 100
NAV range 100 Gi8.68 69 79 Gl 4.58 100
NAV range 200 T0.60 T2 79 35 8.5147 96
NAV zoom out T0.44 T3 T8 35 B.386Y 96
NAV zoom in T2.16 T2 B0 G4 4.5797 96
NAV range back .44 73 B84 0 19929 84
P F D Field of view unity T0.40 71 79 57 57591 100
P F D Field of view 30 68,40 71 52 40 9.3986 100
P F D Field of view 60 G7.76 70 51 36 9.2208 100
P F D Field of view 90 6G9.16 71 76 a7 5735 100
PFDF OV unity T1.96 T2 51 63 4.8087 100
PFDFOWVaAD T73.92 T4 85 Gl 5.7076 100
PFDFOQOWVED T2.76 T3 82 43  T7.5899 100
PFDF OV T2.84 73 82 a7  5.5379 100
P F D declutter G6.76 659 T8 37 T.7421 96
P F D traffic on T1.20 73 51 a6 6.7144 100
P F D traffic off (G9.28 T0 B0 56 6.4841 fata]
HUD declutter 6:3.96 G4 T4 a6 48346 100
HUD traffic on f9.92 T0 79 58 54077 100
HUD iraffic off 6G7.52 69 T8 52 6.7769 a8
Checklist Before Takeoff 70.92 73 T8 48 6.1841 100
Checklist Takeoff 69.72 72 T8 a4 T.3116 100
Checklist Climb T3.64 T4 82 G0 5.322 100
Checklist Cruise T3.08 75 79 a3 6.4026 100
Checklist Descent T1.28 T3 85 46 T7.8396 96
Checklist Landing .84 73 51 0 15.154 ]
Checklist After Landing 67.92 71 81 36 91511 96
Before Takeoff Checklist T2.56 T4 52 42 8.1705 96
Takeoll Checklist T2.24 75 82 57 66538 96
Climb Checklist T2.08 72 79 G4 39887 100
Cruise Checklist GT.72 68 T8 57T  5.T12 96
Descent Checklist T1.60 73 52 a6 6.1779 100
Landing Checklist T3.44 75 83 Gl 5.6648 02
After Landing Checklist T0.72 71 51 29 5.8489 100
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Table 8. Segment 2: Commands, Percent Correct per Participant Sorted by Incorrect

Recognitions.

Participant Correct Incorrect % correct Dev from avg

1 33 3 84.6 -12.9
2 35 4 89.7 -7.8
3 36 3 092.3 -5.2
4 36 3 092.3 -5.2
D 37 2 94.9 -2.7
3 38 1 97.4 -0.1
T 38 1 97.4 -0.1
8 38 1 97.4 -0.1
9 38 1 97.4 -0.1
10 38 1 97.4 -0.1
11 38 1 97.4 -0.1
12 39 ( 1000 2.5
13 39 il 100.0 2.5
14 39 () 100,10 2.5
15 39 il 100.0 2.5
16 39 il 100.0 2.5
17 39 il 100.0 2.5
18 39 il 100.0 2.5
19 39 () 1000 2.5
20 39 il 100.0 2.5
21 39 () 10010 2.5
22 39 il 100.10) 2.5
23 39 il 1000 2.5
24 39 il 100.0 2.5
25 39 il 100.0 2.5

Mean 97.54

Median 100.00

sSD 3.95

Max 100.00

Min 84.62




Table 9. Segment 3: Confidence by ATC Phrase, All Participants (N=25).

Utterance Mean Median Max Min SD
NASA 557 Taxi To Runway 23 via D F T L 100 73 &0 6o 4.32
United 231 Taxi to Concourse D via EB A 72 69 9 61  4.28
NASA 557 Hold Short Of Bunway 14K at D 02 67 Th ah 412
United 231 Taxi to Runway 14Lvia TOB W 92 T 80 61 4.57
NASA 557 Hold at Gate K 80 65 Tl 3 2.33

-

United 231 Hold at Concourse J S0 65 i) a7 5.10

5.6. Optimization

An utterance was deemed correct if the participant confirmed the recognizer's guess
as accurate. The recognizer utilized an internal algorithm to assess recognition correctness
based on an "utterance score,” which needed to meet or exceed the predetermined utterance
threshold of 50. Alongside the participant's assessment, the recognizer's score, derived from
the utterance score, was also recorded. This dataset underwent analysis to identify an
optimal utterance score threshold that would enhance recognition rates using the
recognizer's utterance score.

