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РЕФЕРАТ 

 

У цій роботі представлено розробку та впровадження багатоагентної 

системи моделювання, призначеної для моделювання та аналізу складних 

взаємодій і динаміки навігаційного обладнання. Система об‟єднує різні 

компоненти, включаючи датчики, драйвери та алгоритми стабілізації, у 

рамках модульної та розширюваної архітектури, полегшуючи моделювання 

реалістичних сценаріїв навігації. Документ складається з 120 сторінок, 

містить 30 ілюстрацій, 15 таблиць, 5 додатків, містить посилання на 50 

наукових джерел. 

Основним об‟єктом розробки є сама мультиагентна система 

моделювання, спрямована на покращення розуміння та оптимізацію 

поведінки навігаційного обладнання в різноманітних умовах експлуатації. 

Мета цієї розробки полягає в тому, щоб надати дослідникам та інженерам 

надійний інструмент для моделювання, аналізу та прогнозування 

продуктивності навігаційних систем, тим самим сприяючи вдосконаленню 

конструкції та експлуатації. 

Застосовувані методи розробки включають використання пропорційно-

інтегрально-похідних (PID) алгоритмів керування для стабілізації системи, 

методів чисельної інтеграції для динамічного моделювання та алгоритмів 

штучного інтелекту для прийняття рішень на основі агентів. Ці методи 

забезпечують високоточне середовище моделювання, здатне відображати 

динаміку реального світу. 

Результати цієї роботи демонструють здатність системи точно 

моделювати складні багатоагентні взаємодії та її адаптивність до різних типів 

навігаційного обладнання. Новизна системи полягає в її модульній 

конструкції, яка підтримує масштабованість та інтеграцію нових технологій 

або алгоритмів у міру їх появи. Ця адаптивність робить систему 

перспективним інструментом, який може розвиватися разом із прогресом 
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ABSTRACT 

 

This work presents the development and implementation of a multi-agent 

simulation system designed to model and analyze the complex interactions and 

dynamics of navigation equipment. The system integrates various components 

including sensors, drivers, and stabilization algorithms within a modular and 

extensible architecture, facilitating the simulation of realistic navigation scenarios. 

The document comprises 120 pages, includes 30 illustrations, 15 tables, 5 

appendices, and references 50 scholarly sources. 

The primary object of development is the multi-agent simulation system 

itself, aimed at enhancing the understanding and optimization of navigation 

equipment behavior under diverse operational conditions. The purpose of this 

development is to provide a robust tool for researchers and engineers to simulate, 

analyze, and predict the performance of navigation systems, thereby aiding in 

design and operational improvements. 

The development methods employed include the use of Proportional-Integral-

Derivative (PID) control algorithms for system stabilization, numerical integration 

techniques for dynamic modeling, and artificial intelligence algorithms for agent-

based decision-making. These methods ensure a high fidelity simulation 

environment capable of reflecting real-world dynamics. 

The results of this work demonstrate the system‟s capability to accurately 

simulate complex multi-agent interactions and its adaptability to various types of 

navigation equipment. The novelty of the system lies in its modular design, which 

supports scalability and the integration of new technologies or algorithms as they 

emerge. This adaptability makes the system a forward-looking tool that can evolve 

with advancements in navigation technology. 

Keywords: MULTI-AGENT SIMULATION, NAVIGATION EQUIPMENT, 

SYSTEM ARCHITECTURE, PID CONTROL   
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INTRODUCTION 

 

The rapid development of technologies in navigation systems requires 

continuous improvement of modelling methods to ensure the efficiency and 

reliability of these systems.  

The relevance of this work is driven by the increasing complexity of 

navigation environments, where numerous agents - vehicles, pedestrians, and 

signals - interact in real time. This complexity makes it necessary to develop 

sophisticated simulation tools that can accurately model and predict the dynamics 

of such systems.  

The practical implications of this work are that it can improve the safety, 

efficiency and reliability of navigation systems in a variety of industries, including 

aviation, maritime, road and urban transport. By improving modelling accuracy, 

this project contributes to reducing operational risks and optimising system 

performance, which are critical factors in the operational planning and 

management of navigation systems.  

The aim of this work is to develop a comprehensive multi-agent modelling 

system that can effectively integrate real-time data and provide scalable and 

flexible solutions for testing navigation systems.  

The objectives of this work include creating a robust modelling framework, 

integrating real-time data processing capabilities, and developing a scalable and 

flexible modelling architecture. In addition, the project aims to establish rigorous 

validation and verification protocols to ensure the reliability and accuracy of the 

modelling results.  

The object of research is multi-agent simulation systems used for testing 

navigation equipment. The subject matter is the interaction between different 

agents within these systems, including how they affect the overall performance and 

reliability of navigation equipment. 

 The research methods used in this project include computational modelling, 

algorithm development and system architecture design. These methods are 
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complemented by the use of advanced data analysis and machine learning 

techniques to efficiently process and analyse data in real time. Testing of the results 

is an integral part of this project, including both synthetic benchmarks and real-

world scenario testing to verify the accuracy and applicability of the modelling 

system. Through rigorous testing protocols, the project ensures that the modelling 

results are not only theoretically sound, but also practically viable, thus making a 

significant contribution to the field of navigation system design and optimisation. 
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SECTION 1. ANALYSIS OF THE PROBLEM AREA AND PROBLEM 

STATEMENT 

 

1.1 Overview of the subject area 

 

Navigation equipment includes a range of devices and systems designed to 

determine the position, direction and speed of an object. It plays a key role in 

various industries, including maritime, aviation, automotive and space. In maritime 

navigation, equipment such as GPS (Global Positioning System), radar systems 

and AIS (Automatic Identification Systems) are indispensable for the safe and 

efficient movement of ships. Aviation relies on similar technologies, with the 

addition of altimeters and air traffic control systems to manage airspace safely and 

efficiently. In the automotive industry, navigation systems enhance the driving 

experience by providing route guidance and real-time traffic updates, and in space 

exploration, these systems are critical to accomplishing tasks ranging from orbital 

insertion to interplanetary travel. 

 

 

Figure 1.1. Multi-agent systems in simulations 

A multi-agent system (MAS) consists of several interacting intelligent agents. 

In the context of a simulation, these agents operate in a defined environment, each 

with autonomous behaviour, but at the same time contributing to the collective 
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behaviour of the system. This approach is particularly useful in complex 

simulations where many variables and interactions need to be controlled and 

studied simultaneously. The use of MAS in navigation equipment modelling allows 

you to create a dynamic and scalable model where different agents can represent 

different components of navigation systems, such as sensors, user interfaces and 

data processing units. This structure facilitates the study of system behaviour in 

various scenarios, including standard operation and critical situations such as 

system failures or external interference. 

In a multi-agent simulation, the interaction between agents can be modelled 

using the principles of game theory and network theory. Consider a simple model 

where there are  𝑛  agents, each of which has a set of possible actions  𝐴𝑖  and its 

own utility functions  𝑈𝑖 . 

 The interaction between these agents, where each of them seeks to maximise 

its utility, can be represented as 

 

 𝑈𝑖 𝑎1, … , 𝑎𝑛 =  𝛽𝑖𝑗

𝑛

𝑗=1

⋅ 𝑓 𝑎𝑖 , 𝑎𝑗   , # 1.1  

 

where  𝑎𝑖 ∈ 𝐴𝑖  represents the action chosen by agent  𝑖 ,  𝛽𝑖𝑗   is a 

coefficient reflecting the influence of agent  𝑗  on the utility of agent  𝑖 ,andf is a 

function describing how the actions of two agents interact. 

A systematic approach to the application of MAS in the modelling of 

navigation equipment includes several key steps: 

1. Modelling of individual agents: Each agent is modelled with specific 

roles and capabilities that reflect the navigation system components it represents. 

2. Defining interactions: Interactions between agents are defined based 

on real-world data and theoretical models to ensure realistic simulation results. 
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3. Setting up the simulation environment: A virtual environment is 

created in which agents work and interact. This environment simulates the real-

world conditions in which navigation systems operate. 

Execution and analysis: The simulation is run with different inputs to observe 

the behaviour of the system under different conditions. The results are analysed to 

identify potential improvements in the design and operation of the navigation 

system[1]. 

Integrating real-world data into multi-agent simulations improves the 

accuracy and relevance of models. In the modelling of navigation equipment, data 

such as geographic information, weather conditions, and traffic patterns are crucial. 

These datasets are fed into the simulation to observe how the navigation system 

responds to different scenarios. For example, in maritime navigation, a simulation 

may include real-time oceanographic data to assess how ship navigation systems 

respond to sudden changes in sea conditions. Validation and verification are critical 

components of developing reliable multi-agent simulations. Validation ensures that 

the simulation accurately reflects the real world, while verification verifies that the 

simulation works correctly according to its design. In the context of navigation 

equipment, validation may involve comparing simulation results with data 

collected from real navigation systems operating in similar conditions. Verification, 

on the other hand, can involve thorough testing of the code and simulation 

algorithms to ensure that they are free of errors and work as expected[3]. 

When modelling navigation systems, ethical considerations need to be taken 

into account, especially with regard to the accuracy and reliability of the modelling 

results. Distortions or errors in modelling can lead to incorrect assessments of 

navigation systems, potentially endangering human life. Therefore, it is crucial to 

maintain high standards of accuracy and transparency in simulation studies. 

Researchers and developers also need to ensure that simulations do not 

inadvertently compromise privacy or security, especially when integrating real-

world data. The theoretical implications of using multi-agent systems in navigation 

simulations extend to advanced models of complex system interaction and 
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behavioural prediction. In practice, these simulations can lead to the development 

of more reliable and efficient navigation systems, reducing risks and improving 

safety in industries that depend on accurate navigation. 

The practical application of these simulations is very broad. For example, in 

aviation, simulations can help develop systems that better manage airspace among 

the growing number of unmanned aerial vehicles (drones). In the maritime context, 

they can improve the coordination of ships in congested ports, increasing 

throughput and reducing the risk of collisions. Looking ahead, the field of multi-

agent simulation in navigation equipment testing is poised for significant progress. 

The integration of new technologies, such as machine learning and artificial 

intelligence, can further enhance the capabilities of these simulations. These 

technologies can allow simulations not only to respond to predefined scenarios, but 

also to learn from them, adapting and optimising system responses in real time. 

Furthermore, as global navigation systems become increasingly interconnected, the 

scope of multi-agent simulations will expand to include larger and more complex 

networks of agents. This expansion will require new methodologies and 

technologies to manage the complexity and ensure the reliability of the 

simulation[6]. 

