Please use this identifier to cite or link to this item: https://er.nau.edu.ua/handle/NAU/64522
Title: Використання глибокого навчання для виявлення пошкодженої забудови на космічних знімках
Authors: Козлова, Тетяна Дмитрівна
Keywords: кваліфікаційна робота
глибоке навчання
машинне навчання
аналіз зображень
аналіз космічних знімків
класифікація зображень
CNN
TensorFlow
Keras
ArcGIS
Issue Date: Jun-2024
Publisher: Національний авіаційний університет
Citation: Козлова Т. Д. Використання глибокого навчання для виявлення пошкодженої забудови на космічних знімках. - Кваліфікаційна робота випускника освітнього ступеня "бакалавр" за спеціальністю 193 "Геодезія та землеустрій". - Київ: Національний авіаційний університет, 2024. - 59 с.
Abstract: Зростаючий інтерес до застосування обчислювальних потужностей у різних сферах життя набуває все більшої популярності. Машинне навчання, яке є важливою складовою сучасних технологій, знаходить дедалі ширше застосування у різних галузях. Особливе місце серед цих алгоритмів займає глибоке навчання, що полягає у тренуванні великих нейронних мереж на значних обсягах даних для виконання складних завдань. Завдяки своїй здатності до автоматичного виділення особливостей та побудови складних моделей, глибоке навчання знаходить широке застосування, від комп'ютерного зору до економічних прогнозів. Актуальність теми: глибоке навчання стає все більш поширеним інструментом для аналізу зображень, включаючи оцінку супутникових та аерофотознімків. Це важливо для вирішення таких прикладних задач, як моніторинг довкілля, планування міської інфраструктури, управління сільським господарством та ін. Використання глибокого навчання для виявлення пошкодженої забудови на космічних знімках демонструє значну актуальність у галузі геоінформаційних систем (ГІС). У сучасних реаліях нашої країни здатність швидко та точно оцінювати стан забудови є надзвичайно важливою для планування відновлювальних робіт та надання гуманітарної допомоги. Це підкреслює актуальність застосування глибокого навчання для швидкого аналізу даних, створення карт руйнувань та прийняття рішень. Метою дослідження є аналіз можливостей використання глибокого навчання для виявлення пошкодженої забудови на космічних знімках. Це включає в себе розробку спеціалізованої моделі глибокого навчання та оцінку її ефективності на основі реальних даних.
Description: Робота публікується згідно наказу ректора від 27.05.2021 р. № 311/од "Про розміщення кваліфікаційних робіт вищої освіти в репозитарії НАУ". Керівник роботи: к.ф.-м.н., ст. досл. Великодський Юрій Іванович
URI: https://er.nau.edu.ua/handle/NAU/64522
Appears in Collections:Кваліфікаційні роботи здобувачів вищої освіти кафедри аерокосмічної геодезії та землеустрою

Files in This Item:
File Description SizeFormat 
ФНСА_2024_193_Козлова Т.Д..pdf5.49 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.