Out of all single-word phonetic utterances (totaling 650), there were 7 instances
(1.1%) where the SRS marked a correct recognition despite the confidence threshold being
below 50, resulting in a recorded incorrect recognition. Conversely, there were 15
occurrences (2.3%) where the utterance was actually incorrect but was incorrectly deemed
correct by the SRS.

In digital avionics design, priorities often prioritize error detection over error
correction. In essence, it is preferable to receive no data than to receive erroneous data. For
example, the ARINC 429 digital data bus lacks error correction capability but transmits data
(for error detection) to determine if a data packet was received accurately. Following a
similar principle, SRS optimization may focus on achieving a lower false positive rate than
an overall recognition rate.

Adjusting the threshold setting allows for some recognition optimization. A "false
positive" occurs when the utterance score exceeds the threshold and is considered correct,
despite being incorrect. To minimize false positive recognitions, the threshold could be

increased. For instance, resetting the threshold to 52 reduces the false positive rate by 0.5%,
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albeit with a corresponding 0.6% decrease in the overall recognition rate (refer to
Table 12). Conversely, resetting the threshold to 48 increases the correct recognition
rate by 1.2%, but also raises the false positive rate by 0.6%. Depending on priorities,
SRS optimization through threshold setting adjustment is feasible within a narrow

range.

Table 10. Segment 3: ATC Phrase, Percent Correct per Participant sorted by Incorrect

Recognitions.

Participant Correct Incorrect % Correct Dev from avg

1 4 2 66.7 -19.3
2 4 2 66.7 -19.3
3 4 2 66.7 -19.3
4 4 2 66.7 -19.3
3 b 1 83.3 2.7
i b 1 83.3 -2.7
T b 1 83.3 -2.7
8 5 1 83.3 2.7
9 5 1 83.3 2.7
10) 5 1 83.3 2.7
11 5 1 83.3 2.7
12 5 1 83.3 2.7
13 b 1 83.3 2.7
14 b 1 83.3 2.7
15 b 1 83.3 2.7
16 b 1 83.3 2.7
17 b 1 83.3 2.7
18 6 0 100.0 14.0
19 ] 0 100.0 14.0
20 6 0 100.0 14.0
21 6 0 100.0 14.0
22 6 0 100.0 14.0
23 6 0 100.0 14.0
24 6 0 100.0 14.0
25 6 0 100.0 14.0

Mean 86.00

Median 83.33

SD 11.47

Max 100.00
Min 66.67




Table 11. Total Correct Recognition for All Participants (N=25).

Segment Phonetic (26) Short Phrase (39) ATC Phrase (6) Total (71)

% Correct 94.9 07.5 =60 95.5

Table 12. Optimization analysis of Confidence Threshold setting

Confidence Marked Marked % Correct Correct Incorrect Total
Thresh- Cor- Incorrect but but

old Set- rect marked marked

ting incorrect correct

52 618 32 05.1 11 (1.7%) 12 (1.8%) 23
51 621 29 05.5 9 (1.4%) 13 (2.0%) 22
50 625 25 96.2 7 (1.1%) 15 (2.3%) 22
49 629 Py | 96.7 5 (0.7%) 17 (2.6%) 22
48 633 17 97.4 3 (0.5%) 19 (2.9%) 22
47 636 14 97.8 2 (0.3%) 21 (3.2%) 23

5.7. Summarising

The SRS engine successfully demonstrated its capability to recognize voice
commands independently and process natural continuous speech. Across 1775 utterances
spoken by 25 different participants, the SRS achieved a recognition rate exceeding 95%.