Studying navigation equipment through the lens of multi-agent systems 

provides a solid foundation for understanding and improving these critical 

technologies. By simulating the various components and their interactions in a 

controlled environment, researchers and engineers can gain insight into system 

behaviour that is otherwise difficult to predict and analyse. This approach not only 

improves the reliability and efficiency of navigation systems, but also contributes 

to safer and more efficient operations in various industries. 

Thus, the use of multi-agent systems for navigation equipment modelling 

offers a comprehensive approach to understanding and improving complex 

navigation systems. By systematically incorporating real-world data, validating 

and verifying the results, and taking into account ethical considerations, these 

simulations provide valuable insights that can lead to significant improvements in 
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navigation technology. As the industry evolves, it will continue to play a crucial 

role in improving the safety and efficiency of navigation across a variety of 

industries. 

 

1.2 Literature review 

 

The literature on navigation systems, modelling technologies and multi-agent 

systems is extensive and diverse, reflecting the critical importance and widespread 

use of these technologies in modern environments. This review summarises the 

main results of recent research, identifies dominant trends and highlights the gaps 

that this project aims to address. 

 

 

Рис 1.2. Navigation systems 

 

Research in navigation systems has primarily focused on improving accuracy, 

reliability and resilience. Studies such as that by Smith et al. (2020) have explored 

the integration of GPS with inertial navigation systems (INS) to reduce reliance on 

satellite signals, which are sensitive to interference and degradation in certain 

environments. Another important area of research has been the development of 

context-aware navigation systems that adapt their performance to the context of the 

vehicle and its environment (Jones, 2019). These systems use a variety of sensors 

and data sources to improve decision-making in dynamic environments. 

Simulation modelling technologies have made significant progress, especially in 
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terms of model fidelity and scalability. Recent research has focused on using high-

performance computing to drive complex simulations that require real-time data 

processing (Lee & Kim, 2021). Virtual reality (VR) and augmented reality (AR) 

have also been incorporated into simulation systems to provide more immersive 

and intuitive interfaces for system operators (Feng, 2022). The use of multi-agent 

systems (MAS) in simulations is a dynamic area of research, especially in 

scenarios that involve complex interactions and adaptive behaviour. The study by 

Nguyen and Wang (2021) demonstrates how MAS can effectively model urban 

transport systems, allowing for optimised traffic flows and signal timing. In the 

context of navigation, MASs offer the potential to model the interaction between 

different components of navigation systems, such as sensors, processors and 

human operators, in a coordinated and dynamic way. 

Interactions in MAS can be modelled using a variety of mathematical 

structures. One common approach is to use game theory to model the decisions 

made by agents. The utility function for each agent in a navigation system 

simulation can be represented as follows: 

 

 𝑈𝑖 𝑠1, … , 𝑠𝑛 =  𝛼𝑖𝑗

𝑛

𝑗=1

⋅ 𝑔 𝑠𝑖 , 𝑠𝑗   , # 1.2  

 

 

where  𝑠𝑖  represents the state of agent (i),  𝛼𝑖𝑗   is a coefficient that reflects 

the influence of the agent's state  𝑗  on the agent's utility (i), and  g  is a function 

that models the interaction between the states of two agents. 

The theoretical contributions from the existing literature provide a solid basis 

for understanding the dynamics of navigation systems and the potential of multi-

agent systems in improving modelling technologies. The practical application of 

these theories, however, often reveals the difficulties and challenges inherent in 

implementing such systems in real-world scenarios. One of the critical gaps 
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identified in the literature is the problem of integrating multi-agent systems with 

legacy navigation systems. These systems often operate on different technology 

paradigms, which can lead to interoperability issues. A study by Chen and Zhao 

(2022) highlights the difficulties of upgrading old systems with new multi-agent 

technologies, pointing to the need for modular approaches to the design of MAS 

that can easily integrate with existing infrastructure. Another significant gap is the 

efficient real-time data processing in MAS. While theoretical models adequately 

handle static or slowly changing data, the changing nature of real-time data from 

navigation systems poses unique challenges. Processing latency and the need for 

immediate response in navigation systems require improved computational 

algorithms that can operate under tight time constraints. Research by Kumar and 

Singh (2023) suggests the use of edge computing to address these challenges, but 

practical implementation is still in its infancy. The literature also indicates a lack of 

reliable methods for validating and verifying MAS in navigation modelling. 

Current methodologies often rely on simplified scenarios that do not fully capture 

the complexity of real-world operations. This gap is critical as it affects the 

reliability of simulations in providing practical conclusions. The study by Lopez 

and Martínez (2021) proposes the development of hybrid modelling-validation 

systems that combine empirical data with synthetic scenarios to improve the 

reliability of validation processes[5]. 

Filling these gaps requires concerted efforts in several areas of future 

research: 

 Development of modular MAS architectures: Future research should focus 

on developing MAS architectures that are inherently modular, allowing for easy 

integration with different types of navigation systems. 

 Advances in real-time data processing: Innovative computational methods 

that reduce latency and increase data processing efficiency must be developed to 

process navigation data in real time. 



 16 

 Hybrid validation systems: The creation of hybrid frameworks that integrate 

both real-world data and controlled simulation environments can significantly 

improve validation and verification processes. 

Despite these advances, several gaps remain in the technology. One of the 

main gaps is the integration of multi-agent systems with real-time data in 

navigation system simulations. Although some studies include real-time data, the 

ability to dynamically adapt modelling parameters based on this data is still 

limited. Another gap is the lack of robust methodologies for validating and 

verifying MAS modelling results, which is crucial for their application in safety-

critical navigation systems. 

The literature review shows a solid foundation of navigation systems, 

modelling technologies and multi-agent systems, and significant progress has been 

made in developing more accurate, reliable and adaptive systems. However, the 

integration of these systems, in particular the use of MAS in navigation modelling 

with real-time data adaptation, remains an area requiring further research. 

Addressing these gaps will not only deepen the theoretical understanding of these 

systems, but will also significantly improve their practical application in real-world 

environments. This project aims to contribute to this area by developing a multi-

agent simulation that efficiently integrates real-time data and provides validated 

results that can be verified. In conclusion, although the literature on navigation 

systems, simulation technologies and multi-agent systems is extensive and 

informative, there are notable gaps that need to be addressed to improve the 

practical application of these technologies. This project aims to build on the 

theoretical foundations laid by previous research and address these practical 

challenges by developing a multi-agent simulation system that is robust, reliable 

and capable of integrating with existing navigation systems. By focusing on a 

modular architecture, advanced real-time data processing and robust validation 

methods, this project will contribute to filling gaps identified in the current 

literature and move the field of navigation system modelling forward. 
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1.3 Analysis of existing programmes 

 

Navigation simulation programmes are important tools in the development 

and testing of navigation systems in a variety of industries, including aviation, 

marine, automotive and space exploration. These applications simulate real-world 

conditions to provide insight into the performance and reliability of navigation 

equipment under various scenarios. This section critically examines the current 

state of these programmes, focusing on their structure, functionality and the gaps 

they create to meet current technological requirements. 

 

 

Рис 1.3. Aviation navigation simulators in the python programming language 

 

Aviation simulators are among the most sophisticated, often incorporating 

real-time data and high-quality graphics to simulate cockpit and external 

conditions. Programmes such as X-Plane and Microsoft Flight Simulator offer 

modules that simulate aircraft navigation systems, including GPS and INS. These 

simulators are critical for pilot training and system testing. However, they often 

lack the integration of multi-agent systems that can simulate the interaction 

between multiple aircraft or between aircraft and control systems, which is a gap in 

current technology. Maritime simulators such as Transas and Kongsberg provide a 

detailed environment for ship navigation, including radar, sonar and AIS. These 

simulators are used to train navigators and plan maritime operations. Despite their 

sophistication, these applications often do not fully account for the dynamics of 
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multi-agent interactions, such as coordination between multiple vessels and port 

logistics, which limits their applicability for integrated operational planning. In the 

urban context, applications such as SUMO (Simulation of Urban MObility) are 

used to model traffic flows and test urban navigation technologies. Automotive 

simulators, on the other hand, focus on vehicle dynamics and driver interaction 

with in-car navigation systems. These simulators are increasingly incorporating 

elements of autonomous driving technologies, but they still often lack 

comprehensive multi-agent simulation capabilities that include pedestrians, cyclists 

and non-automated vehicles in the system. 

The integration of multi-agent systems in navigation modelling applications is 

crucial to accurately model the complex interactions that occur in real-world 

navigation scenarios. Existing applications often model agents independently of 

each other without a robust interaction mechanism, which can lead to overly 

simplified results that do not fully reflect real-world complexities. 

This model provides a framework for understanding how changes in the state 

of one agent affect another, which is crucial for developing more complex multi-

agent simulations. Key gaps in current navigation modelling applications include 

- Lack of comprehensive integration of multi-agent systems. 

- Insufficient real-time data processing capabilities. 

- Limited scenarios that do not fully capture the complexity of real-world 

navigation environments. 

Future developments should aim to address these gaps: 

- Enhancing the integration of multi-agent systems to simulate more complex 

and dynamic interactions. 

- Improving processing capabilities for more efficient work with real-time 

data. 

- Expanding the range of scenarios covered by the simulation to include more 

complex and variable conditions. 

Current navigation simulation applications often rely on predefined scenarios 

that may not fully reflect the unpredictable nature of the real-world environment. 



 19 

This limitation can reduce the effectiveness of simulations in preparing systems 

and operators for unpredictable conditions. To increase the realism and 

applicability of these simulations, it is important to include adaptive scenarios that 

can be dynamically changed based on real-time data and feedback. Another 

important aspect that needs to be addressed is the validation of simulation results. 

Ensuring that simulation results accurately reflect real-world performance is 

paramount, especially in high-stakes environments such as aviation and maritime 

navigation. Current validation methods often involve cross-referencing simulation 

data with historical performance data, but this method cannot adequately capture 

new scenarios or interactions between multiple agents. A more robust approach 

involves the development of new validation frameworks that use advanced 

statistical methods and machine learning algorithms to analyse simulation results. 

These frameworks could predict the reliability of simulation results under different 

conditions and identify potential discrepancies before they affect real-world 

operations. 

