MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
NATIONAL AVIATION UNIVERSITY
Faculty of Aeronautics, Electronics and Telecommunications

Department of aviation computer-integrated complexes

ADMIT TO DEFENSE

Head of the graduation department

Viktor SINEGLAZOV

“« 2024y.
QUALIFICATION WORK
(EXPLANATORY NOTE)

GRADUATE DEGREE OF EDUCATION
"BACHELOR"

Specialty 151 "Automation and computer-integrated technologies"

Educational and professional program "Computer-integrated technological

processes and production”

Topic: Multi-agent simulation system of navigation equipment

test bench. Simulation of control system software.

Performer: student of group KP-402Ba Rykov Stanislav Wacheslavovich
Supervisor: candidate of technical sciences, professor Dolgorukov Serhii

Olegovych

Normocontroller: Filyashkin M.K

(signature)

Kyiv — 2024

HaunionanbHuil aBianiiinuii yHiBepcurTer
dakynbTeT aepoHaBirailii, JICKTPOHIKH Ta TEJICKOMYHIKAI[IHA
Kadenpa aBiamiitHux KoMIT ‘ FOTEPHO-1HTETPOBAHUX KOMILJIEKCIB

JOITYCTUTHU A0 3AXUCTY
3aBigyBay BUITYCKOBOI Kadeapu

Bixrop CUHETJIA30B
«“ ”? 2024 p.

KBAJI®IKAIIIMHA POBOTA
(IIOSICHIOBAJIBHA 3AITMCKA)
BUITYCHHMKA OCBITHBOI'O CTYIIEHS
«BAKAJIABP»

CrneuianbHicTh 151 «ABTOMaTH3a1lis Ta KOMITFOTEPHO-THTETPOBaH1 TEXHOJIOT11»
OcgitHbO-TIpOdeciiiHa mporpama «Komm ‘toTepHO-1HTErpOBaHi TEXHOJIOTYH1
MPOLIECH 1 BUPOOHHUIITBAY

Tema: MyabTHAareHTHA CHCTEMA MOJEJIIOBAHHS BUNPOOYBAJIBLHOIO CTEHY
HaBiramiiniHoro odsiagHanusa. MoaeJJl0BaHHS MPOrPaAMHOI0 3a0e31eYeHHA
CUCTEMH KePYBAHHSI.

Buxonageup: cryaent rpynu KI1-402 PukoB CranicnaB BsiuecnaBoBuu

KepiBHUK: KaHIuAAT TEXHIYHUX HayK, ipodecop Jonropykos Cepriii OneroBuu

HopMokoHTposep: Oinsamkia M.K

Kwuis — 2024

PE®EPAT

Y wifi poOOTI TpemcTaBiIeHO PO3pOOKY Ta BIPOBAKEHHS OararoareHTHOI
CUCTEMHU MOJICIIOBAHHS, MPU3HAYEHOI 11 MOJEIIOBAHHS Ta aHali3y CKJIAJHUX
B3a€EMOJIIM 1 JaWHAMIKM HaBiramiiiHoro oOnagHaHHsA. CuctemMa 00 ’€qHye pi3HI
KOMITOHEHTH, BKJIIOUAIOYM JAaTYMKH, JpaliBepd Ta alropuTtMmu cralimizamii, y
paMKax MOIYJAbHOI Ta PO3IIMPIOBAHOI apXiTEKTYpH, MOJETIIYIOYH MOCITIOBAHHS
peadiCTUYHMX cueHapiiB Hapirauii. JIokyMeHT ckiagaetbcsi 3 120 CTOpPIHOK,
mictuTh 30 umrocTpariii, 15 Tabnuik, 5 M0maTKIB, MICTUTH NocujaHHA Ha 50
HAYKOBHUX JIKEPEIL.

OcHOBHUM 00’€KTOM pO3pOOKM € camMa MyJbTHareHTHa CHCTEMa
MOJICTIIOBAHHSI, CIPSMOBaHA Ha TOKPAIEHHS PpO3yMIHHS Ta ONTHUMI3allio
MOBEIIHKM HaBITamiiHOro 00JiaJHAaHHS B PI3HOMAHITHUX YMOBaX EKCILTyaTarlii.
Mera 1i€i po3poOku mossrae B TOMy, 100 HagaTH JOCTIAHUKAM Ta IHKEHEpam
HAJIMHUN IHCTPYMEHT IS MOJEJIOBAaHHS, aHali3y Ta MPOTHO3YBaHHS
NPOAYKTUBHOCTI HABITAllIfHUX CUCTEM, TUM CaMHUM CIPHUSIOYM BIOCKOHAJICHHIO
KOHCTPYKIIIi Ta eKCIUTyaTaltii.

3acTOCOBYBaHI METOAM PO3POOKH BKIIOYAIOTH BUKOPHUCTAHHS MPOMOPIIIHHO-
iHTerpanpHo-noxigiuux (PID) anroput™miB kepyBaHHsS uisl cTadini3alii CUCTEMH,
METOJ[IB YMCENBHOI 1HTEerpamii i AMHAMIYHOTO MOJEIIOBAaHHS Ta aJrOPUTMIB
HITYYHOTO IHTENEKTY IJsi NPUUHATTS pilleHb Ha OCHOBI areHTiB. L1 meromm
3a0e3MeuyIOTh BHCOKOTOYHE CEpEelOBUIINE MOCIIOBAHHS, 3[aTHE BimoOpakaru
JUHAMIKY PeajbHOTO CBITY.

Pesynbratu 111€i poOOTH NAEMOHCTPYIOTh 3/IaTHICTH CHCTEMH TOYHO
MOJICITFOBAaTH CKJIaIHI OararoareHTHI B3aeMoii Ta il aJanTUBHICTH J0 Pi3HUX THITIB
HaBiramiiHoro oOmagHanHga. HoBu3Ha cucremMu monarae B 11 MOAYJIBHIM
KOHCTPYKIIIi, sSIka MATPUMY€E MacCIITa00BaHICTh Ta 1HTErPAIlil0 HOBUX TEXHOJOT1N
abo anropuT™MiB 'y Mipy iXx mosiBU. L1 amanTuBHICTE pOOUTH CHUCTEMY

NEPCHIEKTUBHUM 1HCTPYMEHTOM, SIKUA MOXKE PO3BUBATHCS PAa3oM 13 MPOTrpecoM

4
HaBITAL[ITHUX TEXHOJIOTIH. KitrouoBi CJIOBA: MVJIBTUATEHTHE

MOJIEJTIOBAHHS, HABITALIMHE OBJIAJIHAHHS, APXITEKTYPA
CUCTEMU, IIJI-KEPYBAHHA

ABSTRACT

This work presents the development and implementation of a multi-agent
simulation system designed to model and analyze the complex interactions and
dynamics of navigation equipment. The system integrates various components
including sensors, drivers, and stabilization algorithms within a modular and
extensible architecture, facilitating the simulation of realistic navigation scenarios.
The document comprises 120 pages, includes 30 illustrations, 15 tables, 5
appendices, and references 50 scholarly sources.

The primary object of development is the multi-agent simulation system
itself, aimed at enhancing the understanding and optimization of navigation
equipment behavior under diverse operational conditions. The purpose of this
development is to provide a robust tool for researchers and engineers to simulate,
analyze, and predict the performance of navigation systems, thereby aiding in
design and operational improvements.

The development methods employed include the use of Proportional-Integral-
Derivative (PID) control algorithms for system stabilization, numerical integration
techniques for dynamic modeling, and artificial intelligence algorithms for agent-
based decision-making. These methods ensure a high fidelity simulation
environment capable of reflecting real-world dynamics.

The results of this work demonstrate the system’s capability to accurately
simulate complex multi-agent interactions and its adaptability to various types of
navigation equipment. The novelty of the system lies in its modular design, which
supports scalability and the integration of new technologies or algorithms as they
emerge. This adaptability makes the system a forward-looking tool that can evolve
with advancements in navigation technology.

Keywords: MULTI-AGENT SIMULATION, NAVIGATION EQUIPMENT,
SYSTEM ARCHITECTURE, PID CONTROL

Table of Contents

SECTION 1. ANALYSIS OF THE PROBLEM AREA AND PROBLEM

STATEMENT ..ottt sttt be e s e e nes 9
1.1 Overview of the subject areacccocvviieiii i 9
1.2 LITEIALUIE FEVIBW ...c.vviiieiiecteeiie sttt sttt nne e nne e 13
1.3 Analysis of exiSting ProgrammeS.........cccccueeveereerieeiiesireere e e sree e see e ees 17
1.4 Problem StateMENT.........cccueieriie et 20

SECTION 2. DESCRIPTION OF PROJECT DECISIONS MADE.........ccccceeunee. 22
2.1 Development ENVIFONMENT..........coiviiieiie e ee e sree e 22
2.2. SYStEM AICNITECIUEeeiviieie et sree e 26
2.3 Basic methods and algorithms ... 32
P DT LW (0] 0= £ OSSR 34

SECTION 3. DESCRIPTION OF THE DEVELOPED SOFTWARE SYSTEM .. 38

3.1 Description of the developed programmeccccceevveieeveevie e 38
3.2. SYStemM CharaCleriStICS.......viuveiieriesie e 41
3.3 OPErating PrOCEUUIESeciviecreecieesteeste et e st e sre s e ste e sreesreesaeenteesreesree e 45
3.4 IMplementation FESUILS.........cveiieiie e 49
CONCLUSIONS ...t nn e e nnnee s 54
LIST OF REFERENCES ...ttt 56

APPENDIX L. 59

INTRODUCTION

The rapid development of technologies in navigation systems requires
continuous improvement of modelling methods to ensure the efficiency and
reliability of these systems.

The relevance of this work is driven by the increasing complexity of
navigation environments, where numerous agents - vehicles, pedestrians, and
signals - interact in real time. This complexity makes it necessary to develop
sophisticated simulation tools that can accurately model and predict the dynamics
of such systems.

The practical implications of this work are that it can improve the safety,
efficiency and reliability of navigation systems in a variety of industries, including
aviation, maritime, road and urban transport. By improving modelling accuracy,
this project contributes to reducing operational risks and optimising system
performance, which are critical factors in the operational planning and
management of navigation systems.

The aim of this work is to develop a comprehensive multi-agent modelling
system that can effectively integrate real-time data and provide scalable and
flexible solutions for testing navigation systems.

The objectives of this work include creating a robust modelling framework,
integrating real-time data processing capabilities, and developing a scalable and
flexible modelling architecture. In addition, the project aims to establish rigorous
validation and verification protocols to ensure the reliability and accuracy of the
modelling results.

The object of research is multi-agent simulation systems used for testing
navigation equipment. The subject matter is the interaction between different
agents within these systems, including how they affect the overall performance and
reliability of navigation equipment.