However, for in-flight applications, enhancing microphone quality and noise
cancellation features are imperative to ensure optimal input audio signal quality.
Discrepancies were observed between the laboratory test and the aircraft SRS performance,
with the latter falling short of the expected recognition rate. Two significant disparities
between the flight test and laboratory conditions were noted: firstly, the presence of higher
ambient noise levels during the flight test compared to the controlled laboratory
environment, and secondly, the absence of a volume display for the flight test setup.
Addressing these limitations could potentially improve the recognition rate to a maximum
of 96%. Nevertheless, pilots have emphasized the necessity for the SRS to achieve closer to

a 99.99+% correct recognition rate.
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Conclution

The data underscores the obstacles and complexities associated with
developing a speech recognition system tailored for aviation, pinpointing specific
challenges like the integration of the aviation phonetic alphabet.

The data indicates a pressing need for substantial research and development
efforts. Generally, the recognition rate standards for commercial speech recognition
systems fall significantly short of those necessary for aviation applications. Despite
the increasing adoption of Speech Recognition Systems (SRSs) in consumer
electronics like Siri™, Cortana™, and Amazon Echo™, aviation communication
differs significantly from natural language, necessitating tailored solutions for this
unigue context. To enhance recognition rates, it's essential to implement structured or
restricted grammars, hierarchical structures, speaker-dependent models, and context-
specific adjustments in SRSs for aviation. For instance, real-time correlation of
waypoint names and their pronunciation with aircraft position could improve
recognition rates, considering that a pilot in Virginia might not reference waypoints
in California.

The increasing necessity for speech recognition systems in aviation is
becoming increasingly urgent. This demand is primarily motivated by the growing
Importance of enhanced data exchange among stakeholders in the National Air Space
(NAS). This emphasis particularly concerns digital communication systems such as
the Aircraft Communications Addressing and Reporting System (ACARS),
controller-pilot data-link communication (CPDLC), and emerging operational
frameworks known as "Net-Centric Operations." These frameworks enable new
modes of operation by facilitating the exchange of status, intentions, and performance
data among all users, fostering cooperative and coordinated flight operations.

In these operational scenarios, human oversight, awareness, and potential
intervention remain essential, despite the increasing prevalence of machine-to-
machine collaboration. As the volume of information exchanged grows, it poses a

challenge for humans-in-the-loop, leading to information overload and clutter. To

54



manage this data effectively, there is a growing need for Increasingly Autonomous Systems
(IAS). These systems are designed to provide humans with relevant information such as
traffic updates, intentions, and messaging, and enable interaction or intervention when
necessary.

IAS operates autonomously, comprehending communications and extracting
pertinent information, including path planning, intent, and state data from all aircraft within
its range. It employs adaptive capabilities, learning from user input and contextual data
through machine learning algorithms. A key aspect of IAS design is its human-centered
approach, emphasizing bi-directional communication to ensure effective collaboration
between humans and machines. Therefore, speech-based interfaces, including text-to-
speech and speech-to-text capabilities, play a crucial role in facilitating natural interaction
and creating an intuitive interface for IAS. Research indicates that natural, aural
communication is essential for developing a user-friendly and low-workload IAS interface.

IAS are expanding their presence in various aviation applications beyond trajectory
planning and execution. Technologies such as machine learning and cognitive computing,
typified by IBM Watson, are increasingly recognized for their potential to enhance safety
and performance within the aviation sector. However, a key technical challenge lies in
developing these increasingly autonomous systems into intelligent machines. This requires
leveraging machine learning algorithms while ensuring human involvement and interaction
to optimize system performance beyond what either component could achieve individually.
The collaboration between humans and autonomy is pivotal for the success of 1AS, with
speech serving as a natural and intuitive interface crucial for enabling autonomous systems.
In future research, | propose to use integrated aviation-specific speech recognition systems
with technologies such as IBM Watson to reduce the workloads of the commercial flight
cockpit.
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Available commands for the GVSITE flight test

Appendix A

The tables provided outline the commands accessible within the Speech Recognition

System (SRS). Moreover, Evaluation Pilots (EPs) had access to shortcut commands, namely
CANCEL and REPEAT. CANCEL was utilized to revoke the last command issued, while

REPEAT was employed to replicate the previously spoken command.

Table A1l. HUD Commands for GVSITE flight test.