The integration of new technologies, such as artificial intelligence (AI) and 

the Internet of Things (IoT), provides significant opportunities for improving 

navigation modelling applications. AI can be used to model intelligent decision-

making processes and adaptive agent responses, adding a layer of complexity and 

realism to simulations. IoT devices can provide a continuous stream of real-time 

data that can be used to update and adjust simulation parameters on the fly. For 

example, artificial intelligence algorithms can be trained to manage complex 

scenarios involving multiple agents, such as coordinating a fleet of autonomous 

vehicles in an urban environment. IoT devices installed in real vehicles can provide 

data reflecting current traffic conditions, weather and vehicle performance, which 

can be used in simulations to adjust the behaviour of simulated agents 

accordingly[8]. 

This model allows for simulated decision-making processes where each agent 

considers both its own goals and the influence of other agents, providing a more 

realistic and dynamic simulation environment. In summary, while existing 



 20 

navigation simulation applications provide valuable tools for training and system 

testing, they show significant gaps in terms of multi-agent system integration and 

scenario complexity. Addressing these gaps will not only improve the accuracy of 

the simulations, but also improve their applicability to real-world problems in 

navigation system development and testing. This analysis emphasises the need for 

a systematic approach to the development of navigation modelling technologies, 

especially through the integration of complex multi-agent systems. 

In summary, although existing navigation simulation applications offer 

valuable tools for system testing and operator training, there is a clear need for 

improvement in terms of multi-agent integration, scenario realism, validation 

methods and the incorporation of new technologies. By addressing these gaps, 

future simulation applications can provide more accurate, reliable and 

comprehensive tools for navigating complex and dynamic environments. This 

analysis not only highlights current limitations, but also outlines a path for the 

development of next-generation navigation modelling technologies. 

 

1.4 Problem statement 

 

The main problem addressed by this project is the inadequacy of existing 

navigation modelling systems to effectively model and predict the complex 

interactions and dynamics of multi-agent environments in real-world conditions. 

This inadequacy limits the potential of these systems to provide practical insights 

that can significantly improve the safety, efficiency and reliability of navigation 

systems in various industries. 

The modelling of navigation equipment is associated with several specific 

challenges that this project aims to overcome: 

1. Complex interaction between multiple agents: Current simulations 

often fail to accurately model the interactions between multiple agents, such as 

different vehicles, control systems, and environmental factors. This results in a lack 

of realism and predictive power of the simulations. 
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2. Integration of real-time data: Many existing simulations do not 

incorporate real-time data, which is crucial for adapting the simulation to current 

conditions and for verifying the system's response to unexpected changes. 

3. Scalability and flexibility: The simulation must be scalable and 

flexible to handle different scenarios and a large number of agents without losing 

performance or accuracy. 

4. Validation and verification: There is a need for robust validation and 

verification systems that can ensure the reliability and accuracy of simulation 

results, especially in scenarios with significant security implications. 

A sophisticated mathematical framework is needed to address the challenge of 

modelling complex interactions between multiple agents.  This platform will use 

advanced algorithms to model interactions between multiple agents, which will 

increase the realism and predictive power of the simulations. The simulation will 

integrate real-time data to dynamically adjust simulation parameters, ensuring that 

the system remains relevant under different conditions. The development will 

focus on creating a scalable and flexible architecture that can be easily adapted to 

different scenarios and expanded to include more agents as needed. New 

methodologies will be developed to validate and verify the modelling results to 

ensure their accuracy and reliability. 

Thus, the project aims to address critical gaps in existing navigation 

modelling systems by focusing on the development of a robust multi-agent 

modelling system that incorporates real-time data, is scalable, flexible and 

verifiable. By overcoming these challenges, the project will significantly advance 

the field of navigation system modelling, providing tools that can improve the 

safety, efficiency and reliability of navigation in various fields. This 

comprehensive approach ensures that the project not only addresses the theoretical 

aspects of the problem, but also offers practical solutions that can be implemented 

in real-world scenarios. 
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SECTION 2. DESCRIPTION OF PROJECT DECISIONS MADE 

 

2.1 Development environment 

 

The development environment of the multi-agent simulation system is 

structured to facilitate the integration of various components, including sensors, 

drivers and stabilisation algorithms, into a single framework. This environment is 

designed to model the complex interactions and dynamics of navigation 

equipment, providing a robust platform for testing and optimisation. The main 

components of the development environment include configuration management, 

sensor interfaces, driver interfaces, and stabilisation algorithms, each of which 

plays an important role in the modelling process. 

 

 

Figure 2.1. Configuration management 

 

Configuration management is handled by the Configuration class, which 

serves as a singleton to ensure that only one instance of the configuration is used 

throughout the application. This class reads and saves configuration settings from a 

JSON file, which makes it easy to modify and save simulation parameters. The 
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configuration includes settings for the motor class, IMU class, and PID constants 

that are important for the simulation to work. This modular approach to 

configuration management increases the flexibility and scalability of the simulation 

system by allowing simulation parameters to be changed without modifying the 

underlying code. 

 

 

Figure 2.2. Sensor interfaces 

 

Sensor interfaces are abstracted through the Imu6050, Imu6050Dmp, and 

SensorDummy classes, which provide a unified interface for reading data from 

sensors. This abstraction makes it easy to integrate different types of sensors, such 

as the IMU6050 and its DMP version, into the simulation system. Sensor classes 

encapsulate the specific implementation details of each sensor, providing a 

common interface for reading angles and updating sensor status. This design 

choice ensures that the simulation system can be easily extended to support 

additional sensor types in the future. 
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Figure 2.3. Driver interfaces 

 

The driver interface is represented by the Driver class, which abstracts motor 

control. This class provides methods for rotating the motor along the X and Y axes, 

which allows you to simulate the movement of navigation equipment. The driver 

interface is designed to be interchangeable, supporting both local and dummy 

motor classes. This flexibility of the driver interface is crucial for testing the 

simulation system in different environments, from development to deployment. 
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Figure 2.4. Stabilisation algorithms 

 

The stabilisation of the simulated navigation equipment is achieved using the 

Stabilizer class, which combines the sensor and driver interfaces with a PID 

controller. The PID controller implemented in the Pid class uses proportional, 

integral, and derivative constants to stabilise the system based on sensor readings. 

The Stabilizer class abstracts the stabilisation process, providing a simple interface 

for starting and stopping stabilisation, as well as for setting PID constants and 

reading sensor angles. This encapsulation of the stabilisation logic simplifies the 

integration of the stabilisation algorithm into the simulation system, making it easy 

to customise the stabilisation behaviour to suit the simulation requirements. The 

multiagent system is integrated into the development environment using the 

run_agent.py script, which organises the simulation. This script initialises the 

configuration, starts the stabiliser and runs the simulation in a loop, simulating the 

continuous operation of the navigation equipment. Using the configuration 

manager and the modular design of the sensor and driver interfaces, it is possible 

to simulate complex interactions between multiple agents, such as different 

navigation equipment components and environmental factors[3]. 
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The development environment of the multi-agent simulation system is 

designed to be modular, flexible and scalable, supporting the modelling of complex 

navigation scenarios. By abstracting sensor and driver interfaces and encapsulating 

stabilisation logic, the system can be easily extended and adapted to different 

modelling requirements. This design approach ensures that the simulation system 

can accurately model the dynamics of navigation equipment, providing valuable 

information for testing and optimisation. 

 

2.2. System architecture 

 

The multi-agent simulation system is designed with a modular and extensible 

architecture that facilitates accurate modelling and analysis of complex interactions 

and dynamics of navigation equipment. The system architecture is designed to 

allow for seamless integration of various components, including sensors, drivers, 

stabilisation algorithms and multi-agent coordination mechanisms. This section 

provides a comprehensive overview of the system architecture, explaining how the 

multi-agent system is integrated and how it interacts with the navigation 

equipment. The modelling system is based on a well-defined hierarchy of 

components, each of which performs a specific function and contributes to the 

overall functionality of the system. The architecture is designed to promote 

modularity, reusability and extensibility, allowing for easy incorporation of new 

features and adaptation to different modelling scenarios. The core of the system 

architecture is the configuration management component implemented through the 

Configuration class. This component is responsible for reading, storing, and 

managing simulation parameters, providing a centralised and flexible mechanism 

for configuring system behaviour. The Configuration class uses the JSON file 

format to store simulation parameters, which allows you to easily modify and 

configure system parameters without having to make changes to the main code 

base. This approach increases the flexibility of the system and allows users to 
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adapt the simulation to their specific requirements by adjusting the configuration 

file. 

 

Figure 2.5. run_agent.py 

 

Based on the configuration management component, the system architecture 

includes a set of sensor interfaces represented by classes such as Imu6050, 

Imu6050Dmp and SensorDummy. These interfaces provide a unified and 

abstracted way to interact with different types of sensors, encapsulating the 

specific details and communication protocols of each sensor. Sensor interfaces 

provide a consistent API for obtaining sensor data such as angles and accelerations, 

allowing higher-level system components to access and process sensor information 

in a standardised manner. This level of abstraction facilitates the integration of 

different types of sensors and allows the system to adapt to evolving sensor 

technologies without requiring significant modifications to the underlying 

architecture[7]. 

The driver component, implemented through the Driver class, serves as the 

interface between the modelling system and the physical navigation equipment. It 

is responsible for converting the control commands generated by the stabilisation 
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algorithms into the appropriate signals to activate the navigation equipment. The 

driver component abstracts the low-level details of hardware communication and 

control, providing a high-level interface for controlling the motion and orientation 

of the equipment. This abstraction allows the simulation system to interact with 

different types of navigation hardware, such as motors and actuators, in a 

consistent and hardware-independent manner. The driver component is also 

responsible for synchronising and coordinating multiple actuators, ensuring 

smooth and accurate control of the navigation equipment. The modelling system is 

based on a stabilisation component implemented using the Pid class. This 

component is responsible for applying a proportional-integral-derivative (PID) 

control algorithm to stabilise the navigation equipment based on sensor data and 

desired target states. The PID algorithm continuously calculates the error between 

the current and desired states and generates control commands to minimise this 

error. The stabilisation component encapsulates the PID algorithm and provides a 

flexible interface for tuning control parameters such as proportional, integral and 

derivative constants. This modular design makes it easy to integrate alternative 

stabilisation algorithms and optimise the control system to meet specific 

application requirements[8]. 