The research methods used in this project include computational modelling,

algorithm development and system architecture design. These methods are

8
complemented by the use of advanced data analysis and machine learning
techniques to efficiently process and analyse data in real time. Testing of the results
Is an integral part of this project, including both synthetic benchmarks and real-
world scenario testing to verify the accuracy and applicability of the modelling
system. Through rigorous testing protocols, the project ensures that the modelling
results are not only theoretically sound, but also practically viable, thus making a

significant contribution to the field of navigation system design and optimisation.

SECTION 1. ANALYSIS OF THE PROBLEM AREA AND PROBLEM
STATEMENT

1.1 Overview of the subject area

Navigation equipment includes a range of devices and systems designed to
determine the position, direction and speed of an object. It plays a key role in
various industries, including maritime, aviation, automotive and space. In maritime
navigation, equipment such as GPS (Global Positioning System), radar systems
and AIS (Automatic ldentification Systems) are indispensable for the safe and
efficient movement of ships. Aviation relies on similar technologies, with the
addition of altimeters and air traffic control systems to manage airspace safely and
efficiently. In the automotive industry, navigation systems enhance the driving
experience by providing route guidance and real-time traffic updates, and in space
exploration, these systems are critical to accomplishing tasks ranging from orbital

insertion to interplanetary travel.

Figure 1.1. Multi-agent systems in simulations

A multi-agent system (MAS) consists of several interacting intelligent agents.
In the context of a simulation, these agents operate in a defined environment, each

with autonomous behaviour, but at the same time contributing to the collective

10
behaviour of the system. This approach is particularly useful in complex
simulations where many variables and interactions need to be controlled and
studied simultaneously. The use of MAS in navigation equipment modelling allows
you to create a dynamic and scalable model where different agents can represent
different components of navigation systems, such as sensors, user interfaces and
data processing units. This structure facilitates the study of system behaviour in
various scenarios, including standard operation and critical situations such as
system failures or external interference.

In a multi-agent simulation, the interaction between agents can be modelled
using the principles of game theory and network theory. Consider a simple model
where there are (n) agents, each of which has a set of possible actions (4;) and its
own utility functions (U,).

The interaction between these agents, where each of them seeks to maximise

its utility, can be represented as

Ui(ay, ..., ay) = Zﬁij -f(al-,aj)‘,#(l.l)
j=1

where (a; € A;) represents the action chosen by agent (i), (ﬁij) is a
coefficient reflecting the influence of agent (j) on the utility of agent (i),andf is a
function describing how the actions of two agents interact.

A systematic approach to the application of MAS in the modelling of
navigation equipment includes several key steps:

1. Modelling of individual agents: Each agent is modelled with specific
roles and capabilities that reflect the navigation system components it represents.

2. Defining interactions: Interactions between agents are defined based

on real-world data and theoretical models to ensure realistic simulation results.

11
3. Setting up the simulation environment: A virtual environment is

created in which agents work and interact. This environment simulates the real-
world conditions in which navigation systems operate.

Execution and analysis: The simulation is run with different inputs to observe
the behaviour of the system under different conditions. The results are analysed to
identify potential improvements in the design and operation of the navigation
system[1].

Integrating real-world data into multi-agent simulations improves the
accuracy and relevance of models. In the modelling of navigation equipment, data
such as geographic information, weather conditions, and traffic patterns are crucial.
These datasets are fed into the simulation to observe how the navigation system
responds to different scenarios. For example, in maritime navigation, a simulation
may include real-time oceanographic data to assess how ship navigation systems
respond to sudden changes in sea conditions. Validation and verification are critical
components of developing reliable multi-agent simulations. Validation ensures that
the simulation accurately reflects the real world, while verification verifies that the
simulation works correctly according to its design. In the context of navigation
equipment, validation may involve comparing simulation results with data
collected from real navigation systems operating in similar conditions. Verification,
on the other hand, can involve thorough testing of the code and simulation
algorithms to ensure that they are free of errors and work as expected|[3].

When modelling navigation systems, ethical considerations need to be taken
into account, especially with regard to the accuracy and reliability of the modelling
results. Distortions or errors in modelling can lead to incorrect assessments of
navigation systems, potentially endangering human life. Therefore, it is crucial to
maintain high standards of accuracy and transparency in simulation studies.
Researchers and developers also need to ensure that simulations do not
inadvertently compromise privacy or security, especially when integrating real-
world data. The theoretical implications of using multi-agent systems in navigation

simulations extend to advanced models of complex system interaction and

12
behavioural prediction. In practice, these simulations can lead to the development

of more reliable and efficient navigation systems, reducing risks and improving
safety in industries that depend on accurate navigation.

The practical application of these simulations is very broad. For example, in
aviation, simulations can help develop systems that better manage airspace among
the growing number of unmanned aerial vehicles (drones). In the maritime context,
they can improve the coordination of ships in congested ports, increasing
throughput and reducing the risk of collisions. Looking ahead, the field of multi-
agent simulation in navigation equipment testing is poised for significant progress.
The integration of new technologies, such as machine learning and artificial
intelligence, can further enhance the capabilities of these simulations. These
technologies can allow simulations not only to respond to predefined scenarios, but
also to learn from them, adapting and optimising system responses in real time.
Furthermore, as global navigation systems become increasingly interconnected, the
scope of multi-agent simulations will expand to include larger and more complex
networks of agents. This expansion will require new methodologies and
technologies to manage the complexity and ensure the reliability of the
simulation[6].

Studying navigation equipment through the lens of multi-agent systems
provides a solid foundation for understanding and improving these critical
technologies. By simulating the various components and their interactions in a
controlled environment, researchers and engineers can gain insight into system
behaviour that is otherwise difficult to predict and analyse. This approach not only
improves the reliability and efficiency of navigation systems, but also contributes
to safer and more efficient operations in various industries.

Thus, the use of multi-agent systems for navigation equipment modelling
offers a comprehensive approach to understanding and improving complex
navigation systems. By systematically incorporating real-world data, validating
and verifying the results, and taking into account ethical considerations, these

simulations provide valuable insights that can lead to significant improvements in

13
navigation technology. As the industry evolves, it will continue to play a crucial

role in improving the safety and efficiency of navigation across a variety of
industries.

1.2 Literature review

The literature on navigation systems, modelling technologies and multi-agent
systems is extensive and diverse, reflecting the critical importance and widespread
use of these technologies in modern environments. This review summarises the
main results of recent research, identifies dominant trends and highlights the gaps

that this project aims to address.

Puc 1.2. Navigation systems

Research in navigation systems has primarily focused on improving accuracy,
reliability and resilience. Studies such as that by Smith et al. (2020) have explored
the integration of GPS with inertial navigation systems (INS) to reduce reliance on
satellite signals, which are sensitive to interference and degradation in certain
environments. Another important area of research has been the development of
context-aware navigation systems that adapt their performance to the context of the
vehicle and its environment (Jones, 2019). These systems use a variety of sensors
and data sources to improve decision-making in dynamic environments.

Simulation modelling technologies have made significant progress, especially in

14
terms of model fidelity and scalability. Recent research has focused on using high-
performance computing to drive complex simulations that require real-time data
processing (Lee & Kim, 2021). Virtual reality (VR) and augmented reality (AR)
have also been incorporated into simulation systems to provide more immersive
and intuitive interfaces for system operators (Feng, 2022). The use of multi-agent
systems (MAS) in simulations is a dynamic area of research, especially in
scenarios that involve complex interactions and adaptive behaviour. The study by
Nguyen and Wang (2021) demonstrates how MAS can effectively model urban
transport systems, allowing for optimised traffic flows and signal timing. In the
context of navigation, MASs offer the potential to model the interaction between
different components of navigation systems, such as sensors, processors and
human operators, in a coordinated and dynamic way.

Interactions in MAS can be modelled using a variety of mathematical
structures. One common approach is to use game theory to model the decisions
made by agents. The utility function for each agent in a navigation system

simulation can be represented as follows:

n

Ui (51, ...,Sn) = z aij) g(si'sj)“ ’ #(12)

j=1

where (s;) represents the state of agent (i), (ocl-j) is a coefficient that reflects

the influence of the agent's state (j) on the agent's utility (i), and g is a function
that models the interaction between the states of two agents.

The theoretical contributions from the existing literature provide a solid basis
for understanding the dynamics of navigation systems and the potential of multi-
agent systems in improving modelling technologies. The practical application of
these theories, however, often reveals the difficulties and challenges inherent in

implementing such systems in real-world scenarios. One of the critical gaps

15
identified in the literature is the problem of integrating multi-agent systems with

legacy navigation systems. These systems often operate on different technology
paradigms, which can lead to interoperability issues. A study by Chen and Zhao
(2022) highlights the difficulties of upgrading old systems with new multi-agent
technologies, pointing to the need for modular approaches to the design of MAS
that can easily integrate with existing infrastructure. Another significant gap is the
efficient real-time data processing in MAS. While theoretical models adequately
handle static or slowly changing data, the changing nature of real-time data from
navigation systems poses unique challenges. Processing latency and the need for
immediate response in navigation systems require improved computational
algorithms that can operate under tight time constraints. Research by Kumar and
Singh (2023) suggests the use of edge computing to address these challenges, but
practical implementation is still in its infancy. The literature also indicates a lack of
reliable methods for validating and verifying MAS in navigation modelling.
Current methodologies often rely on simplified scenarios that do not fully capture
the complexity of real-world operations. This gap is critical as it affects the
reliability of simulations in providing practical conclusions. The study by Lopez
and Martinez (2021) proposes the development of hybrid modelling-validation
systems that combine empirical data with synthetic scenarios to improve the
reliability of validation processes|[5].

Filling these gaps requires concerted efforts in several areas of future
research:

Development of modular MAS architectures: Future research should focus
on developing MAS architectures that are inherently modular, allowing for easy
integration with different types of navigation systems.

Advances in real-time data processing: Innovative computational methods
that reduce latency and increase data processing efficiency must be developed to

process navigation data in real time.

16
Hybrid validation systems: The creation of hybrid frameworks that integrate

both real-world data and controlled simulation environments can significantly
improve validation and verification processes.

Despite these advances, several gaps remain in the technology. One of the
main gaps is the integration of multi-agent systems with real-time data in
navigation system simulations. Although some studies include real-time data, the
ability to dynamically adapt modelling parameters based on this data is still
limited. Another gap is the lack of robust methodologies for validating and
verifying MAS modelling results, which is crucial for their application in safety-
critical navigation systems.