Display Attribute

State

HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD
HUD

ALL

ALL
TUNNEL
TUNNEL
TERRAIN
TERRAIN
GHOST
GHOST
TRAFFIC
TRAFFIC
TRAFFIC
TRAFFIC
CONES
CONES
FLIR
FLIR
RASTER
RASTER
RUNWAY
RUNWAY
INSERT

DECLUTTER
ON
DECLUTTER
ON
DECLUTTER
ON
DECLUTTER
ON
DECLUTTER
ON

AIR
SURFACE
DECLUTTER
ON
DECLUTTER
ON
DECLUTTER
ON
DECLUTTER
ON
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Table A2. PFD Commands for GVSITE ﬂigE test.

Display Attribute

State

PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD
PFD

TUNNEL
TUNNEL
GHOST
GHOST
TRAFFIC
TRAFFIC
TRAFFIC
TRAFFIC
FOV

FOV

FOV

FOV

FLIR

FLIR
NOTAM
NOTAM
CHANNEL
CHANNEL
CHANNEL

DECLUTTER
ON
DECLUTTER
ON
DECLUTTER
ON

AIR
SURFACE
UNITY

30

60

90
DECLUTTER
ON
DECLUTTER
ON
DECLUTTER
BOTTOM
TOP

62



Table A3. NAV Commands for GVSITE ﬂight test.

Display Attribute State
NAV OWNSHIP CENTER
NAV OWNSHIP NORMAL
NAV TAG DECLUTTER
NAV TAG ID

NAV TAG TYPE
NAV RANGE (.5

NAV RANGE 1

NAV RANGE L.5

NAV RANGE 2

NAV RANGE 2.5

NAV RANGE )

NAV RANGE 10

NAV RANGE 20

NAV RANGE 40

NAV RANGE 60

NAV RANGE =0

NAV RANGE 160

NAV RANGE DOWN
NAV RANGE UP

NAV MESSAGE DECLUTTER
NAV MESSAGE ON

NAV MESSAGE DOWN
NAV MESSAGE UpP

NAV FORMAT AIRPORT
NAV FORMAT PERSPECTIVE
NAV FORMAT MAF

NAV FORMAT SURFACE
NAV FORMAT PLAN
NAV FORMAT EXITS
NAV FORMAT ANIMATE
NAV V5D DECLUTTER
NAV V5D ON

NAV EXIT DOWN
NAV EXIT UP

NAV CLEARANCE

NAV DIRECTOR

NAV MAP

NAV CONFORMAL

NAV ALIGNMENT

NAV BORE SIGHT
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Table A4, EFB Commands for GVSITE ﬂig]_]t test.

Display Attribute State
EPAD OWNSHIP CENTER
EPAD OWNSHIP NORMAL
EPAD TAG DECLUTTER
EPAD TAG ID

EPAD TAG TYPE
EPAD RANGE 0.5

EPAD RANGE 1

EPAD RANGE 1.5

EPAD RANGE 2

EPAD RANGE 2.9

EPAD RANGE ]

EPAD RANGE DOWN
EPAD RANGE UP

EPAD MESSAGE DECLUTTER
EPAD MESSAGE ON

EPAD MESSAGE DOWN
EPAD MESSAGE UP

EPAD FORMAT  AIRPORT
EPAD FORMAT SURFACE
EPAD FORMAT EXITS
EPAD EXIT DOWN
EPAD EXIT UP
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Appendix B

Custom Speech Application Software

The evaluation software was created within the Microsoft Visual Studio 2005
development environment, utilizing the C# programming language and the Fonix C#
Application Programmers Interface (API). Around 2,000 lines of code were dedicated to

this project. Below are screenshots depicting the three segments utilized in the study.