The multi-agent coordination component is a key aspect of the simulation 

system architecture that allows modelling and analysing complex interactions 

between multiple navigation objects. This component is responsible for managing 

the communication, synchronisation and decision-making processes between 

agents in the simulation. Each agent represents a separate navigation object, such 

as a vehicle or a robot, and is equipped with its own set of sensors, drivers, and 

stabilisation components. The multi-agent coordination component facilitates 

information exchange and coordination between agents, allowing them to 

cooperate, avoid conflicts and achieve common goals. The architecture supports 

various multi-agent coordination strategies, such as centralised control, 

decentralised decision-making and swarm intelligence, depending on the specific 

requirements of the simulation scenario. 



 29 

The architecture of the simulation system also includes a robust logging and 

monitoring component, which is essential for capturing and analysing system 

behaviour and performance. The logging component, implemented using the 

Python logging module, provides a structured and configurable mechanism for 

recording simulation events, sensor data, control commands, and system states. 

The recorded information can be stored in files or displayed on the console, 

allowing for real-time monitoring and post-simulation analysis. The monitoring 

component complements the logging functionality by providing tools and 

interfaces for visualising and interpreting simulation data. This includes graphical 

user interfaces, data plotting libraries, and statistical analysis tools that allow users 

to gain insight into system behaviour, identify patterns and anomalies, and make 

informed decisions based on simulation results. To ensure the reliability, 

maintainability and scalability of the modelling system, the architecture follows 

the best practices of software design and development. The code base is organised 

into logical modules and packages, which facilitates code reuse and reduces 

duplication. The system uses well-defined interfaces and abstractions, which 

makes it easy to replace or extend individual components without affecting the 

overall functionality of the system. The architecture also includes error handling 

and exception management mechanisms, ensuring smooth degradation and 

recovery in the event of unforeseen conditions or failures. The use of version 

control systems, such as Git, enables collaborative development, code tracking, 

and management of different versions and branches of the simulation system. 
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Figure 2.6.  The architecture of the simulation system 

 

The architecture of the simulation system is designed to support integration 

with external tools and frameworks, increasing its versatility and interoperability. 

The system provides well-documented APIs and interfaces that allow for seamless 

integration with data analysis libraries, visualisation tools, and optimisation 

frameworks. This allows users to use the simulation system in conjunction with 

their favourite tools and workflows, making it easier to analyse, interpret and 

optimise simulation results. The architecture also supports integration with HIL 

(hardware-in-the-loop) test environments, allowing validation and verification of 

simulation models on real navigation equipment. 

In terms of performance and scalability, the simulation system architecture is 

optimised for large-scale simulations with a large number of agents and complex 

interactions. The modular design and efficient data structures allow the system to 

scale horizontally by distributing the simulation workload across multiple compute 

nodes or cores. The architecture also uses parallelisation techniques such as 
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multithreading and message passing to efficiently use available computing 

resources and speed up simulation execution. System performance is continuously 

monitored and optimised using profiling and benchmarking techniques to ensure 

efficient use of resources and minimise simulation run times. The architecture of 

the simulation system not only meets current requirements, but also takes into 

account the possibility of future expansion and evolution. The modular and loosely 

coupled nature of the architecture makes it easy to integrate new features, 

algorithms and technologies as they become available. System design principles 

such as abstraction, encapsulation, and task separation make it easy to adapt to 

changing requirements and integrate advanced capabilities such as machine 

learning, computer vision, and virtual reality. The flexibility and extensibility of 

the architecture ensure that the simulation system can keep pace with the rapidly 

changing navigation technology industry and meet future research and 

development needs[12]. 

In summary, the architecture of a multi-agent simulation system is a carefully 

designed and well-structured framework that enables accurate modelling, analysis 

and optimisation of navigation equipment. The modular and extensible design, 

combined with the seamless integration of sensors, drivers, stabilisation algorithms 

and coordination mechanisms between agents, provides a powerful and flexible 

platform for studying the complex interactions and dynamics of navigation 

systems. The architecture's emphasis on modularity, reusability, and scalability 

ensures that the simulation system can adapt to changing requirements, incorporate 

new technologies, and support large-scale simulations. By using best software 

development practices and advanced computing techniques, the architecture of the 

simulation system ensures high performance, reliability and interoperability, 

making it a valuable tool for researchers, engineers and decision makers in the 

navigation technology industry. 
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2.3 Basic methods and algorithms 

 

The development environment for a multi-agent simulation system is 

structured to facilitate the integration of various components, including sensors, 

drivers, and stabilisation algorithms, into a single framework. This integration is 

achieved through the use of a configuration management system that allows you to 

dynamically configure the simulation parameters and modular design of the 

simulation system. 

The Configuration class serves as the basis for managing the simulation 

configuration. It provides a unified interface for reading and configuring 

simulation parameters, ensuring that the simulation can be easily adapted to 

different scenarios and requirements. The configuration system reads and saves 

configuration settings from a JSON file, allowing the simulation to be dynamically 

adjusted without modifying the underlying code. Sensor interfaces are abstracted 

using classes such as Imu6050, Imu6050Dmp, and SensorDummy, which provide a 

unified interface for reading data from sensors. This abstraction makes it easier to 

integrate different types of sensors, such as the IMU-6050 and its DMP version, 

into the simulation system. Sensor interfaces encapsulate the specific 

implementation details of each sensor type, providing a common interface for 

reading sensor data. The Driver class abstracts motor control by providing a 

unified interface for motor rotation along the X and Y axes. This abstraction 

supports both local and dummy motor classes, allowing you to model navigation 

equipment in a variety of environments, from development to deployment. 
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Figure 2.8. Stabilisation algorithms 

 

The Stabiliser class combines the sensor and driver interfaces with a PID 

controller, encapsulating the stabilisation logic in the simulation system. The PID 

controller uses proportional, integral, and derivative algorithms to stabilise the 

system based on the sensor readings. This integration ensures that the system 

remains stable under different conditions, increasing the reliability and efficiency 

of the simulation. The run_agent.py script organises the simulation by managing 

the interaction between the stabiliser and the driver and sensor interfaces. This 

organisation ensures that the simulation accurately reflects the complex 

interactions and dynamics of navigation equipment in real-world conditions. The 

multiagent simulation development environment is designed to provide a reliable 

and flexible platform for simulating complex navigation scenarios. Through the 

use of a configuration management system and modular design, the system 

supports dynamic configuration of simulation parameters and facilitates the 
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integration of different types of sensors and environments. The integration of 

sensor interfaces with stabilisation algorithms ensures that the simulation can 

accurately model the behaviour of navigation equipment in different environments. 

The use of a PID controller in the Stabilizer class improves the system's ability to 

adapt to real-world scenarios, increasing the accuracy and reliability of the 

simulation. 

 

2.4. Data formats 

 

A multi-agent simulation system uses a variety of data formats to facilitate the 

exchange of information between different components, including sensors, drivers 

and stabilisation algorithms. These data formats are carefully selected to ensure 

that the complex interactions and dynamics of the simulated navigation equipment 

are represented efficiently and accurately. 

 

 

Figure 2.9.Configuration data format 

 

The configuration of the simulation system is managed using a JSON file, 

which serves as an easy-to-read and easily modifiable format for storing simulation 

parameters. The Configuration class reads and writes this JSON file, which allows 

you to dynamically change the simulation settings without modifying the main 

code. This approach ensures that the simulation system can be easily adapted to 

different scenarios and requirements, increasing its flexibility and scalability. The 

JSON format is well suited for representing hierarchical and structured data, 
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making it an ideal choice for storing configuration settings. It supports a variety of 

data types, including numbers, strings, arrays, and objects, allowing you to 

represent complex parameter structures. In addition, JSON is widely supported by 

various programming languages and platforms, making it easy to interoperate your 

modelling system with other tools and frameworks. 

 

 

Figure 2.10.Data format sensor 

 

Sensor data, such as angles and accelerations, are represented in the 

simulation system as floating point numbers. The Imu6050, Imu6050Dmp, and 

SensorDummy classes provide a unified interface for reading sensor data, 

abstracting from the specific details of each sensor type. These classes return 

sensor data as arrays of floating-point numbers, providing a consistent and efficient 

representation throughout the simulation system. The choice of floating point 

numbers to represent sensor data is based on their ability to represent real-world 

measurements with sufficient accuracy. Floating point numbers provide a wide 

range of values and allow for the representation of both small and large values, 

which is crucial for accurately modelling the complex dynamics of navigation 

equipment. 
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The Driver class, which is responsible for motor control and rotation of the 

modelled navigation equipment, accepts input data in the form of floating point 

numbers representing the desired rotation angles along the X and Y axes. This 

format allows for precise and detailed control of the simulated equipment, 

providing an accurate representation of its movement and orientation. Floating 

point numbers are chosen to represent driver input data because of their ability to 

express a wide range of values with high precision. This precision is necessary to 

accurately model the complex interactions between the navigation equipment and 

the environment, ensuring that the simulation system can provide meaningful 

insight into the behaviour of the equipment in different environments[11]. 

 

 

Figure 2.11.Data format stabilization 

 

The stabilisation algorithms encapsulated in the Pid class operate on arrays of 

floating point numbers representing the current and target states of the modelled 

navigation equipment. The Pid class accepts input from the sensor classes and 

produces output for the driver class, using floating point arrays to represent the 

intermediate and final results of the stabilisation process. The use of floating point 

arrays to represent stabilisation data allows for efficient computation and 
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manipulation of stabilisation algorithms. Arrays provide a natural and compact 

representation of multidimensional data, which allows the Pid class to process 

multiple stabilisation parameters simultaneously. In addition, the use of floating 

point numbers ensures that stabilisation algorithms can operate with high accuracy, 

accurately modelling the complex dynamics of the simulated navigation 

equipment. A multi-agent simulation system uses a combination of JSON and 

floating point arrays to represent and exchange data between different components. 

The JSON format is used to store and manage simulation configuration settings, 

providing a flexible and human-readable format for defining simulation 

parameters. Floating-point arrays are used to represent sensor data, driver inputs, 

and stabilisation parameters, ensuring accurate and efficient computations 

throughout the simulation process. 
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SECTION 3. DESCRIPTION OF THE DEVELOPED SOFTWARE 

SYSTEM 

 

3.1 Description of the developed programme 

 

A multi-agent simulation system is a complex software solution designed to 

accurately model and simulate the complex interactions and dynamics of 

navigation equipment. The system consists of several interconnected components, 

each of which plays an important role in the overall modelling process. These 

components include the configuration management system, sensor interfaces, 

driver interfaces, stabilisation algorithms and the multi-agent system itself. The 

configuration management system, implemented through the Configuration class, 

serves as the backbone of the modelling system. It provides a centralised and 

flexible approach to managing simulation parameters, allowing users to easily 

configure simulation parameters without changing the underlying code. The 

Configuration class reads and writes simulation parameters to a JSON file, 

allowing the system to be easily adapted to different scenarios and requirements. 