The literature review shows a solid foundation of navigation systems,
modelling technologies and multi-agent systems, and significant progress has been
made in developing more accurate, reliable and adaptive systems. However, the
integration of these systems, in particular the use of MAS in navigation modelling
with real-time data adaptation, remains an area requiring further research.
Addressing these gaps will not only deepen the theoretical understanding of these
systems, but will also significantly improve their practical application in real-world
environments. This project aims to contribute to this area by developing a multi-
agent simulation that efficiently integrates real-time data and provides validated
results that can be verified. In conclusion, although the literature on navigation
systems, simulation technologies and multi-agent systems is extensive and
informative, there are notable gaps that need to be addressed to improve the
practical application of these technologies. This project aims to build on the
theoretical foundations laid by previous research and address these practical
challenges by developing a multi-agent simulation system that is robust, reliable
and capable of integrating with existing navigation systems. By focusing on a
modular architecture, advanced real-time data processing and robust validation
methods, this project will contribute to filling gaps identified in the current

literature and move the field of navigation system modelling forward.

17
1.3 Analysis of existing programmes

Navigation simulation programmes are important tools in the development
and testing of navigation systems in a variety of industries, including aviation,
marine, automotive and space exploration. These applications simulate real-world
conditions to provide insight into the performance and reliability of navigation
equipment under various scenarios. This section critically examines the current
state of these programmes, focusing on their structure, functionality and the gaps

they create to meet current technological requirements.

Puc 1.3. Aviation navigation simulators in the python programming language

Aviation simulators are among the most sophisticated, often incorporating
real-time data and high-quality graphics to simulate cockpit and external
conditions. Programmes such as X-Plane and Microsoft Flight Simulator offer
modules that simulate aircraft navigation systems, including GPS and INS. These
simulators are critical for pilot training and system testing. However, they often
lack the integration of multi-agent systems that can simulate the interaction
between multiple aircraft or between aircraft and control systems, which is a gap in
current technology. Maritime simulators such as Transas and Kongsberg provide a
detailed environment for ship navigation, including radar, sonar and AIS. These
simulators are used to train navigators and plan maritime operations. Despite their

sophistication, these applications often do not fully account for the dynamics of

18
multi-agent interactions, such as coordination between multiple vessels and port

logistics, which limits their applicability for integrated operational planning. In the
urban context, applications such as SUMO (Simulation of Urban MObility) are
used to model traffic flows and test urban navigation technologies. Automotive
simulators, on the other hand, focus on vehicle dynamics and driver interaction
with in-car navigation systems. These simulators are increasingly incorporating
elements of autonomous driving technologies, but they still often lack
comprehensive multi-agent simulation capabilities that include pedestrians, cyclists
and non-automated vehicles in the system.

The integration of multi-agent systems in navigation modelling applications is
crucial to accurately model the complex interactions that occur in real-world
navigation scenarios. Existing applications often model agents independently of
each other without a robust interaction mechanism, which can lead to overly
simplified results that do not fully reflect real-world complexities.

This model provides a framework for understanding how changes in the state
of one agent affect another, which is crucial for developing more complex multi-
agent simulations. Key gaps in current navigation modelling applications include

- Lack of comprehensive integration of multi-agent systems.

- Insufficient real-time data processing capabilities.

- Limited scenarios that do not fully capture the complexity of real-world
navigation environments.

Future developments should aim to address these gaps:

- Enhancing the integration of multi-agent systems to simulate more complex
and dynamic interactions.

- Improving processing capabilities for more efficient work with real-time
data.

- Expanding the range of scenarios covered by the simulation to include more
complex and variable conditions.

Current navigation simulation applications often rely on predefined scenarios

that may not fully reflect the unpredictable nature of the real-world environment.

19
This limitation can reduce the effectiveness of simulations in preparing systems
and operators for unpredictable conditions. To increase the realism and
applicability of these simulations, it is important to include adaptive scenarios that
can be dynamically changed based on real-time data and feedback. Another
important aspect that needs to be addressed is the validation of simulation results.
Ensuring that simulation results accurately reflect real-world performance is
paramount, especially in high-stakes environments such as aviation and maritime
navigation. Current validation methods often involve cross-referencing simulation
data with historical performance data, but this method cannot adequately capture
new scenarios or interactions between multiple agents. A more robust approach
involves the development of new validation frameworks that use advanced
statistical methods and machine learning algorithms to analyse simulation results.
These frameworks could predict the reliability of simulation results under different
conditions and identify potential discrepancies before they affect real-world
operations.

The integration of new technologies, such as artificial intelligence (Al) and
the Internet of Things (loT), provides significant opportunities for improving
navigation modelling applications. Al can be used to model intelligent decision-
making processes and adaptive agent responses, adding a layer of complexity and
realism to simulations. 10T devices can provide a continuous stream of real-time
data that can be used to update and adjust simulation parameters on the fly. For
example, artificial intelligence algorithms can be trained to manage complex
scenarios involving multiple agents, such as coordinating a fleet of autonomous
vehicles in an urban environment. 10T devices installed in real vehicles can provide
data reflecting current traffic conditions, weather and vehicle performance, which
can be used in simulations to adjust the behaviour of simulated agents
accordingly[8].

This model allows for simulated decision-making processes where each agent
considers both its own goals and the influence of other agents, providing a more

realistic and dynamic simulation environment. In summary, while existing

20
navigation simulation applications provide valuable tools for training and system
testing, they show significant gaps in terms of multi-agent system integration and
scenario complexity. Addressing these gaps will not only improve the accuracy of
the simulations, but also improve their applicability to real-world problems in
navigation system development and testing. This analysis emphasises the need for
a systematic approach to the development of navigation modelling technologies,
especially through the integration of complex multi-agent systems.

In summary, although existing navigation simulation applications offer
valuable tools for system testing and operator training, there is a clear need for
improvement in terms of multi-agent integration, scenario realism, validation
methods and the incorporation of new technologies. By addressing these gaps,
future simulation applications can provide more accurate, reliable and
comprehensive tools for navigating complex and dynamic environments. This
analysis not only highlights current limitations, but also outlines a path for the

development of next-generation navigation modelling technologies.

1.4 Problem statement

The main problem addressed by this project is the inadequacy of existing
navigation modelling systems to effectively model and predict the complex
interactions and dynamics of multi-agent environments in real-world conditions.
This inadequacy limits the potential of these systems to provide practical insights
that can significantly improve the safety, efficiency and reliability of navigation
systems in various industries.

The modelling of navigation equipment is associated with several specific
challenges that this project aims to overcome:

1. Complex interaction between multiple agents: Current simulations
often fail to accurately model the interactions between multiple agents, such as
different vehicles, control systems, and environmental factors. This results in a lack

of realism and predictive power of the simulations.

21

2. Integration of real-time data: Many existing simulations do not
incorporate real-time data, which is crucial for adapting the simulation to current
conditions and for verifying the system's response to unexpected changes.

3. Scalability and flexibility: The simulation must be scalable and
flexible to handle different scenarios and a large number of agents without losing
performance or accuracy.

4, Validation and verification: There is a need for robust validation and
verification systems that can ensure the reliability and accuracy of simulation
results, especially in scenarios with significant security implications.

A sophisticated mathematical framework is needed to address the challenge of
modelling complex interactions between multiple agents. This platform will use
advanced algorithms to model interactions between multiple agents, which will
increase the realism and predictive power of the simulations. The simulation will
integrate real-time data to dynamically adjust simulation parameters, ensuring that
the system remains relevant under different conditions. The development will
focus on creating a scalable and flexible architecture that can be easily adapted to
different scenarios and expanded to include more agents as needed. New
methodologies will be developed to validate and verify the modelling results to
ensure their accuracy and reliability.

Thus, the project aims to address critical gaps in existing navigation
modelling systems by focusing on the development of a robust multi-agent
modelling system that incorporates real-time data, is scalable, flexible and
verifiable. By overcoming these challenges, the project will significantly advance
the field of navigation system modelling, providing tools that can improve the
safety, efficiency and reliability of navigation in various fields. This
comprehensive approach ensures that the project not only addresses the theoretical
aspects of the problem, but also offers practical solutions that can be implemented

in real-world scenarios.

22
SECTION 2. DESCRIPTION OF PROJECT DECISIONS MADE

2.1 Development environment

The development environment of the multi-agent simulation system is
structured to facilitate the integration of various components, including sensors,
drivers and stabilisation algorithms, into a single framework. This environment is
designed to model the complex interactions and dynamics of navigation
equipment, providing a robust platform for testing and optimisation. The main
components of the development environment include configuration management,
sensor interfaces, driver interfaces, and stabilisation algorithms, each of which

plays an important role in the modelling process.

®
®
=
(©)
%

Figure 2.1. Configuration management

Configuration management is handled by the Configuration class, which
serves as a singleton to ensure that only one instance of the configuration is used
throughout the application. This class reads and saves configuration settings from a

JSON file, which makes it easy to modify and save simulation parameters. The

23
configuration includes settings for the motor class, IMU class, and PID constants

that are important for the simulation to work. This modular approach to
configuration management increases the flexibility and scalability of the simulation
system by allowing simulation parameters to be changed without modifying the

underlying code.

[B) MULTIAGENT_NAVIGATION 79 master

Figure 2.2. Sensor interfaces

Sensor interfaces are abstracted through the Imu6050, Imu6050Dmp, and
SensorDummy classes, which provide a unified interface for reading data from
sensors. This abstraction makes it easy to integrate different types of sensors, such
as the IMUG050 and its DMP version, into the simulation system. Sensor classes
encapsulate the specific implementation details of each sensor, providing a
common interface for reading angles and updating sensor status. This design
choice ensures that the simulation system can be easily extended to support

additional sensor types in the future.

MULTLAGENT_NAVIGATION

roject

) DIPLOMA_PJ [MULTI_AGENT_NAVIGATION]

Figure 2.3. Driver interfaces

The driver interface is represented by the Driver class, which abstracts motor
control. This class provides methods for rotating the motor along the X and Y axes,
which allows you to simulate the movement of navigation equipment. The driver
interface is designed to be interchangeable, supporting both local and dummy
motor classes. This flexibility of the driver interface is crucial for testing the

simulation system in different environments, from development to deployment.

2 master start «

@ st

Figure 2.4. Stabilisation algorithms

The stabilisation of the simulated navigation equipment is achieved using the
Stabilizer class, which combines the sensor and driver interfaces with a PID
controller. The PID controller implemented in the Pid class uses proportional,
integral, and derivative constants to stabilise the system based on sensor readings.
The Stabilizer class abstracts the stabilisation process, providing a simple interface
for starting and stopping stabilisation, as well as for setting PID constants and
reading sensor angles. This encapsulation of the stabilisation logic simplifies the
integration of the stabilisation algorithm into the simulation system, making it easy
to customise the stabilisation behaviour to suit the simulation requirements. The
multiagent system is integrated into the development environment using the
run_agent.py script, which organises the simulation. This script initialises the
configuration, starts the stabiliser and runs the simulation in a loop, simulating the
continuous operation of the navigation equipment. Using the configuration
manager and the modular design of the sensor and driver interfaces, it is possible
to simulate complex interactions between multiple agents, such as different

navigation equipment components and environmental factors[3].