ASR | Single Word Utterance Test | Command Ullerance Tests | Phrase Utterance Test | Intemal Varnables
Phonetcs 1 ~ | Utterance #
1) Alpha 10) Juliette 19) Sierra
2) Bravo 11) Kilo 20) Tango ‘ Click to Talk ‘
3) Charlie 12) Lima 21) Uniform
4) Delta 13) Mike 22) Victor Repeat last
5) Echo 14) November 23) Whiskey
6) Foxtrot 15) Oscar 24) X-Ray Acusal Recogrition (shouid be)
T) Golf 18) Papa 25) Yankee 0
8) Hotel 17) Quebec 26) Zulu Cormect
9) India 18) Romeo
0 Incorrect
l'_ow:‘;u-g VU Meter L] Fisplay Inpet 80 2% MNode Rejection Strength (1-100) 0 Actunl Recog. %
[] Concument Recogrtion | 1000 3 Node Leading Sience fus)
Py [) Auto Detect Speech 12505 | Node Trailing Slence fms)
[ ke 10 2| Marecordtme 0 = Slence Threshold
Recognized Speach Cutput Automanic Recogniion
] Correct
o Incarrect
pe EW
- | Utierance Score 50 2 '&'mmmm 0 S/ subjectNo

0 total
Reset
((Ret ] R

Command Utterances - 1 Utterance #
huackdi fi eoff =

27) Nav range one 38) PFD Freld of view unity 49) HUD declutter gg; ghﬂdﬂ::: :h:‘;.lak

28) Nav range two 39) PFD Field of view thirty 50) HUD traffic on 54) Checklist climb

29) Nav range five 40) PFD Field of view sbdy 51) HUD traffic off Click to Talk

30) Nav range ten

31) Naw range twenty

32) Nav range fifty

33) Nav range one hundred
34) Mav range two hundred
35) Nav zoom out

36) Nav zoom in

37) Nav range back

Conirols

Recagnized Speach Output

- Utlerance Score 50

41) PFD Fiald of view ninety
42) PFD FOV unity

43) PFD FOV thirty

44) PFD FOV sbay

45) PFD FOV ninety

48] PFD declutier

47) PFD traffic on

48) PFD tratfic off

WU Meter

[#] Enabie

«| Utterance Score
* | Recognition Threshold

[] Replay input
[#] Concurent Recogriion
[#] Mo Detect Speech

0 = | Maecrecord time

55) Checkist cruise

58) Checklist descant

57) Checidist landing

58) Checklist after landing
58) Before takeoff Checklist
60) Takeoff Checklst

&1) Climb Checklist

62) Cruise Checklist

63) Descent Checklist

£4) Landing Checklist

65) After landing Checkfist

a0 Modde Rejection Strength (1-100)

1000 % Mode Leading Sience fms)
250 %  Node Traling Slence fms)
0 5 Slence Threshold
- - ==
| i
| Feset

Rapsaat lzat

Actual Recogntion (should be)

0 Cormect
0 Incarrect
0 Actual Recog. %

Automanic Recognition

0 Correct
o Incorract
0 total

o ASR %
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Figure B2. Short (command) phrase utterance segment screen image.

|ASR | Single Word Utierance Test | Command Uterance Tests || Phrase Utterance Teest | intemal Variables |

Phrase Utterances

66) NASA five five seven Tax to Rurway two three via Delta Foxtrot Tango Lima

67) United two three one Tax to Concourse Delta via Echo Bravo Alpha

68) NASA five five seven Hold Short of Runway one four Right at Delta

69) United two three one Tax to Runway one four left via Tango Oscar Bravo Whiskey
70) NASA five five seven Hold at Gate Kilo

71) United two three one Hold at Concourse Jubette

Click to Talk

Controls
; VU Meter O ot 80 2 Node Rejection Strength (1-100)
Waorking e [9] Concument Recogntion 1000 2 Nede Leading Sience fne)
A [¥] Auto Detect Speech 112502 Node Tralng Skence fms)
[¥] Ensble 10 3| Maxmcodtme 0 3 Shence Threshokd
Recognized Speach Output
— len &l Utterance Score o @l Subyect
}——- Utterance Score S0 2| Recognition Threshold 0—'" i

Actud Recognition (should be)

0 | comect

Automanic Recogrion
0 Incorrect
0 | total
0 | ASR%

Figure B3. Long phrase utterance segment screen image.
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Appendix C
Speaker-independent engine
A speech application is structured into nodes, each representing the vocabulary and
other recognition configurations utilized during speech recognition. The Software
Development Kit (SDK) facilitates word-spotting and grammar nodes, eliminating the need
for training. The diagram below illustrates a speech utterance and outlines the audio
attributes associated with each node. These attributes dictate how the speech detector frames

the utterance before transmitting it to the recognizer.

wave data sent 10 recognizer

Record
B-::_l:: <Off
I a—

-

Leading Trailing
p— Silence — Silence —

Maximum Record 1

Figure C1. Speech waveform and attributes.