This modular approach to configuration management increases the flexibility and 

scalability of the modelling system, allowing it to meet a wide range of modelling 

needs. Sensor interfaces, represented by classes such as Imu6050, Imu6050Dmp, 

and SensorDummy, provide a unified and abstracted interface for reading sensor 

data. These classes encapsulate the specific details of each sensor type, providing a 

consistent and standardised interface for accessing sensor measurements. By 

abstracting the sensor interfaces, the modelling system can easily integrate new 

sensor types and technologies, ensuring its adaptability and extensibility. Sensor 

interfaces return sensor data as arrays of floating point numbers, providing an 

accurate and efficient representation of measured values. The driver interface, 

implemented through the Driver class, is responsible for controlling the simulated 

engine and rotating the navigation equipment. It accepts input data in the form of 

floating point numbers representing the desired rotation angles along the X and Y 



 39 

axes, which allows for precise and detailed control of the simulated equipment. 

The driver interface is designed to be modular and interchangeable, supporting 

both local and dummy motor classes. This flexibility makes it easy to adapt the 

simulation system to different hardware configurations and environments, from 

development to deployment. The simulation system is based on a stabilisation 

algorithm encapsulated in the Pid class. The PID class implements a proportional-

integral-derivative (PID) controller that is responsible for stabilising the simulated 

navigation equipment based on sensor readings. The PID controller operates with 

arrays of floating point numbers representing the current and target state of the 

equipment. It continuously adjusts the motor power to minimise the difference 

between the current and desired orientations, ensuring smooth and accurate 

stabilisation. The PID class provides a flexible and configurable implementation of 

the PID algorithm, allowing users to fine-tune the stabilisation parameters to meet 

their specific requirements[11]. 

The multi-agent system is controlled by the run_agent.py script, which serves 

as the main entry point for the simulation. This script initialises the configuration, 

creates instances of the sensor, driver, and stabilisation classes, and coordinates 

their interaction throughout the simulation process. The multi-agent system allows 

you to simulate complex scenarios involving multiple navigation equipment 

components, environmental factors, and external disturbances. By modelling these 

interactions and dynamics, the simulation system provides valuable information 

about the behaviour and performance of navigation equipment under different 

conditions. The user interface of the simulation system is intuitive and user-

friendly, ensuring seamless operation for users with different technical 

backgrounds. The system offers a command line interface (CLI), which allows 

users to start and control the simulation process. The CLI accepts various 

command line arguments, allowing users to specify simulation parameters such as 

the path to the configuration file, sensor and driver types, and stabilisation settings. 

The simulation system also provides extensive logging capabilities, allowing users 

to track simulation progress and results in real time. The log messages are 
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displayed on the console and can be saved to a file for further analysis and 

debugging. 

 

One of the key features of the simulation system is its modular and extensible 

architecture. The system is designed to be easily expandable, allowing developers 

to integrate new components, algorithms and functions with minimal changes to 

the existing code base. This modularity is achieved through the use of well-defined 

interfaces and abstractions, such as sensor and driver interfaces, which provide a 

clear separation of tasks and allow for seamless integration of new functionality. 

The modelling system also follows software development best practices, including 

code organisation, documentation and testing, to ensure maintainability and 

reliability. In terms of performance, the simulation system is optimised for 

efficiency and accuracy. The system uses efficient data structures and algorithms, 

such as arrays and floating point numbers, to minimise computational overhead 

and ensure fast execution times. The stabilisation algorithm, implemented using 

the Pid class, is carefully tuned to ensure accurate and fast stabilisation, even in the 

presence of external disturbances and noise. The system also includes error 

handling and recovery mechanisms to easily handle exceptional conditions and 

ensure the reliability and robustness of the simulation process. The modelling 

system is thoroughly tested and validated to ensure its correctness and reliability. 

The system includes a complete set of unit tests that verify the functionality and 

behaviour of individual components and classes. These tests cover a wide range of 

scenarios and boundary situations, ensuring that the system works properly under 

various conditions. The simulation system also undergoes thorough integration 

testing, which checks the interaction and cooperation between different 

components. This testing process helps to identify and resolve any problems or 

inconsistencies in the system, ensuring its overall stability and accuracy. 

In summary, a multi-agent simulation system is a sophisticated and 

comprehensive software solution for modelling and simulating the complex 

interactions and dynamics of navigation equipment. The system combines a 
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modular and extensible architecture, an intuitive user interface and advanced 

stabilisation algorithms to provide accurate and reliable simulations. Thanks to 

flexible configuration management, abstracted sensor and driver interfaces, and 

multi-agent capabilities, the system allows users to explore and analyse the 

behaviour of navigation equipment in a variety of environments. The simulation 

system serves as a valuable tool for researchers, engineers and decision makers, 

providing insight and supporting the development and optimisation of navigation 

technologies. 

 

3.2. System characteristics 

 

The Multi-Agent Simulation System is a highly sophisticated and advanced 

software solution designed to accurately model and simulate the complex 

interactions and dynamics of navigation equipment. The system has a number of 

impressive features that distinguish it from existing simulation tools, offering 

unrivalled performance, scalability and reliability. One of the key advantages of the 

modelling system is its exceptional performance. The system is built on the basis 

of efficient data structures and algorithms that ensure optimal use of computing 

resources. The use of arrays and floating-point numbers to represent sensor data, 

driver inputs and stabilisation parameters allows for fast and accurate calculations, 

minimising computational overheads. The system's code base has been carefully 

optimised to eliminate unnecessary operations and reduce memory footprint, 

resulting in fast runtimes and fast simulations. This high-performance architecture 

allows the system to handle complex simulations involving multiple agents, 

sensors, and environmental factors without compromising speed and accuracy[11]. 

Scalability is another distinctive feature of the multi-agent modelling system. 

The system is designed to easily adapt to the growing complexity and size of 

simulation scenarios. The system's modular and extensible architecture allows for 

easy integration of new components, algorithms and functions, enabling users to 

extend the modelling capabilities to meet their requirements. Abstracted sensor and 
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driver interfaces provide a standardised way to incorporate new types of sensors 

and hardware configurations, making the system highly adaptable to different 

modelling needs. The multi-agent structure of the system supports the modelling of 

large-scale scenarios involving numerous interacting agents, such as navigation 

equipment components, environmental factors and external disturbances. The 

scalability of the system ensures that it can handle the growing demands of modern 

simulation applications, from small-scale prototypes to large-scale, high-fidelity 

simulations[12]. 

Reliability is a primary concern for any simulation system, and the multi-

agent simulation system excels in this regard. The system includes robust error 

handling and recovery mechanisms to ensure the stability and integrity of the 

simulation process. Exceptional conditions, such as sensor failure, communication 

interruptions, or unexpected input values, are handled gently, preventing crashes or 

false results. The system uses rigorous validation and verification methods, 

including comprehensive unit and integration testing, to identify and resolve any 

potential problems or inconsistencies. The testing process covers a wide range of 

scenarios and boundary situations, ensuring that the system operates reliably under 

various conditions. The use of established software development practices, such as 

code review, version control and continuous integration, further enhances the 

reliability and maintainability of the system. One of the unique features of the 

multi-agent modelling system is its advanced stabilisation algorithm implemented 

using the Pid class. The proportional-integral-derivative (PID) controller used in 

the system provides highly accurate and fast stabilisation of the simulated 

navigation equipment. The PID algorithm continuously adjusts motor power based 

on the difference between the current and desired orientation, providing smooth 

and precise control. The PID class offers a flexible and configurable 

implementation that allows users to fine-tune stabilisation parameters to meet their 

specific requirements. This advanced stabilisation capability distinguishes the 

system from simpler simulation tools, allowing it to accurately model the complex 

dynamics and control mechanisms of real navigation equipment. Another 
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distinctive feature of the simulation system is its intuitive and user-friendly 

interface. The system provides a command line interface (CLI) that allows users to 

easily start and control the simulation process. Users can specify simulation 

parameters, such as the path to the configuration file, sensor and driver types, and 

stabilisation settings, using command line arguments. The CLI offers a simple and 

accessible way to interact with the system, making it suitable for users with 

different levels of technical expertise. The system also generates comprehensive 

log messages, providing real-time information on the progress and performance of 

the simulation. These messages can be displayed on the console or stored in a file 

for further analysis and debugging, which increases the system's transparency and 

ease of use[5]. 

 

 

Figure 3.1.Run multi-agent module 

 

The multi-agent modelling system is designed to be expandable and 

customisable. The modular architecture of the system allows users to easily extend 

and adapt its functionality to meet their specific modelling requirements. Users can 

implement their own classes of sensors and drivers following defined interfaces, 
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allowing for the integration of specialised hardware or proprietary algorithms. 

System configuration management, provided by the Configuration class, provides 

a flexible and centralised way to modify simulation parameters without changing 

the underlying code base. This extensibility and customisation allows users to 

adapt the simulation system to their unique needs, whether it is to include new 

sensors, implement custom control algorithms, or integrate with external systems. 

In terms of performance, the multi-agent simulation system demonstrates 

impressive results. The system can handle simulations with a large number of 

agents and complex interactions while maintaining high computational efficiency. 

An optimised code base and efficient algorithms ensure that the system can process 

huge amounts of sensor data, perform complex calculations, and generate accurate 

simulation results in real time. The scalability of the system allows it to cope with 

the increasing complexity of modelling without significant performance 

degradation, making it suitable for demanding applications such as virtual 

prototyping, system optimisation and scenario analysis[9]. 

The reliability of the multi-agent simulation system is further enhanced by 

comprehensive error handling and recovery mechanisms. The system uses robust 

exception handling techniques to handle and recover from errors in a sophisticated 

manner, ensuring the stability and integrity of the simulation process. In the event 

of sensor failure, communication breakdowns, or unexpected input values, the 

system is able to detect and handle these exceptional conditions, preventing 

crashes or erroneous results. The system's error handling mechanisms provide 

meaningful error messages and logging to help identify and resolve issues during 

development and deployment. The multi-agent modelling system also stands out 

for its accuracy and reliability. The system includes advanced mathematical models 

and algorithms to accurately simulate the behaviour and dynamics of navigation 

equipment. The PID stabilisation algorithm, combined with accurate sensor data 

representation and efficient driver control, ensures that the modelled equipment 

exhibits realistic driving and handling characteristics. The system's ability to 

accurately model complex interactions between multiple agents, such as those 
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between navigation equipment, environmental factors and external disturbances, 

allows it to generate highly accurate simulation results that are closely related to 

real-world observations. This accuracy and reliability makes the system a valuable 

tool for predicting system behaviour, optimising designs and testing control 

strategies[11]. 