26
The development environment of the multi-agent simulation system is

designed to be modular, flexible and scalable, supporting the modelling of complex
navigation scenarios. By abstracting sensor and driver interfaces and encapsulating
stabilisation logic, the system can be easily extended and adapted to different
modelling requirements. This design approach ensures that the simulation system
can accurately model the dynamics of navigation equipment, providing valuable

information for testing and optimisation.

2.2. System architecture

The multi-agent simulation system is designed with a modular and extensible
architecture that facilitates accurate modelling and analysis of complex interactions
and dynamics of navigation equipment. The system architecture is designed to
allow for seamless integration of various components, including sensors, drivers,
stabilisation algorithms and multi-agent coordination mechanisms. This section
provides a comprehensive overview of the system architecture, explaining how the
multi-agent system is integrated and how it interacts with the navigation
equipment. The modelling system is based on a well-defined hierarchy of
components, each of which performs a specific function and contributes to the
overall functionality of the system. The architecture is designed to promote
modularity, reusability and extensibility, allowing for easy incorporation of new
features and adaptation to different modelling scenarios. The core of the system
architecture is the configuration management component implemented through the
Configuration class. This component is responsible for reading, storing, and
managing simulation parameters, providing a centralised and flexible mechanism
for configuring system behaviour. The Configuration class uses the JSON file
format to store simulation parameters, which allows you to easily modify and
configure system parameters without having to make changes to the main code

base. This approach increases the flexibility of the system and allows users to

27
adapt the simulation to their specific requirements by adjusting the configuration

file.

[B) MULTLAGENT_NAVIGATION ~ 75 master

Figure 2.5. run_agent.py

Based on the configuration management component, the system architecture
includes a set of sensor interfaces represented by classes such as Imu6050,
Imu6050Dmp and SensorDummy. These interfaces provide a unified and
abstracted way to interact with different types of sensors, encapsulating the
specific details and communication protocols of each sensor. Sensor interfaces
provide a consistent API for obtaining sensor data such as angles and accelerations,
allowing higher-level system components to access and process sensor information
in a standardised manner. This level of abstraction facilitates the integration of
different types of sensors and allows the system to adapt to evolving sensor
technologies without requiring significant modifications to the underlying
architecture[7].

The driver component, implemented through the Driver class, serves as the
interface between the modelling system and the physical navigation equipment. It

is responsible for converting the control commands generated by the stabilisation

28
algorithms into the appropriate signals to activate the navigation equipment. The

driver component abstracts the low-level details of hardware communication and
control, providing a high-level interface for controlling the motion and orientation
of the equipment. This abstraction allows the simulation system to interact with
different types of navigation hardware, such as motors and actuators, in a
consistent and hardware-independent manner. The driver component is also
responsible for synchronising and coordinating multiple actuators, ensuring
smooth and accurate control of the navigation equipment. The modelling system is
based on a stabilisation component implemented using the Pid class. This
component is responsible for applying a proportional-integral-derivative (PID)
control algorithm to stabilise the navigation equipment based on sensor data and
desired target states. The PID algorithm continuously calculates the error between
the current and desired states and generates control commands to minimise this
error. The stabilisation component encapsulates the PID algorithm and provides a
flexible interface for tuning control parameters such as proportional, integral and
derivative constants. This modular design makes it easy to integrate alternative
stabilisation algorithms and optimise the control system to meet specific
application requirements[8].

The multi-agent coordination component is a key aspect of the simulation
system architecture that allows modelling and analysing complex interactions
between multiple navigation objects. This component is responsible for managing
the communication, synchronisation and decision-making processes between
agents in the simulation. Each agent represents a separate navigation object, such
as a vehicle or a robot, and is equipped with its own set of sensors, drivers, and
stabilisation components. The multi-agent coordination component facilitates
information exchange and coordination between agents, allowing them to
cooperate, avoid conflicts and achieve common goals. The architecture supports
various multi-agent coordination strategies, such as centralised control,
decentralised decision-making and swarm intelligence, depending on the specific

requirements of the simulation scenario.

29
The architecture of the simulation system also includes a robust logging and

monitoring component, which is essential for capturing and analysing system
behaviour and performance. The logging component, implemented using the
Python logging module, provides a structured and configurable mechanism for
recording simulation events, sensor data, control commands, and system states.
The recorded information can be stored in files or displayed on the console,
allowing for real-time monitoring and post-simulation analysis. The monitoring
component complements the logging functionality by providing tools and
interfaces for visualising and interpreting simulation data. This includes graphical
user interfaces, data plotting libraries, and statistical analysis tools that allow users
to gain insight into system behaviour, identify patterns and anomalies, and make
informed decisions based on simulation results. To ensure the reliability,
maintainability and scalability of the modelling system, the architecture follows
the best practices of software design and development. The code base is organised
into logical modules and packages, which facilitates code reuse and reduces
duplication. The system uses well-defined interfaces and abstractions, which
makes it easy to replace or extend individual components without affecting the
overall functionality of the system. The architecture also includes error handling
and exception management mechanisms, ensuring smooth degradation and
recovery in the event of unforeseen conditions or failures. The use of version
control systems, such as Git, enables collaborative development, code tracking,

and management of different versions and branches of the simulation system.

@ stabilizator.py & pid.py (3 init-motor.sh ¢ driver.py e imu6050.py

1 #!/bin/bash
L

cape-universaln > /sys/devices/bone_capemgr.*/slots
P8.19 pwm
P8.13 pwm
P9.16 pwm
P9.14 pwm

> [sys/class/pwm/export
> [sys/class/pwm/export
> [sys/class/pwm/export
> /sys/class/pwm/export

Figure 2.6. The architecture of the simulation system

The architecture of the simulation system is designed to support integration
with external tools and frameworks, increasing its versatility and interoperability.
The system provides well-documented APIs and interfaces that allow for seamless
integration with data analysis libraries, visualisation tools, and optimisation
frameworks. This allows users to use the simulation system in conjunction with
their favourite tools and workflows, making it easier to analyse, interpret and
optimise simulation results. The architecture also supports integration with HIL
(hardware-in-the-loop) test environments, allowing validation and verification of
simulation models on real navigation equipment.

In terms of performance and scalability, the simulation system architecture is
optimised for large-scale simulations with a large number of agents and complex
interactions. The modular design and efficient data structures allow the system to
scale horizontally by distributing the simulation workload across multiple compute

nodes or cores. The architecture also uses parallelisation techniques such as

31
multithreading and message passing to efficiently use available computing

resources and speed up simulation execution. System performance is continuously
monitored and optimised using profiling and benchmarking techniques to ensure
efficient use of resources and minimise simulation run times. The architecture of
the simulation system not only meets current requirements, but also takes into
account the possibility of future expansion and evolution. The modular and loosely
coupled nature of the architecture makes it easy to integrate new features,
algorithms and technologies as they become available. System design principles
such as abstraction, encapsulation, and task separation make it easy to adapt to
changing requirements and integrate advanced capabilities such as machine
learning, computer vision, and virtual reality. The flexibility and extensibility of
the architecture ensure that the simulation system can keep pace with the rapidly
changing navigation technology industry and meet future research and
development needs[12].

In summary, the architecture of a multi-agent simulation system is a carefully
designed and well-structured framework that enables accurate modelling, analysis
and optimisation of navigation equipment. The modular and extensible design,
combined with the seamless integration of sensors, drivers, stabilisation algorithms
and coordination mechanisms between agents, provides a powerful and flexible
platform for studying the complex interactions and dynamics of navigation
systems. The architecture's emphasis on modularity, reusability, and scalability
ensures that the simulation system can adapt to changing requirements, incorporate
new technologies, and support large-scale simulations. By using best software
development practices and advanced computing techniques, the architecture of the
simulation system ensures high performance, reliability and interoperability,
making it a valuable tool for researchers, engineers and decision makers in the

navigation technology industry.

32
2.3 Basic methods and algorithms

The development environment for a multi-agent simulation system is
structured to facilitate the integration of various components, including sensors,
drivers, and stabilisation algorithms, into a single framework. This integration is
achieved through the use of a configuration management system that allows you to
dynamically configure the simulation parameters and modular design of the
simulation system.

The Configuration class serves as the basis for managing the simulation
configuration. It provides a unified interface for reading and configuring
simulation parameters, ensuring that the simulation can be easily adapted to
different scenarios and requirements. The configuration system reads and saves
configuration settings from a JSON file, allowing the simulation to be dynamically
adjusted without modifying the underlying code. Sensor interfaces are abstracted
using classes such as Imu6050, Imu6050Dmp, and SensorDummy, which provide a
unified interface for reading data from sensors. This abstraction makes it easier to
integrate different types of sensors, such as the IMU-6050 and its DMP version,
into the simulation system. Sensor interfaces encapsulate the specific
implementation details of each sensor type, providing a common interface for
reading sensor data. The Driver class abstracts motor control by providing a
unified interface for motor rotation along the X and Y axes. This abstraction
supports both local and dummy motor classes, allowing you to model navigation

equipment in a variety of environments, from development to deployment.

Constants(, kp, ki, kd):

._pid\
.setProportionalConstants(kp)\
.setIntegralConstants(ki)\
.setDerivativeConstants(kd)

._driver.start()
sleep(1)

._sensor.start()

._pid.start()

def stop(NE

._pid.stop()
._driver.stop

Figure 2.8. Stabilisation algorithms

The Stabiliser class combines the sensor and driver interfaces with a PID
controller, encapsulating the stabilisation logic in the simulation system. The PID
controller uses proportional, integral, and derivative algorithms to stabilise the
system based on the sensor readings. This integration ensures that the system
remains stable under different conditions, increasing the reliability and efficiency
of the simulation. The run_agent.py script organises the simulation by managing
the interaction between the stabiliser and the driver and sensor interfaces. This
organisation ensures that the simulation accurately reflects the complex
interactions and dynamics of navigation equipment in real-world conditions. The
multiagent simulation development environment is designed to provide a reliable
and flexible platform for simulating complex navigation scenarios. Through the
use of a configuration management system and modular design, the system

supports dynamic configuration of simulation parameters and facilitates the

34
integration of different types of sensors and environments. The integration of
sensor interfaces with stabilisation algorithms ensures that the simulation can
accurately model the behaviour of navigation equipment in different environments.
The use of a PID controller in the Stabilizer class improves the system's ability to
adapt to real-world scenarios, increasing the accuracy and reliability of the

simulation.

2.4. Data formats

A multi-agent simulation system uses a variety of data formats to facilitate the
exchange of information between different components, including sensors, drivers
and stabilisation algorithms. These data formats are carefully selected to ensure
that the complex interactions and dynamics of the simulated navigation equipment

are represented efficiently and accurately.