The speaker-independent SRS engine undertakes the following operations:

1. Audio collection: Raw audio data is gathered from an input source, such as a
microphone, and forwarded to the Audio Processing component.

2. Audio processing: The audio input is segmented into "frames" using predetermined
parameters, ensuring that only relevant audio data for recognition is retained. This processed
data is then directed to the Feature Extraction component.

3. Feature extraction: Frequency components are extracted from the processed audio
data at intervals of 10 milliseconds. These frequency components are then passed on to the
Neural Networks component.

4. Neural networks: Phoneme probability estimates are derived from the frequency

components by the neural networks. These estimates are subsequently transmitted to the
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Continuous Word Decoder. Neural networks play a pivotal role in the speech
recognition technology.

5. Continuous word decoder: The collection of phoneme probabilities is
compared against the dictionary, resulting in a list of word probabilities arranged in

descending order of likelihood.
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Appendix D
Software Implementation

Each segment of the study had its own configuration for grammar structure and
candidate word dictionary. The Application Programmers Interface (API) employed a
straightforward script language to define the grammar structure. In this language, a "vertical
line" denotes a logical OR, a "space” signifies a logical AND, square brackets "[ ]" indicate
optional elements, and parentheses "( )" are used for grouping.

In the first segment, the dictionary consisted solely of the 26 phonetics.

$phonetics = (Alpha%A | Bravo%B | Charlie%C | Delta%D | Echo%E | Foxtrot%F |
Golf%G | Hotel%H | India%l | Juliette%)] | Kilo%K | Lima%L | Mike%M | November%N |
Oscar%0O | Papa%P | Quebec%Q | Romeo%R | Sierria%S | Tango%T | Uniform%U |
Victor%V | Wiskey%W | X-Ray%X | Yankee%Y | Zulu%Z);

$grammar = $phonetics;

In the second segment, which focused on short command utterances, the structure was as
follows:
$navcommand = NAV (declutter |
(zoom (in | out)) |
((range ( back | one%1 | two%?2 | five%5| ten%10 |
twenty%20 | fifty%50 | one-hundred%100 |
two-hundred%200)))) ;
$pfdcommand = PFD (declutter |
(traffic (on | off)) |
(((Field of view) | (F O V))
(unity | thirty%30 | sixty%60 | ninety%90)));
$hudcommand = HUD (declutter | (traffic (on | off)));
$chklstcommand = [Checklist] ((Before Takeoff) |
Takeoff | Climb | Cruise | Descent |
Landing | (After Landing)) [Checklist];

$grammar = $pfdcommand | $navcommand | $hudcommand | $chklstcommand;
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The third segment, (long phrase utterance) contained the following structure:

$command = (Hold | (Hold at) | (Hold Short) | (Hold Short Of) | Taxi);
$modifiers = (TolAt);

$dest = (Ramp | Gate | Concourse | (Runway One%1 Four%4 Left%Lt)|
(Runway One%1 Four%4 Right%Rt)| (Runway two%?2 three%?3) |
(Runway one%?1 six%6));

$modifiers2 = (vialat);

$grammar = $callsign $command [$modifiers] $dest [Sphonetics]
[$modifiers2] {$phonetics};
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Appendix E

Software controls definitions

The Utterance Score is an integer ranging from 0 to 100, provided by the SRS
algorithm, indicating the confidence level in recognizing the last spoken utterance.

The Utterance Score Recognition Threshold is also an integer ranging from 0 to 100,
used to compare with the Utterance Score. If the Utterance Score exceeds or equals this
threshold, the utterance is considered recognized. Throughout the study, this threshold was
consistently set to 50.

Node Rejection Strength, another integer ranging from 0 to 100, is a setting in the
SRS algorithm determining the threshold for recognizing or rejecting out-of-vocabulary
words. Increasing this value makes word recognition more stringent, resulting in more
rejections. Conversely, decreasing this value makes word recognition less strict but
increases the chance of accepting out-of-vocabulary words. For this study, the value was set
to 80.