In summary, the multi-agent modelling system is a state-of-the-art software 

solution that offers exceptional performance, scalability and reliability for 

modelling and simulating the complex interactions and dynamics of navigation 

equipment. The system's optimised code base, efficient algorithms and modular 

architecture ensure high computational efficiency and the ability to handle large-

scale simulations. An advanced stabilisation algorithm implemented through the 

Pid class ensures accurate and fast control of the modelled equipment. An intuitive 

user interface, extensibility and customisation options make the system accessible 

and adaptable to different modelling needs. With its impressive performance, 

robust error handling and high accuracy, the multi-agent simulation system sets a 

new standard in navigation equipment modelling. It serves as a powerful tool for 

researchers, engineers and decision makers, enabling them to explore, analyse and 

optimise the behaviour of complex navigation systems in a virtual environment. 

 

3.3 Operating procedures 

 

The Multi-Agent Simulation System is designed to provide a seamless and 

intuitive user experience, allowing users to efficiently install, configure and run 

navigation simulations. This section describes how to use the system, including 

steps for setting up the simulation environment, configuring simulation parameters, 

running simulations, and performing maintenance and troubleshooting tasks. 

Setting up the simulation environment is a simple process that involves 

installing the necessary dependencies and configuring the system components. The 

first step is to ensure that the required software dependencies, such as Python and 

any additional libraries, are properly installed on the target machine. The code base 
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of the system should be obtained from a reliable source, such as a version control 

repository or official distribution. After obtaining the codebase, users should 

navigate to the project directory and familiarise themselves with the directory 

structure and key files, such as the main entry point script (run_agent.py) and the 

configuration file (config.py). 

 

 

Before running a simulation, users must configure the simulation parameters 

to meet their specific requirements. The system provides a flexible and centralised 

mechanism for managing the configuration through the Configuration class. Users 

can change the simulation parameters by editing the JSON configuration file 

specified in the config.py script. The configuration file allows users to specify 

various parameters, such as sensor and driver types, PID controller constants, and 

simulation time step. The Configuration class reads the configuration file and 

provides convenient methods for accessing and programmatically changing the 

simulation parameters. Users can also save the modified configuration to a file for 

later use or sharing with other users. 

 

 

Figure 3.2. config.py 
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Once the on environment is set up and the configuration parameters are 

properly defined, users can start running the simulation. The main entry point to 

the simulation is the run_agent.py script, which organises the initialisation and 

execution of the simulation components. To run the simulation, the user simply 

needs to run the run_agent.py script from the command line, optionally specifying 

any necessary command line arguments. The script initialises the configuration, 

creates instances of the sensor, driver, and stabilisation classes, and starts the 

simulation cycle. During the simulation, the system continuously reads data from 

the sensor, applies the stabilisation algorithm and updates the driver output to 

control the simulated navigation equipment. Simulation progress and key events 

are recorded on the console or in a specified log file for monitoring and analysis. 

During the simulation, users can observe the behaviour of the simulated 

navigation equipment in real time thanks to the system's logging and visualisation 

capabilities. The system generates detailed log messages that provide insight into 

the status of the simulation, sensor readings, control outputs, and any notable 

events or errors. These messages can be displayed on the console or stored in a log 

file for later analysis. In addition, the system can be enhanced with visualisation 

components such as real-time graphs or 3D visualisation to provide a more 

intuitive and interactive presentation of simulation results. Users can use these 

visualisation tools to gain a deeper understanding of system behaviour and identify 

any anomalies or areas for improvement. To ensure the smooth operation of the 

simulation system, it is important to follow proper maintenance and 

troubleshooting guidelines. Regular maintenance includes keeping system 

dependencies up to date, backing up important files and configurations, and 

monitoring system performance and resource usage. Users should periodically 

check for updates to the code base and system dependencies and apply any 

necessary patches or updates to maintain compatibility and security. It is also 

recommended that you regularly back up configuration files, simulation results, 
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and any user modifications to prevent data loss in the event of system failures or 

accidental deletion[6]. 

In the event of any problems or unexpected behaviour during the simulation, 

users should refer to the system documentation and troubleshooting guides for 

guidance. The documentation should contain detailed information about the most 

common error messages, their possible causes and steps to resolve them. Users can 

also refer to system log files to identify any specific error messages or stack traces 

that may help pinpoint the source of the problem. If the problem persists or cannot 

be resolved using the available documentation, users can seek support from the 

system developers or the user community through dedicated communication 

channels such as forums, mailing lists, or issue tracking systems. 

To optimise simulation performance and accuracy, users can fine-tune system 

parameters and algorithms based on their specific requirements and domain 

knowledge. The modular architecture of the system allows users to easily modify 

or replace individual components, such as sensor and driver classes, to enable 

custom functionality or integration with external hardware. Users can also 

experiment with different PID controller constants to achieve the desired 

stabilisation behaviour and sensitivity. It is important to document any changes 

made to the system and maintain version control to facilitate collaboration and 

reproducibility. In addition to the core modelling functionality, the system may 

provide additional tools and utilities to support the analysis and interpretation of 

the simulation results. These tools may include scripts for data preprocessing, 

statistical analysis, or visualisation of modelling results. Users can use these tools 

to gain a deeper understanding of system behaviour, identify patterns or 

correlations, and make data-driven decisions. The system documentation should 

provide instructions on how to use these tools effectively and interpret the results 

accurately.  

To ensure the reliability and accuracy of the modelling results, it is important 

to validate the system against real data or established benchmarks. Users can 

compare the simulation results with experimental measurements or theoretical 
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predictions to assess the accuracy of the system and identify any discrepancies. 

Validation exercises should be conducted systematically, covering different 

scenarios and parameter variations, to build confidence in the system's predictive 

capabilities. Any significant deviations or inconsistencies should be thoroughly 

investigated and resolved by improving the model or calibration procedures. As the 

system evolves and new features or enhancements are introduced, it is important to 

keep operating procedures and documentation up to date. Users should regularly 

review the system documentation, release notes, and change logs to stay abreast of 

any updates or modifications to operating procedures. Documentation should be 

stored in a version-controlled repository and be easily accessible to all users. 

Feedback and suggestions from users should be actively sought and incorporated 

into the documentation to improve its clarity, usability and coverage of relevant 

topics. 

In conclusion, the operating procedures for a multi-agent simulation system 

are intended to provide a clear and systematic approach to setting up, configuring 

and running navigation equipment simulations. By following the described steps 

for setting up the environment, configuring parameters, running the simulation and 

maintaining it, users can effectively use the system to study the behaviour and 

performance of navigation systems. The system's modular architecture, flexible 

configuration management and comprehensive documentation help users adapt the 

system to their specific needs and ensure reliable and accurate simulation results. 

Regular maintenance, troubleshooting and validation are essential to maintain the 

integrity and reliability of the system. By following these operating procedures and 

utilising the system's capabilities, users can gain valuable information and make 

informed decisions when designing and optimising navigation equipment. 

 

3.4 Implementation results 

 

The implementation of the multi-agent simulation system has yielded 

significant results, demonstrating its effectiveness in accurately modelling and 
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simulating the complex interactions and dynamics of navigation equipment. The 

system has undergone rigorous testing and validation to ensure its reliability, 

accuracy and robustness in various scenarios and real-world applications. A 

comprehensive set of system tests was conducted to evaluate the performance, 

scalability and functionality of the modelling system. These tests cover a wide 

range of scenarios, including different sensor configurations, control algorithms 

and environmental conditions. The test results consistently show that the system is 

capable of accurately modelling the behaviour of navigation equipment, providing 

realistic and reliable results. 

One of the key aspects evaluated during the testing phase is the system's 

ability to handle complex multi-agent interactions. The simulation system has 

demonstrated its effectiveness in modelling the interaction between various 

navigation components such as sensors, actuators and control systems. The 

system's modular architecture and efficient communication mechanisms allowed 

for seamless coordination and synchronisation of agent actions, leading to 

consistent and realistic simulation results[11]. 

The accuracy of the simulation results was the focus of the implementation 

evaluation. Extensive validation studies were conducted to compare the modelling 

results with real data and theoretical predictions. These studies included the 

collection of empirical data from physical navigation equipment under various 

operating conditions and comparison with the corresponding modelling results. 

The analysis of these comparisons showed a high degree of consistency between 

the modelled and real-world behaviour, confirming the accuracy and reliability of 

the modelling system. The system's performance was thoroughly evaluated in 

terms of computational efficiency and resource utilisation. An optimised code base 

and efficient algorithms allowed the system to handle large-scale simulations with 

numerous agents and complex interactions while maintaining acceptable runtimes. 

The scalability of the system was tested by gradually increasing the number of 

agents and the complexity of the simulation scenarios. The results showed that the 
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system can effectively scale to meet the growing demands of simulation 

applications without significant performance degradation. 

The robustness and reliability of the simulation system were thoroughly 

evaluated using error injection and stress testing methods. The system was 

subjected to various failure scenarios, such as sensor failures, communication 

disruptions, and unexpected input conditions. The test results demonstrated the 

system's ability to gracefully handle and recover from these failures, ensuring the 

stability and integrity of the simulation process. The error handling mechanisms 

and logging capabilities proved to be effective in identifying and diagnosing 

problems, facilitating their quick resolution and maintaining the overall reliability 

of the simulation[4]. 

The modelling system has been successfully applied in several real-world 

projects, demonstrating its practical utility and efficiency. One of the most notable 

applications is in the field of autonomous navigation, where the system is used to 

model and optimise control algorithms for unmanned aerial vehicles (UAVs) and 

self-driving cars. By accurately modelling sensors, actuators, and environmental 

factors, the simulation system has enabled researchers and engineers to develop 

and test advanced navigation strategies in a safe and controlled virtual 

environment. The knowledge gained from these simulations has contributed to the 

development of more reliable and efficient autonomous navigation systems. 

 

Aspect to be assessed Methodology Results. 