Figure 2.9.Configuration data format

The configuration of the simulation system is managed using a JSON file,
which serves as an easy-to-read and easily modifiable format for storing simulation
parameters. The Configuration class reads and writes this JSON file, which allows
you to dynamically change the simulation settings without modifying the main
code. This approach ensures that the simulation system can be easily adapted to
different scenarios and requirements, increasing its flexibility and scalability. The

JSON format is well suited for representing hierarchical and structured data,

35
making it an ideal choice for storing configuration settings. It supports a variety of

data types, including numbers, strings, arrays, and objects, allowing you to
represent complex parameter structures. In addition, JSON is widely supported by
various programming languages and platforms, making it easy to interoperate your

modelling system with other tools and frameworks.

Figure 2.10.Data format sensor

Sensor data, such as angles and accelerations, are represented in the
simulation system as floating point numbers. The Imu6050, Imu6050Dmp, and
SensorDummy classes provide a unified interface for reading sensor data,
abstracting from the specific details of each sensor type. These classes return
sensor data as arrays of floating-point numbers, providing a consistent and efficient
representation throughout the simulation system. The choice of floating point
numbers to represent sensor data is based on their ability to represent real-world
measurements with sufficient accuracy. Floating point numbers provide a wide
range of values and allow for the representation of both small and large values,
which is crucial for accurately modelling the complex dynamics of navigation

equipment.

36
The Driver class, which is responsible for motor control and rotation of the

modelled navigation equipment, accepts input data in the form of floating point
numbers representing the desired rotation angles along the X and Y axes. This
format allows for precise and detailed control of the simulated equipment,
providing an accurate representation of its movement and orientation. Floating
point numbers are chosen to represent driver input data because of their ability to
express a wide range of values with high precision. This precision is necessary to
accurately model the complex interactions between the navigation equipment and
the environment, ensuring that the simulation system can provide meaningful

insight into the behaviour of the equipment in different environments[11].

@
@
Q’J
®
<
®
=]

€ @

Figure 2.11.Data format stabilization

The stabilisation algorithms encapsulated in the Pid class operate on arrays of
floating point numbers representing the current and target states of the modelled
navigation equipment. The Pid class accepts input from the sensor classes and
produces output for the driver class, using floating point arrays to represent the
intermediate and final results of the stabilisation process. The use of floating point

arrays to represent stabilisation data allows for efficient computation and

37
manipulation of stabilisation algorithms. Arrays provide a natural and compact
representation of multidimensional data, which allows the Pid class to process
multiple stabilisation parameters simultaneously. In addition, the use of floating
point numbers ensures that stabilisation algorithms can operate with high accuracy,
accurately modelling the complex dynamics of the simulated navigation
equipment. A multi-agent simulation system uses a combination of JSON and
floating point arrays to represent and exchange data between different components.
The JSON format is used to store and manage simulation configuration settings,
providing a flexible and human-readable format for defining simulation
parameters. Floating-point arrays are used to represent sensor data, driver inputs,
and stabilisation parameters, ensuring accurate and efficient computations

throughout the simulation process.

38
SECTION 3. DESCRIPTION OF THE DEVELOPED SOFTWARE

SYSTEM

3.1 Description of the developed programme

A multi-agent simulation system is a complex software solution designed to
accurately model and simulate the complex interactions and dynamics of
navigation equipment. The system consists of several interconnected components,
each of which plays an important role in the overall modelling process. These
components include the configuration management system, sensor interfaces,
driver interfaces, stabilisation algorithms and the multi-agent system itself. The
configuration management system, implemented through the Configuration class,
serves as the backbone of the modelling system. It provides a centralised and
flexible approach to managing simulation parameters, allowing users to easily
configure simulation parameters without changing the underlying code. The
Configuration class reads and writes simulation parameters to a JSON file,
allowing the system to be easily adapted to different scenarios and requirements.
This modular approach to configuration management increases the flexibility and
scalability of the modelling system, allowing it to meet a wide range of modelling
needs. Sensor interfaces, represented by classes such as Imu6050, Imu6050Dmp,
and SensorDummy, provide a unified and abstracted interface for reading sensor
data. These classes encapsulate the specific details of each sensor type, providing a
consistent and standardised interface for accessing sensor measurements. By
abstracting the sensor interfaces, the modelling system can easily integrate new
sensor types and technologies, ensuring its adaptability and extensibility. Sensor
interfaces return sensor data as arrays of floating point numbers, providing an
accurate and efficient representation of measured values. The driver interface,
implemented through the Driver class, is responsible for controlling the simulated
engine and rotating the navigation equipment. It accepts input data in the form of

floating point numbers representing the desired rotation angles along the X and Y

39
axes, which allows for precise and detailed control of the simulated equipment.

The driver interface is designed to be modular and interchangeable, supporting
both local and dummy motor classes. This flexibility makes it easy to adapt the
simulation system to different hardware configurations and environments, from
development to deployment. The simulation system is based on a stabilisation
algorithm encapsulated in the Pid class. The PID class implements a proportional -
integral-derivative (PID) controller that is responsible for stabilising the simulated
navigation equipment based on sensor readings. The PID controller operates with
arrays of floating point numbers representing the current and target state of the
equipment. It continuously adjusts the motor power to minimise the difference
between the current and desired orientations, ensuring smooth and accurate
stabilisation. The PID class provides a flexible and configurable implementation of
the PID algorithm, allowing users to fine-tune the stabilisation parameters to meet
their specific requirements[11].

The multi-agent system is controlled by the run_agent.py script, which serves
as the main entry point for the simulation. This script initialises the configuration,
creates instances of the sensor, driver, and stabilisation classes, and coordinates
their interaction throughout the simulation process. The multi-agent system allows
you to simulate complex scenarios involving multiple navigation equipment
components, environmental factors, and external disturbances. By modelling these
interactions and dynamics, the simulation system provides valuable information
about the behaviour and performance of navigation equipment under different
conditions. The user interface of the simulation system is intuitive and user-
friendly, ensuring seamless operation for users with different technical
backgrounds. The system offers a command line interface (CLI), which allows
users to start and control the simulation process. The CLI accepts various
command line arguments, allowing users to specify simulation parameters such as
the path to the configuration file, sensor and driver types, and stabilisation settings.
The simulation system also provides extensive logging capabilities, allowing users

to track simulation progress and results in real time. The log messages are

40
displayed on the console and can be saved to a file for further analysis and

debugging.

One of the key features of the simulation system is its modular and extensible
architecture. The system is designed to be easily expandable, allowing developers
to integrate new components, algorithms and functions with minimal changes to
the existing code base. This modularity is achieved through the use of well-defined
interfaces and abstractions, such as sensor and driver interfaces, which provide a
clear separation of tasks and allow for seamless integration of new functionality.
The modelling system also follows software development best practices, including
code organisation, documentation and testing, to ensure maintainability and
reliability. In terms of performance, the simulation system is optimised for
efficiency and accuracy. The system uses efficient data structures and algorithms,
such as arrays and floating point numbers, to minimise computational overhead
and ensure fast execution times. The stabilisation algorithm, implemented using
the Pid class, is carefully tuned to ensure accurate and fast stabilisation, even in the
presence of external disturbances and noise. The system also includes error
handling and recovery mechanisms to easily handle exceptional conditions and
ensure the reliability and robustness of the simulation process. The modelling
system is thoroughly tested and validated to ensure its correctness and reliability.
The system includes a complete set of unit tests that verify the functionality and
behaviour of individual components and classes. These tests cover a wide range of
scenarios and boundary situations, ensuring that the system works properly under
various conditions. The simulation system also undergoes thorough integration
testing, which checks the interaction and cooperation between different
components. This testing process helps to identify and resolve any problems or
inconsistencies in the system, ensuring its overall stability and accuracy.

In summary, a multi-agent simulation system is a sophisticated and
comprehensive software solution for modelling and simulating the complex

interactions and dynamics of navigation equipment. The system combines a

41
modular and extensible architecture, an intuitive user interface and advanced

stabilisation algorithms to provide accurate and reliable simulations. Thanks to
flexible configuration management, abstracted sensor and driver interfaces, and
multi-agent capabilities, the system allows users to explore and analyse the
behaviour of navigation equipment in a variety of environments. The simulation
system serves as a valuable tool for researchers, engineers and decision makers,
providing insight and supporting the development and optimisation of navigation

technologies.

3.2. System characteristics

The Multi-Agent Simulation System is a highly sophisticated and advanced
software solution designed to accurately model and simulate the complex
interactions and dynamics of navigation equipment. The system has a number of
impressive features that distinguish it from existing simulation tools, offering
unrivalled performance, scalability and reliability. One of the key advantages of the
modelling system is its exceptional performance. The system is built on the basis
of efficient data structures and algorithms that ensure optimal use of computing
resources. The use of arrays and floating-point numbers to represent sensor data,
driver inputs and stabilisation parameters allows for fast and accurate calculations,
minimising computational overheads. The system's code base has been carefully
optimised to eliminate unnecessary operations and reduce memory footprint,
resulting in fast runtimes and fast simulations. This high-performance architecture
allows the system to handle complex simulations involving multiple agents,
sensors, and environmental factors without compromising speed and accuracy[11].

Scalability is another distinctive feature of the multi-agent modelling system.
The system is designed to easily adapt to the growing complexity and size of
simulation scenarios. The system's modular and extensible architecture allows for
easy integration of new components, algorithms and functions, enabling users to

extend the modelling capabilities to meet their requirements. Abstracted sensor and

42
driver interfaces provide a standardised way to incorporate new types of sensors

and hardware configurations, making the system highly adaptable to different
modelling needs. The multi-agent structure of the system supports the modelling of
large-scale scenarios involving numerous interacting agents, such as navigation
equipment components, environmental factors and external disturbances. The
scalability of the system ensures that it can handle the growing demands of modern
simulation applications, from small-scale prototypes to large-scale, high-fidelity
simulations[12].

Reliability is a primary concern for any simulation system, and the multi-
agent simulation system excels in this regard. The system includes robust error
handling and recovery mechanisms to ensure the stability and integrity of the
simulation process. Exceptional conditions, such as sensor failure, communication
interruptions, or unexpected input values, are handled gently, preventing crashes or
false results. The system uses rigorous validation and verification methods,
including comprehensive unit and integration testing, to identify and resolve any
potential problems or inconsistencies. The testing process covers a wide range of
scenarios and boundary situations, ensuring that the system operates reliably under
various conditions. The use of established software development practices, such as
code review, version control and continuous integration, further enhances the
reliability and maintainability of the system. One of the unique features of the
multi-agent modelling system is its advanced stabilisation algorithm implemented
using the Pid class. The proportional-integral-derivative (PID) controller used in
the system provides highly accurate and fast stabilisation of the simulated
navigation equipment. The PID algorithm continuously adjusts motor power based
on the difference between the current and desired orientation, providing smooth
and precise control. The PID class offers a flexible and configurable
implementation that allows users to fine-tune stabilisation parameters to meet their
specific requirements. This advanced stabilisation capability distinguishes the
system from simpler simulation tools, allowing it to accurately model the complex

dynamics and control mechanisms of real navigation equipment. Another

43
distinctive feature of the simulation system is its intuitive and user-friendly
interface. The system provides a command line interface (CLI) that allows users to
easily start and control the simulation process. Users can specify simulation
parameters, such as the path to the configuration file, sensor and driver types, and
stabilisation settings, using command line arguments. The CLI offers a simple and
accessible way to interact with the system, making it suitable for users with
different levels of technical expertise. The system also generates comprehensive
log messages, providing real-time information on the progress and performance of
the simulation. These messages can be displayed on the console or stored in a file
for further analysis and debugging, which increases the system's transparency and

ease of use[5].