Node Leading Silence is an integer setting ranging from -1 to 10000 milliseconds
used in the SRS algorithm. It measures the duration of silence between the start of recording
and the detection of speech. If no speech is detected within the leading silence time,
recording stops.

Node Tailing Silence is also an integer setting (-1 to 2000 milliseconds) used in the
SRS algorithm to determine the maximum length of silence the speech detector waits for
before recognizing the end of speech. This allows for natural pauses in speech. Setting a
lower value results in faster recognition results. Trailing silence begins after speech
detection stops, and recording stops when the trailing silence time is reached. In this study,
the value was consistently set to 1250 milliseconds.

Maximum Record Time is an integer setting (0 to 120 seconds) that defines the
maximum recording time after speech detection. For this study, the maximum record time
was set to 10 seconds.

Silence Threshold is an integer setting (0 to 500) designed for high noise

environments where speech may be detected prematurely. However, this threshold is only
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applied if recognition is lower than expected. The program dynamically adjusts the
silence threshold.

Auto Detect Speech is a discrete setting that toggles speech detection on or off during
audio collection. When auto speech detect is enabled, only detected speech (including
trailing silence) is sent to the recognizer. This setting was enabled throughout the study.

Concurrent Recognition is another discrete setting that allows concurrent
recognition and audio acquisition. This feature requires a fast processor to perform speech
recognition while collecting audio. It was enabled throughout the study.

Record Back-off refers to the duration of time before speech detection begins, which
Is incorporated into the data transmitted to the recognizer. This feature helps prevent
clipping at the start of an utterance. Throughout the study, the record back-off setting
remained at its default value of 250 milliseconds.

72



Appendix F
Visualization of results using Matlab
Percentage of Incorrect Recognitions per Display:

% Percentage of Incorrect Recognitions per Display

% Data
display types = {'ND', 'HUD', 'PFD'};
incorrect_rates = [14, 3, 84]; % Incorrect recognition rates

for ND, HUD, and PFD in percentage

% Create a bar chart

figure;

bar(incorrect_rates, 'FaceColor’, [0.8, 0.2, 0.2],
'EdgeColor', [0.5, 0.1, 0.1], 'LineWidth', 1.5);

set(gca, "XTickLabel', display types, "FontSize', 12,
"FontWeight', 'bold');

xlabel('Display Type', 'FontSize', 14, 'FontWeight', 'bold");

ylabel('Percentage of Incorrect Recognitions', 'FontSize', 14,
"FontWeight', 'bold');

title('Percentage of 1Incorrect Recognitions per Display',
'FontSize', 16, 'FontWeight', 'bold');

ylim([@ 40]);

grid on;

ax = gca;

ax.GridAlpha = 0.5;

% Add percentage labels above bars
for i = 1l:1length(incorrect_rates)
text(i, incorrect_rates(i) + 1, sprintf('%.1f%%",
incorrect_rates(i)),
'HorizontalAlignment', 'center’, "FontSize', 12,
"FontWeight', 'bold');
end

% Save the figure
saveas(gcf, 'incorrect recognitions per display.png');
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Commands Correctly Recognized per Display:

% Success Rate by Command Type

% Data
commands_types = {'ND', 'HUD', 'PFD'};
success_rates = [0.95, 0.96, 0.68]; % Success rates for ND,

HUD, and PFD

% Create a bar chart

figure;

bar(success_rates, 'FaceColor', [0.4, 0.7, 0.9], 'EdgeColor’,
[0.2, 0.4, 0.5], 'LineWidth', 1.5);

set(gca, "XTickLabel', commands_types, "FontSize', 12,
'"FontWeight', 'bold');

xlabel('Command Type', 'FontSize', 14, 'FontWeight', 'bold');

ylabel('Recognition Success Rate', "FontSize', 14,
'"FontWeight', 'bold');

title('Success Rate by Command Type', ‘'FontSize', 16,
"FontWeight', 'bold');

ylim([@ 1]);

grid on;

ax = gca;

ax.GridAlpha = 0.5;