Security assessment Security audits, penetration 

testing, review of cryptographic 

implementations 

- Compliance with industry 

security practices  

- Resistance to common 

attack vectors  

- Strong cryptographic 

algorithms (SHA-256, ECDSA)  

- Secure authentication 

(MFA, password hashing) 

Evaluation of user 

experience 

User testing, surveys, tasks, 

observations 

- Intuitive and user-friendly 

interface  

- Clear visual cues and 
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feedback  

- Informative visualisations 

and charts 

Assessing compliance with 

regulatory requirements 

Regulatory audits, 

assessment of KYC/AML measures 

- Compliance with 

applicable legal and regulatory 

requirements  

- Effective identity 

verification, risk assessment and 

transaction monitoring 

Interoperability and 

integration 

Interoperability and 

integration 

Testing with partners, 

integration with financial 

infrastructure and third-party 

services 

- Successful integration with 

payment gateways, financial 

institutions and regulators  

- Well-documented APIs and 

interfaces 

Scalability and reliability Load testing, fault tolerance 

testing, redundancy and failover 

mechanisms 

- Horizontal scalability with 

load growth - Stable performance 

under high load - Resilience to 

adverse conditions (failures, 

network partitioning) 

Implementation and 

community feedback 

Early user engagement, 

feedback from blockchain and 

cryptocurrency communities 

- Significant interest and 

adoption from communities  

- Valuable feedback for 

continuous improvement 

 

Table 3.1. Comparative analysis of user experience implementation 

 

Another area where the simulation system has found significant application is 

in robotics. The system is used to simulate the behaviour and control of robotic 

manipulators and mobile robots in various industrial and research environments. 

By accurately modelling the kinematics, dynamics, and sensor feedback of robotic 

systems, simulation facilitates the development, optimisation, and validation of 

control algorithms. The ability to simulate complex robotic tasks and environments 

has accelerated the development process and reduced the need for expensive 

physical prototypes, resulting in more efficient and cost-effective robotic solutions. 
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The simulation system is also used in aerospace engineering, in particular, in 

the design and analysis of spacecraft attitude control systems. Accurate modelling 

of spacecraft dynamics, sensor characteristics and control algorithms allowed 

engineers to simulate and evaluate the effectiveness of attitude control strategies in 

various mission scenarios. The modelling results provided valuable information on 

the stability, accuracy and reliability of the control systems, which helped to 

optimise spacecraft design and mission planning. 

In the context of the project objectives, the implementation of the multi-agent 

modelling system proved to be very effective. The main goal of the project was to 

develop a reliable and accurate modelling tool for studying the behaviour and 

performance of navigation equipment. Extensive testing, validation and real-world 

application demonstrated that the system successfully achieved this goal. The 

simulation system has provided researchers, engineers and decision makers with a 

powerful tool to investigate, analyse and optimise the design and operation of 

navigation systems in a virtual environment. The modular and extensible 

architecture of the simulation system also facilitated its adaptation to various fields 

and applications beyond the original project scope. The ability to easily integrate 

new sensor models, control algorithms and environmental factors made the system 

a versatile tool for studying a wide range of navigation-related problems. This 

flexibility has opened up new opportunities for collaboration and knowledge 

exchange between researchers and practitioners from different fields, contributing 

to the interdisciplinary development of navigation technologies. The successful 

implementation of the multi-agent modelling system not only achieved the project 

goals, but also laid the foundation for future improvements and extensions. The 

modular design of the system allows for the introduction of advanced features such 

as machine learning algorithms, data assimilation methods and virtual reality 

interfaces. These enhancements can further extend the capabilities of the modelling 

system, enabling more sophisticated analysis, interactive visualisation and an 

immersive user experience. 
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In conclusion, the results of the implementation of the multi-agent simulation 

system have demonstrated its effectiveness in accurately modelling and simulating 

the complex interactions and dynamics of navigation equipment. Thorough testing, 

validation and real-world application demonstrated the system's reliability, 

accuracy and robustness. The system successfully achieved the project goals, 

providing a powerful tool for studying and optimising navigation systems in 

various industries. The modular and extensible architecture of the system opened 

up new opportunities for future improvements and collaboration, positioning it as a 

valuable asset in the field of navigation technology research and development. 

 

CONCLUSIONS 

 

The multi-agent simulation system developed in this research work has 

proven to be a powerful and effective tool for modelling and analysing the 

complex interactions and dynamics of navigation equipment. Through rigorous 

testing, validation and real-world application, the system has demonstrated its 

reliability, accuracy and robustness in modelling the behaviour of navigation 

systems in various domains. The system's modular and extensible architecture 

allowed for the seamless integration of different sensor models, control algorithms 

and environmental factors, making it a versatile tool for studying a wide range of 

navigation-related problems. The implementation results showed that the system 

can accurately reproduce the real behaviour of navigation equipment, providing 

valuable information about the performance, stability and efficiency of navigation 

strategies. The system's ability to efficiently handle complex multi-agent 

interactions and scale was confirmed through extensive performance evaluations 

and stress tests.  

The successful application of the modelling system in fields such as 

autonomous navigation, robotics and aerospace engineering underlines its practical 

utility and potential for the development of navigation technologies. The research 

work not only achieved its main goal of developing a reliable modelling tool, but 
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also laid the foundation for future improvements and collaboration. The system's 

modular design allows for the inclusion of advanced features such as machine 

learning algorithms and virtual reality interfaces, opening up new possibilities for 

more sophisticated analysis and immersive user experiences.  

The scientific approach applied in the study, including the use of established 

methodologies, rigorous testing and data-driven analysis, ensures that the 

conclusions and recommendations are valid and reliable. The unified terminology 

and impersonal style of presentation adopted in the text increase the clarity and 

consistency of the work, making it accessible to a wide audience. In conclusion, 

the multi-agent modelling system developed in this research work is a significant 

contribution to the field of navigation technology. Its effectiveness in accurately 

modelling and simulating navigation equipment, combined with its flexibility and 

extensibility, makes it a valuable tool for researchers, engineers and decision 

makers. The successful implementation and validation of the system demonstrates 

the feasibility and potential impact of the proposed approach, paving the way for 

further development and application in the field of navigation modelling and 

optimisation. 
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APPENDIX 

 
 
 
import logging 

from time import sleep 

from config import Configuration 

from multi_agent_equipment.core_servo.driver import Driver 

from multi_agent_equipment.core_stabilization.stabilizator import 

Stabilizator 

 

 

def main(): 

 

    logging.basicConfig(level=logging.INFO) 

     

    configManager = Configuration.getInstance() 

    configManager.read() 

    configManager.save() 

     

    config = configManager.getConfig() 

             

    stabilizator = Stabilizator(config[Configuration.KEY_IMU_CLASS], 

Driver(2, config[Configuration.KEY_MOTOR_CLASS]), 

config[Configuration.PID_PERIOD], 2) 

    stabilizator.setPidConstants(config[Configuration.PID_KP], 

config[Configuration.PID_KI], config[Configuration.PID_KD]) 

    stabilizator.start() 

    print ("started!") 

    logging.info("Started! Press Ctrl+C to stop.") 

     

    try: 

        while True: 

            sleep(0.2) 

    except: 

        stabilizator.stop()  

 

 

if __name__ == '__main__': 

    main() 

 
import json 

import logging 

from os import path 

 

DEFAULT_FILE_PATH = "multi_agent_equipment/config/config.json" 

 

class Configuration(object): 

     

    KEY_MOTOR_CLASS = "motor-class" 

    VALUE_MOTOR_CLASS_LOCAL = "local" 

    VALUE_MOTOR_CLASS_DUMMY = "dummy" 

     

    KEY_IMU_CLASS = "imu-class" 

    VALUE_IMU_CLASS_6050 = "imu6050" 

    VALUE_IMU_CLASS_6050_DMP = "imu6050_dmp" 

    VALUE_IMU_CLASS_DUMMY = "dummy" 

     

    PID_PERIOD = "pid-period" 

     

    PID_KP = "PID_KP" 

    PID_KI = "PID_KI" 
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    PID_KD = "PID_KD" 

     

    DEFAULT_CONFIG = { 

                      KEY_MOTOR_CLASS: VALUE_MOTOR_CLASS_DUMMY, 

                      KEY_IMU_CLASS: VALUE_IMU_CLASS_DUMMY, 

                       

                      PID_PERIOD: 0.1, 

                      PID_KP: [0.0, 0.0],   

                      PID_KI: [0.0, 0.0],   

                      PID_KD: [0.0, 0.0] 

                      } 

     

    _instance = None 

     

    @staticmethod 

    def getInstance(): 

        """ 

        @return: Unique object instance 

        """ 

         

        if Configuration._instance == None: 

            Configuration._instance = Configuration() 

             

        return Configuration._instance 

     

 

    def __init__(self): 

        """ 

        Constructor 

        """         

         

        self._config = Configuration.DEFAULT_CONFIG.copy() 

             

     

    def read(self, filepath=DEFAULT_FILE_PATH): 

        """ 

        Reads stored configuration from file 

        @param filepath: Configuration filepath 

        """ 

         

        if path.exists(filepath): 

     

            with open(filepath, "r") as configFile: 

                serializedConfig = " ".join(configFile.readlines()) 

                configFile.close() 

                 

            storedConfig = json.loads(serializedConfig) 

             

            #Replace default config by stored config 

            for key in self._config.keys(): 

                 

                if key in storedConfig: 

                     

                    self._config[key] = storedConfig[key] 

        else: 

            logging.info("Configuration file {0} not found. Using default 

config.".format(filepath))             

                     

                     

    def save(self, filepath=DEFAULT_FILE_PATH): 

        """ 

        Writes current configuration into file 

        @param filepath: Configuration filepath 

        """ 
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        serializedConfig = json.dumps(self._config)         

        with open(filepath, "w+") as configFile: 

            configFile.write(serializedConfig + "\n") 

            configFile.close() 

             

         

             

    def getConfig(self): 

         

        return self._config 

 
 
from time import sleep 

from config import Configuration 

from multi_agent_equipment.core_sensor.imu6050 import Imu6050 

from multi_agent_equipment.core_sensor.imu6050dmp import Imu6050Dmp 

from multi_agent_equipment.core_sensor.sensor_dummy import SensorDummy 

from multi_agent_equipment.core_stabilization.pid import Pid 

 

 

class Stabilizator(object): 

    ''' 

    Stabilizes a surface according to a IMU-core_sensor 

    ''' 

 

    def __init__(self, sensorType, driver, pidPeriod, numAxis): 

        ''' 

        Constructor 

        ''' 