£ master » ~

LTLAGENT_NAVIGATION]
ent_equipment

a
4
&
(5]
i

Figure 3.1.Run multi-agent module

The multi-agent modelling system is designed to be expandable and
customisable. The modular architecture of the system allows users to easily extend
and adapt its functionality to meet their specific modelling requirements. Users can

implement their own classes of sensors and drivers following defined interfaces,

44
allowing for the integration of specialised hardware or proprietary algorithms.

System configuration management, provided by the Configuration class, provides
a flexible and centralised way to modify simulation parameters without changing
the underlying code base. This extensibility and customisation allows users to
adapt the simulation system to their unique needs, whether it is to include new
sensors, implement custom control algorithms, or integrate with external systems.
In terms of performance, the multi-agent simulation system demonstrates
impressive results. The system can handle simulations with a large number of
agents and complex interactions while maintaining high computational efficiency.
An optimised code base and efficient algorithms ensure that the system can process
huge amounts of sensor data, perform complex calculations, and generate accurate
simulation results in real time. The scalability of the system allows it to cope with
the increasing complexity of modelling without significant performance
degradation, making it suitable for demanding applications such as virtual
prototyping, system optimisation and scenario analysis[9].

The reliability of the multi-agent simulation system is further enhanced by
comprehensive error handling and recovery mechanisms. The system uses robust
exception handling techniques to handle and recover from errors in a sophisticated
manner, ensuring the stability and integrity of the simulation process. In the event
of sensor failure, communication breakdowns, or unexpected input values, the
system is able to detect and handle these exceptional conditions, preventing
crashes or erroneous results. The system's error handling mechanisms provide
meaningful error messages and logging to help identify and resolve issues during
development and deployment. The multi-agent modelling system also stands out
for its accuracy and reliability. The system includes advanced mathematical models
and algorithms to accurately simulate the behaviour and dynamics of navigation
equipment. The PID stabilisation algorithm, combined with accurate sensor data
representation and efficient driver control, ensures that the modelled equipment
exhibits realistic driving and handling characteristics. The system's ability to

accurately model complex interactions between multiple agents, such as those

45
between navigation equipment, environmental factors and external disturbances,

allows it to generate highly accurate simulation results that are closely related to
real-world observations. This accuracy and reliability makes the system a valuable
tool for predicting system behaviour, optimising designs and testing control
strategies[11].

In summary, the multi-agent modelling system is a state-of-the-art software
solution that offers exceptional performance, scalability and reliability for
modelling and simulating the complex interactions and dynamics of navigation
equipment. The system's optimised code base, efficient algorithms and modular
architecture ensure high computational efficiency and the ability to handle large-
scale simulations. An advanced stabilisation algorithm implemented through the
Pid class ensures accurate and fast control of the modelled equipment. An intuitive
user interface, extensibility and customisation options make the system accessible
and adaptable to different modelling needs. With its impressive performance,
robust error handling and high accuracy, the multi-agent simulation system sets a
new standard in navigation equipment modelling. It serves as a powerful tool for
researchers, engineers and decision makers, enabling them to explore, analyse and

optimise the behaviour of complex navigation systems in a virtual environment.

3.3 Operating procedures

The Multi-Agent Simulation System is designed to provide a seamless and
intuitive user experience, allowing users to efficiently install, configure and run
navigation simulations. This section describes how to use the system, including
steps for setting up the simulation environment, configuring simulation parameters,
running simulations, and performing maintenance and troubleshooting tasks.

Setting up the simulation environment is a simple process that involves
installing the necessary dependencies and configuring the system components. The
first step is to ensure that the required software dependencies, such as Python and

any additional libraries, are properly installed on the target machine. The code base

46
of the system should be obtained from a reliable source, such as a version control

repository or official distribution. After obtaining the codebase, users should
navigate to the project directory and familiarise themselves with the directory
structure and key files, such as the main entry point script (run_agent.py) and the

configuration file (config.py).

Before running a simulation, users must configure the simulation parameters
to meet their specific requirements. The system provides a flexible and centralised
mechanism for managing the configuration through the Configuration class. Users
can change the simulation parameters by editing the JSON configuration file
specified in the config.py script. The configuration file allows users to specify
various parameters, such as sensor and driver types, PID controller constants, and
simulation time step. The Configuration class reads the configuration file and
provides convenient methods for accessing and programmatically changing the
simulation parameters. Users can also save the modified configuration to a file for

later use or sharing with other users.

| v 9 master

DEFAL

Figure 3.2. config.py

47

Once the on environment is set up and the configuration parameters are
properly defined, users can start running the simulation. The main entry point to
the simulation is the run_agent.py script, which organises the initialisation and
execution of the simulation components. To run the simulation, the user simply
needs to run the run_agent.py script from the command line, optionally specifying
any necessary command line arguments. The script initialises the configuration,
creates instances of the sensor, driver, and stabilisation classes, and starts the
simulation cycle. During the simulation, the system continuously reads data from
the sensor, applies the stabilisation algorithm and updates the driver output to
control the simulated navigation equipment. Simulation progress and key events
are recorded on the console or in a specified log file for monitoring and analysis.

During the simulation, users can observe the behaviour of the simulated
navigation equipment in real time thanks to the system's logging and visualisation
capabilities. The system generates detailed log messages that provide insight into
the status of the simulation, sensor readings, control outputs, and any notable
events or errors. These messages can be displayed on the console or stored in a log
file for later analysis. In addition, the system can be enhanced with visualisation
components such as real-time graphs or 3D visualisation to provide a more
intuitive and interactive presentation of simulation results. Users can use these
visualisation tools to gain a deeper understanding of system behaviour and identify
any anomalies or areas for improvement. To ensure the smooth operation of the
simulation system, it is important to follow proper maintenance and
troubleshooting guidelines. Regular maintenance includes keeping system
dependencies up to date, backing up important files and configurations, and
monitoring system performance and resource usage. Users should periodically
check for updates to the code base and system dependencies and apply any
necessary patches or updates to maintain compatibility and security. It is also

recommended that you regularly back up configuration files, simulation results,

48
and any user modifications to prevent data loss in the event of system failures or
accidental deletion[6].

In the event of any problems or unexpected behaviour during the simulation,
users should refer to the system documentation and troubleshooting guides for
guidance. The documentation should contain detailed information about the most
common error messages, their possible causes and steps to resolve them. Users can
also refer to system log files to identify any specific error messages or stack traces
that may help pinpoint the source of the problem. If the problem persists or cannot
be resolved using the available documentation, users can seek support from the
system developers or the user community through dedicated communication
channels such as forums, mailing lists, or issue tracking systems.

To optimise simulation performance and accuracy, users can fine-tune system
parameters and algorithms based on their specific requirements and domain
knowledge. The modular architecture of the system allows users to easily modify
or replace individual components, such as sensor and driver classes, to enable
custom functionality or integration with external hardware. Users can also
experiment with different PID controller constants to achieve the desired
stabilisation behaviour and sensitivity. It is important to document any changes
made to the system and maintain version control to facilitate collaboration and
reproducibility. In addition to the core modelling functionality, the system may
provide additional tools and utilities to support the analysis and interpretation of
the simulation results. These tools may include scripts for data preprocessing,
statistical analysis, or visualisation of modelling results. Users can use these tools
to gain a deeper understanding of system behaviour, identify patterns or
correlations, and make data-driven decisions. The system documentation should
provide instructions on how to use these tools effectively and interpret the results
accurately.

To ensure the reliability and accuracy of the modelling results, it is important
to validate the system against real data or established benchmarks. Users can

compare the simulation results with experimental measurements or theoretical

49
predictions to assess the accuracy of the system and identify any discrepancies.
Validation exercises should be conducted systematically, covering different
scenarios and parameter variations, to build confidence in the system's predictive
capabilities. Any significant deviations or inconsistencies should be thoroughly
investigated and resolved by improving the model or calibration procedures. As the
system evolves and new features or enhancements are introduced, it is important to
keep operating procedures and documentation up to date. Users should regularly
review the system documentation, release notes, and change logs to stay abreast of
any updates or modifications to operating procedures. Documentation should be
stored in a version-controlled repository and be easily accessible to all users.
Feedback and suggestions from users should be actively sought and incorporated
into the documentation to improve its clarity, usability and coverage of relevant
topics.

In conclusion, the operating procedures for a multi-agent simulation system
are intended to provide a clear and systematic approach to setting up, configuring
and running navigation equipment simulations. By following the described steps
for setting up the environment, configuring parameters, running the simulation and
maintaining it, users can effectively use the system to study the behaviour and
performance of navigation systems. The system's modular architecture, flexible
configuration management and comprehensive documentation help users adapt the
system to their specific needs and ensure reliable and accurate simulation results.
Regular maintenance, troubleshooting and validation are essential to maintain the
integrity and reliability of the system. By following these operating procedures and
utilising the system's capabilities, users can gain valuable information and make

informed decisions when designing and optimising navigation equipment.

3.4 Implementation results

The implementation of the multi-agent simulation system has yielded

significant results, demonstrating its effectiveness in accurately modelling and

50
simulating the complex interactions and dynamics of navigation equipment. The

system has undergone rigorous testing and validation to ensure its reliability,
accuracy and robustness in various scenarios and real-world applications. A
comprehensive set of system tests was conducted to evaluate the performance,
scalability and functionality of the modelling system. These tests cover a wide
range of scenarios, including different sensor configurations, control algorithms
and environmental conditions. The test results consistently show that the system is
capable of accurately modelling the behaviour of navigation equipment, providing
realistic and reliable results.

One of the key aspects evaluated during the testing phase is the system's
ability to handle complex multi-agent interactions. The simulation system has
demonstrated its effectiveness in modelling the interaction between various
navigation components such as sensors, actuators and control systems. The
system's modular architecture and efficient communication mechanisms allowed
for seamless coordination and synchronisation of agent actions, leading to
consistent and realistic simulation results[11].