% Add percentage labels above bars
for i = 1l:1length(success_rates)
text (i, success _rates(i) + 0.02, sprintf('%.1f%%",
success_rates(i) * 100),
'HorizontalAlignment', 'center’, "FontSize', 12,
"FontWeight', 'bold');
end

% Save the figure
saveas(gcf, 'command type success rates.png');
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Incorrect Recognitions for the PFD:

% Data

pfd _commands = {'FOV UNITY', 'FOV 30', 'FOV 60', 'FOV 90',
"TRAFFIC ON'};

incorrect _counts = [15, 11, 37, 1, 3]; % Number of incorrect
recognitions for each PFD command

% Create a bar chart

figure;

bar(incorrect_counts, 'FaceColor’, [0.2, 0.6, 0.8],
'EdgeColor', [0.1, 0.3, 0.4], 'LineWidth', 1.5);

set(gca, "XTickLabel', pfd _commands, '"FontSize', 12,

'"FontWeight', 'bold', 'XTickLabelRotation', 45);

xlabel('PFD Command', 'FontSize', 14, 'FontWeight', 'bold');

ylabel('Number of Incorrect Recognitions', 'FontSize', 14,
'"FontWeight', 'bold');

title('Incorrect Recognitions for the PFD Commands',
"FontSize', 16, 'FontWeight', 'bold');

ylim([0 4@]);

grid on;

ax = gca;

ax.GridAlpha = 0.5;

% Add counts above bars
for i = 1l:1length(incorrect_counts)

text (i, incorrect_counts(i) + 1, sprintf('%d",
incorrect_counts(i)),
'"HorizontalAlignment', 'center’', '"FontSize', 12,
"FontWeight', 'bold');
end

% Save the figure
saveas(gcf, 'incorrect_recognitions pfd.png');
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Appendix G
Basic code of the voice command system for on-board control systems.

Creating a complete voice command system for on-board control systems involves
several components, including speech recognition, command parsing, and interfacing with
the control systems. Here's a frame using Python and the SpeechRecognition library for
speech recognition and command parsing. This code assumes a basic setup and does not
include integration with actual aircraft systems, which would require more specific and

robust implementation:
Install Required Libraries:

pip install SpeechRecognition pyttsx3

Import Libraries and Initialize Components:

speech recognition ST
pyttsx3

# Initialize the recognizer and text-to-speech engine
recognizer = sr.Recognizer ()
tts engine pyttsx3.init ()

# Function to convert text to speech
(text) :
tts engine.say(text)
tts engine.runAndWait ()

# Function to recognize speech

() :

sr.Microphone () source:
print ( )
audio = recognizer.listen (source)
command = recognizer.recognize google (audio)
print ( command ")

command. lower ()
sr.UnknownValueError:
print ( )
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return None

except sr.RequestError:
print ("Error with the recognition service")
return None

Define Command Parsing and Execution:

# Define command functions
defset nav range(value):
speak(f'Setting navigation range to {value} nautical miles"
# Here you would add the code to interact with the actual aircraft systems

def declutter_display
speak("'Decluttering the display")
# Here you would add the code to interact with the actual aircraft systems

def execute command(command):
if command:
words = command.split()
if len(words) < 2:
speak("Incomplete command")
return

device = words[0]
action = words[1]

if device == "nav" and action == "range"
if len(words) == 3 and words[2].isdigit():
set_nav_range(words[2])
else
speak("Please specify the range value")
elif device == "display" and action == "declutter’
declutter_display()
else
speak("Unknown command")
else
speak("No command detected")



Main Loop to Continuously Listen and Execute Commands:

speak( )

command = recognize_speech()
execute_command(command)

__nhame__ ==
main()

1) Speech Recognition: The recognize_speech() function listens for audio input and uses
Google's speech recognition service to convert it to text.

2) Text-to-Speech Feedback: The speak() function provides feedback to the user through
text-to-speech.

3) Command Parsing: The execute_command() function parses the recognized text and
executes the appropriate function based on the parsed command.

4) Command Functions: Example command functions like set_nav_range() and
declutter_display() simulate actions that would be taken in a real system.

5) Main Loop: The main() function continuously listens for commands and processes

them.
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