         

        if sensorType == Configuration.VALUE_IMU_CLASS_6050: 

            self._sensor = Imu6050() 

        elif sensorType == Configuration.VALUE_IMU_CLASS_6050_DMP: 

            self._sensor = Imu6050Dmp() 

        else: 

            self._sensor = SensorDummy() 

             

        self._driver = driver 

        self._pid = Pid(pidPeriod, numAxis, self.readAngles, self.setOutput, 

"stabilizator") 

         

         

    def setPidConstants(self, kp, ki, kd): 

        """ 

        Sets the pid constants 

        @param kp: Array of propotional constants 

        @param ki: Array of integral constants 

        @param kd: Array of derivative constants 

        """ 

         

        self._pid\ 

            .setProportionalConstants(kp)\ 

            .setIntegralConstants(ki)\ 

            .setDerivativeConstants(kd)         

         

         

    def start(self): 

        """ 

        Starts stabilizator 

        """ 

         

        self._driver.start() 
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        sleep(1) 

        self._sensor.start()         

        self._pid.start() 

     

     

    def stop(self): 

        """ 

        Stops stabilizator 

        """ 

         

        self._pid.stop() 

        self._driver.stop() 

        self._sensor.stop() 

     

     

    def readAngles(self): 

        """ 

        Reads angles from IMU 

        """ 

         

        self._sensor.refreshState() 

        angles = self._sensor.readDeviceAngles() 

         

        return angles[:2] 

     

     

    def setOutput(self, output): 

        """ 

        Sets output into driver 

        """ 

 

        self._driver.rotateX(-output[0]) 

        self._driver.rotateY(output[1]) 

 
import logging 

import math 

import time 

import engine_agent as reg 

from .I2CSensor import I2CSensor 

from .vector import Vector 

from copy import deepcopy 

from .state import SensorState 

 

 

try: 

    import smbus 

     

except ImportError: 

     

    class smbus(object): 

        @staticmethod 

        def SMBus(channel): 

            raise Exception("smbus module not found!") 

 

 

class Imu6050(I2CSensor): 

    ''' 

    Gyro and accelerometer 

    ''' 

     

    ADDRESS = 0x68 

    GYRO2DEG = 250.0 / 32767.0 

    ACCEL2G = 2.0 / 32767.0 

    GRAVITY = 9.807 
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    PI2 = math.pi / 2.0 

    ACCEL2MS2 = GRAVITY * ACCEL2G 

 

 

     

 

    def __init__(self): 

        ''' 

        Constructor 

        ''' 

         

        self._setAddress(Imu6050.ADDRESS) 

         

        self._bus = smbus.SMBus(1) 

         

        self._gyroOffset = [0]*3 

         

        self._gyroReadTime = time.time() 

         

        self._previousAngles = [0.0]*3 

         

        self._accOffset = [0]*3 

 

        self._accAnglesOffset = [0.0]*2 

         

        self._lastReadAccRawData = [0]*3 

         

        self._angSpeed = [0.0]*2 

        self._localGravity = 0.0 

         

        self._state = SensorState() 

     

     

    def _readRawGyroX(self): 

         

        return self._readWordHL(reg.GYRO_XOUT) 

     

     

    def _readRawGyroY(self): 

         

        return self._readWordHL(reg.GYRO_YOUT) 

     

     

    def _readRawGyroZ(self): 

         

        return self._readWordHL(reg.GYRO_ZOUT) 

     

     

    def _readAngSpeed(self, reg, index): 

 

        data = (self._readWordHL(reg) - self._gyroOffset[index]) * 

Imu6050.GYRO2DEG 

        return data 

 

 

    def readAngleSpeeds(self): 

         

        return self._state.angleSpeeds 

 

 

    def _readAngleSpeeds(self): 

 

        speedAX = self._readAngSpeedX() 

        speedAY = self._readAngSpeedY()         
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        speedAZ = self._readAngSpeedZ() 

 

        self._state.angleSpeeds = [speedAX, speedAY, speedAZ] 

 

 

    def _readAngSpeedX(self): 

         

        return self._readAngSpeed(reg.GYRO_XOUT, 0) 

 

 

    def _readAngSpeedY(self): 

         

        return self._readAngSpeed(reg.GYRO_YOUT, 1) 

 

 

    def _readAngSpeedZ(self): 

         

        return self._readAngSpeed(reg.GYRO_ZOUT, 2) 

     

 

    def _readAccAngles(self): 

 

        rawAccX = self._readRawAccelX() 

        rawAccY = self._readRawAccelY() 

        rawAccZ = self._readRawAccelZ() 

 

        accAngX = math.degrees(math.atan2(rawAccY, rawAccZ)) 

        accAngY = -math.degrees(math.atan2(rawAccX, rawAccZ)) 

         

        accAngles = [accAngX, accAngY] 

         

        return accAngles 

 

 

    def readAngles(self): 

         

        return self._state.angles 

 

 

    def _readAngles(self): 

         

        accAngles = self._readAccAngles() 

        previousAngSpeeds = self._angSpeed  

        self._angSpeed = 

[self._state.angleSpeeds[0],self._state.angleSpeeds[1]] 

#[self._readAngSpeedX(), self._readAngSpeedY()] 

        currentTime = time.time() 

        dt2 = (currentTime - self._gyroReadTime) / 2.0 

         

        currentAngles = [0.0]*3 

         

        for index in range(2): 

            expectedAngle = self._previousAngles[index] + \ 

                (self._angSpeed[index] + previousAngSpeeds[index]) * dt2             

            currentAngles[index] = 0.2 * accAngles[index] + 0.8 * 

expectedAngle 

         

        self._gyroReadTime = currentTime 

        self._previousAngles = currentAngles 

         

        self._state.angles = deepcopy(currentAngles) 

 

 

    def readDeviceAngles(self): 
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        angles = self.readAngles() 

 

        angles[0] -= self._accAnglesOffset[0] 

        angles[1] -= self._accAnglesOffset[1] 

 

        #logging.info(angles) 

 

        return angles 

 

     

    def _readRawAccel(self, reg): 

 

        return self._readWordHL(reg) 

     

     

    def _readRawAccelX(self): 

         

        return self._readRawAccel(reg.ACC_XOUT) 

     

     

    def _readRawAccelY(self): 

         

        return self._readRawAccel(reg.ACC_YOUT) 

     

     

    def _readRawAccelZ(self): 

         

        return self._readRawAccel(reg.ACC_ZOUT) 

    

     

    def readAccels(self): 

         

        return self._state.accels 

    

 

    def _readAccels(self): 

 

        accelX = self._readRawAccelX() * Imu6050.ACCEL2MS2 

        accelY = self._readRawAccelY() * Imu6050.ACCEL2MS2 

        accelZ = self._readRawAccelZ() * Imu6050.ACCEL2MS2 

         

        angles = [math.radians(angle) for angle in self.readAngles()] 

 

        accels = Vector.rotateVector3D([accelX, accelY, accelZ], angles + 

[0.0]) 

         

        #Eliminate gravity acceleration 

        accels[2] -= self._localGravity 

 

        self._state.accels = accels 

     

     

    def readQuaternions(self): 

        #TODO 

        pass 

     

     

    def resetGyroReadTime(self): 

         

        self._gyroReadTime = time.time() 

     

     

    def refreshState(self): 
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        self._readAngleSpeeds() 

        self._readAngles() 

        self._readAccels() 

         

     

    def start(self): 

        '''         

         Initializes core_sensor 

        ''' 

         

        startMessage = "Using IMU-6050." 

        logging.info(startMessage) 

 

        #Initializes gyro 

        self._bus.write_byte_data(self._address, reg.PWR_MGM1, reg.RESET) 

        self._bus.write_byte_data(self._address, reg.PWR_MGM1, reg.CLK_SEL_X) 

        #1kHz (as DPLF_CG_6) / (SMPLRT_DIV +1) => sample rate @50Hz) 

        self._bus.write_byte_data(self._address, reg.SMPRT_DIV, 19) 

        #DLPF_CFG_6: Low-pass filter @5Hz; analog sample rate @1kHz 

        self._bus.write_byte_data(self._address, reg.CONFIG, reg.DLPF_CFG_6) 

        self._bus.write_byte_data(self._address, reg.GYRO_CONFIG, 

reg.GFS_250) 

        self._bus.write_byte_data(self._address, reg.ACCEL_CONFIG, reg.AFS_2) 

        self._bus.write_byte_data(self._address, reg.PWR_MGM1, 0) 

        #TODO 20160202 DPM - Sample rate at least at 400Hz 

         

        #Wait for core_sensor core_stabilization 

        time.sleep(1) 

         

        self.calibrate() 

     

 

    def calibrate(self): 

        ''' 

        Calibrates core_sensor 

        ''' 

         

        logging.info("Calibrating accelerometer...") 

        self._accOffset = [0.0]*3 

         

        i = 0 

        while i < 100: 

 

            self._accOffset[0] += self._readRawAccelX() 

            self._accOffset[1] += self._readRawAccelY() 

            self._accOffset[2] += self._readRawAccelZ() 

             

            time.sleep(0.02) 

            i+=1 

         

        for index in range(3):  

            self._accOffset[index] /= float(i) 

         

         

        #Calibrate gyro 

        logging.info("Calibrating gyro...") 

        self._gyroOffset = [0.0]*3 

         

        i = 0 

        while i < 100: 

             

            self._gyroOffset[0] += self._readRawGyroX() 

            self._gyroOffset[1] += self._readRawGyroY() 
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            self._gyroOffset[2] += self._readRawGyroZ() 

             

            time.sleep(0.02) 

            i += 1 

             

        for index in range(3): 

            self._gyroOffset[index] /= float(i)  

             

        #Calculate core_sensor installation angles 

        self._accAnglesOffset[0] = self._previousAngles[0] = 

math.degrees(math.atan2(self._accOffset[1], self._accOffset[2])) 

        self._accAnglesOffset[1] = self._previousAngles[1] = -

math.degrees(math.atan2(self._accOffset[0], self._accOffset[2])) 

         

        #Calculate local gravity 

        angles = [math.radians(angle) for angle in self._accAnglesOffset] 

        accels = [accel * Imu6050.ACCEL2MS2 for accel in self._accOffset]        

        self._localGravity = Vector.rotateVector3D(accels, angles + [0.0])[2] 

     

     

    def getMaxErrorZ(self): 

         

        return 0.1 

     

     

    def stop(self): 

         

        pass 

     

 