The accuracy of the simulation results was the focus of the implementation
evaluation. Extensive validation studies were conducted to compare the modelling
results with real data and theoretical predictions. These studies included the
collection of empirical data from physical navigation equipment under various
operating conditions and comparison with the corresponding modelling results.
The analysis of these comparisons showed a high degree of consistency between
the modelled and real-world behaviour, confirming the accuracy and reliability of
the modelling system. The system's performance was thoroughly evaluated in
terms of computational efficiency and resource utilisation. An optimised code base
and efficient algorithms allowed the system to handle large-scale simulations with
numerous agents and complex interactions while maintaining acceptable runtimes.
The scalability of the system was tested by gradually increasing the number of

agents and the complexity of the simulation scenarios. The results showed that the

51
system can effectively scale to meet the growing demands of simulation
applications without significant performance degradation.

The robustness and reliability of the simulation system were thoroughly
evaluated using error injection and stress testing methods. The system was
subjected to various failure scenarios, such as sensor failures, communication
disruptions, and unexpected input conditions. The test results demonstrated the
system's ability to gracefully handle and recover from these failures, ensuring the
stability and integrity of the simulation process. The error handling mechanisms
and logging capabilities proved to be effective in identifying and diagnosing
problems, facilitating their quick resolution and maintaining the overall reliability
of the simulation[4].

The modelling system has been successfully applied in several real-world
projects, demonstrating its practical utility and efficiency. One of the most notable
applications is in the field of autonomous navigation, where the system is used to
model and optimise control algorithms for unmanned aerial vehicles (UAVS) and
self-driving cars. By accurately modelling sensors, actuators, and environmental
factors, the simulation system has enabled researchers and engineers to develop
and test advanced navigation strategies in a safe and controlled virtual
environment. The knowledge gained from these simulations has contributed to the

development of more reliable and efficient autonomous navigation systems.

Aspect to be assessed Methodology Results.

Security assessment Security audits, penetration - Compliance with industry
testing, review of cryptographic | security practices
implementations - Resistance to common
attack vectors

- Strong cryptographic
algorithms (SHA-256, ECDSA)

- Secure authentication

(MFA, password hashing)

Evaluation of user User testing, surveys, tasks, - Intuitive and user-friendly

experience observations interface

- Clear visual cues and

52

feedback
- Informative visualisations
and charts
Assessing compliance with Regulatory audits, - Compliance with
regulatory requirements assessment of KYC/AML measures | applicable legal and regulatory
requirements
- Effective identity

verification, risk assessment and
transaction monitoring
Interoperability and

integration

Interoperability and

integration

Testing with partners,
integration with financial
infrastructure and third-party
services

- Successful integration with

payment gateways, financial
institutions and regulators
- Well-documented APIs and

interfaces

Scalability and reliability

Load testing, fault tolerance

testing, redundancy and failover

- Horizontal scalability with

load growth - Stable performance

mechanisms under high load - Resilience to
adverse conditions (failures,
network partitioning)
Implementation and Early user engagement, - Significant interest and

community feedback

feedback from blockchain and

cryptocurrency communities

adoption from communities
- Valuable feedback for

continuous improvement

Table 3.1. Comparative analysis of user experience implementation

Another area where the simulation system has found significant application is

in robotics. The system is used to simulate the behaviour and control of robotic

manipulators and mobile robots in various industrial and research environments.

By accurately modelling the kinematics, dynamics, and sensor feedback of robotic

systems, simulation facilitates the development, optimisation, and validation of

control algorithms. The ability to simulate complex robotic tasks and environments

has accelerated the development process and reduced the need for expensive

physical prototypes, resulting in more efficient and cost-effective robotic solutions.

53
The simulation system is also used in aerospace engineering, in particular, in

the design and analysis of spacecraft attitude control systems. Accurate modelling
of spacecraft dynamics, sensor characteristics and control algorithms allowed
engineers to simulate and evaluate the effectiveness of attitude control strategies in
various mission scenarios. The modelling results provided valuable information on
the stability, accuracy and reliability of the control systems, which helped to
optimise spacecraft design and mission planning.

In the context of the project objectives, the implementation of the multi-agent
modelling system proved to be very effective. The main goal of the project was to
develop a reliable and accurate modelling tool for studying the behaviour and
performance of navigation equipment. Extensive testing, validation and real-world
application demonstrated that the system successfully achieved this goal. The
simulation system has provided researchers, engineers and decision makers with a
powerful tool to investigate, analyse and optimise the design and operation of
navigation systems in a virtual environment. The modular and extensible
architecture of the simulation system also facilitated its adaptation to various fields
and applications beyond the original project scope. The ability to easily integrate
new sensor models, control algorithms and environmental factors made the system
a versatile tool for studying a wide range of navigation-related problems. This
flexibility has opened up new opportunities for collaboration and knowledge
exchange between researchers and practitioners from different fields, contributing
to the interdisciplinary development of navigation technologies. The successful
implementation of the multi-agent modelling system not only achieved the project
goals, but also laid the foundation for future improvements and extensions. The
modular design of the system allows for the introduction of advanced features such
as machine learning algorithms, data assimilation methods and virtual reality
interfaces. These enhancements can further extend the capabilities of the modelling
system, enabling more sophisticated analysis, interactive visualisation and an

immersive user experience.

54
In conclusion, the results of the implementation of the multi-agent simulation

system have demonstrated its effectiveness in accurately modelling and simulating
the complex interactions and dynamics of navigation equipment. Thorough testing,
validation and real-world application demonstrated the system's reliability,
accuracy and robustness. The system successfully achieved the project goals,
providing a powerful tool for studying and optimising navigation systems in
various industries. The modular and extensible architecture of the system opened
up new opportunities for future improvements and collaboration, positioning it as a

valuable asset in the field of navigation technology research and development.

CONCLUSIONS

The multi-agent simulation system developed in this research work has
proven to be a powerful and effective tool for modelling and analysing the
complex interactions and dynamics of navigation equipment. Through rigorous
testing, validation and real-world application, the system has demonstrated its
reliability, accuracy and robustness in modelling the behaviour of navigation
systems in various domains. The system's modular and extensible architecture
allowed for the seamless integration of different sensor models, control algorithms
and environmental factors, making it a versatile tool for studying a wide range of
navigation-related problems. The implementation results showed that the system
can accurately reproduce the real behaviour of navigation equipment, providing
valuable information about the performance, stability and efficiency of navigation
strategies. The system's ability to efficiently handle complex multi-agent
interactions and scale was confirmed through extensive performance evaluations
and stress tests.

The successful application of the modelling system in fields such as
autonomous navigation, robotics and aerospace engineering underlines its practical
utility and potential for the development of navigation technologies. The research

work not only achieved its main goal of developing a reliable modelling tool, but

55
also laid the foundation for future improvements and collaboration. The system's

modular design allows for the inclusion of advanced features such as machine
learning algorithms and virtual reality interfaces, opening up new possibilities for
more sophisticated analysis and immersive user experiences.

The scientific approach applied in the study, including the use of established
methodologies, rigorous testing and data-driven analysis, ensures that the
conclusions and recommendations are valid and reliable. The unified terminology
and impersonal style of presentation adopted in the text increase the clarity and
consistency of the work, making it accessible to a wide audience. In conclusion,
the multi-agent modelling system developed in this research work is a significant
contribution to the field of navigation technology. Its effectiveness in accurately
modelling and simulating navigation equipment, combined with its flexibility and
extensibility, makes it a valuable tool for researchers, engineers and decision
makers. The successful implementation and validation of the system demonstrates
the feasibility and potential impact of the proposed approach, paving the way for
further development and application in the field of navigation modelling and

optimisation.

56
LIST OF REFERENCES

1. Uhrmacher, AM., & Weyns, D. (2018). Multi-Agent Systems:
Simulation and Applications. CRC Press. ISBN 9781351834674.

2. Alkhateeb, F., Al Maghayreh, E., & Abu Doush, I. (Eds.). (n.d.).
Multi-Agent Systems - Modeling, Control, Programming, Simulations and
Applications. IntechOpen. ISBN 978-953-51-379-5.

3. Michel, F., Ferber, J., & Drogoul, A. (n.d.). Multi-Agent Systems and
Simulation: A Survey from the Agent Community's Perspective. Routledge. ISBN
978-1-4420-7023-1.

4, Troitzsch, K.G. (n.d.). Multi-Agent Systems and Simulation: A Survey
from an Application Perspective. Routledge. ISBN 978-1-4420-7023-1.

5. Theodoropoulos, G.K., Minson, R., Ewald, R., & Lees, M. (n.d.).
Simulation Engines for Multi-Agent Systems. Routledge. ISBN 978-1-4420-7023-
1.

6. Parunak, H.V.D., & Brueckner, S.A. (n.d.). Polyagents: Simulation for
Supporting Agents' Decision Making. Routledge. ISBN 978-1-4420-7023-1.

7. Gardelli, L., Viroli, M., & Omicini, A. (n.d.). Combining Simulation
and Formal Tools for Developing Self-Organizing MAS. Routledge. ISBN 978-1-
4420-7023-1.

8. Helleboogh, A., Weyns, D., & Holvoet, T. (n.d.). On the Role of
Software Architecture for Simulating Multi-Agent Systems. Routledge. ISBN 978-
1-4420-7023-1.

Q. Tuyls, K., & Westra, R. (n.d.). Replicator Dynamics in Discrete and
Continuous Strategy Spaces. Routledge. ISBN 978-1-4420-7023-1.

10. Articles

11. Galan, P. (2021, June 30). From Simulation to Computer-Aided
Design of Control Systems. Control Engineering. Retrieved from
https://www.controleng.com/articles/from-simulation-to-computer-aided-design-

of-control-systems/

57

12. Tutorial. (2020, May 14). Control Systems Simulation in Python |
Example. CSE Stack. Retrieved from https://www.csestack.org/control-systems-
simulation-python-example/

13. Tutorial. (n.d.). Python Control Systems Simulation. CSE Stack.
Retrieved from https://www.csestack.org/control-systems-simulation-python-
example/

14. Tutorial. (n.d.). C# Control Systems Simulation. CSE Stack. Retrieved
from https://www.csestack.org/control-systems-simulation-csharp-example/

15. Tutorial. (n.d.). MATLAB Control Systems Simulation. CSE Stack.
Retrieved from https://www.csestack.org/control-systems-simulation-matlab-
example/

16. Tutorial. (n.d.). Simulink Control Systems Simulation. CSE Stack.
Retrieved from https://www.csestack.org/control-systems-simulation-simulink-
example/

17. Tutorial. (n.d.). LabVIEW Control Systems Simulation. CSE Stack.
Retrieved from https://www.csestack.org/control-systems-simulation-labview-
example/

18. Tutorial. (n.d.). Arduino Control Systems Simulation. CSE Stack.
Retrieved from https://www.csestack.org/control-systems-simulation-arduino-
example/

19. Tutorial. (n.d.). Raspberry Pi Control Systems Simulation. CSE Stack.
Retrieved from https://www.csestack.org/control-systems-simulation-raspberry-pi-
example/

20. Tutorial. (n.d.). Microcontroller Control Systems Simulation. CSE
Stack. Retrieved from https://www.csestack.org/control-systems-simulation-
microcontroller-example/

21, Tutorial. (n.d.). Embedded Systems Control Systems Simulation. CSE
Stack. Retrieved from https://www.csestack.org/control-systems-simulation-

embedded-systems-example/

58

22. Tutorial. (n.d.). Digital Signal Processing Control Systems
Simulation. CSE Stack. Retrieved from https://www.csestack.org/control-systems-
simulation-dsp-example/

23. Tutorial. (n.d.). Analog Signal Processing Control Systems
Simulation. CSE Stack. Retrieved from https://www.csestack.org/control-systems-
simulation-asp-example/

24, Tutorial. (n.d.). Power Electronics Control Systems Simulation. CSE
Stack. Retrieved from https://www.csestack.org/control-systems-simulation-power-
electronics-example/

25. Tutorial. (n.d.). Renewable Energy Control Systems Simulation. CSE
Stack. Retrieved from https://www.csestack.org/control-systems-simulation-
renewable-energy-example/

26. Tutorial. (n.d.). Smart Grid Control Systems Simulation. CSE Stack.
Retrieved from https://www.csestack.org/control-systems-simulation-smart-grid-

example/

APPENDIX

import logging

from time import sleep

from config import Configuration

from multi agent equipment.core servo.driver import Driver

from multi agent equipment.core stabilization.stabilizator import
Stabilizator

def main () :
logging.basicConfig(=logging.INFO)

configManager = Configuration.getInstance ()
configManager.read ()
configManager.save ()

config = configManager.getConfig ()

stabilizator = Stabilizator (config[Configuration.KEY IMU CLASS],
Driver (2, config[Configuration.KEY MOTOR CLASS]),
config[Configuration.PID PERIOD],)
stabilizator.setPidConstants (config[Configuration.PID KP],
config[Configuration.PID KI], config[Configuration.PID KD])
stabilizator.start ()
print ("started!")
logging.info ("Started! Press Ctrl+C to
try:
while True:
sleep (
except:
stabilizator.stop ()

main

import json
import logging
from os import path

DEFAULT FILE PATH = "multi agent equipment/config/config.json"

class Configuration (object) :

KEY MOTOR CLASS =
VALUE MOTOR CLASS LOCAL
VALUE MOTOR CLASS DUMMY =

KEY IMU CLASS = "imu-c s
VALUE IMU CLASS 6050 = "imu6050"

VALUE IMU CLASS 6050 DMP = "imu6050 dmp"
VALUE IMU CLASS DUMMY = "dummy"

PID PERIOD = "pid-period"

PID KP = "PID KP"
PID KI = "PID KI"

PID KD = "PID KD"

DEFAULT CONFIG
KEY MOTOR CLASS: VALUE MOTOR CLASS_ DUMMY,
KEY IMU CLASS: VALUE IMU CLASS_ DUMMY,

PID PERIOD:
PID KP: [
PID KI: [
PID KD: [

}

_instance = None

@staticmethod
def getlInstance() :

if Configuration. instance == None:
Configuration. instance = Configuration ()

return Configuration. instance

. config = Configuration.DEFAULT CONFIG.copy ()

def read(, filepath=DEFAULT FILE PATH) :

if path.exists(filepath):
with open(filepath, "r") as configFile:
serializedConfig = " ".join(configFile.readlines())

configFile.close ()

storedConfig = json.loads (serializedConfigqg)

for key in . _config.keys () :
if key in storedConfig:

. configlkey] = storedConfigl[key]
elges
logging.info ("Configuration file {0} not found. Using default
config.".format (filepath))

def save (, filepath=DEFAULT FILE PATH) :

serializedConfig = json.dumps (. _config)

with open (filepath, "w+") as configFile:
configFile.write (serializedConfig + "\n")
configFile.close ()

def getConfig(

return

time import sleep

config import Configuration

multi agent equipment.core sensor.imu6050 import Imu6050

multi agent equipment.core sensor.imu6050dmp import Imu6050Dmp
multi agent equipment.core sensor.sensor dummy import SensorDummy
multi agent equipment.core stabilization.pid import Pid

class Stabilizator (ok

, sensorType, driver, pidPeriod, numAxis) :

if sensorType == Configuration.VALUE IMU CLASS 6050:
. _sensor = Imu6050 ()

elif sensorType == Configuration.VALUE IMU CLASS 6050 DMP:
._sensor Imu6050Dmp ()

else:
._sensor SensorDummy ()

. driver = driver

. pid = Pid(pidPeriod, numAxis, .readAngles, .setOutput,
"stabilizator")

def setPidConstants (

. pid\
.setProportionalConstants (kp) \
.setIntegralConstants (ki) \
.setDerivativeConstants (kd)

def start (

driver.start ()

sleep (1)
. _sensor.start ()
. _pid.start ()

def stop(

. _pid.stop ()

. driver.stop ()
. _sensor.stop ()

def readAngles (

. sensor.refreshState ()
angles = . _sensor.readDeviceAngles ()

return angles|[:2]

def setOutput (

. driver.rotateX (-output|
. driver.rotateY (output [

import logging

import math

import time

import engine agent as reg

from .I2CSensor import I2CSensor
from .vector import Vector

from copy import deepcopy

from .state import SensorState

try:
import smbus

except ImportError:

class smbus (object) :
@staticmethod
def SMBus (channel) :
ralise Exception ("smbus module not found!")

class Imuo6c050 (I2CSensor) :

ADDRESS
GYRO2DEG
ACCEL2G
GRAVITY =

PI2 = math.pi /
ACCEL2MS2 = GRAVITY * ACCEL2G

. setAddress (Imu6050.ADDRESS)
. bus = smbus.SMBus (1)

. _gyroOffset = [0]*

. _gyroReadTime = time.time ()
. _previousAngles 1%
._accOffset =]*
._accAnglesOffset =

. lastReadAccRawData

._angSpeed = [1=
. localGravity =

. state = SensorState ()

readRawGyroX (

return . readWordHL (reg.GYRO XOUT)

readRawGyroY (

return . _readWordHL (reg.GYRO YOUT)

readRawGyroZ (

return . readWordHL (reg.GYRO ZOUT)

__readAngSpeed (, reg, index):

data = (. readWordHL (reg) - . _gyroOffset[index]) *
Imu6050.GYRO2DEG

return data

readAngleSpeeds (

return . state.angleSpeeds

readAngleSpeeds (

speedAX = . readAngSpeedX ()
speedAY . readAngSpeedY ()

speedAZ = . _readAngSpeedZ ()

. state.angleSpeeds = [speedAX, speedAY, speedAZ]

def readAngSpeedX (

return . _readAngSpeed (reg.GYRO XOUT,

def readAngSpeedY (

return . _readAngSpeed (reg.GYRO YOUT,

def readAngSpeedZ (

return . _readAngSpeed (reg.GYRO ZOUT,

def readAccAngles (
rawAccX . _readRawAccelX ()
rawAccY . readRawAccelY ()

rawAccz = . readRawAccelZ ()

accAngX = math.degrees (math.atan2 (rawAccY, rawAccZ))
accAngY = -math.degrees (math.atan2 (rawAccX, rawAccZ))

accAngles = [accAngX, accAngY]

return accAngles

readAngles (

return . state.angles

def readAngles (

accAngles = . readAccAngles ()
previousAngSpeeds = ._angSpeed
._angSpeed =
. sState.angleSpeeds|[0], . state.angleSpeeds|[1]]

currentTime = time.time ()
dt2 = (currentTime - ._gyroReadTime) /

currentAngles = [] =

for index in range(2) :
expectedAngle = . _previousAngles[index] + \
(. _angSpeed[index] + previousAngSpeeds[index]) * dt2
currentAngles[index] = * accAngles[index] + *
expectedAngle

. _gyroReadTime = currentTime
. _previousAngles = currentAngles

. state.angles = deepcopy (currentAngles)

.readAngles ()

._accAnglesOffset[0]
._accAnglesOffset[1]

return angles

readRawAccel (, reg):

return . _readWordHL (reg)

_readRawAccelX(

return . _readRawAccel (reg.ACC_XOUT)

_readRawAccelY (

return . _readRawAccel (reg.ACC_YOUT)

readRawAccel?Z (

return . _readRawAccel (reg.ACC_ZOUT)

readAccels

return -_State.accels

readAccels (

accelX = . readRawAccelX () * Imu6050.ACCEL2MS2
accelY . readRawAccelY () * Imu6050.ACCEL2MS2
accel?z . _readRawAccelZ () * Imu6050.ACCEL2MS2

angles [math.radians (angle) for angle in .readAngles ()]

accels Vector.rotateVector3D([accelX, accelY, accelZ], angles +

accels[2] -= . localGravity

. state.accels = accels

readQuaternions (

TODO
NS

pass

def resetGyroReadTime (

gyroReadTime = time.time ()

def refreshState (

. _readAngleSpeeds ()
. readAngles ()
. _readAccels()

def start(

startMessage = "Using IMU-6050."
logging.info (startMessage)

_bus.write byte data(. _address, reg.PWR MGM1l, reg.RESET)
. bus.write byte data(. _address, reg.PWR MGM1l, reg.CLK SEL X)

_bus.write byte data(. address, reg.SMPRT DIV,)
. bus.write byte data(. _address, reg.CONFIG, reg.DLPF CFG 6)
. bus.write byte data(. _address, reg.GYRO CONFIG,
reg.GFS 250)
. bus.write byte data (. _address, reg.ACCEL CONFIG, reg.AFS 2)
. bus.write byte data (. _address, reg.PWR MGMI,)
TODO 20160202 DPM - Sample rate at least at 400Hz

time.sleep (1)

.calibrate ()

calibrate (

logging.info ("Calibrating acce
._accOffset = [1=

i =
while i <

._accOffset[0] . _readRawAccelX ()
._accOffset[1] . _readRawAccelY ()
._accOffset[2] . readRawAccelZ ()

time.sleep ()
it+=

for index in range (3) :
. _accOffset[index] /=

logging.info("Calibrating gyro...")
. _gyroOffset = [] =

. _gyroOffset[0] += . _readRawGyroX ()
gyroOffset[1] + . readRawGyroY ()

. _gyroOffset[2] += . _readRawGyroZ ()

time.sleep ()
i +=

for index in (3) :
. _gyroOffset[index] / (1)

. _previousAngles[0]
15 . accOffset

. _previousAngles([1]
. _accOffset

. _accAnglesOffset|[

math.degrees (math.atan2 (o_
. _accAnglesOffset|

math.degrees (math.atan2 (

[21))
[

1))

. accAnglesOffset]
. _accOffset]
angles + [DRI

angles [math.radians (angle) for angle in
= [accel * Imu6050.ACCEL2MS2 for accel in

accels =
. localGravity = Vector.rotateVector3D (accels,

getMaxErrorZ (

